LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: fc67f8dc6087a0b4f4f0bcd74f6e1dc25fab8cf3.info Lines: 60.7 % 1686 1024
Test Date: 2024-09-24 13:57:57 Functions: 40.0 % 130 52

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashSet};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : 
      11              : use super::layer_manager::LayerManager;
      12              : use super::{
      13              :     CompactFlags, CreateImageLayersError, DurationRecorder, ImageLayerCreationMode,
      14              :     RecordedDuration, Timeline,
      15              : };
      16              : 
      17              : use anyhow::{anyhow, bail, Context};
      18              : use bytes::Bytes;
      19              : use enumset::EnumSet;
      20              : use fail::fail_point;
      21              : use itertools::Itertools;
      22              : use pageserver_api::key::KEY_SIZE;
      23              : use pageserver_api::keyspace::ShardedRange;
      24              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      25              : use serde::Serialize;
      26              : use tokio_util::sync::CancellationToken;
      27              : use tracing::{debug, info, info_span, trace, warn, Instrument};
      28              : use utils::id::TimelineId;
      29              : 
      30              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      31              : use crate::page_cache;
      32              : use crate::tenant::checks::check_valid_layermap;
      33              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      34              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      35              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      36              : use crate::tenant::storage_layer::split_writer::{
      37              :     SplitDeltaLayerWriter, SplitImageLayerWriter, SplitWriterResult,
      38              : };
      39              : use crate::tenant::storage_layer::{
      40              :     AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
      41              : };
      42              : use crate::tenant::timeline::ImageLayerCreationOutcome;
      43              : use crate::tenant::timeline::{drop_rlock, DeltaLayerWriter, ImageLayerWriter};
      44              : use crate::tenant::timeline::{Layer, ResidentLayer};
      45              : use crate::tenant::DeltaLayer;
      46              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      47              : use pageserver_api::config::tenant_conf_defaults::{
      48              :     DEFAULT_CHECKPOINT_DISTANCE, DEFAULT_COMPACTION_THRESHOLD,
      49              : };
      50              : 
      51              : use crate::keyspace::KeySpace;
      52              : use crate::repository::{Key, Value};
      53              : use crate::walrecord::NeonWalRecord;
      54              : 
      55              : use utils::lsn::Lsn;
      56              : 
      57              : use pageserver_compaction::helpers::overlaps_with;
      58              : use pageserver_compaction::interface::*;
      59              : 
      60              : use super::CompactionError;
      61              : 
      62              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      63              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      64              : 
      65              : /// The result of bottom-most compaction for a single key at each LSN.
      66              : #[derive(Debug)]
      67              : #[cfg_attr(test, derive(PartialEq))]
      68              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
      69              : 
      70              : /// The result of bottom-most compaction.
      71              : #[derive(Debug)]
      72              : #[cfg_attr(test, derive(PartialEq))]
      73              : pub(crate) struct KeyHistoryRetention {
      74              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
      75              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
      76              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
      77              :     pub(crate) above_horizon: KeyLogAtLsn,
      78              : }
      79              : 
      80              : impl KeyHistoryRetention {
      81              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
      82              :     ///
      83              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
      84              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
      85              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
      86              :     /// Then we delete branch @ 0x20.
      87              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
      88              :     /// And that wouldnt' change the shape of the layer.
      89              :     ///
      90              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
      91              :     ///
      92              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
      93          114 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
      94          114 :         if dry_run {
      95            0 :             return true;
      96          114 :         }
      97          114 :         let guard = tline.layers.read().await;
      98          114 :         if !guard.contains_key(key) {
      99           66 :             return false;
     100           48 :         }
     101           48 :         let layer_generation = guard.get_from_key(key).metadata().generation;
     102           48 :         drop(guard);
     103           48 :         if layer_generation == tline.generation {
     104           48 :             info!(
     105              :                 key=%key,
     106              :                 ?layer_generation,
     107            0 :                 "discard layer due to duplicated layer key in the same generation",
     108              :             );
     109           48 :             true
     110              :         } else {
     111            0 :             false
     112              :         }
     113          114 :     }
     114              : 
     115              :     /// Pipe a history of a single key to the writers.
     116              :     ///
     117              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     118              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     119              :     #[allow(clippy::too_many_arguments)]
     120         1266 :     async fn pipe_to(
     121         1266 :         self,
     122         1266 :         key: Key,
     123         1266 :         tline: &Arc<Timeline>,
     124         1266 :         delta_writer: &mut SplitDeltaLayerWriter,
     125         1266 :         mut image_writer: Option<&mut SplitImageLayerWriter>,
     126         1266 :         stat: &mut CompactionStatistics,
     127         1266 :         dry_run: bool,
     128         1266 :         ctx: &RequestContext,
     129         1266 :     ) -> anyhow::Result<()> {
     130         1266 :         let mut first_batch = true;
     131         1266 :         let discard = |key: &PersistentLayerKey| {
     132            0 :             let key = key.clone();
     133            0 :             async move { Self::discard_key(&key, tline, dry_run).await }
     134            0 :         };
     135         4206 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     136         2940 :             if first_batch {
     137         1266 :                 if logs.len() == 1 && logs[0].1.is_image() {
     138         1224 :                     let Value::Image(img) = &logs[0].1 else {
     139            0 :                         unreachable!()
     140              :                     };
     141         1224 :                     stat.produce_image_key(img);
     142         1224 :                     if let Some(image_writer) = image_writer.as_mut() {
     143         1224 :                         image_writer
     144         1224 :                             .put_image_with_discard_fn(key, img.clone(), tline, ctx, discard)
     145         1242 :                             .await?;
     146              :                     } else {
     147            0 :                         delta_writer
     148            0 :                             .put_value_with_discard_fn(
     149            0 :                                 key,
     150            0 :                                 cutoff_lsn,
     151            0 :                                 Value::Image(img.clone()),
     152            0 :                                 tline,
     153            0 :                                 ctx,
     154            0 :                                 discard,
     155            0 :                             )
     156            0 :                             .await?;
     157              :                     }
     158              :                 } else {
     159           84 :                     for (lsn, val) in logs {
     160           42 :                         stat.produce_key(&val);
     161           42 :                         delta_writer
     162           42 :                             .put_value_with_discard_fn(key, lsn, val, tline, ctx, discard)
     163            3 :                             .await?;
     164              :                     }
     165              :                 }
     166         1266 :                 first_batch = false;
     167              :             } else {
     168         1920 :                 for (lsn, val) in logs {
     169          246 :                     stat.produce_key(&val);
     170          246 :                     delta_writer
     171          246 :                         .put_value_with_discard_fn(key, lsn, val, tline, ctx, discard)
     172           24 :                         .await?;
     173              :                 }
     174              :             }
     175              :         }
     176         1266 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     177         1362 :         for (lsn, val) in above_horizon_logs {
     178           96 :             stat.produce_key(&val);
     179           96 :             delta_writer
     180           96 :                 .put_value_with_discard_fn(key, lsn, val, tline, ctx, discard)
     181            6 :                 .await?;
     182              :         }
     183         1266 :         Ok(())
     184         1266 :     }
     185              : }
     186              : 
     187              : #[derive(Debug, Serialize, Default)]
     188              : struct CompactionStatisticsNumSize {
     189              :     num: u64,
     190              :     size: u64,
     191              : }
     192              : 
     193              : #[derive(Debug, Serialize, Default)]
     194              : pub struct CompactionStatistics {
     195              :     delta_layer_visited: CompactionStatisticsNumSize,
     196              :     image_layer_visited: CompactionStatisticsNumSize,
     197              :     delta_layer_produced: CompactionStatisticsNumSize,
     198              :     image_layer_produced: CompactionStatisticsNumSize,
     199              :     num_delta_layer_discarded: usize,
     200              :     num_image_layer_discarded: usize,
     201              :     num_unique_keys_visited: usize,
     202              :     wal_keys_visited: CompactionStatisticsNumSize,
     203              :     image_keys_visited: CompactionStatisticsNumSize,
     204              :     wal_produced: CompactionStatisticsNumSize,
     205              :     image_produced: CompactionStatisticsNumSize,
     206              : }
     207              : 
     208              : impl CompactionStatistics {
     209         2058 :     fn estimated_size_of_value(val: &Value) -> usize {
     210          798 :         match val {
     211         1260 :             Value::Image(img) => img.len(),
     212            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
     213          798 :             _ => std::mem::size_of::<NeonWalRecord>(),
     214              :         }
     215         2058 :     }
     216         3288 :     fn estimated_size_of_key() -> usize {
     217         3288 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
     218         3288 :     }
     219          138 :     fn visit_delta_layer(&mut self, size: u64) {
     220          138 :         self.delta_layer_visited.num += 1;
     221          138 :         self.delta_layer_visited.size += size;
     222          138 :     }
     223          108 :     fn visit_image_layer(&mut self, size: u64) {
     224          108 :         self.image_layer_visited.num += 1;
     225          108 :         self.image_layer_visited.size += size;
     226          108 :     }
     227         1266 :     fn on_unique_key_visited(&mut self) {
     228         1266 :         self.num_unique_keys_visited += 1;
     229         1266 :     }
     230          420 :     fn visit_wal_key(&mut self, val: &Value) {
     231          420 :         self.wal_keys_visited.num += 1;
     232          420 :         self.wal_keys_visited.size +=
     233          420 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     234          420 :     }
     235         1260 :     fn visit_image_key(&mut self, val: &Value) {
     236         1260 :         self.image_keys_visited.num += 1;
     237         1260 :         self.image_keys_visited.size +=
     238         1260 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     239         1260 :     }
     240          384 :     fn produce_key(&mut self, val: &Value) {
     241          384 :         match val {
     242            6 :             Value::Image(img) => self.produce_image_key(img),
     243          378 :             Value::WalRecord(_) => self.produce_wal_key(val),
     244              :         }
     245          384 :     }
     246          378 :     fn produce_wal_key(&mut self, val: &Value) {
     247          378 :         self.wal_produced.num += 1;
     248          378 :         self.wal_produced.size +=
     249          378 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     250          378 :     }
     251         1230 :     fn produce_image_key(&mut self, val: &Bytes) {
     252         1230 :         self.image_produced.num += 1;
     253         1230 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
     254         1230 :     }
     255           24 :     fn discard_delta_layer(&mut self) {
     256           24 :         self.num_delta_layer_discarded += 1;
     257           24 :     }
     258           24 :     fn discard_image_layer(&mut self) {
     259           24 :         self.num_image_layer_discarded += 1;
     260           24 :     }
     261           30 :     fn produce_delta_layer(&mut self, size: u64) {
     262           30 :         self.delta_layer_produced.num += 1;
     263           30 :         self.delta_layer_produced.size += size;
     264           30 :     }
     265           36 :     fn produce_image_layer(&mut self, size: u64) {
     266           36 :         self.image_layer_produced.num += 1;
     267           36 :         self.image_layer_produced.size += size;
     268           36 :     }
     269              : }
     270              : 
     271              : impl Timeline {
     272              :     /// TODO: cancellation
     273              :     ///
     274              :     /// Returns whether the compaction has pending tasks.
     275         1092 :     pub(crate) async fn compact_legacy(
     276         1092 :         self: &Arc<Self>,
     277         1092 :         cancel: &CancellationToken,
     278         1092 :         flags: EnumSet<CompactFlags>,
     279         1092 :         ctx: &RequestContext,
     280         1092 :     ) -> Result<bool, CompactionError> {
     281         1092 :         if flags.contains(CompactFlags::EnhancedGcBottomMostCompaction) {
     282            0 :             self.compact_with_gc(cancel, flags, ctx)
     283            0 :                 .await
     284            0 :                 .map_err(CompactionError::Other)?;
     285            0 :             return Ok(false);
     286         1092 :         }
     287         1092 : 
     288         1092 :         if flags.contains(CompactFlags::DryRun) {
     289            0 :             return Err(CompactionError::Other(anyhow!(
     290            0 :                 "dry-run mode is not supported for legacy compaction for now"
     291            0 :             )));
     292         1092 :         }
     293         1092 : 
     294         1092 :         // High level strategy for compaction / image creation:
     295         1092 :         //
     296         1092 :         // 1. First, calculate the desired "partitioning" of the
     297         1092 :         // currently in-use key space. The goal is to partition the
     298         1092 :         // key space into roughly fixed-size chunks, but also take into
     299         1092 :         // account any existing image layers, and try to align the
     300         1092 :         // chunk boundaries with the existing image layers to avoid
     301         1092 :         // too much churn. Also try to align chunk boundaries with
     302         1092 :         // relation boundaries.  In principle, we don't know about
     303         1092 :         // relation boundaries here, we just deal with key-value
     304         1092 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
     305         1092 :         // map relations into key-value pairs. But in practice we know
     306         1092 :         // that 'field6' is the block number, and the fields 1-5
     307         1092 :         // identify a relation. This is just an optimization,
     308         1092 :         // though.
     309         1092 :         //
     310         1092 :         // 2. Once we know the partitioning, for each partition,
     311         1092 :         // decide if it's time to create a new image layer. The
     312         1092 :         // criteria is: there has been too much "churn" since the last
     313         1092 :         // image layer? The "churn" is fuzzy concept, it's a
     314         1092 :         // combination of too many delta files, or too much WAL in
     315         1092 :         // total in the delta file. Or perhaps: if creating an image
     316         1092 :         // file would allow to delete some older files.
     317         1092 :         //
     318         1092 :         // 3. After that, we compact all level0 delta files if there
     319         1092 :         // are too many of them.  While compacting, we also garbage
     320         1092 :         // collect any page versions that are no longer needed because
     321         1092 :         // of the new image layers we created in step 2.
     322         1092 :         //
     323         1092 :         // TODO: This high level strategy hasn't been implemented yet.
     324         1092 :         // Below are functions compact_level0() and create_image_layers()
     325         1092 :         // but they are a bit ad hoc and don't quite work like it's explained
     326         1092 :         // above. Rewrite it.
     327         1092 : 
     328         1092 :         // Is the timeline being deleted?
     329         1092 :         if self.is_stopping() {
     330            0 :             trace!("Dropping out of compaction on timeline shutdown");
     331            0 :             return Err(CompactionError::ShuttingDown);
     332         1092 :         }
     333         1092 : 
     334         1092 :         let target_file_size = self.get_checkpoint_distance();
     335              : 
     336              :         // Define partitioning schema if needed
     337              : 
     338              :         // FIXME: the match should only cover repartitioning, not the next steps
     339         1092 :         let (partition_count, has_pending_tasks) = match self
     340         1092 :             .repartition(
     341         1092 :                 self.get_last_record_lsn(),
     342         1092 :                 self.get_compaction_target_size(),
     343         1092 :                 flags,
     344         1092 :                 ctx,
     345         1092 :             )
     346        48122 :             .await
     347              :         {
     348         1092 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
     349         1092 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
     350         1092 :                 let image_ctx = RequestContextBuilder::extend(ctx)
     351         1092 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
     352         1092 :                     .build();
     353         1092 : 
     354         1092 :                 // 2. Compact
     355         1092 :                 let timer = self.metrics.compact_time_histo.start_timer();
     356        29656 :                 let fully_compacted = self.compact_level0(target_file_size, ctx).await?;
     357         1092 :                 timer.stop_and_record();
     358         1092 : 
     359         1092 :                 let mut partitioning = dense_partitioning;
     360         1092 :                 partitioning
     361         1092 :                     .parts
     362         1092 :                     .extend(sparse_partitioning.into_dense().parts);
     363         1092 : 
     364         1092 :                 // 3. Create new image layers for partitions that have been modified
     365         1092 :                 // "enough". Skip image layer creation if L0 compaction cannot keep up.
     366         1092 :                 if fully_compacted {
     367         1092 :                     let image_layers = self
     368         1092 :                         .create_image_layers(
     369         1092 :                             &partitioning,
     370         1092 :                             lsn,
     371         1092 :                             if flags.contains(CompactFlags::ForceImageLayerCreation) {
     372           42 :                                 ImageLayerCreationMode::Force
     373              :                             } else {
     374         1050 :                                 ImageLayerCreationMode::Try
     375              :                             },
     376         1092 :                             &image_ctx,
     377              :                         )
     378        40943 :                         .await?;
     379              : 
     380         1092 :                     self.upload_new_image_layers(image_layers)?;
     381              :                 } else {
     382            0 :                     info!("skipping image layer generation due to L0 compaction did not include all layers.");
     383              :                 }
     384         1092 :                 (partitioning.parts.len(), !fully_compacted)
     385              :             }
     386            0 :             Err(err) => {
     387            0 :                 // no partitioning? This is normal, if the timeline was just created
     388            0 :                 // as an empty timeline. Also in unit tests, when we use the timeline
     389            0 :                 // as a simple key-value store, ignoring the datadir layout. Log the
     390            0 :                 // error but continue.
     391            0 :                 //
     392            0 :                 // Suppress error when it's due to cancellation
     393            0 :                 if !self.cancel.is_cancelled() {
     394            0 :                     tracing::error!("could not compact, repartitioning keyspace failed: {err:?}");
     395            0 :                 }
     396            0 :                 (1, false)
     397              :             }
     398              :         };
     399              : 
     400         1092 :         if self.shard_identity.count >= ShardCount::new(2) {
     401              :             // Limit the number of layer rewrites to the number of partitions: this means its
     402              :             // runtime should be comparable to a full round of image layer creations, rather than
     403              :             // being potentially much longer.
     404            0 :             let rewrite_max = partition_count;
     405            0 : 
     406            0 :             self.compact_shard_ancestors(rewrite_max, ctx).await?;
     407         1092 :         }
     408              : 
     409         1092 :         Ok(has_pending_tasks)
     410         1092 :     }
     411              : 
     412              :     /// Check for layers that are elegible to be rewritten:
     413              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
     414              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
     415              :     /// - For future use: layers beyond pitr_interval that are in formats we would
     416              :     ///   rather not maintain compatibility with indefinitely.
     417              :     ///
     418              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
     419              :     /// how much work it will try to do in each compaction pass.
     420            0 :     async fn compact_shard_ancestors(
     421            0 :         self: &Arc<Self>,
     422            0 :         rewrite_max: usize,
     423            0 :         ctx: &RequestContext,
     424            0 :     ) -> Result<(), CompactionError> {
     425            0 :         let mut drop_layers = Vec::new();
     426            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
     427            0 : 
     428            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
     429            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
     430            0 :         // pitr_interval, for example because a branchpoint references it.
     431            0 :         //
     432            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
     433            0 :         // are rewriting layers.
     434            0 :         let latest_gc_cutoff = self.get_latest_gc_cutoff_lsn();
     435            0 : 
     436            0 :         tracing::info!(
     437            0 :             "latest_gc_cutoff: {}, pitr cutoff {}",
     438            0 :             *latest_gc_cutoff,
     439            0 :             self.gc_info.read().unwrap().cutoffs.time
     440              :         );
     441              : 
     442            0 :         let layers = self.layers.read().await;
     443            0 :         for layer_desc in layers.layer_map()?.iter_historic_layers() {
     444            0 :             let layer = layers.get_from_desc(&layer_desc);
     445            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
     446              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
     447            0 :                 continue;
     448            0 :             }
     449            0 : 
     450            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
     451            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
     452            0 :             let layer_local_page_count = sharded_range.page_count();
     453            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
     454            0 :             if layer_local_page_count == 0 {
     455              :                 // This ancestral layer only covers keys that belong to other shards.
     456              :                 // We include the full metadata in the log: if we had some critical bug that caused
     457              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
     458            0 :                 info!(%layer, old_metadata=?layer.metadata(),
     459            0 :                     "dropping layer after shard split, contains no keys for this shard.",
     460              :                 );
     461              : 
     462            0 :                 if cfg!(debug_assertions) {
     463              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
     464              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
     465              :                     // should be !is_key_disposable()
     466            0 :                     let range = layer_desc.get_key_range();
     467            0 :                     let mut key = range.start;
     468            0 :                     while key < range.end {
     469            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
     470            0 :                         key = key.next();
     471              :                     }
     472            0 :                 }
     473              : 
     474            0 :                 drop_layers.push(layer);
     475            0 :                 continue;
     476            0 :             } else if layer_local_page_count != u32::MAX
     477            0 :                 && layer_local_page_count == layer_raw_page_count
     478              :             {
     479            0 :                 debug!(%layer,
     480            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
     481              :                     layer_local_page_count
     482              :                 );
     483            0 :                 continue;
     484            0 :             }
     485            0 : 
     486            0 :             // Don't bother re-writing a layer unless it will at least halve its size
     487            0 :             if layer_local_page_count != u32::MAX
     488            0 :                 && layer_local_page_count > layer_raw_page_count / 2
     489              :             {
     490            0 :                 debug!(%layer,
     491            0 :                     "layer is already mostly local ({}/{}), not rewriting",
     492              :                     layer_local_page_count,
     493              :                     layer_raw_page_count
     494              :                 );
     495            0 :             }
     496              : 
     497              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
     498              :             // without incurring the I/O cost of a rewrite.
     499            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
     500            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
     501            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
     502            0 :                 continue;
     503            0 :             }
     504            0 : 
     505            0 :             if layer_desc.is_delta() {
     506              :                 // We do not yet implement rewrite of delta layers
     507            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
     508            0 :                 continue;
     509            0 :             }
     510            0 : 
     511            0 :             // Only rewrite layers if their generations differ.  This guarantees:
     512            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
     513            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
     514            0 :             if layer.metadata().generation == self.generation {
     515            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
     516            0 :                 continue;
     517            0 :             }
     518            0 : 
     519            0 :             if layers_to_rewrite.len() >= rewrite_max {
     520            0 :                 tracing::info!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
     521            0 :                     layers_to_rewrite.len()
     522              :                 );
     523            0 :                 continue;
     524            0 :             }
     525            0 : 
     526            0 :             // Fall through: all our conditions for doing a rewrite passed.
     527            0 :             layers_to_rewrite.push(layer);
     528              :         }
     529              : 
     530              :         // Drop read lock on layer map before we start doing time-consuming I/O
     531            0 :         drop(layers);
     532            0 : 
     533            0 :         let mut replace_image_layers = Vec::new();
     534              : 
     535            0 :         for layer in layers_to_rewrite {
     536            0 :             tracing::info!(layer=%layer, "Rewriting layer after shard split...");
     537            0 :             let mut image_layer_writer = ImageLayerWriter::new(
     538            0 :                 self.conf,
     539            0 :                 self.timeline_id,
     540            0 :                 self.tenant_shard_id,
     541            0 :                 &layer.layer_desc().key_range,
     542            0 :                 layer.layer_desc().image_layer_lsn(),
     543            0 :                 ctx,
     544            0 :             )
     545            0 :             .await
     546            0 :             .map_err(CompactionError::Other)?;
     547              : 
     548              :             // Safety of layer rewrites:
     549              :             // - We are writing to a different local file path than we are reading from, so the old Layer
     550              :             //   cannot interfere with the new one.
     551              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
     552              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
     553              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
     554              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
     555              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
     556              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
     557              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
     558              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
     559              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
     560              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
     561            0 :             let resident = layer.download_and_keep_resident().await?;
     562              : 
     563            0 :             let keys_written = resident
     564            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
     565            0 :                 .await?;
     566              : 
     567            0 :             if keys_written > 0 {
     568            0 :                 let (desc, path) = image_layer_writer
     569            0 :                     .finish(ctx)
     570            0 :                     .await
     571            0 :                     .map_err(CompactionError::Other)?;
     572            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
     573            0 :                     .map_err(CompactionError::Other)?;
     574            0 :                 tracing::info!(layer=%new_layer, "Rewrote layer, {} -> {} bytes",
     575            0 :                     layer.metadata().file_size,
     576            0 :                     new_layer.metadata().file_size);
     577              : 
     578            0 :                 replace_image_layers.push((layer, new_layer));
     579            0 :             } else {
     580            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
     581            0 :                 // the layer has no data for us with the ShardedRange check above, but
     582            0 :                 drop_layers.push(layer);
     583            0 :             }
     584              :         }
     585              : 
     586              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
     587              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
     588              :         // to remote index) and be removed. This is inefficient but safe.
     589            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
     590            0 : 
     591            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
     592            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
     593            0 :             .await?;
     594              : 
     595            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
     596            0 : 
     597            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
     598            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
     599            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
     600            0 :         // load.
     601            0 :         match self.remote_client.wait_completion().await {
     602            0 :             Ok(()) => (),
     603            0 :             Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
     604              :             Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
     605            0 :                 return Err(CompactionError::ShuttingDown)
     606              :             }
     607              :         }
     608              : 
     609            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
     610            0 : 
     611            0 :         Ok(())
     612            0 :     }
     613              : 
     614              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
     615              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
     616              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
     617              :     ///
     618              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
     619              :     /// that we know won't be needed for reads.
     620          594 :     pub(super) async fn update_layer_visibility(
     621          594 :         &self,
     622          594 :     ) -> Result<(), super::layer_manager::Shutdown> {
     623          594 :         let head_lsn = self.get_last_record_lsn();
     624              : 
     625              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
     626              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
     627              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
     628              :         // they will be subject to L0->L1 compaction in the near future.
     629          594 :         let layer_manager = self.layers.read().await;
     630          594 :         let layer_map = layer_manager.layer_map()?;
     631              : 
     632          594 :         let readable_points = {
     633          594 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
     634          594 : 
     635          594 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
     636          594 :             for (child_lsn, _child_timeline_id) in &children {
     637            0 :                 readable_points.push(*child_lsn);
     638            0 :             }
     639          594 :             readable_points.push(head_lsn);
     640          594 :             readable_points
     641          594 :         };
     642          594 : 
     643          594 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
     644         1524 :         for (layer_desc, visibility) in layer_visibility {
     645          930 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
     646          930 :             let layer = layer_manager.get_from_desc(&layer_desc);
     647          930 :             layer.set_visibility(visibility);
     648          930 :         }
     649              : 
     650              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
     651              :         // avoid assuming that everything at a branch point is visible.
     652          594 :         drop(covered);
     653          594 :         Ok(())
     654          594 :     }
     655              : 
     656              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
     657              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
     658         1092 :     async fn compact_level0(
     659         1092 :         self: &Arc<Self>,
     660         1092 :         target_file_size: u64,
     661         1092 :         ctx: &RequestContext,
     662         1092 :     ) -> Result<bool, CompactionError> {
     663              :         let CompactLevel0Phase1Result {
     664         1092 :             new_layers,
     665         1092 :             deltas_to_compact,
     666         1092 :             fully_compacted,
     667              :         } = {
     668         1092 :             let phase1_span = info_span!("compact_level0_phase1");
     669         1092 :             let ctx = ctx.attached_child();
     670         1092 :             let mut stats = CompactLevel0Phase1StatsBuilder {
     671         1092 :                 version: Some(2),
     672         1092 :                 tenant_id: Some(self.tenant_shard_id),
     673         1092 :                 timeline_id: Some(self.timeline_id),
     674         1092 :                 ..Default::default()
     675         1092 :             };
     676         1092 : 
     677         1092 :             let begin = tokio::time::Instant::now();
     678         1092 :             let phase1_layers_locked = self.layers.read().await;
     679         1092 :             let now = tokio::time::Instant::now();
     680         1092 :             stats.read_lock_acquisition_micros =
     681         1092 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
     682         1092 :             self.compact_level0_phase1(phase1_layers_locked, stats, target_file_size, &ctx)
     683         1092 :                 .instrument(phase1_span)
     684        29652 :                 .await?
     685              :         };
     686              : 
     687         1092 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
     688              :             // nothing to do
     689         1008 :             return Ok(true);
     690           84 :         }
     691           84 : 
     692           84 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
     693            3 :             .await?;
     694           84 :         Ok(fully_compacted)
     695         1092 :     }
     696              : 
     697              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
     698         1092 :     async fn compact_level0_phase1<'a>(
     699         1092 :         self: &'a Arc<Self>,
     700         1092 :         guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
     701         1092 :         mut stats: CompactLevel0Phase1StatsBuilder,
     702         1092 :         target_file_size: u64,
     703         1092 :         ctx: &RequestContext,
     704         1092 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
     705         1092 :         stats.read_lock_held_spawn_blocking_startup_micros =
     706         1092 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
     707         1092 :         let layers = guard.layer_map()?;
     708         1092 :         let level0_deltas = layers.level0_deltas();
     709         1092 :         stats.level0_deltas_count = Some(level0_deltas.len());
     710         1092 : 
     711         1092 :         // Only compact if enough layers have accumulated.
     712         1092 :         let threshold = self.get_compaction_threshold();
     713         1092 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
     714         1008 :             debug!(
     715            0 :                 level0_deltas = level0_deltas.len(),
     716            0 :                 threshold, "too few deltas to compact"
     717              :             );
     718         1008 :             return Ok(CompactLevel0Phase1Result::default());
     719           84 :         }
     720           84 : 
     721           84 :         let mut level0_deltas = level0_deltas
     722           84 :             .iter()
     723         1206 :             .map(|x| guard.get_from_desc(x))
     724           84 :             .collect::<Vec<_>>();
     725           84 : 
     726           84 :         // Gather the files to compact in this iteration.
     727           84 :         //
     728           84 :         // Start with the oldest Level 0 delta file, and collect any other
     729           84 :         // level 0 files that form a contiguous sequence, such that the end
     730           84 :         // LSN of previous file matches the start LSN of the next file.
     731           84 :         //
     732           84 :         // Note that if the files don't form such a sequence, we might
     733           84 :         // "compact" just a single file. That's a bit pointless, but it allows
     734           84 :         // us to get rid of the level 0 file, and compact the other files on
     735           84 :         // the next iteration. This could probably made smarter, but such
     736           84 :         // "gaps" in the sequence of level 0 files should only happen in case
     737           84 :         // of a crash, partial download from cloud storage, or something like
     738           84 :         // that, so it's not a big deal in practice.
     739         2244 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
     740           84 :         let mut level0_deltas_iter = level0_deltas.iter();
     741           84 : 
     742           84 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
     743           84 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
     744           84 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
     745           84 : 
     746           84 :         // Accumulate the size of layers in `deltas_to_compact`
     747           84 :         let mut deltas_to_compact_bytes = 0;
     748           84 : 
     749           84 :         // Under normal circumstances, we will accumulate up to compaction_interval L0s of size
     750           84 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
     751           84 :         // work in this function to only operate on this much delta data at once.
     752           84 :         //
     753           84 :         // Take the max of the configured value & the default, so that tests that configure tiny values
     754           84 :         // can still use a sensible amount of memory, but if a deployed system configures bigger values we
     755           84 :         // still let them compact a full stack of L0s in one go.
     756           84 :         let delta_size_limit = std::cmp::max(
     757           84 :             self.get_compaction_threshold(),
     758           84 :             DEFAULT_COMPACTION_THRESHOLD,
     759           84 :         ) as u64
     760           84 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
     761           84 : 
     762           84 :         let mut fully_compacted = true;
     763           84 : 
     764           84 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident().await?);
     765         1206 :         for l in level0_deltas_iter {
     766         1122 :             let lsn_range = &l.layer_desc().lsn_range;
     767         1122 : 
     768         1122 :             if lsn_range.start != prev_lsn_end {
     769            0 :                 break;
     770         1122 :             }
     771         1122 :             deltas_to_compact.push(l.download_and_keep_resident().await?);
     772         1122 :             deltas_to_compact_bytes += l.metadata().file_size;
     773         1122 :             prev_lsn_end = lsn_range.end;
     774         1122 : 
     775         1122 :             if deltas_to_compact_bytes >= delta_size_limit {
     776            0 :                 info!(
     777            0 :                     l0_deltas_selected = deltas_to_compact.len(),
     778            0 :                     l0_deltas_total = level0_deltas.len(),
     779            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
     780              :                     delta_size_limit
     781              :                 );
     782            0 :                 fully_compacted = false;
     783            0 : 
     784            0 :                 // Proceed with compaction, but only a subset of L0s
     785            0 :                 break;
     786         1122 :             }
     787              :         }
     788           84 :         let lsn_range = Range {
     789           84 :             start: deltas_to_compact
     790           84 :                 .first()
     791           84 :                 .unwrap()
     792           84 :                 .layer_desc()
     793           84 :                 .lsn_range
     794           84 :                 .start,
     795           84 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
     796           84 :         };
     797           84 : 
     798           84 :         info!(
     799            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
     800            0 :             lsn_range.start,
     801            0 :             lsn_range.end,
     802            0 :             deltas_to_compact.len(),
     803            0 :             level0_deltas.len()
     804              :         );
     805              : 
     806         1206 :         for l in deltas_to_compact.iter() {
     807         1206 :             info!("compact includes {l}");
     808              :         }
     809              : 
     810              :         // We don't need the original list of layers anymore. Drop it so that
     811              :         // we don't accidentally use it later in the function.
     812           84 :         drop(level0_deltas);
     813           84 : 
     814           84 :         stats.read_lock_held_prerequisites_micros = stats
     815           84 :             .read_lock_held_spawn_blocking_startup_micros
     816           84 :             .till_now();
     817              : 
     818              :         // TODO: replace with streaming k-merge
     819           84 :         let all_keys = {
     820           84 :             let mut all_keys = Vec::new();
     821         1206 :             for l in deltas_to_compact.iter() {
     822         1206 :                 if self.cancel.is_cancelled() {
     823            0 :                     return Err(CompactionError::ShuttingDown);
     824         1206 :                 }
     825         7083 :                 all_keys.extend(l.load_keys(ctx).await.map_err(CompactionError::Other)?);
     826              :             }
     827              :             // The current stdlib sorting implementation is designed in a way where it is
     828              :             // particularly fast where the slice is made up of sorted sub-ranges.
     829     13271312 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
     830           84 :             all_keys
     831           84 :         };
     832           84 : 
     833           84 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
     834              : 
     835              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
     836              :         //
     837              :         // A hole is a key range for which this compaction doesn't have any WAL records.
     838              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
     839              :         // cover the hole, but actually don't contain any WAL records for that key range.
     840              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
     841              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
     842              :         //
     843              :         // The algorithm chooses holes as follows.
     844              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
     845              :         // - Filter: min threshold on range length
     846              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
     847              :         //
     848              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
     849              :         #[derive(PartialEq, Eq)]
     850              :         struct Hole {
     851              :             key_range: Range<Key>,
     852              :             coverage_size: usize,
     853              :         }
     854           84 :         let holes: Vec<Hole> = {
     855              :             use std::cmp::Ordering;
     856              :             impl Ord for Hole {
     857            0 :                 fn cmp(&self, other: &Self) -> Ordering {
     858            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
     859            0 :                 }
     860              :             }
     861              :             impl PartialOrd for Hole {
     862            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
     863            0 :                     Some(self.cmp(other))
     864            0 :                 }
     865              :             }
     866           84 :             let max_holes = deltas_to_compact.len();
     867           84 :             let last_record_lsn = self.get_last_record_lsn();
     868           84 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
     869           84 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
     870           84 :                                             // min-heap (reserve space for one more element added before eviction)
     871           84 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
     872           84 :             let mut prev: Option<Key> = None;
     873              : 
     874      6192114 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
     875      6192114 :                 if let Some(prev_key) = prev {
     876              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
     877              :                     // compaction is the gap between data key and metadata keys.
     878      6192030 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
     879            0 :                         && !Key::is_metadata_key(&prev_key)
     880              :                     {
     881            0 :                         let key_range = prev_key..next_key;
     882            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
     883            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
     884            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
     885            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
     886            0 :                         let coverage_size =
     887            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
     888            0 :                         if coverage_size >= min_hole_coverage_size {
     889            0 :                             heap.push(Hole {
     890            0 :                                 key_range,
     891            0 :                                 coverage_size,
     892            0 :                             });
     893            0 :                             if heap.len() > max_holes {
     894            0 :                                 heap.pop(); // remove smallest hole
     895            0 :                             }
     896            0 :                         }
     897      6192030 :                     }
     898           84 :                 }
     899      6192114 :                 prev = Some(next_key.next());
     900              :             }
     901           84 :             let mut holes = heap.into_vec();
     902           84 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
     903           84 :             holes
     904           84 :         };
     905           84 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
     906           84 :         drop_rlock(guard);
     907           84 : 
     908           84 :         if self.cancel.is_cancelled() {
     909            0 :             return Err(CompactionError::ShuttingDown);
     910           84 :         }
     911           84 : 
     912           84 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
     913              : 
     914              :         // This iterator walks through all key-value pairs from all the layers
     915              :         // we're compacting, in key, LSN order.
     916              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
     917              :         // then the Value::Image is ordered before Value::WalRecord.
     918           84 :         let mut all_values_iter = {
     919           84 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
     920         1206 :             for l in deltas_to_compact.iter() {
     921         1206 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
     922         1206 :                 deltas.push(l);
     923              :             }
     924           84 :             MergeIterator::create(&deltas, &[], ctx)
     925           84 :         };
     926           84 : 
     927           84 :         // This iterator walks through all keys and is needed to calculate size used by each key
     928           84 :         let mut all_keys_iter = all_keys
     929           84 :             .iter()
     930      6192114 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
     931      6192030 :             .coalesce(|mut prev, cur| {
     932      6192030 :                 // Coalesce keys that belong to the same key pair.
     933      6192030 :                 // This ensures that compaction doesn't put them
     934      6192030 :                 // into different layer files.
     935      6192030 :                 // Still limit this by the target file size,
     936      6192030 :                 // so that we keep the size of the files in
     937      6192030 :                 // check.
     938      6192030 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
     939       120114 :                     prev.2 += cur.2;
     940       120114 :                     Ok(prev)
     941              :                 } else {
     942      6071916 :                     Err((prev, cur))
     943              :                 }
     944      6192030 :             });
     945           84 : 
     946           84 :         // Merge the contents of all the input delta layers into a new set
     947           84 :         // of delta layers, based on the current partitioning.
     948           84 :         //
     949           84 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
     950           84 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
     951           84 :         // would be too large. In that case, we also split on the LSN dimension.
     952           84 :         //
     953           84 :         // LSN
     954           84 :         //  ^
     955           84 :         //  |
     956           84 :         //  | +-----------+            +--+--+--+--+
     957           84 :         //  | |           |            |  |  |  |  |
     958           84 :         //  | +-----------+            |  |  |  |  |
     959           84 :         //  | |           |            |  |  |  |  |
     960           84 :         //  | +-----------+     ==>    |  |  |  |  |
     961           84 :         //  | |           |            |  |  |  |  |
     962           84 :         //  | +-----------+            |  |  |  |  |
     963           84 :         //  | |           |            |  |  |  |  |
     964           84 :         //  | +-----------+            +--+--+--+--+
     965           84 :         //  |
     966           84 :         //  +--------------> key
     967           84 :         //
     968           84 :         //
     969           84 :         // If one key (X) has a lot of page versions:
     970           84 :         //
     971           84 :         // LSN
     972           84 :         //  ^
     973           84 :         //  |                                 (X)
     974           84 :         //  | +-----------+            +--+--+--+--+
     975           84 :         //  | |           |            |  |  |  |  |
     976           84 :         //  | +-----------+            |  |  +--+  |
     977           84 :         //  | |           |            |  |  |  |  |
     978           84 :         //  | +-----------+     ==>    |  |  |  |  |
     979           84 :         //  | |           |            |  |  +--+  |
     980           84 :         //  | +-----------+            |  |  |  |  |
     981           84 :         //  | |           |            |  |  |  |  |
     982           84 :         //  | +-----------+            +--+--+--+--+
     983           84 :         //  |
     984           84 :         //  +--------------> key
     985           84 :         // TODO: this actually divides the layers into fixed-size chunks, not
     986           84 :         // based on the partitioning.
     987           84 :         //
     988           84 :         // TODO: we should also opportunistically materialize and
     989           84 :         // garbage collect what we can.
     990           84 :         let mut new_layers = Vec::new();
     991           84 :         let mut prev_key: Option<Key> = None;
     992           84 :         let mut writer: Option<DeltaLayerWriter> = None;
     993           84 :         let mut key_values_total_size = 0u64;
     994           84 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
     995           84 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
     996           84 :         let mut next_hole = 0; // index of next hole in holes vector
     997           84 : 
     998           84 :         let mut keys = 0;
     999              : 
    1000      6192198 :         while let Some((key, lsn, value)) = all_values_iter
    1001      6192198 :             .next()
    1002        10249 :             .await
    1003      6192198 :             .map_err(CompactionError::Other)?
    1004              :         {
    1005      6192114 :             keys += 1;
    1006      6192114 : 
    1007      6192114 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    1008              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    1009              :                 // shuffling an order of million keys per layer, this means we'll check it
    1010              :                 // around tens of times per layer.
    1011            0 :                 return Err(CompactionError::ShuttingDown);
    1012      6192114 :             }
    1013      6192114 : 
    1014      6192114 :             let same_key = prev_key.map_or(false, |prev_key| prev_key == key);
    1015      6192114 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    1016      6192114 :             if !same_key || lsn == dup_end_lsn {
    1017      6072000 :                 let mut next_key_size = 0u64;
    1018      6072000 :                 let is_dup_layer = dup_end_lsn.is_valid();
    1019      6072000 :                 dup_start_lsn = Lsn::INVALID;
    1020      6072000 :                 if !same_key {
    1021      6072000 :                     dup_end_lsn = Lsn::INVALID;
    1022      6072000 :                 }
    1023              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    1024      6072000 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    1025      6072000 :                     next_key_size = next_size;
    1026      6072000 :                     if key != next_key {
    1027      6071916 :                         if dup_end_lsn.is_valid() {
    1028            0 :                             // We are writting segment with duplicates:
    1029            0 :                             // place all remaining values of this key in separate segment
    1030            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    1031            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    1032      6071916 :                         }
    1033      6071916 :                         break;
    1034           84 :                     }
    1035           84 :                     key_values_total_size += next_size;
    1036           84 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    1037           84 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    1038           84 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    1039              :                         // Split key between multiple layers: such layer can contain only single key
    1040            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    1041            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    1042              :                         } else {
    1043            0 :                             lsn // start with the first LSN for this key
    1044              :                         };
    1045            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    1046            0 :                         break;
    1047           84 :                     }
    1048              :                 }
    1049              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    1050      6072000 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    1051            0 :                     dup_start_lsn = dup_end_lsn;
    1052            0 :                     dup_end_lsn = lsn_range.end;
    1053      6072000 :                 }
    1054      6072000 :                 if writer.is_some() {
    1055      6071916 :                     let written_size = writer.as_mut().unwrap().size();
    1056      6071916 :                     let contains_hole =
    1057      6071916 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    1058              :                     // check if key cause layer overflow or contains hole...
    1059      6071916 :                     if is_dup_layer
    1060      6071916 :                         || dup_end_lsn.is_valid()
    1061      6071916 :                         || written_size + key_values_total_size > target_file_size
    1062      6071076 :                         || contains_hole
    1063              :                     {
    1064              :                         // ... if so, flush previous layer and prepare to write new one
    1065          840 :                         let (desc, path) = writer
    1066          840 :                             .take()
    1067          840 :                             .unwrap()
    1068          840 :                             .finish(prev_key.unwrap().next(), ctx)
    1069         2130 :                             .await
    1070          840 :                             .map_err(CompactionError::Other)?;
    1071          840 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1072          840 :                             .map_err(CompactionError::Other)?;
    1073              : 
    1074          840 :                         new_layers.push(new_delta);
    1075          840 :                         writer = None;
    1076          840 : 
    1077          840 :                         if contains_hole {
    1078            0 :                             // skip hole
    1079            0 :                             next_hole += 1;
    1080          840 :                         }
    1081      6071076 :                     }
    1082           84 :                 }
    1083              :                 // Remember size of key value because at next iteration we will access next item
    1084      6072000 :                 key_values_total_size = next_key_size;
    1085       120114 :             }
    1086      6192114 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    1087            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    1088            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    1089            0 :                 )))
    1090      6192114 :             });
    1091              : 
    1092      6192114 :             if !self.shard_identity.is_key_disposable(&key) {
    1093      6192114 :                 if writer.is_none() {
    1094          924 :                     if self.cancel.is_cancelled() {
    1095              :                         // to be somewhat responsive to cancellation, check for each new layer
    1096            0 :                         return Err(CompactionError::ShuttingDown);
    1097          924 :                     }
    1098              :                     // Create writer if not initiaized yet
    1099          924 :                     writer = Some(
    1100              :                         DeltaLayerWriter::new(
    1101          924 :                             self.conf,
    1102          924 :                             self.timeline_id,
    1103          924 :                             self.tenant_shard_id,
    1104          924 :                             key,
    1105          924 :                             if dup_end_lsn.is_valid() {
    1106              :                                 // this is a layer containing slice of values of the same key
    1107            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    1108            0 :                                 dup_start_lsn..dup_end_lsn
    1109              :                             } else {
    1110          924 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    1111          924 :                                 lsn_range.clone()
    1112              :                             },
    1113          924 :                             ctx,
    1114              :                         )
    1115          462 :                         .await
    1116          924 :                         .map_err(CompactionError::Other)?,
    1117              :                     );
    1118              : 
    1119          924 :                     keys = 0;
    1120      6191190 :                 }
    1121              : 
    1122      6192114 :                 writer
    1123      6192114 :                     .as_mut()
    1124      6192114 :                     .unwrap()
    1125      6192114 :                     .put_value(key, lsn, value, ctx)
    1126         3675 :                     .await
    1127      6192114 :                     .map_err(CompactionError::Other)?;
    1128              :             } else {
    1129            0 :                 debug!(
    1130            0 :                     "Dropping key {} during compaction (it belongs on shard {:?})",
    1131            0 :                     key,
    1132            0 :                     self.shard_identity.get_shard_number(&key)
    1133              :                 );
    1134              :             }
    1135              : 
    1136      6192114 :             if !new_layers.is_empty() {
    1137        59358 :                 fail_point!("after-timeline-compacted-first-L1");
    1138      6132756 :             }
    1139              : 
    1140      6192114 :             prev_key = Some(key);
    1141              :         }
    1142           84 :         if let Some(writer) = writer {
    1143           84 :             let (desc, path) = writer
    1144           84 :                 .finish(prev_key.unwrap().next(), ctx)
    1145         5969 :                 .await
    1146           84 :                 .map_err(CompactionError::Other)?;
    1147           84 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1148           84 :                 .map_err(CompactionError::Other)?;
    1149           84 :             new_layers.push(new_delta);
    1150            0 :         }
    1151              : 
    1152              :         // Sync layers
    1153           84 :         if !new_layers.is_empty() {
    1154              :             // Print a warning if the created layer is larger than double the target size
    1155              :             // Add two pages for potential overhead. This should in theory be already
    1156              :             // accounted for in the target calculation, but for very small targets,
    1157              :             // we still might easily hit the limit otherwise.
    1158           84 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    1159          924 :             for layer in new_layers.iter() {
    1160          924 :                 if layer.layer_desc().file_size > warn_limit {
    1161            0 :                     warn!(
    1162              :                         %layer,
    1163            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    1164              :                     );
    1165          924 :                 }
    1166              :             }
    1167              : 
    1168              :             // The writer.finish() above already did the fsync of the inodes.
    1169              :             // We just need to fsync the directory in which these inodes are linked,
    1170              :             // which we know to be the timeline directory.
    1171              :             //
    1172              :             // We use fatal_err() below because the after writer.finish() returns with success,
    1173              :             // the in-memory state of the filesystem already has the layer file in its final place,
    1174              :             // and subsequent pageserver code could think it's durable while it really isn't.
    1175           84 :             let timeline_dir = VirtualFile::open(
    1176           84 :                 &self
    1177           84 :                     .conf
    1178           84 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    1179           84 :                 ctx,
    1180           84 :             )
    1181           42 :             .await
    1182           84 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    1183           84 :             timeline_dir
    1184           84 :                 .sync_all()
    1185           42 :                 .await
    1186           84 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    1187            0 :         }
    1188              : 
    1189           84 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    1190           84 :         stats.new_deltas_count = Some(new_layers.len());
    1191          924 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    1192           84 : 
    1193           84 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    1194           84 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    1195              :         {
    1196           84 :             Ok(stats_json) => {
    1197           84 :                 info!(
    1198            0 :                     stats_json = stats_json.as_str(),
    1199            0 :                     "compact_level0_phase1 stats available"
    1200              :                 )
    1201              :             }
    1202            0 :             Err(e) => {
    1203            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    1204              :             }
    1205              :         }
    1206              : 
    1207              :         // Without this, rustc complains about deltas_to_compact still
    1208              :         // being borrowed when we `.into_iter()` below.
    1209           84 :         drop(all_values_iter);
    1210           84 : 
    1211           84 :         Ok(CompactLevel0Phase1Result {
    1212           84 :             new_layers,
    1213           84 :             deltas_to_compact: deltas_to_compact
    1214           84 :                 .into_iter()
    1215         1206 :                 .map(|x| x.drop_eviction_guard())
    1216           84 :                 .collect::<Vec<_>>(),
    1217           84 :             fully_compacted,
    1218           84 :         })
    1219         1092 :     }
    1220              : }
    1221              : 
    1222              : #[derive(Default)]
    1223              : struct CompactLevel0Phase1Result {
    1224              :     new_layers: Vec<ResidentLayer>,
    1225              :     deltas_to_compact: Vec<Layer>,
    1226              :     // Whether we have included all L0 layers, or selected only part of them due to the
    1227              :     // L0 compaction size limit.
    1228              :     fully_compacted: bool,
    1229              : }
    1230              : 
    1231              : #[derive(Default)]
    1232              : struct CompactLevel0Phase1StatsBuilder {
    1233              :     version: Option<u64>,
    1234              :     tenant_id: Option<TenantShardId>,
    1235              :     timeline_id: Option<TimelineId>,
    1236              :     read_lock_acquisition_micros: DurationRecorder,
    1237              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    1238              :     read_lock_held_key_sort_micros: DurationRecorder,
    1239              :     read_lock_held_prerequisites_micros: DurationRecorder,
    1240              :     read_lock_held_compute_holes_micros: DurationRecorder,
    1241              :     read_lock_drop_micros: DurationRecorder,
    1242              :     write_layer_files_micros: DurationRecorder,
    1243              :     level0_deltas_count: Option<usize>,
    1244              :     new_deltas_count: Option<usize>,
    1245              :     new_deltas_size: Option<u64>,
    1246              : }
    1247              : 
    1248              : #[derive(serde::Serialize)]
    1249              : struct CompactLevel0Phase1Stats {
    1250              :     version: u64,
    1251              :     tenant_id: TenantShardId,
    1252              :     timeline_id: TimelineId,
    1253              :     read_lock_acquisition_micros: RecordedDuration,
    1254              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    1255              :     read_lock_held_key_sort_micros: RecordedDuration,
    1256              :     read_lock_held_prerequisites_micros: RecordedDuration,
    1257              :     read_lock_held_compute_holes_micros: RecordedDuration,
    1258              :     read_lock_drop_micros: RecordedDuration,
    1259              :     write_layer_files_micros: RecordedDuration,
    1260              :     level0_deltas_count: usize,
    1261              :     new_deltas_count: usize,
    1262              :     new_deltas_size: u64,
    1263              : }
    1264              : 
    1265              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    1266              :     type Error = anyhow::Error;
    1267              : 
    1268           84 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    1269           84 :         Ok(Self {
    1270           84 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    1271           84 :             tenant_id: value
    1272           84 :                 .tenant_id
    1273           84 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    1274           84 :             timeline_id: value
    1275           84 :                 .timeline_id
    1276           84 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    1277           84 :             read_lock_acquisition_micros: value
    1278           84 :                 .read_lock_acquisition_micros
    1279           84 :                 .into_recorded()
    1280           84 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    1281           84 :             read_lock_held_spawn_blocking_startup_micros: value
    1282           84 :                 .read_lock_held_spawn_blocking_startup_micros
    1283           84 :                 .into_recorded()
    1284           84 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    1285           84 :             read_lock_held_key_sort_micros: value
    1286           84 :                 .read_lock_held_key_sort_micros
    1287           84 :                 .into_recorded()
    1288           84 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    1289           84 :             read_lock_held_prerequisites_micros: value
    1290           84 :                 .read_lock_held_prerequisites_micros
    1291           84 :                 .into_recorded()
    1292           84 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    1293           84 :             read_lock_held_compute_holes_micros: value
    1294           84 :                 .read_lock_held_compute_holes_micros
    1295           84 :                 .into_recorded()
    1296           84 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    1297           84 :             read_lock_drop_micros: value
    1298           84 :                 .read_lock_drop_micros
    1299           84 :                 .into_recorded()
    1300           84 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    1301           84 :             write_layer_files_micros: value
    1302           84 :                 .write_layer_files_micros
    1303           84 :                 .into_recorded()
    1304           84 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    1305           84 :             level0_deltas_count: value
    1306           84 :                 .level0_deltas_count
    1307           84 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    1308           84 :             new_deltas_count: value
    1309           84 :                 .new_deltas_count
    1310           84 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    1311           84 :             new_deltas_size: value
    1312           84 :                 .new_deltas_size
    1313           84 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    1314              :         })
    1315           84 :     }
    1316              : }
    1317              : 
    1318              : impl Timeline {
    1319              :     /// Entry point for new tiered compaction algorithm.
    1320              :     ///
    1321              :     /// All the real work is in the implementation in the pageserver_compaction
    1322              :     /// crate. The code here would apply to any algorithm implemented by the
    1323              :     /// same interface, but tiered is the only one at the moment.
    1324              :     ///
    1325              :     /// TODO: cancellation
    1326            0 :     pub(crate) async fn compact_tiered(
    1327            0 :         self: &Arc<Self>,
    1328            0 :         _cancel: &CancellationToken,
    1329            0 :         ctx: &RequestContext,
    1330            0 :     ) -> Result<(), CompactionError> {
    1331            0 :         let fanout = self.get_compaction_threshold() as u64;
    1332            0 :         let target_file_size = self.get_checkpoint_distance();
    1333              : 
    1334              :         // Find the top of the historical layers
    1335            0 :         let end_lsn = {
    1336            0 :             let guard = self.layers.read().await;
    1337            0 :             let layers = guard.layer_map()?;
    1338              : 
    1339            0 :             let l0_deltas = layers.level0_deltas();
    1340            0 : 
    1341            0 :             // As an optimization, if we find that there are too few L0 layers,
    1342            0 :             // bail out early. We know that the compaction algorithm would do
    1343            0 :             // nothing in that case.
    1344            0 :             if l0_deltas.len() < fanout as usize {
    1345              :                 // doesn't need compacting
    1346            0 :                 return Ok(());
    1347            0 :             }
    1348            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    1349            0 :         };
    1350            0 : 
    1351            0 :         // Is the timeline being deleted?
    1352            0 :         if self.is_stopping() {
    1353            0 :             trace!("Dropping out of compaction on timeline shutdown");
    1354            0 :             return Err(CompactionError::ShuttingDown);
    1355            0 :         }
    1356              : 
    1357            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    1358              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    1359            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    1360            0 : 
    1361            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    1362            0 :             &mut adaptor,
    1363            0 :             end_lsn,
    1364            0 :             target_file_size,
    1365            0 :             fanout,
    1366            0 :             ctx,
    1367            0 :         )
    1368            0 :         .await
    1369              :         // TODO: compact_tiered needs to return CompactionError
    1370            0 :         .map_err(CompactionError::Other)?;
    1371              : 
    1372            0 :         adaptor.flush_updates().await?;
    1373            0 :         Ok(())
    1374            0 :     }
    1375              : 
    1376              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    1377              :     ///
    1378              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    1379              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    1380              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    1381              :     ///
    1382              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    1383              :     ///
    1384              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    1385              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    1386              :     ///
    1387              :     /// The function will produce:
    1388              :     ///
    1389              :     /// ```plain
    1390              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    1391              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    1392              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    1393              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    1394              :     /// ```
    1395              :     ///
    1396              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    1397         1290 :     pub(crate) async fn generate_key_retention(
    1398         1290 :         self: &Arc<Timeline>,
    1399         1290 :         key: Key,
    1400         1290 :         full_history: &[(Key, Lsn, Value)],
    1401         1290 :         horizon: Lsn,
    1402         1290 :         retain_lsn_below_horizon: &[Lsn],
    1403         1290 :         delta_threshold_cnt: usize,
    1404         1290 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    1405         1290 :     ) -> anyhow::Result<KeyHistoryRetention> {
    1406         1290 :         // Pre-checks for the invariants
    1407         1290 :         if cfg!(debug_assertions) {
    1408         3120 :             for (log_key, _, _) in full_history {
    1409         1830 :                 assert_eq!(log_key, &key, "mismatched key");
    1410              :             }
    1411         1290 :             for i in 1..full_history.len() {
    1412          540 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    1413          540 :                 if full_history[i - 1].1 == full_history[i].1 {
    1414            0 :                     assert!(
    1415            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    1416            0 :                         "unordered delta/image, or duplicated delta"
    1417              :                     );
    1418          540 :                 }
    1419              :             }
    1420              :             // There was an assertion for no base image that checks if the first
    1421              :             // record in the history is `will_init` before, but it was removed.
    1422              :             // This is explained in the test cases for generate_key_retention.
    1423              :             // Search "incomplete history" for more information.
    1424         3000 :             for lsn in retain_lsn_below_horizon {
    1425         1710 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    1426              :             }
    1427         1290 :             for i in 1..retain_lsn_below_horizon.len() {
    1428          834 :                 assert!(
    1429          834 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    1430            0 :                     "unordered LSN"
    1431              :                 );
    1432              :             }
    1433            0 :         }
    1434         1290 :         let has_ancestor = base_img_from_ancestor.is_some();
    1435              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    1436              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    1437         1290 :         let (mut split_history, lsn_split_points) = {
    1438         1290 :             let mut split_history = Vec::new();
    1439         1290 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    1440         1290 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    1441         3000 :             for lsn in retain_lsn_below_horizon {
    1442         1710 :                 lsn_split_points.push(*lsn);
    1443         1710 :             }
    1444         1290 :             lsn_split_points.push(horizon);
    1445         1290 :             let mut current_idx = 0;
    1446         3120 :             for item @ (_, lsn, _) in full_history {
    1447         2316 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    1448          486 :                     current_idx += 1;
    1449          486 :                 }
    1450         1830 :                 split_history[current_idx].push(item);
    1451              :             }
    1452         1290 :             (split_history, lsn_split_points)
    1453              :         };
    1454              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    1455         5580 :         for split_for_lsn in &mut split_history {
    1456         4290 :             let mut prev_lsn = None;
    1457         4290 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    1458         4290 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    1459         1830 :                 if let Some(prev_lsn) = &prev_lsn {
    1460          198 :                     if *prev_lsn == lsn {
    1461              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    1462              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    1463              :                         // drop this delta and keep the image.
    1464              :                         //
    1465              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    1466              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    1467              :                         // dropped.
    1468              :                         //
    1469              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    1470              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    1471            0 :                         continue;
    1472          198 :                     }
    1473         1632 :                 }
    1474         1830 :                 prev_lsn = Some(lsn);
    1475         1830 :                 new_split_for_lsn.push(record);
    1476              :             }
    1477         4290 :             *split_for_lsn = new_split_for_lsn;
    1478              :         }
    1479              :         // Step 3: generate images when necessary
    1480         1290 :         let mut retention = Vec::with_capacity(split_history.len());
    1481         1290 :         let mut records_since_last_image = 0;
    1482         1290 :         let batch_cnt = split_history.len();
    1483         1290 :         assert!(
    1484         1290 :             batch_cnt >= 2,
    1485            0 :             "should have at least below + above horizon batches"
    1486              :         );
    1487         1290 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    1488         1290 :         if let Some((key, lsn, img)) = base_img_from_ancestor {
    1489           54 :             replay_history.push((key, lsn, Value::Image(img)));
    1490         1236 :         }
    1491              : 
    1492              :         /// Generate debug information for the replay history
    1493            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    1494              :             use std::fmt::Write;
    1495            0 :             let mut output = String::new();
    1496            0 :             if let Some((key, _, _)) = replay_history.first() {
    1497            0 :                 write!(output, "key={} ", key).unwrap();
    1498            0 :                 let mut cnt = 0;
    1499            0 :                 for (_, lsn, val) in replay_history {
    1500            0 :                     if val.is_image() {
    1501            0 :                         write!(output, "i@{} ", lsn).unwrap();
    1502            0 :                     } else if val.will_init() {
    1503            0 :                         write!(output, "di@{} ", lsn).unwrap();
    1504            0 :                     } else {
    1505            0 :                         write!(output, "d@{} ", lsn).unwrap();
    1506            0 :                     }
    1507            0 :                     cnt += 1;
    1508            0 :                     if cnt >= 128 {
    1509            0 :                         write!(output, "... and more").unwrap();
    1510            0 :                         break;
    1511            0 :                     }
    1512              :                 }
    1513            0 :             } else {
    1514            0 :                 write!(output, "<no history>").unwrap();
    1515            0 :             }
    1516            0 :             output
    1517            0 :         }
    1518              : 
    1519            0 :         fn generate_debug_trace(
    1520            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    1521            0 :             full_history: &[(Key, Lsn, Value)],
    1522            0 :             lsns: &[Lsn],
    1523            0 :             horizon: Lsn,
    1524            0 :         ) -> String {
    1525              :             use std::fmt::Write;
    1526            0 :             let mut output = String::new();
    1527            0 :             if let Some(replay_history) = replay_history {
    1528            0 :                 writeln!(
    1529            0 :                     output,
    1530            0 :                     "replay_history: {}",
    1531            0 :                     generate_history_trace(replay_history)
    1532            0 :                 )
    1533            0 :                 .unwrap();
    1534            0 :             } else {
    1535            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    1536            0 :             }
    1537            0 :             writeln!(
    1538            0 :                 output,
    1539            0 :                 "full_history: {}",
    1540            0 :                 generate_history_trace(full_history)
    1541            0 :             )
    1542            0 :             .unwrap();
    1543            0 :             writeln!(
    1544            0 :                 output,
    1545            0 :                 "when processing: [{}] horizon={}",
    1546            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    1547            0 :                 horizon
    1548            0 :             )
    1549            0 :             .unwrap();
    1550            0 :             output
    1551            0 :         }
    1552              : 
    1553         4290 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    1554              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    1555         4290 :             records_since_last_image += split_for_lsn.len();
    1556         4290 :             let generate_image = if i == 0 && !has_ancestor {
    1557              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    1558         1236 :                 true
    1559         3054 :             } else if i == batch_cnt - 1 {
    1560              :                 // Do not generate images for the last batch (above horizon)
    1561         1290 :                 false
    1562         1764 :             } else if records_since_last_image >= delta_threshold_cnt {
    1563              :                 // Generate images when there are too many records
    1564           18 :                 true
    1565              :             } else {
    1566         1746 :                 false
    1567              :             };
    1568         4290 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    1569              :             // Only retain the items after the last image record
    1570         5274 :             for idx in (0..replay_history.len()).rev() {
    1571         5274 :                 if replay_history[idx].2.will_init() {
    1572         4290 :                     replay_history = replay_history[idx..].to_vec();
    1573         4290 :                     break;
    1574          984 :                 }
    1575              :             }
    1576         4290 :             if let Some((_, _, val)) = replay_history.first() {
    1577         4290 :                 if !val.will_init() {
    1578            0 :                     return Err(anyhow::anyhow!("invalid history, no base image")).with_context(
    1579            0 :                         || {
    1580            0 :                             generate_debug_trace(
    1581            0 :                                 Some(&replay_history),
    1582            0 :                                 full_history,
    1583            0 :                                 retain_lsn_below_horizon,
    1584            0 :                                 horizon,
    1585            0 :                             )
    1586            0 :                         },
    1587            0 :                     );
    1588         4290 :                 }
    1589            0 :             }
    1590         4290 :             if generate_image && records_since_last_image > 0 {
    1591         1254 :                 records_since_last_image = 0;
    1592         1254 :                 let replay_history_for_debug = if cfg!(debug_assertions) {
    1593         1254 :                     Some(replay_history.clone())
    1594              :                 } else {
    1595            0 :                     None
    1596              :                 };
    1597         1254 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    1598         1254 :                 let history = std::mem::take(&mut replay_history);
    1599         1254 :                 let mut img = None;
    1600         1254 :                 let mut records = Vec::with_capacity(history.len());
    1601         1254 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    1602         1254 :                     img = Some((*lsn, val.clone()));
    1603         1254 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    1604          102 :                         let Value::WalRecord(rec) = val else {
    1605            0 :                             return Err(anyhow::anyhow!(
    1606            0 :                                 "invalid record, first record is image, expect walrecords"
    1607            0 :                             ))
    1608            0 :                             .with_context(|| {
    1609            0 :                                 generate_debug_trace(
    1610            0 :                                     replay_history_for_debug_ref,
    1611            0 :                                     full_history,
    1612            0 :                                     retain_lsn_below_horizon,
    1613            0 :                                     horizon,
    1614            0 :                                 )
    1615            0 :                             });
    1616              :                         };
    1617          102 :                         records.push((lsn, rec));
    1618              :                     }
    1619              :                 } else {
    1620            0 :                     for (_, lsn, val) in history.into_iter() {
    1621            0 :                         let Value::WalRecord(rec) = val else {
    1622            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    1623            0 :                                 .with_context(|| generate_debug_trace(
    1624            0 :                                     replay_history_for_debug_ref,
    1625            0 :                                     full_history,
    1626            0 :                                     retain_lsn_below_horizon,
    1627            0 :                                     horizon,
    1628            0 :                                 ));
    1629              :                         };
    1630            0 :                         records.push((lsn, rec));
    1631              :                     }
    1632              :                 }
    1633         1254 :                 records.reverse();
    1634         1254 :                 let state = ValueReconstructState { img, records };
    1635         1254 :                 let request_lsn = lsn_split_points[i]; // last batch does not generate image so i is always in range
    1636         1254 :                 let img = self.reconstruct_value(key, request_lsn, state).await?;
    1637         1254 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    1638         1254 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    1639         3036 :             } else {
    1640         3036 :                 let deltas = split_for_lsn
    1641         3036 :                     .iter()
    1642         3036 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    1643         3036 :                     .collect_vec();
    1644         3036 :                 retention.push(deltas);
    1645         3036 :             }
    1646              :         }
    1647         1290 :         let mut result = Vec::with_capacity(retention.len());
    1648         1290 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    1649         4290 :         for (idx, logs) in retention.into_iter().enumerate() {
    1650         4290 :             if idx == lsn_split_points.len() {
    1651         1290 :                 return Ok(KeyHistoryRetention {
    1652         1290 :                     below_horizon: result,
    1653         1290 :                     above_horizon: KeyLogAtLsn(logs),
    1654         1290 :                 });
    1655         3000 :             } else {
    1656         3000 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    1657         3000 :             }
    1658              :         }
    1659            0 :         unreachable!("key retention is empty")
    1660         1290 :     }
    1661              : 
    1662              :     /// An experimental compaction building block that combines compaction with garbage collection.
    1663              :     ///
    1664              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    1665              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    1666              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    1667              :     /// and create delta layers with all deltas >= gc horizon.
    1668           78 :     pub(crate) async fn compact_with_gc(
    1669           78 :         self: &Arc<Self>,
    1670           78 :         cancel: &CancellationToken,
    1671           78 :         flags: EnumSet<CompactFlags>,
    1672           78 :         ctx: &RequestContext,
    1673           78 :     ) -> anyhow::Result<()> {
    1674              :         use std::collections::BTreeSet;
    1675              : 
    1676              :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    1677              :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    1678              :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    1679              : 
    1680           78 :         let gc_lock = async {
    1681           78 :             tokio::select! {
    1682           78 :                 guard = self.gc_lock.lock() => Ok(guard),
    1683              :                 // TODO: refactor to CompactionError to correctly pass cancelled error
    1684           78 :                 _ = cancel.cancelled() => Err(anyhow!("cancelled")),
    1685              :             }
    1686           78 :         };
    1687              : 
    1688           78 :         let gc_lock = crate::timed(
    1689           78 :             gc_lock,
    1690           78 :             "acquires gc lock",
    1691           78 :             std::time::Duration::from_secs(5),
    1692           78 :         )
    1693            3 :         .await?;
    1694              : 
    1695           78 :         let dry_run = flags.contains(CompactFlags::DryRun);
    1696           78 : 
    1697           78 :         info!("running enhanced gc bottom-most compaction, dry_run={dry_run}");
    1698              : 
    1699           78 :         scopeguard::defer! {
    1700           78 :             info!("done enhanced gc bottom-most compaction");
    1701           78 :         };
    1702           78 : 
    1703           78 :         let mut stat = CompactionStatistics::default();
    1704              : 
    1705              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    1706              :         // The layer selection has the following properties:
    1707              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    1708              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    1709           78 :         let (layer_selection, gc_cutoff, retain_lsns_below_horizon) = {
    1710           78 :             let guard = self.layers.read().await;
    1711           78 :             let layers = guard.layer_map()?;
    1712           78 :             let gc_info = self.gc_info.read().unwrap();
    1713           78 :             let mut retain_lsns_below_horizon = Vec::new();
    1714           78 :             let gc_cutoff = gc_info.cutoffs.select_min();
    1715          102 :             for (lsn, _timeline_id) in &gc_info.retain_lsns {
    1716          102 :                 if lsn < &gc_cutoff {
    1717          102 :                     retain_lsns_below_horizon.push(*lsn);
    1718          102 :                 }
    1719              :             }
    1720           78 :             for lsn in gc_info.leases.keys() {
    1721            0 :                 if lsn < &gc_cutoff {
    1722            0 :                     retain_lsns_below_horizon.push(*lsn);
    1723            0 :                 }
    1724              :             }
    1725           78 :             let mut selected_layers = Vec::new();
    1726           78 :             drop(gc_info);
    1727              :             // Pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    1728           78 :             let Some(max_layer_lsn) = layers
    1729           78 :                 .iter_historic_layers()
    1730          300 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    1731          246 :                 .map(|desc| desc.get_lsn_range().end)
    1732           78 :                 .max()
    1733              :             else {
    1734            0 :                 info!("no layers to compact with gc");
    1735            0 :                 return Ok(());
    1736              :             };
    1737              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    1738              :             // layers to compact.
    1739          300 :             for desc in layers.iter_historic_layers() {
    1740          300 :                 if desc.get_lsn_range().end <= max_layer_lsn {
    1741          246 :                     selected_layers.push(guard.get_from_desc(&desc));
    1742          246 :                 }
    1743              :             }
    1744           78 :             if selected_layers.is_empty() {
    1745            0 :                 info!("no layers to compact with gc");
    1746            0 :                 return Ok(());
    1747           78 :             }
    1748           78 :             retain_lsns_below_horizon.sort();
    1749           78 :             (selected_layers, gc_cutoff, retain_lsns_below_horizon)
    1750              :         };
    1751           78 :         let lowest_retain_lsn = if self.ancestor_timeline.is_some() {
    1752            6 :             Lsn(self.ancestor_lsn.0 + 1)
    1753              :         } else {
    1754           72 :             let res = retain_lsns_below_horizon
    1755           72 :                 .first()
    1756           72 :                 .copied()
    1757           72 :                 .unwrap_or(gc_cutoff);
    1758           72 :             if cfg!(debug_assertions) {
    1759           72 :                 assert_eq!(
    1760           72 :                     res,
    1761           72 :                     retain_lsns_below_horizon
    1762           72 :                         .iter()
    1763           72 :                         .min()
    1764           72 :                         .copied()
    1765           72 :                         .unwrap_or(gc_cutoff)
    1766           72 :                 );
    1767            0 :             }
    1768           72 :             res
    1769              :         };
    1770           78 :         info!(
    1771            0 :             "picked {} layers for compaction with gc_cutoff={} lowest_retain_lsn={}",
    1772            0 :             layer_selection.len(),
    1773              :             gc_cutoff,
    1774              :             lowest_retain_lsn
    1775              :         );
    1776              : 
    1777              :         // Step 1: (In the future) construct a k-merge iterator over all layers. For now, simply collect all keys + LSNs.
    1778              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    1779           78 :         let mut lsn_split_point = BTreeSet::new(); // TODO: use a better data structure (range tree / range set?)
    1780          324 :         for layer in &layer_selection {
    1781          246 :             let desc = layer.layer_desc();
    1782          246 :             if desc.is_delta() {
    1783              :                 // ignore single-key layer files
    1784          138 :                 if desc.key_range.start.next() != desc.key_range.end {
    1785          102 :                     let lsn_range = &desc.lsn_range;
    1786          102 :                     lsn_split_point.insert(lsn_range.start);
    1787          102 :                     lsn_split_point.insert(lsn_range.end);
    1788          102 :                 }
    1789          138 :                 stat.visit_delta_layer(desc.file_size());
    1790          108 :             } else {
    1791          108 :                 stat.visit_image_layer(desc.file_size());
    1792          108 :             }
    1793              :         }
    1794           78 :         let layer_names: Vec<crate::tenant::storage_layer::LayerName> = layer_selection
    1795           78 :             .iter()
    1796          246 :             .map(|layer| layer.layer_desc().layer_name())
    1797           78 :             .collect_vec();
    1798           78 :         if let Some(err) = check_valid_layermap(&layer_names) {
    1799            0 :             bail!("cannot run gc-compaction because {}", err);
    1800           78 :         }
    1801           78 :         // The maximum LSN we are processing in this compaction loop
    1802           78 :         let end_lsn = layer_selection
    1803           78 :             .iter()
    1804          246 :             .map(|l| l.layer_desc().lsn_range.end)
    1805           78 :             .max()
    1806           78 :             .unwrap();
    1807           78 :         // We don't want any of the produced layers to cover the full key range (i.e., MIN..MAX) b/c it will then be recognized
    1808           78 :         // as an L0 layer.
    1809           78 :         let mut delta_layers = Vec::new();
    1810           78 :         let mut image_layers = Vec::new();
    1811           78 :         let mut downloaded_layers = Vec::new();
    1812          324 :         for layer in &layer_selection {
    1813          246 :             let resident_layer = layer.download_and_keep_resident().await?;
    1814          246 :             downloaded_layers.push(resident_layer);
    1815              :         }
    1816          324 :         for resident_layer in &downloaded_layers {
    1817          246 :             if resident_layer.layer_desc().is_delta() {
    1818          138 :                 let layer = resident_layer.get_as_delta(ctx).await?;
    1819          138 :                 delta_layers.push(layer);
    1820              :             } else {
    1821          108 :                 let layer = resident_layer.get_as_image(ctx).await?;
    1822          108 :                 image_layers.push(layer);
    1823              :             }
    1824              :         }
    1825           78 :         let (dense_ks, sparse_ks) = self.collect_gc_compaction_keyspace().await?;
    1826           78 :         let mut merge_iter = FilterIterator::create(
    1827           78 :             MergeIterator::create(&delta_layers, &image_layers, ctx),
    1828           78 :             dense_ks,
    1829           78 :             sparse_ks,
    1830           78 :         )?;
    1831              :         // Step 2: Produce images+deltas. TODO: ensure newly-produced delta does not overlap with other deltas.
    1832              :         // Data of the same key.
    1833           78 :         let mut accumulated_values = Vec::new();
    1834           78 :         let mut last_key: Option<Key> = None;
    1835              : 
    1836              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    1837              :         // when some condition meet.
    1838           78 :         let mut image_layer_writer = if self.ancestor_timeline.is_none() {
    1839              :             Some(
    1840           72 :                 SplitImageLayerWriter::new(
    1841           72 :                     self.conf,
    1842           72 :                     self.timeline_id,
    1843           72 :                     self.tenant_shard_id,
    1844           72 :                     Key::MIN,
    1845           72 :                     lowest_retain_lsn,
    1846           72 :                     self.get_compaction_target_size(),
    1847           72 :                     ctx,
    1848           72 :                 )
    1849           36 :                 .await?,
    1850              :             )
    1851              :         } else {
    1852            6 :             None
    1853              :         };
    1854              : 
    1855           78 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    1856           78 :             self.conf,
    1857           78 :             self.timeline_id,
    1858           78 :             self.tenant_shard_id,
    1859           78 :             lowest_retain_lsn..end_lsn,
    1860           78 :             self.get_compaction_target_size(),
    1861           78 :         )
    1862            0 :         .await?;
    1863              : 
    1864              :         /// Returns None if there is no ancestor branch. Throw an error when the key is not found.
    1865              :         ///
    1866              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    1867              :         /// is needed for reconstruction. This should be fixed in the future.
    1868              :         ///
    1869              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    1870              :         /// images.
    1871         1266 :         async fn get_ancestor_image(
    1872         1266 :             tline: &Arc<Timeline>,
    1873         1266 :             key: Key,
    1874         1266 :             ctx: &RequestContext,
    1875         1266 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    1876         1266 :             if tline.ancestor_timeline.is_none() {
    1877         1224 :                 return Ok(None);
    1878           42 :             };
    1879              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    1880              :             // as much existing code as possible.
    1881           42 :             let img = tline.get(key, tline.ancestor_lsn, ctx).await?;
    1882           42 :             Ok(Some((key, tline.ancestor_lsn, img)))
    1883         1266 :         }
    1884              : 
    1885              :         // Actually, we can decide not to write to the image layer at all at this point because
    1886              :         // the key and LSN range are determined. However, to keep things simple here, we still
    1887              :         // create this writer, and discard the writer in the end.
    1888              : 
    1889         1758 :         while let Some((key, lsn, val)) = merge_iter.next().await? {
    1890         1680 :             if cancel.is_cancelled() {
    1891            0 :                 return Err(anyhow!("cancelled")); // TODO: refactor to CompactionError and pass cancel error
    1892         1680 :             }
    1893         1680 :             match val {
    1894         1260 :                 Value::Image(_) => stat.visit_image_key(&val),
    1895          420 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    1896              :             }
    1897         1680 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    1898          492 :                 if last_key.is_none() {
    1899           78 :                     last_key = Some(key);
    1900          414 :                 }
    1901          492 :                 accumulated_values.push((key, lsn, val));
    1902              :             } else {
    1903         1188 :                 let last_key = last_key.as_mut().unwrap();
    1904         1188 :                 stat.on_unique_key_visited();
    1905         1188 :                 let retention = self
    1906         1188 :                     .generate_key_retention(
    1907         1188 :                         *last_key,
    1908         1188 :                         &accumulated_values,
    1909         1188 :                         gc_cutoff,
    1910         1188 :                         &retain_lsns_below_horizon,
    1911         1188 :                         COMPACTION_DELTA_THRESHOLD,
    1912         1188 :                         get_ancestor_image(self, *last_key, ctx).await?,
    1913              :                     )
    1914            0 :                     .await?;
    1915              :                 // Put the image into the image layer. Currently we have a single big layer for the compaction.
    1916         1188 :                 retention
    1917         1188 :                     .pipe_to(
    1918         1188 :                         *last_key,
    1919         1188 :                         self,
    1920         1188 :                         &mut delta_layer_writer,
    1921         1188 :                         image_layer_writer.as_mut(),
    1922         1188 :                         &mut stat,
    1923         1188 :                         dry_run,
    1924         1188 :                         ctx,
    1925         1188 :                     )
    1926         1203 :                     .await?;
    1927         1188 :                 accumulated_values.clear();
    1928         1188 :                 *last_key = key;
    1929         1188 :                 accumulated_values.push((key, lsn, val));
    1930              :             }
    1931              :         }
    1932              : 
    1933           78 :         let last_key = last_key.expect("no keys produced during compaction");
    1934           78 :         // TODO: move this part to the loop body
    1935           78 :         stat.on_unique_key_visited();
    1936           78 :         let retention = self
    1937           78 :             .generate_key_retention(
    1938           78 :                 last_key,
    1939           78 :                 &accumulated_values,
    1940           78 :                 gc_cutoff,
    1941           78 :                 &retain_lsns_below_horizon,
    1942           78 :                 COMPACTION_DELTA_THRESHOLD,
    1943           78 :                 get_ancestor_image(self, last_key, ctx).await?,
    1944              :             )
    1945            0 :             .await?;
    1946              :         // Put the image into the image layer. Currently we have a single big layer for the compaction.
    1947           78 :         retention
    1948           78 :             .pipe_to(
    1949           78 :                 last_key,
    1950           78 :                 self,
    1951           78 :                 &mut delta_layer_writer,
    1952           78 :                 image_layer_writer.as_mut(),
    1953           78 :                 &mut stat,
    1954           78 :                 dry_run,
    1955           78 :                 ctx,
    1956           78 :             )
    1957           72 :             .await?;
    1958              : 
    1959          114 :         let discard = |key: &PersistentLayerKey| {
    1960          114 :             let key = key.clone();
    1961          114 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    1962          114 :         };
    1963              : 
    1964           78 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    1965           72 :             if !dry_run {
    1966           60 :                 writer
    1967           60 :                     .finish_with_discard_fn(self, ctx, Key::MAX, discard)
    1968           72 :                     .await?
    1969              :             } else {
    1970           12 :                 let (layers, _) = writer.take()?;
    1971           12 :                 assert!(layers.is_empty(), "image layers produced in dry run mode?");
    1972           12 :                 Vec::new()
    1973              :             }
    1974              :         } else {
    1975            6 :             Vec::new()
    1976              :         };
    1977              : 
    1978           78 :         let produced_delta_layers = if !dry_run {
    1979           66 :             delta_layer_writer
    1980           66 :                 .finish_with_discard_fn(self, ctx, discard)
    1981           78 :                 .await?
    1982              :         } else {
    1983           12 :             let (layers, _) = delta_layer_writer.take()?;
    1984           12 :             assert!(layers.is_empty(), "delta layers produced in dry run mode?");
    1985           12 :             Vec::new()
    1986              :         };
    1987              : 
    1988           78 :         let mut compact_to = Vec::new();
    1989           78 :         let mut keep_layers = HashSet::new();
    1990           78 :         let produced_delta_layers_len = produced_delta_layers.len();
    1991           78 :         let produced_image_layers_len = produced_image_layers.len();
    1992          132 :         for action in produced_delta_layers {
    1993           54 :             match action {
    1994           30 :                 SplitWriterResult::Produced(layer) => {
    1995           30 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    1996           30 :                     compact_to.push(layer);
    1997           30 :                 }
    1998           24 :                 SplitWriterResult::Discarded(l) => {
    1999           24 :                     keep_layers.insert(l);
    2000           24 :                     stat.discard_delta_layer();
    2001           24 :                 }
    2002              :             }
    2003              :         }
    2004          138 :         for action in produced_image_layers {
    2005           60 :             match action {
    2006           36 :                 SplitWriterResult::Produced(layer) => {
    2007           36 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    2008           36 :                     compact_to.push(layer);
    2009           36 :                 }
    2010           24 :                 SplitWriterResult::Discarded(l) => {
    2011           24 :                     keep_layers.insert(l);
    2012           24 :                     stat.discard_image_layer();
    2013           24 :                 }
    2014              :             }
    2015              :         }
    2016           78 :         let mut layer_selection = layer_selection;
    2017          246 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    2018           78 : 
    2019           78 :         info!(
    2020            0 :             "gc-compaction statistics: {}",
    2021            0 :             serde_json::to_string(&stat)?
    2022              :         );
    2023              : 
    2024           78 :         if dry_run {
    2025           12 :             return Ok(());
    2026           66 :         }
    2027           66 : 
    2028           66 :         info!(
    2029            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    2030            0 :             produced_delta_layers_len,
    2031            0 :             produced_image_layers_len,
    2032            0 :             layer_selection.len()
    2033              :         );
    2034              : 
    2035              :         // Step 3: Place back to the layer map.
    2036              :         {
    2037           66 :             let mut guard = self.layers.write().await;
    2038           66 :             guard
    2039           66 :                 .open_mut()?
    2040           66 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics)
    2041           66 :         };
    2042           66 :         self.remote_client
    2043           66 :             .schedule_compaction_update(&layer_selection, &compact_to)?;
    2044              : 
    2045           66 :         drop(gc_lock);
    2046           66 : 
    2047           66 :         Ok(())
    2048           78 :     }
    2049              : }
    2050              : 
    2051              : struct TimelineAdaptor {
    2052              :     timeline: Arc<Timeline>,
    2053              : 
    2054              :     keyspace: (Lsn, KeySpace),
    2055              : 
    2056              :     new_deltas: Vec<ResidentLayer>,
    2057              :     new_images: Vec<ResidentLayer>,
    2058              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    2059              : }
    2060              : 
    2061              : impl TimelineAdaptor {
    2062            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    2063            0 :         Self {
    2064            0 :             timeline: timeline.clone(),
    2065            0 :             keyspace,
    2066            0 :             new_images: Vec::new(),
    2067            0 :             new_deltas: Vec::new(),
    2068            0 :             layers_to_delete: Vec::new(),
    2069            0 :         }
    2070            0 :     }
    2071              : 
    2072            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    2073            0 :         let layers_to_delete = {
    2074            0 :             let guard = self.timeline.layers.read().await;
    2075            0 :             self.layers_to_delete
    2076            0 :                 .iter()
    2077            0 :                 .map(|x| guard.get_from_desc(x))
    2078            0 :                 .collect::<Vec<Layer>>()
    2079            0 :         };
    2080            0 :         self.timeline
    2081            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    2082            0 :             .await?;
    2083              : 
    2084            0 :         self.timeline
    2085            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    2086              : 
    2087            0 :         self.new_deltas.clear();
    2088            0 :         self.layers_to_delete.clear();
    2089            0 :         Ok(())
    2090            0 :     }
    2091              : }
    2092              : 
    2093              : #[derive(Clone)]
    2094              : struct ResidentDeltaLayer(ResidentLayer);
    2095              : #[derive(Clone)]
    2096              : struct ResidentImageLayer(ResidentLayer);
    2097              : 
    2098              : impl CompactionJobExecutor for TimelineAdaptor {
    2099              :     type Key = crate::repository::Key;
    2100              : 
    2101              :     type Layer = OwnArc<PersistentLayerDesc>;
    2102              :     type DeltaLayer = ResidentDeltaLayer;
    2103              :     type ImageLayer = ResidentImageLayer;
    2104              : 
    2105              :     type RequestContext = crate::context::RequestContext;
    2106              : 
    2107            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    2108            0 :         self.timeline.get_shard_identity()
    2109            0 :     }
    2110              : 
    2111            0 :     async fn get_layers(
    2112            0 :         &mut self,
    2113            0 :         key_range: &Range<Key>,
    2114            0 :         lsn_range: &Range<Lsn>,
    2115            0 :         _ctx: &RequestContext,
    2116            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    2117            0 :         self.flush_updates().await?;
    2118              : 
    2119            0 :         let guard = self.timeline.layers.read().await;
    2120            0 :         let layer_map = guard.layer_map()?;
    2121              : 
    2122            0 :         let result = layer_map
    2123            0 :             .iter_historic_layers()
    2124            0 :             .filter(|l| {
    2125            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    2126            0 :             })
    2127            0 :             .map(OwnArc)
    2128            0 :             .collect();
    2129            0 :         Ok(result)
    2130            0 :     }
    2131              : 
    2132            0 :     async fn get_keyspace(
    2133            0 :         &mut self,
    2134            0 :         key_range: &Range<Key>,
    2135            0 :         lsn: Lsn,
    2136            0 :         _ctx: &RequestContext,
    2137            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    2138            0 :         if lsn == self.keyspace.0 {
    2139            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    2140            0 :                 &self.keyspace.1.ranges,
    2141            0 :                 key_range,
    2142            0 :             ))
    2143              :         } else {
    2144              :             // The current compaction implementation only ever requests the key space
    2145              :             // at the compaction end LSN.
    2146            0 :             anyhow::bail!("keyspace not available for requested lsn");
    2147              :         }
    2148            0 :     }
    2149              : 
    2150            0 :     async fn downcast_delta_layer(
    2151            0 :         &self,
    2152            0 :         layer: &OwnArc<PersistentLayerDesc>,
    2153            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    2154            0 :         // this is a lot more complex than a simple downcast...
    2155            0 :         if layer.is_delta() {
    2156            0 :             let l = {
    2157            0 :                 let guard = self.timeline.layers.read().await;
    2158            0 :                 guard.get_from_desc(layer)
    2159              :             };
    2160            0 :             let result = l.download_and_keep_resident().await?;
    2161              : 
    2162            0 :             Ok(Some(ResidentDeltaLayer(result)))
    2163              :         } else {
    2164            0 :             Ok(None)
    2165              :         }
    2166            0 :     }
    2167              : 
    2168            0 :     async fn create_image(
    2169            0 :         &mut self,
    2170            0 :         lsn: Lsn,
    2171            0 :         key_range: &Range<Key>,
    2172            0 :         ctx: &RequestContext,
    2173            0 :     ) -> anyhow::Result<()> {
    2174            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    2175            0 :     }
    2176              : 
    2177            0 :     async fn create_delta(
    2178            0 :         &mut self,
    2179            0 :         lsn_range: &Range<Lsn>,
    2180            0 :         key_range: &Range<Key>,
    2181            0 :         input_layers: &[ResidentDeltaLayer],
    2182            0 :         ctx: &RequestContext,
    2183            0 :     ) -> anyhow::Result<()> {
    2184            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    2185              : 
    2186            0 :         let mut all_entries = Vec::new();
    2187            0 :         for dl in input_layers.iter() {
    2188            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    2189              :         }
    2190              : 
    2191              :         // The current stdlib sorting implementation is designed in a way where it is
    2192              :         // particularly fast where the slice is made up of sorted sub-ranges.
    2193            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    2194              : 
    2195            0 :         let mut writer = DeltaLayerWriter::new(
    2196            0 :             self.timeline.conf,
    2197            0 :             self.timeline.timeline_id,
    2198            0 :             self.timeline.tenant_shard_id,
    2199            0 :             key_range.start,
    2200            0 :             lsn_range.clone(),
    2201            0 :             ctx,
    2202            0 :         )
    2203            0 :         .await?;
    2204              : 
    2205            0 :         let mut dup_values = 0;
    2206            0 : 
    2207            0 :         // This iterator walks through all key-value pairs from all the layers
    2208            0 :         // we're compacting, in key, LSN order.
    2209            0 :         let mut prev: Option<(Key, Lsn)> = None;
    2210              :         for &DeltaEntry {
    2211            0 :             key, lsn, ref val, ..
    2212            0 :         } in all_entries.iter()
    2213              :         {
    2214            0 :             if prev == Some((key, lsn)) {
    2215              :                 // This is a duplicate. Skip it.
    2216              :                 //
    2217              :                 // It can happen if compaction is interrupted after writing some
    2218              :                 // layers but not all, and we are compacting the range again.
    2219              :                 // The calculations in the algorithm assume that there are no
    2220              :                 // duplicates, so the math on targeted file size is likely off,
    2221              :                 // and we will create smaller files than expected.
    2222            0 :                 dup_values += 1;
    2223            0 :                 continue;
    2224            0 :             }
    2225              : 
    2226            0 :             let value = val.load(ctx).await?;
    2227              : 
    2228            0 :             writer.put_value(key, lsn, value, ctx).await?;
    2229              : 
    2230            0 :             prev = Some((key, lsn));
    2231              :         }
    2232              : 
    2233            0 :         if dup_values > 0 {
    2234            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    2235            0 :         }
    2236              : 
    2237            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    2238            0 :             Err(anyhow::anyhow!(
    2239            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    2240            0 :             ))
    2241            0 :         });
    2242              : 
    2243            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    2244            0 :         let new_delta_layer =
    2245            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    2246              : 
    2247            0 :         self.new_deltas.push(new_delta_layer);
    2248            0 :         Ok(())
    2249            0 :     }
    2250              : 
    2251            0 :     async fn delete_layer(
    2252            0 :         &mut self,
    2253            0 :         layer: &OwnArc<PersistentLayerDesc>,
    2254            0 :         _ctx: &RequestContext,
    2255            0 :     ) -> anyhow::Result<()> {
    2256            0 :         self.layers_to_delete.push(layer.clone().0);
    2257            0 :         Ok(())
    2258            0 :     }
    2259              : }
    2260              : 
    2261              : impl TimelineAdaptor {
    2262            0 :     async fn create_image_impl(
    2263            0 :         &mut self,
    2264            0 :         lsn: Lsn,
    2265            0 :         key_range: &Range<Key>,
    2266            0 :         ctx: &RequestContext,
    2267            0 :     ) -> Result<(), CreateImageLayersError> {
    2268            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    2269              : 
    2270            0 :         let image_layer_writer = ImageLayerWriter::new(
    2271            0 :             self.timeline.conf,
    2272            0 :             self.timeline.timeline_id,
    2273            0 :             self.timeline.tenant_shard_id,
    2274            0 :             key_range,
    2275            0 :             lsn,
    2276            0 :             ctx,
    2277            0 :         )
    2278            0 :         .await?;
    2279              : 
    2280            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    2281            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    2282            0 :                 "failpoint image-layer-writer-fail-before-finish"
    2283            0 :             )))
    2284            0 :         });
    2285              : 
    2286            0 :         let keyspace = KeySpace {
    2287            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    2288              :         };
    2289              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    2290            0 :         let start = Key::MIN;
    2291              :         let ImageLayerCreationOutcome {
    2292            0 :             image,
    2293              :             next_start_key: _,
    2294            0 :         } = self
    2295            0 :             .timeline
    2296            0 :             .create_image_layer_for_rel_blocks(
    2297            0 :                 &keyspace,
    2298            0 :                 image_layer_writer,
    2299            0 :                 lsn,
    2300            0 :                 ctx,
    2301            0 :                 key_range.clone(),
    2302            0 :                 start,
    2303            0 :             )
    2304            0 :             .await?;
    2305              : 
    2306            0 :         if let Some(image_layer) = image {
    2307            0 :             self.new_images.push(image_layer);
    2308            0 :         }
    2309              : 
    2310            0 :         timer.stop_and_record();
    2311            0 : 
    2312            0 :         Ok(())
    2313            0 :     }
    2314              : }
    2315              : 
    2316              : impl CompactionRequestContext for crate::context::RequestContext {}
    2317              : 
    2318              : #[derive(Debug, Clone)]
    2319              : pub struct OwnArc<T>(pub Arc<T>);
    2320              : 
    2321              : impl<T> Deref for OwnArc<T> {
    2322              :     type Target = <Arc<T> as Deref>::Target;
    2323            0 :     fn deref(&self) -> &Self::Target {
    2324            0 :         &self.0
    2325            0 :     }
    2326              : }
    2327              : 
    2328              : impl<T> AsRef<T> for OwnArc<T> {
    2329            0 :     fn as_ref(&self) -> &T {
    2330            0 :         self.0.as_ref()
    2331            0 :     }
    2332              : }
    2333              : 
    2334              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    2335            0 :     fn key_range(&self) -> &Range<Key> {
    2336            0 :         &self.key_range
    2337            0 :     }
    2338            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2339            0 :         &self.lsn_range
    2340            0 :     }
    2341            0 :     fn file_size(&self) -> u64 {
    2342            0 :         self.file_size
    2343            0 :     }
    2344            0 :     fn short_id(&self) -> std::string::String {
    2345            0 :         self.as_ref().short_id().to_string()
    2346            0 :     }
    2347            0 :     fn is_delta(&self) -> bool {
    2348            0 :         self.as_ref().is_delta()
    2349            0 :     }
    2350              : }
    2351              : 
    2352              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    2353            0 :     fn key_range(&self) -> &Range<Key> {
    2354            0 :         &self.layer_desc().key_range
    2355            0 :     }
    2356            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2357            0 :         &self.layer_desc().lsn_range
    2358            0 :     }
    2359            0 :     fn file_size(&self) -> u64 {
    2360            0 :         self.layer_desc().file_size
    2361            0 :     }
    2362            0 :     fn short_id(&self) -> std::string::String {
    2363            0 :         self.layer_desc().short_id().to_string()
    2364            0 :     }
    2365            0 :     fn is_delta(&self) -> bool {
    2366            0 :         true
    2367            0 :     }
    2368              : }
    2369              : 
    2370              : use crate::tenant::timeline::DeltaEntry;
    2371              : 
    2372              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    2373            0 :     fn key_range(&self) -> &Range<Key> {
    2374            0 :         &self.0.layer_desc().key_range
    2375            0 :     }
    2376            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2377            0 :         &self.0.layer_desc().lsn_range
    2378            0 :     }
    2379            0 :     fn file_size(&self) -> u64 {
    2380            0 :         self.0.layer_desc().file_size
    2381            0 :     }
    2382            0 :     fn short_id(&self) -> std::string::String {
    2383            0 :         self.0.layer_desc().short_id().to_string()
    2384            0 :     }
    2385            0 :     fn is_delta(&self) -> bool {
    2386            0 :         true
    2387            0 :     }
    2388              : }
    2389              : 
    2390              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    2391              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    2392              : 
    2393            0 :     async fn load_keys<'a>(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    2394            0 :         self.0.load_keys(ctx).await
    2395            0 :     }
    2396              : }
    2397              : 
    2398              : impl CompactionLayer<Key> for ResidentImageLayer {
    2399            0 :     fn key_range(&self) -> &Range<Key> {
    2400            0 :         &self.0.layer_desc().key_range
    2401            0 :     }
    2402            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2403            0 :         &self.0.layer_desc().lsn_range
    2404            0 :     }
    2405            0 :     fn file_size(&self) -> u64 {
    2406            0 :         self.0.layer_desc().file_size
    2407            0 :     }
    2408            0 :     fn short_id(&self) -> std::string::String {
    2409            0 :         self.0.layer_desc().short_id().to_string()
    2410            0 :     }
    2411            0 :     fn is_delta(&self) -> bool {
    2412            0 :         false
    2413            0 :     }
    2414              : }
    2415              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta