Line data Source code
1 : use hyper::Uri;
2 : use std::{
3 : borrow::Cow,
4 : cmp::Ordering,
5 : collections::{BTreeMap, HashMap, HashSet},
6 : ops::Deref,
7 : path::PathBuf,
8 : str::FromStr,
9 : sync::Arc,
10 : time::{Duration, Instant},
11 : };
12 :
13 : use crate::{
14 : background_node_operations::{
15 : Drain, Fill, Operation, OperationError, OperationHandler, MAX_RECONCILES_PER_OPERATION,
16 : },
17 : compute_hook::NotifyError,
18 : drain_utils::{self, TenantShardDrain, TenantShardIterator},
19 : id_lock_map::{trace_exclusive_lock, trace_shared_lock, IdLockMap, TracingExclusiveGuard},
20 : leadership::Leadership,
21 : metrics,
22 : peer_client::GlobalObservedState,
23 : persistence::{
24 : AbortShardSplitStatus, ControllerPersistence, DatabaseResult, MetadataHealthPersistence,
25 : ShardGenerationState, TenantFilter,
26 : },
27 : reconciler::{ReconcileError, ReconcileUnits, ReconcilerConfig, ReconcilerConfigBuilder},
28 : scheduler::{MaySchedule, ScheduleContext, ScheduleError, ScheduleMode},
29 : tenant_shard::{
30 : MigrateAttachment, ReconcileNeeded, ReconcilerStatus, ScheduleOptimization,
31 : ScheduleOptimizationAction,
32 : },
33 : };
34 : use anyhow::Context;
35 : use control_plane::storage_controller::{
36 : AttachHookRequest, AttachHookResponse, InspectRequest, InspectResponse,
37 : };
38 : use diesel::result::DatabaseErrorKind;
39 : use futures::{stream::FuturesUnordered, StreamExt};
40 : use itertools::Itertools;
41 : use pageserver_api::{
42 : controller_api::{
43 : MetadataHealthRecord, MetadataHealthUpdateRequest, NodeAvailability, NodeRegisterRequest,
44 : NodeSchedulingPolicy, NodeShard, NodeShardResponse, PlacementPolicy, ShardSchedulingPolicy,
45 : ShardsPreferredAzsRequest, ShardsPreferredAzsResponse, TenantCreateRequest,
46 : TenantCreateResponse, TenantCreateResponseShard, TenantDescribeResponse,
47 : TenantDescribeResponseShard, TenantLocateResponse, TenantPolicyRequest,
48 : TenantShardMigrateRequest, TenantShardMigrateResponse,
49 : },
50 : models::{
51 : SecondaryProgress, TenantConfigRequest, TimelineArchivalConfigRequest,
52 : TopTenantShardsRequest,
53 : },
54 : };
55 : use reqwest::StatusCode;
56 : use tracing::{instrument, Instrument};
57 :
58 : use crate::pageserver_client::PageserverClient;
59 : use pageserver_api::{
60 : models::{
61 : self, LocationConfig, LocationConfigListResponse, LocationConfigMode,
62 : PageserverUtilization, ShardParameters, TenantConfig, TenantLocationConfigRequest,
63 : TenantLocationConfigResponse, TenantShardLocation, TenantShardSplitRequest,
64 : TenantShardSplitResponse, TenantTimeTravelRequest, TimelineCreateRequest, TimelineInfo,
65 : },
66 : shard::{ShardCount, ShardIdentity, ShardNumber, ShardStripeSize, TenantShardId},
67 : upcall_api::{
68 : ReAttachRequest, ReAttachResponse, ReAttachResponseTenant, ValidateRequest,
69 : ValidateResponse, ValidateResponseTenant,
70 : },
71 : };
72 : use pageserver_client::{mgmt_api, BlockUnblock};
73 : use tokio::sync::mpsc::error::TrySendError;
74 : use tokio_util::sync::CancellationToken;
75 : use utils::{
76 : completion::Barrier,
77 : failpoint_support,
78 : generation::Generation,
79 : http::error::ApiError,
80 : id::{NodeId, TenantId, TimelineId},
81 : sync::gate::Gate,
82 : };
83 :
84 : use crate::{
85 : compute_hook::ComputeHook,
86 : heartbeater::{Heartbeater, PageserverState},
87 : node::{AvailabilityTransition, Node},
88 : persistence::{split_state::SplitState, DatabaseError, Persistence, TenantShardPersistence},
89 : reconciler::attached_location_conf,
90 : scheduler::Scheduler,
91 : tenant_shard::{
92 : IntentState, ObservedState, ObservedStateLocation, ReconcileResult, ReconcileWaitError,
93 : ReconcilerWaiter, TenantShard,
94 : },
95 : };
96 :
97 : pub mod chaos_injector;
98 :
99 : // For operations that should be quick, like attaching a new tenant
100 : const SHORT_RECONCILE_TIMEOUT: Duration = Duration::from_secs(5);
101 :
102 : // For operations that might be slow, like migrating a tenant with
103 : // some data in it.
104 : pub const RECONCILE_TIMEOUT: Duration = Duration::from_secs(30);
105 :
106 : // If we receive a call using Secondary mode initially, it will omit generation. We will initialize
107 : // tenant shards into this generation, and as long as it remains in this generation, we will accept
108 : // input generation from future requests as authoritative.
109 : const INITIAL_GENERATION: Generation = Generation::new(0);
110 :
111 : /// How long [`Service::startup_reconcile`] is allowed to take before it should give
112 : /// up on unresponsive pageservers and proceed.
113 : pub(crate) const STARTUP_RECONCILE_TIMEOUT: Duration = Duration::from_secs(30);
114 :
115 : /// How long a node may be unresponsive to heartbeats before we declare it offline.
116 : /// This must be long enough to cover node restarts as well as normal operations: in future
117 : pub const MAX_OFFLINE_INTERVAL_DEFAULT: Duration = Duration::from_secs(30);
118 :
119 : /// How long a node may be unresponsive to heartbeats during start up before we declare it
120 : /// offline.
121 : ///
122 : /// This is much more lenient than [`MAX_OFFLINE_INTERVAL_DEFAULT`] since the pageserver's
123 : /// handling of the re-attach response may take a long time and blocks heartbeats from
124 : /// being handled on the pageserver side.
125 : pub const MAX_WARMING_UP_INTERVAL_DEFAULT: Duration = Duration::from_secs(300);
126 :
127 : /// How often to send heartbeats to registered nodes?
128 : pub const HEARTBEAT_INTERVAL_DEFAULT: Duration = Duration::from_secs(5);
129 :
130 0 : #[derive(Clone, strum_macros::Display)]
131 : enum TenantOperations {
132 : Create,
133 : LocationConfig,
134 : ConfigSet,
135 : TimeTravelRemoteStorage,
136 : Delete,
137 : UpdatePolicy,
138 : ShardSplit,
139 : SecondaryDownload,
140 : TimelineCreate,
141 : TimelineDelete,
142 : AttachHook,
143 : TimelineArchivalConfig,
144 : TimelineDetachAncestor,
145 : TimelineGcBlockUnblock,
146 : }
147 :
148 0 : #[derive(Clone, strum_macros::Display)]
149 : enum NodeOperations {
150 : Register,
151 : Configure,
152 : Delete,
153 : }
154 :
155 : /// The leadership status for the storage controller process.
156 : /// Allowed transitions are:
157 : /// 1. Leader -> SteppedDown
158 : /// 2. Candidate -> Leader
159 : #[derive(
160 : Eq,
161 : PartialEq,
162 : Copy,
163 : Clone,
164 0 : strum_macros::Display,
165 0 : strum_macros::EnumIter,
166 : measured::FixedCardinalityLabel,
167 : )]
168 : #[strum(serialize_all = "snake_case")]
169 : pub(crate) enum LeadershipStatus {
170 : /// This is the steady state where the storage controller can produce
171 : /// side effects in the cluster.
172 : Leader,
173 : /// We've been notified to step down by another candidate. No reconciliations
174 : /// take place in this state.
175 : SteppedDown,
176 : /// Initial state for a new storage controller instance. Will attempt to assume leadership.
177 : #[allow(unused)]
178 : Candidate,
179 : }
180 :
181 : pub const RECONCILER_CONCURRENCY_DEFAULT: usize = 128;
182 :
183 : // Depth of the channel used to enqueue shards for reconciliation when they can't do it immediately.
184 : // This channel is finite-size to avoid using excessive memory if we get into a state where reconciles are finishing more slowly
185 : // than they're being pushed onto the queue.
186 : const MAX_DELAYED_RECONCILES: usize = 10000;
187 :
188 : // Top level state available to all HTTP handlers
189 : struct ServiceState {
190 : leadership_status: LeadershipStatus,
191 :
192 : tenants: BTreeMap<TenantShardId, TenantShard>,
193 :
194 : nodes: Arc<HashMap<NodeId, Node>>,
195 :
196 : scheduler: Scheduler,
197 :
198 : /// Ongoing background operation on the cluster if any is running.
199 : /// Note that only one such operation may run at any given time,
200 : /// hence the type choice.
201 : ongoing_operation: Option<OperationHandler>,
202 :
203 : /// Queue of tenants who are waiting for concurrency limits to permit them to reconcile
204 : delayed_reconcile_rx: tokio::sync::mpsc::Receiver<TenantShardId>,
205 : }
206 :
207 : /// Transform an error from a pageserver into an error to return to callers of a storage
208 : /// controller API.
209 0 : fn passthrough_api_error(node: &Node, e: mgmt_api::Error) -> ApiError {
210 0 : match e {
211 0 : mgmt_api::Error::SendRequest(e) => {
212 0 : // Presume errors sending requests are connectivity/availability issues
213 0 : ApiError::ResourceUnavailable(format!("{node} error sending request: {e}").into())
214 : }
215 0 : mgmt_api::Error::ReceiveErrorBody(str) => {
216 0 : // Presume errors receiving body are connectivity/availability issues
217 0 : ApiError::ResourceUnavailable(
218 0 : format!("{node} error receiving error body: {str}").into(),
219 0 : )
220 : }
221 0 : mgmt_api::Error::ReceiveBody(str) => {
222 0 : // Presume errors receiving body are connectivity/availability issues
223 0 : ApiError::ResourceUnavailable(format!("{node} error receiving body: {str}").into())
224 : }
225 0 : mgmt_api::Error::ApiError(StatusCode::NOT_FOUND, msg) => {
226 0 : ApiError::NotFound(anyhow::anyhow!(format!("{node}: {msg}")).into())
227 : }
228 0 : mgmt_api::Error::ApiError(StatusCode::SERVICE_UNAVAILABLE, msg) => {
229 0 : ApiError::ResourceUnavailable(format!("{node}: {msg}").into())
230 : }
231 0 : mgmt_api::Error::ApiError(status @ StatusCode::UNAUTHORIZED, msg)
232 0 : | mgmt_api::Error::ApiError(status @ StatusCode::FORBIDDEN, msg) => {
233 : // Auth errors talking to a pageserver are not auth errors for the caller: they are
234 : // internal server errors, showing that something is wrong with the pageserver or
235 : // storage controller's auth configuration.
236 0 : ApiError::InternalServerError(anyhow::anyhow!("{node} {status}: {msg}"))
237 : }
238 0 : mgmt_api::Error::ApiError(status, msg) => {
239 0 : // Presume general case of pageserver API errors is that we tried to do something
240 0 : // that can't be done right now.
241 0 : ApiError::Conflict(format!("{node} {status}: {status} {msg}"))
242 : }
243 0 : mgmt_api::Error::Cancelled => ApiError::ShuttingDown,
244 : }
245 0 : }
246 :
247 : impl ServiceState {
248 0 : fn new(
249 0 : nodes: HashMap<NodeId, Node>,
250 0 : tenants: BTreeMap<TenantShardId, TenantShard>,
251 0 : scheduler: Scheduler,
252 0 : delayed_reconcile_rx: tokio::sync::mpsc::Receiver<TenantShardId>,
253 0 : initial_leadership_status: LeadershipStatus,
254 0 : ) -> Self {
255 0 : metrics::update_leadership_status(initial_leadership_status);
256 0 :
257 0 : Self {
258 0 : leadership_status: initial_leadership_status,
259 0 : tenants,
260 0 : nodes: Arc::new(nodes),
261 0 : scheduler,
262 0 : ongoing_operation: None,
263 0 : delayed_reconcile_rx,
264 0 : }
265 0 : }
266 :
267 0 : fn parts_mut(
268 0 : &mut self,
269 0 : ) -> (
270 0 : &mut Arc<HashMap<NodeId, Node>>,
271 0 : &mut BTreeMap<TenantShardId, TenantShard>,
272 0 : &mut Scheduler,
273 0 : ) {
274 0 : (&mut self.nodes, &mut self.tenants, &mut self.scheduler)
275 0 : }
276 :
277 0 : fn get_leadership_status(&self) -> LeadershipStatus {
278 0 : self.leadership_status
279 0 : }
280 :
281 0 : fn step_down(&mut self) {
282 0 : self.leadership_status = LeadershipStatus::SteppedDown;
283 0 : metrics::update_leadership_status(self.leadership_status);
284 0 : }
285 :
286 0 : fn become_leader(&mut self) {
287 0 : self.leadership_status = LeadershipStatus::Leader;
288 0 : metrics::update_leadership_status(self.leadership_status);
289 0 : }
290 : }
291 :
292 : #[derive(Clone)]
293 : pub struct Config {
294 : // All pageservers managed by one instance of this service must have
295 : // the same public key. This JWT token will be used to authenticate
296 : // this service to the pageservers it manages.
297 : pub jwt_token: Option<String>,
298 :
299 : // This JWT token will be used to authenticate this service to the control plane.
300 : pub control_plane_jwt_token: Option<String>,
301 :
302 : // This JWT token will be used to authenticate with other storage controller instances
303 : pub peer_jwt_token: Option<String>,
304 :
305 : /// Where the compute hook should send notifications of pageserver attachment locations
306 : /// (this URL points to the control plane in prod). If this is None, the compute hook will
307 : /// assume it is running in a test environment and try to update neon_local.
308 : pub compute_hook_url: Option<String>,
309 :
310 : /// Grace period within which a pageserver does not respond to heartbeats, but is still
311 : /// considered active. Once the grace period elapses, the next heartbeat failure will
312 : /// mark the pagseserver offline.
313 : pub max_offline_interval: Duration,
314 :
315 : /// Extended grace period within which pageserver may not respond to heartbeats.
316 : /// This extended grace period kicks in after the node has been drained for restart
317 : /// and/or upon handling the re-attach request from a node.
318 : pub max_warming_up_interval: Duration,
319 :
320 : /// How many Reconcilers may be spawned concurrently
321 : pub reconciler_concurrency: usize,
322 :
323 : /// How large must a shard grow in bytes before we split it?
324 : /// None disables auto-splitting.
325 : pub split_threshold: Option<u64>,
326 :
327 : // TODO: make this cfg(feature = "testing")
328 : pub neon_local_repo_dir: Option<PathBuf>,
329 :
330 : // Maximum acceptable download lag for the secondary location
331 : // while draining a node. If the secondary location is lagging
332 : // by more than the configured amount, then the secondary is not
333 : // upgraded to primary.
334 : pub max_secondary_lag_bytes: Option<u64>,
335 :
336 : pub heartbeat_interval: Duration,
337 :
338 : pub address_for_peers: Option<Uri>,
339 :
340 : pub start_as_candidate: bool,
341 :
342 : pub http_service_port: i32,
343 : }
344 :
345 : impl From<DatabaseError> for ApiError {
346 0 : fn from(err: DatabaseError) -> ApiError {
347 0 : match err {
348 0 : DatabaseError::Query(e) => ApiError::InternalServerError(e.into()),
349 : // FIXME: ApiError doesn't have an Unavailable variant, but ShuttingDown maps to 503.
350 : DatabaseError::Connection(_) | DatabaseError::ConnectionPool(_) => {
351 0 : ApiError::ShuttingDown
352 : }
353 0 : DatabaseError::Logical(reason) | DatabaseError::Migration(reason) => {
354 0 : ApiError::InternalServerError(anyhow::anyhow!(reason))
355 : }
356 : }
357 0 : }
358 : }
359 :
360 : enum InitialShardScheduleOutcome {
361 : Scheduled(TenantCreateResponseShard),
362 : NotScheduled,
363 : ShardScheduleError(ScheduleError),
364 : }
365 :
366 : pub struct Service {
367 : inner: Arc<std::sync::RwLock<ServiceState>>,
368 : config: Config,
369 : persistence: Arc<Persistence>,
370 : compute_hook: Arc<ComputeHook>,
371 : result_tx: tokio::sync::mpsc::UnboundedSender<ReconcileResultRequest>,
372 :
373 : heartbeater: Heartbeater,
374 :
375 : // Channel for background cleanup from failed operations that require cleanup, such as shard split
376 : abort_tx: tokio::sync::mpsc::UnboundedSender<TenantShardSplitAbort>,
377 :
378 : // Locking on a tenant granularity (covers all shards in the tenant):
379 : // - Take exclusively for rare operations that mutate the tenant's persistent state (e.g. create/delete/split)
380 : // - Take in shared mode for operations that need the set of shards to stay the same to complete reliably (e.g. timeline CRUD)
381 : tenant_op_locks: IdLockMap<TenantId, TenantOperations>,
382 :
383 : // Locking for node-mutating operations: take exclusively for operations that modify the node's persistent state, or
384 : // that transition it to/from Active.
385 : node_op_locks: IdLockMap<NodeId, NodeOperations>,
386 :
387 : // Limit how many Reconcilers we will spawn concurrently
388 : reconciler_concurrency: Arc<tokio::sync::Semaphore>,
389 :
390 : /// Queue of tenants who are waiting for concurrency limits to permit them to reconcile
391 : /// Send into this queue to promptly attempt to reconcile this shard next time units are available.
392 : ///
393 : /// Note that this state logically lives inside ServiceInner, but carrying Sender here makes the code simpler
394 : /// by avoiding needing a &mut ref to something inside the ServiceInner. This could be optimized to
395 : /// use a VecDeque instead of a channel to reduce synchronization overhead, at the cost of some code complexity.
396 : delayed_reconcile_tx: tokio::sync::mpsc::Sender<TenantShardId>,
397 :
398 : // Process shutdown will fire this token
399 : cancel: CancellationToken,
400 :
401 : // Child token of [`Service::cancel`] used by reconcilers
402 : reconcilers_cancel: CancellationToken,
403 :
404 : // Background tasks will hold this gate
405 : gate: Gate,
406 :
407 : // Reconcilers background tasks will hold this gate
408 : reconcilers_gate: Gate,
409 :
410 : /// This waits for initial reconciliation with pageservers to complete. Until this barrier
411 : /// passes, it isn't safe to do any actions that mutate tenants.
412 : pub(crate) startup_complete: Barrier,
413 : }
414 :
415 : impl From<ReconcileWaitError> for ApiError {
416 0 : fn from(value: ReconcileWaitError) -> Self {
417 0 : match value {
418 0 : ReconcileWaitError::Shutdown => ApiError::ShuttingDown,
419 0 : e @ ReconcileWaitError::Timeout(_) => ApiError::Timeout(format!("{e}").into()),
420 0 : e @ ReconcileWaitError::Failed(..) => ApiError::InternalServerError(anyhow::anyhow!(e)),
421 : }
422 0 : }
423 : }
424 :
425 : impl From<OperationError> for ApiError {
426 0 : fn from(value: OperationError) -> Self {
427 0 : match value {
428 0 : OperationError::NodeStateChanged(err) | OperationError::FinalizeError(err) => {
429 0 : ApiError::InternalServerError(anyhow::anyhow!(err))
430 : }
431 0 : OperationError::Cancelled => ApiError::Conflict("Operation was cancelled".into()),
432 : }
433 0 : }
434 : }
435 :
436 : #[allow(clippy::large_enum_variant)]
437 : enum TenantCreateOrUpdate {
438 : Create(TenantCreateRequest),
439 : Update(Vec<ShardUpdate>),
440 : }
441 :
442 : struct ShardSplitParams {
443 : old_shard_count: ShardCount,
444 : new_shard_count: ShardCount,
445 : new_stripe_size: Option<ShardStripeSize>,
446 : targets: Vec<ShardSplitTarget>,
447 : policy: PlacementPolicy,
448 : config: TenantConfig,
449 : shard_ident: ShardIdentity,
450 : }
451 :
452 : // When preparing for a shard split, we may either choose to proceed with the split,
453 : // or find that the work is already done and return NoOp.
454 : enum ShardSplitAction {
455 : Split(Box<ShardSplitParams>),
456 : NoOp(TenantShardSplitResponse),
457 : }
458 :
459 : // A parent shard which will be split
460 : struct ShardSplitTarget {
461 : parent_id: TenantShardId,
462 : node: Node,
463 : child_ids: Vec<TenantShardId>,
464 : }
465 :
466 : /// When we tenant shard split operation fails, we may not be able to clean up immediately, because nodes
467 : /// might not be available. We therefore use a queue of abort operations processed in the background.
468 : struct TenantShardSplitAbort {
469 : tenant_id: TenantId,
470 : /// The target values from the request that failed
471 : new_shard_count: ShardCount,
472 : new_stripe_size: Option<ShardStripeSize>,
473 : /// Until this abort op is complete, no other operations may be done on the tenant
474 : _tenant_lock: TracingExclusiveGuard<TenantOperations>,
475 : }
476 :
477 0 : #[derive(thiserror::Error, Debug)]
478 : enum TenantShardSplitAbortError {
479 : #[error(transparent)]
480 : Database(#[from] DatabaseError),
481 : #[error(transparent)]
482 : Remote(#[from] mgmt_api::Error),
483 : #[error("Unavailable")]
484 : Unavailable,
485 : }
486 :
487 : struct ShardUpdate {
488 : tenant_shard_id: TenantShardId,
489 : placement_policy: PlacementPolicy,
490 : tenant_config: TenantConfig,
491 :
492 : /// If this is None, generation is not updated.
493 : generation: Option<Generation>,
494 : }
495 :
496 : enum StopReconciliationsReason {
497 : ShuttingDown,
498 : SteppingDown,
499 : }
500 :
501 : impl std::fmt::Display for StopReconciliationsReason {
502 0 : fn fmt(&self, writer: &mut std::fmt::Formatter) -> std::fmt::Result {
503 0 : let s = match self {
504 0 : Self::ShuttingDown => "Shutting down",
505 0 : Self::SteppingDown => "Stepping down",
506 : };
507 0 : write!(writer, "{}", s)
508 0 : }
509 : }
510 :
511 : pub(crate) enum ReconcileResultRequest {
512 : ReconcileResult(ReconcileResult),
513 : Stop,
514 : }
515 :
516 : impl Service {
517 0 : pub fn get_config(&self) -> &Config {
518 0 : &self.config
519 0 : }
520 :
521 : /// Called once on startup, this function attempts to contact all pageservers to build an up-to-date
522 : /// view of the world, and determine which pageservers are responsive.
523 0 : #[instrument(skip_all)]
524 : async fn startup_reconcile(
525 : self: &Arc<Service>,
526 : current_leader: Option<ControllerPersistence>,
527 : leader_step_down_state: Option<GlobalObservedState>,
528 : bg_compute_notify_result_tx: tokio::sync::mpsc::Sender<
529 : Result<(), (TenantShardId, NotifyError)>,
530 : >,
531 : ) {
532 : // Startup reconciliation does I/O to other services: whether they
533 : // are responsive or not, we should aim to finish within our deadline, because:
534 : // - If we don't, a k8s readiness hook watching /ready will kill us.
535 : // - While we're waiting for startup reconciliation, we are not fully
536 : // available for end user operations like creating/deleting tenants and timelines.
537 : //
538 : // We set multiple deadlines to break up the time available between the phases of work: this is
539 : // arbitrary, but avoids a situation where the first phase could burn our entire timeout period.
540 : let start_at = Instant::now();
541 : let node_scan_deadline = start_at
542 : .checked_add(STARTUP_RECONCILE_TIMEOUT / 2)
543 : .expect("Reconcile timeout is a modest constant");
544 :
545 : let observed = if let Some(state) = leader_step_down_state {
546 : tracing::info!(
547 : "Using observed state received from leader at {}",
548 : current_leader.as_ref().unwrap().address
549 : );
550 :
551 : state
552 : } else {
553 : self.build_global_observed_state(node_scan_deadline).await
554 : };
555 :
556 : // Accumulate a list of any tenant locations that ought to be detached
557 : let mut cleanup = Vec::new();
558 :
559 : // Send initial heartbeat requests to all nodes loaded from the database
560 : let all_nodes = {
561 : let locked = self.inner.read().unwrap();
562 : locked.nodes.clone()
563 : };
564 : let mut nodes_online = self.initial_heartbeat_round(all_nodes.keys()).await;
565 :
566 : // List of tenants for which we will attempt to notify compute of their location at startup
567 : let mut compute_notifications = Vec::new();
568 :
569 : // Populate intent and observed states for all tenants, based on reported state on pageservers
570 : tracing::info!("Populating tenant shards' states from initial pageserver scan...");
571 : let shard_count = {
572 : let mut locked = self.inner.write().unwrap();
573 : let (nodes, tenants, scheduler) = locked.parts_mut();
574 :
575 : // Mark nodes online if they responded to us: nodes are offline by default after a restart.
576 : let mut new_nodes = (**nodes).clone();
577 : for (node_id, node) in new_nodes.iter_mut() {
578 : if let Some(utilization) = nodes_online.remove(node_id) {
579 : node.set_availability(NodeAvailability::Active(utilization));
580 : scheduler.node_upsert(node);
581 : }
582 : }
583 : *nodes = Arc::new(new_nodes);
584 :
585 : for (tenant_shard_id, observed_state) in observed.0 {
586 : let Some(tenant_shard) = tenants.get_mut(&tenant_shard_id) else {
587 : for node_id in observed_state.locations.keys() {
588 : cleanup.push((tenant_shard_id, *node_id));
589 : }
590 :
591 : continue;
592 : };
593 :
594 : tenant_shard.observed = observed_state;
595 : }
596 :
597 : // Populate each tenant's intent state
598 : let mut schedule_context = ScheduleContext::default();
599 : for (tenant_shard_id, tenant_shard) in tenants.iter_mut() {
600 : if tenant_shard_id.shard_number == ShardNumber(0) {
601 : // Reset scheduling context each time we advance to the next Tenant
602 : schedule_context = ScheduleContext::default();
603 : }
604 :
605 : tenant_shard.intent_from_observed(scheduler);
606 : if let Err(e) = tenant_shard.schedule(scheduler, &mut schedule_context) {
607 : // Non-fatal error: we are unable to properly schedule the tenant, perhaps because
608 : // not enough pageservers are available. The tenant may well still be available
609 : // to clients.
610 : tracing::error!("Failed to schedule tenant {tenant_shard_id} at startup: {e}");
611 : } else {
612 : // If we're both intending and observed to be attached at a particular node, we will
613 : // emit a compute notification for this. In the case where our observed state does not
614 : // yet match our intent, we will eventually reconcile, and that will emit a compute notification.
615 : if let Some(attached_at) = tenant_shard.stably_attached() {
616 : compute_notifications.push((
617 : *tenant_shard_id,
618 : attached_at,
619 : tenant_shard.shard.stripe_size,
620 : ));
621 : }
622 : }
623 : }
624 :
625 : tenants.len()
626 : };
627 :
628 : // Before making any obeservable changes to the cluster, persist self
629 : // as leader in database and memory.
630 : let leadership = Leadership::new(
631 : self.persistence.clone(),
632 : self.config.clone(),
633 : self.cancel.child_token(),
634 : );
635 :
636 : if let Err(e) = leadership.become_leader(current_leader).await {
637 : tracing::error!("Failed to persist self as leader: {e}. Aborting start-up ...");
638 : std::process::exit(1);
639 : }
640 :
641 : self.inner.write().unwrap().become_leader();
642 :
643 : // TODO: if any tenant's intent now differs from its loaded generation_pageserver, we should clear that
644 : // generation_pageserver in the database.
645 :
646 : // Emit compute hook notifications for all tenants which are already stably attached. Other tenants
647 : // will emit compute hook notifications when they reconcile.
648 : //
649 : // Ordering: our calls to notify_background synchronously establish a relative order for these notifications vs. any later
650 : // calls into the ComputeHook for the same tenant: we can leave these to run to completion in the background and any later
651 : // calls will be correctly ordered wrt these.
652 : //
653 : // Concurrency: we call notify_background for all tenants, which will create O(N) tokio tasks, but almost all of them
654 : // will just wait on the ComputeHook::API_CONCURRENCY semaphore immediately, so very cheap until they get that semaphore
655 : // unit and start doing I/O.
656 : tracing::info!(
657 : "Sending {} compute notifications",
658 : compute_notifications.len()
659 : );
660 : self.compute_hook.notify_background(
661 : compute_notifications,
662 : bg_compute_notify_result_tx.clone(),
663 : &self.cancel,
664 : );
665 :
666 : // Finally, now that the service is up and running, launch reconcile operations for any tenants
667 : // which require it: under normal circumstances this should only include tenants that were in some
668 : // transient state before we restarted, or any tenants whose compute hooks failed above.
669 : tracing::info!("Checking for shards in need of reconciliation...");
670 : let reconcile_tasks = self.reconcile_all();
671 : // We will not wait for these reconciliation tasks to run here: we're now done with startup and
672 : // normal operations may proceed.
673 :
674 : // Clean up any tenants that were found on pageservers but are not known to us. Do this in the
675 : // background because it does not need to complete in order to proceed with other work.
676 : if !cleanup.is_empty() {
677 : tracing::info!("Cleaning up {} locations in the background", cleanup.len());
678 : tokio::task::spawn({
679 : let cleanup_self = self.clone();
680 0 : async move { cleanup_self.cleanup_locations(cleanup).await }
681 : });
682 : }
683 :
684 : tracing::info!("Startup complete, spawned {reconcile_tasks} reconciliation tasks ({shard_count} shards total)");
685 : }
686 :
687 0 : async fn initial_heartbeat_round<'a>(
688 0 : &self,
689 0 : node_ids: impl Iterator<Item = &'a NodeId>,
690 0 : ) -> HashMap<NodeId, PageserverUtilization> {
691 0 : assert!(!self.startup_complete.is_ready());
692 :
693 0 : let all_nodes = {
694 0 : let locked = self.inner.read().unwrap();
695 0 : locked.nodes.clone()
696 0 : };
697 0 :
698 0 : let mut nodes_to_heartbeat = HashMap::new();
699 0 : for node_id in node_ids {
700 0 : match all_nodes.get(node_id) {
701 0 : Some(node) => {
702 0 : nodes_to_heartbeat.insert(*node_id, node.clone());
703 0 : }
704 : None => {
705 0 : tracing::warn!("Node {node_id} was removed during start-up");
706 : }
707 : }
708 : }
709 :
710 0 : tracing::info!("Sending initial heartbeats...");
711 0 : let res = self
712 0 : .heartbeater
713 0 : .heartbeat(Arc::new(nodes_to_heartbeat))
714 0 : .await;
715 :
716 0 : let mut online_nodes = HashMap::new();
717 0 : if let Ok(deltas) = res {
718 0 : for (node_id, status) in deltas.0 {
719 0 : match status {
720 0 : PageserverState::Available { utilization, .. } => {
721 0 : online_nodes.insert(node_id, utilization);
722 0 : }
723 0 : PageserverState::Offline => {}
724 : PageserverState::WarmingUp { .. } => {
725 0 : unreachable!("Nodes are never marked warming-up during startup reconcile")
726 : }
727 : }
728 : }
729 0 : }
730 :
731 0 : online_nodes
732 0 : }
733 :
734 : /// Used during [`Self::startup_reconcile`]: issue GETs to all nodes concurrently, with a deadline.
735 : ///
736 : /// The result includes only nodes which responded within the deadline
737 0 : async fn scan_node_locations(
738 0 : &self,
739 0 : deadline: Instant,
740 0 : ) -> HashMap<NodeId, LocationConfigListResponse> {
741 0 : let nodes = {
742 0 : let locked = self.inner.read().unwrap();
743 0 : locked.nodes.clone()
744 0 : };
745 0 :
746 0 : let mut node_results = HashMap::new();
747 0 :
748 0 : let mut node_list_futs = FuturesUnordered::new();
749 0 :
750 0 : tracing::info!("Scanning shards on {} nodes...", nodes.len());
751 0 : for node in nodes.values() {
752 0 : node_list_futs.push({
753 0 : async move {
754 0 : tracing::info!("Scanning shards on node {node}...");
755 0 : let timeout = Duration::from_secs(1);
756 0 : let response = node
757 0 : .with_client_retries(
758 0 : |client| async move { client.list_location_config().await },
759 0 : &self.config.jwt_token,
760 0 : 1,
761 0 : 5,
762 0 : timeout,
763 0 : &self.cancel,
764 0 : )
765 0 : .await;
766 0 : (node.get_id(), response)
767 0 : }
768 0 : });
769 0 : }
770 :
771 : loop {
772 0 : let (node_id, result) = tokio::select! {
773 0 : next = node_list_futs.next() => {
774 0 : match next {
775 0 : Some(result) => result,
776 : None =>{
777 : // We got results for all our nodes
778 0 : break;
779 : }
780 :
781 : }
782 : },
783 0 : _ = tokio::time::sleep(deadline.duration_since(Instant::now())) => {
784 : // Give up waiting for anyone who hasn't responded: we will yield the results that we have
785 0 : tracing::info!("Reached deadline while waiting for nodes to respond to location listing requests");
786 0 : break;
787 : }
788 : };
789 :
790 0 : let Some(list_response) = result else {
791 0 : tracing::info!("Shutdown during startup_reconcile");
792 0 : break;
793 : };
794 :
795 0 : match list_response {
796 0 : Err(e) => {
797 0 : tracing::warn!("Could not scan node {} ({e})", node_id);
798 : }
799 0 : Ok(listing) => {
800 0 : node_results.insert(node_id, listing);
801 0 : }
802 : }
803 : }
804 :
805 0 : node_results
806 0 : }
807 :
808 0 : async fn build_global_observed_state(&self, deadline: Instant) -> GlobalObservedState {
809 0 : let node_listings = self.scan_node_locations(deadline).await;
810 0 : let mut observed = GlobalObservedState::default();
811 :
812 0 : for (node_id, location_confs) in node_listings {
813 0 : tracing::info!(
814 0 : "Received {} shard statuses from pageserver {}",
815 0 : location_confs.tenant_shards.len(),
816 : node_id
817 : );
818 :
819 0 : for (tid, location_conf) in location_confs.tenant_shards {
820 0 : let entry = observed.0.entry(tid).or_default();
821 0 : entry.locations.insert(
822 0 : node_id,
823 0 : ObservedStateLocation {
824 0 : conf: location_conf,
825 0 : },
826 0 : );
827 0 : }
828 : }
829 :
830 0 : observed
831 0 : }
832 :
833 : /// Used during [`Self::startup_reconcile`]: detach a list of unknown-to-us tenants from pageservers.
834 : ///
835 : /// This is safe to run in the background, because if we don't have this TenantShardId in our map of
836 : /// tenants, then it is probably something incompletely deleted before: we will not fight with any
837 : /// other task trying to attach it.
838 0 : #[instrument(skip_all)]
839 : async fn cleanup_locations(&self, cleanup: Vec<(TenantShardId, NodeId)>) {
840 : let nodes = self.inner.read().unwrap().nodes.clone();
841 :
842 : for (tenant_shard_id, node_id) in cleanup {
843 : // A node reported a tenant_shard_id which is unknown to us: detach it.
844 : let Some(node) = nodes.get(&node_id) else {
845 : // This is legitimate; we run in the background and [`Self::startup_reconcile`] might have identified
846 : // a location to clean up on a node that has since been removed.
847 : tracing::info!(
848 : "Not cleaning up location {node_id}/{tenant_shard_id}: node not found"
849 : );
850 : continue;
851 : };
852 :
853 : if self.cancel.is_cancelled() {
854 : break;
855 : }
856 :
857 : let client = PageserverClient::new(
858 : node.get_id(),
859 : node.base_url(),
860 : self.config.jwt_token.as_deref(),
861 : );
862 : match client
863 : .location_config(
864 : tenant_shard_id,
865 : LocationConfig {
866 : mode: LocationConfigMode::Detached,
867 : generation: None,
868 : secondary_conf: None,
869 : shard_number: tenant_shard_id.shard_number.0,
870 : shard_count: tenant_shard_id.shard_count.literal(),
871 : shard_stripe_size: 0,
872 : tenant_conf: models::TenantConfig::default(),
873 : },
874 : None,
875 : false,
876 : )
877 : .await
878 : {
879 : Ok(()) => {
880 : tracing::info!(
881 : "Detached unknown shard {tenant_shard_id} on pageserver {node_id}"
882 : );
883 : }
884 : Err(e) => {
885 : // Non-fatal error: leaving a tenant shard behind that we are not managing shouldn't
886 : // break anything.
887 : tracing::error!(
888 : "Failed to detach unknkown shard {tenant_shard_id} on pageserver {node_id}: {e}"
889 : );
890 : }
891 : }
892 : }
893 : }
894 :
895 : /// Long running background task that periodically wakes up and looks for shards that need
896 : /// reconciliation. Reconciliation is fallible, so any reconciliation tasks that fail during
897 : /// e.g. a tenant create/attach/migrate must eventually be retried: this task is responsible
898 : /// for those retries.
899 0 : #[instrument(skip_all)]
900 : async fn background_reconcile(self: &Arc<Self>) {
901 : self.startup_complete.clone().wait().await;
902 :
903 : const BACKGROUND_RECONCILE_PERIOD: Duration = Duration::from_secs(20);
904 :
905 : let mut interval = tokio::time::interval(BACKGROUND_RECONCILE_PERIOD);
906 : while !self.reconcilers_cancel.is_cancelled() {
907 : tokio::select! {
908 : _ = interval.tick() => {
909 : let reconciles_spawned = self.reconcile_all();
910 : if reconciles_spawned == 0 {
911 : // Run optimizer only when we didn't find any other work to do
912 : let optimizations = self.optimize_all().await;
913 : if optimizations == 0 {
914 : // Run new splits only when no optimizations are pending
915 : self.autosplit_tenants().await;
916 : }
917 : }
918 : }
919 : _ = self.reconcilers_cancel.cancelled() => return
920 : }
921 : }
922 : }
923 0 : #[instrument(skip_all)]
924 : async fn spawn_heartbeat_driver(&self) {
925 : self.startup_complete.clone().wait().await;
926 :
927 : let mut interval = tokio::time::interval(self.config.heartbeat_interval);
928 : while !self.cancel.is_cancelled() {
929 : tokio::select! {
930 : _ = interval.tick() => { }
931 : _ = self.cancel.cancelled() => return
932 : };
933 :
934 : let nodes = {
935 : let locked = self.inner.read().unwrap();
936 : locked.nodes.clone()
937 : };
938 :
939 : let res = self.heartbeater.heartbeat(nodes).await;
940 : if let Ok(deltas) = res {
941 : for (node_id, state) in deltas.0 {
942 : let new_availability = match state {
943 : PageserverState::Available { utilization, .. } => {
944 : NodeAvailability::Active(utilization)
945 : }
946 : PageserverState::WarmingUp { started_at } => {
947 : NodeAvailability::WarmingUp(started_at)
948 : }
949 : PageserverState::Offline => {
950 : // The node might have been placed in the WarmingUp state
951 : // while the heartbeat round was on-going. Hence, filter out
952 : // offline transitions for WarmingUp nodes that are still within
953 : // their grace period.
954 : if let Ok(NodeAvailability::WarmingUp(started_at)) = self
955 : .get_node(node_id)
956 : .await
957 : .as_ref()
958 0 : .map(|n| n.get_availability())
959 : {
960 : let now = Instant::now();
961 : if now - *started_at >= self.config.max_warming_up_interval {
962 : NodeAvailability::Offline
963 : } else {
964 : NodeAvailability::WarmingUp(*started_at)
965 : }
966 : } else {
967 : NodeAvailability::Offline
968 : }
969 : }
970 : };
971 :
972 : // This is the code path for geniune availability transitions (i.e node
973 : // goes unavailable and/or comes back online).
974 : let res = self
975 : .node_configure(node_id, Some(new_availability), None)
976 : .await;
977 :
978 : match res {
979 : Ok(()) => {}
980 : Err(ApiError::NotFound(_)) => {
981 : // This should be rare, but legitimate since the heartbeats are done
982 : // on a snapshot of the nodes.
983 : tracing::info!("Node {} was not found after heartbeat round", node_id);
984 : }
985 : Err(err) => {
986 : // Transition to active involves reconciling: if a node responds to a heartbeat then
987 : // becomes unavailable again, we may get an error here.
988 : tracing::error!(
989 : "Failed to update node {} after heartbeat round: {}",
990 : node_id,
991 : err
992 : );
993 : }
994 : }
995 : }
996 : }
997 : }
998 : }
999 :
1000 : /// Apply the contents of a [`ReconcileResult`] to our in-memory state: if the reconciliation
1001 : /// was successful and intent hasn't changed since the Reconciler was spawned, this will update
1002 : /// the observed state of the tenant such that subsequent calls to [`TenantShard::get_reconcile_needed`]
1003 : /// will indicate that reconciliation is not needed.
1004 0 : #[instrument(skip_all, fields(
1005 : tenant_id=%result.tenant_shard_id.tenant_id, shard_id=%result.tenant_shard_id.shard_slug(),
1006 : sequence=%result.sequence
1007 0 : ))]
1008 : fn process_result(&self, mut result: ReconcileResult) {
1009 : let mut locked = self.inner.write().unwrap();
1010 : let (nodes, tenants, _scheduler) = locked.parts_mut();
1011 : let Some(tenant) = tenants.get_mut(&result.tenant_shard_id) else {
1012 : // A reconciliation result might race with removing a tenant: drop results for
1013 : // tenants that aren't in our map.
1014 : return;
1015 : };
1016 :
1017 : // Usually generation should only be updated via this path, so the max() isn't
1018 : // needed, but it is used to handle out-of-band updates via. e.g. test hook.
1019 : tenant.generation = std::cmp::max(tenant.generation, result.generation);
1020 :
1021 : // If the reconciler signals that it failed to notify compute, set this state on
1022 : // the shard so that a future [`TenantShard::maybe_reconcile`] will try again.
1023 : tenant.pending_compute_notification = result.pending_compute_notification;
1024 :
1025 : // Let the TenantShard know it is idle.
1026 : tenant.reconcile_complete(result.sequence);
1027 :
1028 : // In case a node was deleted while this reconcile is in flight, filter it out of the update we will
1029 : // make to the tenant
1030 : result
1031 : .observed
1032 : .locations
1033 0 : .retain(|node_id, _loc| nodes.contains_key(node_id));
1034 :
1035 : match result.result {
1036 : Ok(()) => {
1037 : for (node_id, loc) in &result.observed.locations {
1038 : if let Some(conf) = &loc.conf {
1039 : tracing::info!("Updating observed location {}: {:?}", node_id, conf);
1040 : } else {
1041 : tracing::info!("Setting observed location {} to None", node_id,)
1042 : }
1043 : }
1044 :
1045 : tenant.observed = result.observed;
1046 : tenant.waiter.advance(result.sequence);
1047 : }
1048 : Err(e) => {
1049 : match e {
1050 : ReconcileError::Cancel => {
1051 : tracing::info!("Reconciler was cancelled");
1052 : }
1053 : ReconcileError::Remote(mgmt_api::Error::Cancelled) => {
1054 : // This might be due to the reconciler getting cancelled, or it might
1055 : // be due to the `Node` being marked offline.
1056 : tracing::info!("Reconciler cancelled during pageserver API call");
1057 : }
1058 : _ => {
1059 : tracing::warn!("Reconcile error: {}", e);
1060 : }
1061 : }
1062 :
1063 : // Ordering: populate last_error before advancing error_seq,
1064 : // so that waiters will see the correct error after waiting.
1065 : tenant.set_last_error(result.sequence, e);
1066 :
1067 : for (node_id, o) in result.observed.locations {
1068 : tenant.observed.locations.insert(node_id, o);
1069 : }
1070 : }
1071 : }
1072 :
1073 : // Maybe some other work can proceed now that this job finished.
1074 : if self.reconciler_concurrency.available_permits() > 0 {
1075 : while let Ok(tenant_shard_id) = locked.delayed_reconcile_rx.try_recv() {
1076 : let (nodes, tenants, _scheduler) = locked.parts_mut();
1077 : if let Some(shard) = tenants.get_mut(&tenant_shard_id) {
1078 : shard.delayed_reconcile = false;
1079 : self.maybe_reconcile_shard(shard, nodes);
1080 : }
1081 :
1082 : if self.reconciler_concurrency.available_permits() == 0 {
1083 : break;
1084 : }
1085 : }
1086 : }
1087 : }
1088 :
1089 0 : async fn process_results(
1090 0 : &self,
1091 0 : mut result_rx: tokio::sync::mpsc::UnboundedReceiver<ReconcileResultRequest>,
1092 0 : mut bg_compute_hook_result_rx: tokio::sync::mpsc::Receiver<
1093 0 : Result<(), (TenantShardId, NotifyError)>,
1094 0 : >,
1095 0 : ) {
1096 : loop {
1097 : // Wait for the next result, or for cancellation
1098 0 : tokio::select! {
1099 0 : r = result_rx.recv() => {
1100 0 : match r {
1101 0 : Some(ReconcileResultRequest::ReconcileResult(result)) => {self.process_result(result);},
1102 0 : None | Some(ReconcileResultRequest::Stop) => {break;}
1103 : }
1104 : }
1105 0 : _ = async{
1106 0 : match bg_compute_hook_result_rx.recv().await {
1107 0 : Some(result) => {
1108 0 : if let Err((tenant_shard_id, notify_error)) = result {
1109 0 : tracing::warn!("Marking shard {tenant_shard_id} for notification retry, due to error {notify_error}");
1110 0 : let mut locked = self.inner.write().unwrap();
1111 0 : if let Some(shard) = locked.tenants.get_mut(&tenant_shard_id) {
1112 0 : shard.pending_compute_notification = true;
1113 0 : }
1114 :
1115 0 : }
1116 : },
1117 : None => {
1118 : // This channel is dead, but we don't want to terminate the outer loop{}: just wait for shutdown
1119 0 : self.cancel.cancelled().await;
1120 : }
1121 : }
1122 0 : } => {},
1123 0 : _ = self.cancel.cancelled() => {
1124 0 : break;
1125 : }
1126 : };
1127 : }
1128 0 : }
1129 :
1130 0 : async fn process_aborts(
1131 0 : &self,
1132 0 : mut abort_rx: tokio::sync::mpsc::UnboundedReceiver<TenantShardSplitAbort>,
1133 0 : ) {
1134 : loop {
1135 : // Wait for the next result, or for cancellation
1136 0 : let op = tokio::select! {
1137 0 : r = abort_rx.recv() => {
1138 0 : match r {
1139 0 : Some(op) => {op},
1140 0 : None => {break;}
1141 : }
1142 : }
1143 0 : _ = self.cancel.cancelled() => {
1144 0 : break;
1145 : }
1146 : };
1147 :
1148 : // Retry until shutdown: we must keep this request object alive until it is properly
1149 : // processed, as it holds a lock guard that prevents other operations trying to do things
1150 : // to the tenant while it is in a weird part-split state.
1151 0 : while !self.cancel.is_cancelled() {
1152 0 : match self.abort_tenant_shard_split(&op).await {
1153 0 : Ok(_) => break,
1154 0 : Err(e) => {
1155 0 : tracing::warn!(
1156 0 : "Failed to abort shard split on {}, will retry: {e}",
1157 : op.tenant_id
1158 : );
1159 :
1160 : // If a node is unavailable, we hope that it has been properly marked Offline
1161 : // when we retry, so that the abort op will succeed. If the abort op is failing
1162 : // for some other reason, we will keep retrying forever, or until a human notices
1163 : // and does something about it (either fixing a pageserver or restarting the controller).
1164 0 : tokio::time::timeout(Duration::from_secs(5), self.cancel.cancelled())
1165 0 : .await
1166 0 : .ok();
1167 : }
1168 : }
1169 : }
1170 : }
1171 0 : }
1172 :
1173 0 : pub async fn spawn(config: Config, persistence: Arc<Persistence>) -> anyhow::Result<Arc<Self>> {
1174 0 : let (result_tx, result_rx) = tokio::sync::mpsc::unbounded_channel();
1175 0 : let (abort_tx, abort_rx) = tokio::sync::mpsc::unbounded_channel();
1176 0 :
1177 0 : let leadership_cancel = CancellationToken::new();
1178 0 : let leadership = Leadership::new(persistence.clone(), config.clone(), leadership_cancel);
1179 0 : let (leader, leader_step_down_state) = leadership.step_down_current_leader().await?;
1180 :
1181 : // Apply the migrations **after** the current leader has stepped down
1182 : // (or we've given up waiting for it), but **before** reading from the
1183 : // database. The only exception is reading the current leader before
1184 : // migrating.
1185 0 : persistence.migration_run().await?;
1186 :
1187 0 : tracing::info!("Loading nodes from database...");
1188 0 : let nodes = persistence
1189 0 : .list_nodes()
1190 0 : .await?
1191 0 : .into_iter()
1192 0 : .map(Node::from_persistent)
1193 0 : .collect::<Vec<_>>();
1194 0 : let nodes: HashMap<NodeId, Node> = nodes.into_iter().map(|n| (n.get_id(), n)).collect();
1195 0 : tracing::info!("Loaded {} nodes from database.", nodes.len());
1196 :
1197 0 : tracing::info!("Loading shards from database...");
1198 0 : let mut tenant_shard_persistence = persistence.list_tenant_shards().await?;
1199 0 : tracing::info!(
1200 0 : "Loaded {} shards from database.",
1201 0 : tenant_shard_persistence.len()
1202 : );
1203 :
1204 : // If any shard splits were in progress, reset the database state to abort them
1205 0 : let mut tenant_shard_count_min_max: HashMap<TenantId, (ShardCount, ShardCount)> =
1206 0 : HashMap::new();
1207 0 : for tsp in &mut tenant_shard_persistence {
1208 0 : let shard = tsp.get_shard_identity()?;
1209 0 : let tenant_shard_id = tsp.get_tenant_shard_id()?;
1210 0 : let entry = tenant_shard_count_min_max
1211 0 : .entry(tenant_shard_id.tenant_id)
1212 0 : .or_insert_with(|| (shard.count, shard.count));
1213 0 : entry.0 = std::cmp::min(entry.0, shard.count);
1214 0 : entry.1 = std::cmp::max(entry.1, shard.count);
1215 0 : }
1216 :
1217 0 : for (tenant_id, (count_min, count_max)) in tenant_shard_count_min_max {
1218 0 : if count_min != count_max {
1219 : // Aborting the split in the database and dropping the child shards is sufficient: the reconciliation in
1220 : // [`Self::startup_reconcile`] will implicitly drop the child shards on remote pageservers, or they'll
1221 : // be dropped later in [`Self::node_activate_reconcile`] if it isn't available right now.
1222 0 : tracing::info!("Aborting shard split {tenant_id} {count_min:?} -> {count_max:?}");
1223 0 : let abort_status = persistence.abort_shard_split(tenant_id, count_max).await?;
1224 :
1225 : // We may never see the Complete status here: if the split was complete, we wouldn't have
1226 : // identified this tenant has having mismatching min/max counts.
1227 0 : assert!(matches!(abort_status, AbortShardSplitStatus::Aborted));
1228 :
1229 : // Clear the splitting status in-memory, to reflect that we just aborted in the database
1230 0 : tenant_shard_persistence.iter_mut().for_each(|tsp| {
1231 0 : // Set idle split state on those shards that we will retain.
1232 0 : let tsp_tenant_id = TenantId::from_str(tsp.tenant_id.as_str()).unwrap();
1233 0 : if tsp_tenant_id == tenant_id
1234 0 : && tsp.get_shard_identity().unwrap().count == count_min
1235 0 : {
1236 0 : tsp.splitting = SplitState::Idle;
1237 0 : } else if tsp_tenant_id == tenant_id {
1238 : // Leave the splitting state on the child shards: this will be used next to
1239 : // drop them.
1240 0 : tracing::info!(
1241 0 : "Shard {tsp_tenant_id} will be dropped after shard split abort",
1242 : );
1243 0 : }
1244 0 : });
1245 0 :
1246 0 : // Drop shards for this tenant which we didn't just mark idle (i.e. child shards of the aborted split)
1247 0 : tenant_shard_persistence.retain(|tsp| {
1248 0 : TenantId::from_str(tsp.tenant_id.as_str()).unwrap() != tenant_id
1249 0 : || tsp.splitting == SplitState::Idle
1250 0 : });
1251 0 : }
1252 : }
1253 :
1254 0 : let mut tenants = BTreeMap::new();
1255 0 :
1256 0 : let mut scheduler = Scheduler::new(nodes.values());
1257 0 :
1258 0 : #[cfg(feature = "testing")]
1259 0 : {
1260 0 : // Hack: insert scheduler state for all nodes referenced by shards, as compatibility
1261 0 : // tests only store the shards, not the nodes. The nodes will be loaded shortly
1262 0 : // after when pageservers start up and register.
1263 0 : let mut node_ids = HashSet::new();
1264 0 : for tsp in &tenant_shard_persistence {
1265 0 : if let Some(node_id) = tsp.generation_pageserver {
1266 0 : node_ids.insert(node_id);
1267 0 : }
1268 : }
1269 0 : for node_id in node_ids {
1270 0 : tracing::info!("Creating node {} in scheduler for tests", node_id);
1271 0 : let node = Node::new(
1272 0 : NodeId(node_id as u64),
1273 0 : "".to_string(),
1274 0 : 123,
1275 0 : "".to_string(),
1276 0 : 123,
1277 0 : "test_az".to_string(),
1278 0 : );
1279 0 :
1280 0 : scheduler.node_upsert(&node);
1281 : }
1282 : }
1283 0 : for tsp in tenant_shard_persistence {
1284 0 : let tenant_shard_id = tsp.get_tenant_shard_id()?;
1285 :
1286 : // We will populate intent properly later in [`Self::startup_reconcile`], initially populate
1287 : // it with what we can infer: the node for which a generation was most recently issued.
1288 0 : let mut intent = IntentState::new();
1289 0 : if let Some(generation_pageserver) = tsp.generation_pageserver.map(|n| NodeId(n as u64))
1290 : {
1291 0 : if nodes.contains_key(&generation_pageserver) {
1292 0 : intent.set_attached(&mut scheduler, Some(generation_pageserver));
1293 0 : } else {
1294 : // If a node was removed before being completely drained, it is legal for it to leave behind a `generation_pageserver` referring
1295 : // to a non-existent node, because node deletion doesn't block on completing the reconciliations that will issue new generations
1296 : // on different pageservers.
1297 0 : tracing::warn!("Tenant shard {tenant_shard_id} references non-existent node {generation_pageserver} in database, will be rescheduled");
1298 : }
1299 0 : }
1300 0 : let new_tenant = TenantShard::from_persistent(tsp, intent)?;
1301 :
1302 0 : tenants.insert(tenant_shard_id, new_tenant);
1303 : }
1304 :
1305 0 : let (startup_completion, startup_complete) = utils::completion::channel();
1306 0 :
1307 0 : // This channel is continuously consumed by process_results, so doesn't need to be very large.
1308 0 : let (bg_compute_notify_result_tx, bg_compute_notify_result_rx) =
1309 0 : tokio::sync::mpsc::channel(512);
1310 0 :
1311 0 : let (delayed_reconcile_tx, delayed_reconcile_rx) =
1312 0 : tokio::sync::mpsc::channel(MAX_DELAYED_RECONCILES);
1313 0 :
1314 0 : let cancel = CancellationToken::new();
1315 0 : let reconcilers_cancel = cancel.child_token();
1316 0 :
1317 0 : let heartbeater = Heartbeater::new(
1318 0 : config.jwt_token.clone(),
1319 0 : config.max_offline_interval,
1320 0 : config.max_warming_up_interval,
1321 0 : cancel.clone(),
1322 0 : );
1323 :
1324 0 : let initial_leadership_status = if config.start_as_candidate {
1325 0 : LeadershipStatus::Candidate
1326 : } else {
1327 0 : LeadershipStatus::Leader
1328 : };
1329 :
1330 0 : let this = Arc::new(Self {
1331 0 : inner: Arc::new(std::sync::RwLock::new(ServiceState::new(
1332 0 : nodes,
1333 0 : tenants,
1334 0 : scheduler,
1335 0 : delayed_reconcile_rx,
1336 0 : initial_leadership_status,
1337 0 : ))),
1338 0 : config: config.clone(),
1339 0 : persistence,
1340 0 : compute_hook: Arc::new(ComputeHook::new(config.clone())),
1341 0 : result_tx,
1342 0 : heartbeater,
1343 0 : reconciler_concurrency: Arc::new(tokio::sync::Semaphore::new(
1344 0 : config.reconciler_concurrency,
1345 0 : )),
1346 0 : delayed_reconcile_tx,
1347 0 : abort_tx,
1348 0 : startup_complete: startup_complete.clone(),
1349 0 : cancel,
1350 0 : reconcilers_cancel,
1351 0 : gate: Gate::default(),
1352 0 : reconcilers_gate: Gate::default(),
1353 0 : tenant_op_locks: Default::default(),
1354 0 : node_op_locks: Default::default(),
1355 0 : });
1356 0 :
1357 0 : let result_task_this = this.clone();
1358 0 : tokio::task::spawn(async move {
1359 : // Block shutdown until we're done (we must respect self.cancel)
1360 0 : if let Ok(_gate) = result_task_this.gate.enter() {
1361 0 : result_task_this
1362 0 : .process_results(result_rx, bg_compute_notify_result_rx)
1363 0 : .await
1364 0 : }
1365 0 : });
1366 0 :
1367 0 : tokio::task::spawn({
1368 0 : let this = this.clone();
1369 0 : async move {
1370 : // Block shutdown until we're done (we must respect self.cancel)
1371 0 : if let Ok(_gate) = this.gate.enter() {
1372 0 : this.process_aborts(abort_rx).await
1373 0 : }
1374 0 : }
1375 0 : });
1376 0 :
1377 0 : tokio::task::spawn({
1378 0 : let this = this.clone();
1379 0 : async move {
1380 0 : if let Ok(_gate) = this.gate.enter() {
1381 : loop {
1382 0 : tokio::select! {
1383 0 : _ = this.cancel.cancelled() => {
1384 0 : break;
1385 : },
1386 0 : _ = tokio::time::sleep(Duration::from_secs(60)) => {}
1387 0 : };
1388 0 : this.tenant_op_locks.housekeeping();
1389 : }
1390 0 : }
1391 0 : }
1392 0 : });
1393 0 :
1394 0 : tokio::task::spawn({
1395 0 : let this = this.clone();
1396 0 : // We will block the [`Service::startup_complete`] barrier until [`Self::startup_reconcile`]
1397 0 : // is done.
1398 0 : let startup_completion = startup_completion.clone();
1399 0 : async move {
1400 : // Block shutdown until we're done (we must respect self.cancel)
1401 0 : let Ok(_gate) = this.gate.enter() else {
1402 0 : return;
1403 : };
1404 :
1405 0 : this.startup_reconcile(leader, leader_step_down_state, bg_compute_notify_result_tx)
1406 0 : .await;
1407 :
1408 0 : drop(startup_completion);
1409 0 : }
1410 0 : });
1411 0 :
1412 0 : tokio::task::spawn({
1413 0 : let this = this.clone();
1414 0 : let startup_complete = startup_complete.clone();
1415 0 : async move {
1416 0 : startup_complete.wait().await;
1417 0 : this.background_reconcile().await;
1418 0 : }
1419 0 : });
1420 0 :
1421 0 : tokio::task::spawn({
1422 0 : let this = this.clone();
1423 0 : let startup_complete = startup_complete.clone();
1424 0 : async move {
1425 0 : startup_complete.wait().await;
1426 0 : this.spawn_heartbeat_driver().await;
1427 0 : }
1428 0 : });
1429 0 :
1430 0 : Ok(this)
1431 0 : }
1432 :
1433 0 : pub(crate) async fn attach_hook(
1434 0 : &self,
1435 0 : attach_req: AttachHookRequest,
1436 0 : ) -> anyhow::Result<AttachHookResponse> {
1437 0 : let _tenant_lock = trace_exclusive_lock(
1438 0 : &self.tenant_op_locks,
1439 0 : attach_req.tenant_shard_id.tenant_id,
1440 0 : TenantOperations::AttachHook,
1441 0 : )
1442 0 : .await;
1443 :
1444 : // This is a test hook. To enable using it on tenants that were created directly with
1445 : // the pageserver API (not via this service), we will auto-create any missing tenant
1446 : // shards with default state.
1447 0 : let insert = {
1448 0 : let locked = self.inner.write().unwrap();
1449 0 : !locked.tenants.contains_key(&attach_req.tenant_shard_id)
1450 0 : };
1451 0 :
1452 0 : if insert {
1453 0 : let tsp = TenantShardPersistence {
1454 0 : tenant_id: attach_req.tenant_shard_id.tenant_id.to_string(),
1455 0 : shard_number: attach_req.tenant_shard_id.shard_number.0 as i32,
1456 0 : shard_count: attach_req.tenant_shard_id.shard_count.literal() as i32,
1457 0 : shard_stripe_size: 0,
1458 0 : generation: attach_req.generation_override.or(Some(0)),
1459 0 : generation_pageserver: None,
1460 0 : placement_policy: serde_json::to_string(&PlacementPolicy::Attached(0)).unwrap(),
1461 0 : config: serde_json::to_string(&TenantConfig::default()).unwrap(),
1462 0 : splitting: SplitState::default(),
1463 0 : scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
1464 0 : .unwrap(),
1465 0 : preferred_az_id: None,
1466 0 : };
1467 0 :
1468 0 : match self.persistence.insert_tenant_shards(vec![tsp]).await {
1469 0 : Err(e) => match e {
1470 : DatabaseError::Query(diesel::result::Error::DatabaseError(
1471 : DatabaseErrorKind::UniqueViolation,
1472 : _,
1473 : )) => {
1474 0 : tracing::info!(
1475 0 : "Raced with another request to insert tenant {}",
1476 : attach_req.tenant_shard_id
1477 : )
1478 : }
1479 0 : _ => return Err(e.into()),
1480 : },
1481 : Ok(()) => {
1482 0 : tracing::info!("Inserted shard {} in database", attach_req.tenant_shard_id);
1483 :
1484 0 : let mut locked = self.inner.write().unwrap();
1485 0 : locked.tenants.insert(
1486 0 : attach_req.tenant_shard_id,
1487 0 : TenantShard::new(
1488 0 : attach_req.tenant_shard_id,
1489 0 : ShardIdentity::unsharded(),
1490 0 : PlacementPolicy::Attached(0),
1491 0 : ),
1492 0 : );
1493 0 : tracing::info!("Inserted shard {} in memory", attach_req.tenant_shard_id);
1494 : }
1495 : }
1496 0 : }
1497 :
1498 0 : let new_generation = if let Some(req_node_id) = attach_req.node_id {
1499 0 : let maybe_tenant_conf = {
1500 0 : let locked = self.inner.write().unwrap();
1501 0 : locked
1502 0 : .tenants
1503 0 : .get(&attach_req.tenant_shard_id)
1504 0 : .map(|t| t.config.clone())
1505 0 : };
1506 0 :
1507 0 : match maybe_tenant_conf {
1508 0 : Some(conf) => {
1509 0 : let new_generation = self
1510 0 : .persistence
1511 0 : .increment_generation(attach_req.tenant_shard_id, req_node_id)
1512 0 : .await?;
1513 :
1514 : // Persist the placement policy update. This is required
1515 : // when we reattaching a detached tenant.
1516 0 : self.persistence
1517 0 : .update_tenant_shard(
1518 0 : TenantFilter::Shard(attach_req.tenant_shard_id),
1519 0 : Some(PlacementPolicy::Attached(0)),
1520 0 : Some(conf),
1521 0 : None,
1522 0 : None,
1523 0 : )
1524 0 : .await?;
1525 0 : Some(new_generation)
1526 : }
1527 : None => {
1528 0 : anyhow::bail!("Attach hook handling raced with tenant removal")
1529 : }
1530 : }
1531 : } else {
1532 0 : self.persistence.detach(attach_req.tenant_shard_id).await?;
1533 0 : None
1534 : };
1535 :
1536 0 : let mut locked = self.inner.write().unwrap();
1537 0 : let (_nodes, tenants, scheduler) = locked.parts_mut();
1538 0 :
1539 0 : let tenant_shard = tenants
1540 0 : .get_mut(&attach_req.tenant_shard_id)
1541 0 : .expect("Checked for existence above");
1542 :
1543 0 : if let Some(new_generation) = new_generation {
1544 0 : tenant_shard.generation = Some(new_generation);
1545 0 : tenant_shard.policy = PlacementPolicy::Attached(0);
1546 0 : } else {
1547 : // This is a detach notification. We must update placement policy to avoid re-attaching
1548 : // during background scheduling/reconciliation, or during storage controller restart.
1549 0 : assert!(attach_req.node_id.is_none());
1550 0 : tenant_shard.policy = PlacementPolicy::Detached;
1551 : }
1552 :
1553 0 : if let Some(attaching_pageserver) = attach_req.node_id.as_ref() {
1554 0 : tracing::info!(
1555 : tenant_id = %attach_req.tenant_shard_id,
1556 : ps_id = %attaching_pageserver,
1557 : generation = ?tenant_shard.generation,
1558 0 : "issuing",
1559 : );
1560 0 : } else if let Some(ps_id) = tenant_shard.intent.get_attached() {
1561 0 : tracing::info!(
1562 : tenant_id = %attach_req.tenant_shard_id,
1563 : %ps_id,
1564 : generation = ?tenant_shard.generation,
1565 0 : "dropping",
1566 : );
1567 : } else {
1568 0 : tracing::info!(
1569 : tenant_id = %attach_req.tenant_shard_id,
1570 0 : "no-op: tenant already has no pageserver");
1571 : }
1572 0 : tenant_shard
1573 0 : .intent
1574 0 : .set_attached(scheduler, attach_req.node_id);
1575 0 :
1576 0 : tracing::info!(
1577 0 : "attach_hook: tenant {} set generation {:?}, pageserver {}",
1578 0 : attach_req.tenant_shard_id,
1579 0 : tenant_shard.generation,
1580 0 : // TODO: this is an odd number of 0xf's
1581 0 : attach_req.node_id.unwrap_or(utils::id::NodeId(0xfffffff))
1582 : );
1583 :
1584 : // Trick the reconciler into not doing anything for this tenant: this helps
1585 : // tests that manually configure a tenant on the pagesrever, and then call this
1586 : // attach hook: they don't want background reconciliation to modify what they
1587 : // did to the pageserver.
1588 : #[cfg(feature = "testing")]
1589 : {
1590 0 : if let Some(node_id) = attach_req.node_id {
1591 0 : tenant_shard.observed.locations = HashMap::from([(
1592 0 : node_id,
1593 0 : ObservedStateLocation {
1594 0 : conf: Some(attached_location_conf(
1595 0 : tenant_shard.generation.unwrap(),
1596 0 : &tenant_shard.shard,
1597 0 : &tenant_shard.config,
1598 0 : &PlacementPolicy::Attached(0),
1599 0 : )),
1600 0 : },
1601 0 : )]);
1602 0 : } else {
1603 0 : tenant_shard.observed.locations.clear();
1604 0 : }
1605 : }
1606 :
1607 0 : Ok(AttachHookResponse {
1608 0 : gen: attach_req
1609 0 : .node_id
1610 0 : .map(|_| tenant_shard.generation.expect("Test hook, not used on tenants that are mid-onboarding with a NULL generation").into().unwrap()),
1611 0 : })
1612 0 : }
1613 :
1614 0 : pub(crate) fn inspect(&self, inspect_req: InspectRequest) -> InspectResponse {
1615 0 : let locked = self.inner.read().unwrap();
1616 0 :
1617 0 : let tenant_shard = locked.tenants.get(&inspect_req.tenant_shard_id);
1618 0 :
1619 0 : InspectResponse {
1620 0 : attachment: tenant_shard.and_then(|s| {
1621 0 : s.intent
1622 0 : .get_attached()
1623 0 : .map(|ps| (s.generation.expect("Test hook, not used on tenants that are mid-onboarding with a NULL generation").into().unwrap(), ps))
1624 0 : }),
1625 0 : }
1626 0 : }
1627 :
1628 : // When the availability state of a node transitions to active, we must do a full reconciliation
1629 : // of LocationConfigs on that node. This is because while a node was offline:
1630 : // - we might have proceeded through startup_reconcile without checking for extraneous LocationConfigs on this node
1631 : // - aborting a tenant shard split might have left rogue child shards behind on this node.
1632 : //
1633 : // This function must complete _before_ setting a `Node` to Active: once it is set to Active, other
1634 : // Reconcilers might communicate with the node, and these must not overlap with the work we do in
1635 : // this function.
1636 : //
1637 : // The reconciliation logic in here is very similar to what [`Self::startup_reconcile`] does, but
1638 : // for written for a single node rather than as a batch job for all nodes.
1639 0 : #[tracing::instrument(skip_all, fields(node_id=%node.get_id()))]
1640 : async fn node_activate_reconcile(
1641 : &self,
1642 : mut node: Node,
1643 : _lock: &TracingExclusiveGuard<NodeOperations>,
1644 : ) -> Result<(), ApiError> {
1645 : // This Node is a mutable local copy: we will set it active so that we can use its
1646 : // API client to reconcile with the node. The Node in [`Self::nodes`] will get updated
1647 : // later.
1648 : node.set_availability(NodeAvailability::Active(PageserverUtilization::full()));
1649 :
1650 : let configs = match node
1651 : .with_client_retries(
1652 0 : |client| async move { client.list_location_config().await },
1653 : &self.config.jwt_token,
1654 : 1,
1655 : 5,
1656 : SHORT_RECONCILE_TIMEOUT,
1657 : &self.cancel,
1658 : )
1659 : .await
1660 : {
1661 : None => {
1662 : // We're shutting down (the Node's cancellation token can't have fired, because
1663 : // we're the only scope that has a reference to it, and we didn't fire it).
1664 : return Err(ApiError::ShuttingDown);
1665 : }
1666 : Some(Err(e)) => {
1667 : // This node didn't succeed listing its locations: it may not proceed to active state
1668 : // as it is apparently unavailable.
1669 : return Err(ApiError::PreconditionFailed(
1670 : format!("Failed to query node location configs, cannot activate ({e})").into(),
1671 : ));
1672 : }
1673 : Some(Ok(configs)) => configs,
1674 : };
1675 : tracing::info!("Loaded {} LocationConfigs", configs.tenant_shards.len());
1676 :
1677 : let mut cleanup = Vec::new();
1678 : {
1679 : let mut locked = self.inner.write().unwrap();
1680 :
1681 : for (tenant_shard_id, observed_loc) in configs.tenant_shards {
1682 : let Some(tenant_shard) = locked.tenants.get_mut(&tenant_shard_id) else {
1683 : cleanup.push(tenant_shard_id);
1684 : continue;
1685 : };
1686 : tenant_shard
1687 : .observed
1688 : .locations
1689 : .insert(node.get_id(), ObservedStateLocation { conf: observed_loc });
1690 : }
1691 : }
1692 :
1693 : for tenant_shard_id in cleanup {
1694 : tracing::info!("Detaching {tenant_shard_id}");
1695 : match node
1696 : .with_client_retries(
1697 0 : |client| async move {
1698 0 : let config = LocationConfig {
1699 0 : mode: LocationConfigMode::Detached,
1700 0 : generation: None,
1701 0 : secondary_conf: None,
1702 0 : shard_number: tenant_shard_id.shard_number.0,
1703 0 : shard_count: tenant_shard_id.shard_count.literal(),
1704 0 : shard_stripe_size: 0,
1705 0 : tenant_conf: models::TenantConfig::default(),
1706 0 : };
1707 0 : client
1708 0 : .location_config(tenant_shard_id, config, None, false)
1709 0 : .await
1710 0 : },
1711 : &self.config.jwt_token,
1712 : 1,
1713 : 5,
1714 : SHORT_RECONCILE_TIMEOUT,
1715 : &self.cancel,
1716 : )
1717 : .await
1718 : {
1719 : None => {
1720 : // We're shutting down (the Node's cancellation token can't have fired, because
1721 : // we're the only scope that has a reference to it, and we didn't fire it).
1722 : return Err(ApiError::ShuttingDown);
1723 : }
1724 : Some(Err(e)) => {
1725 : // Do not let the node proceed to Active state if it is not responsive to requests
1726 : // to detach. This could happen if e.g. a shutdown bug in the pageserver is preventing
1727 : // detach completing: we should not let this node back into the set of nodes considered
1728 : // okay for scheduling.
1729 : return Err(ApiError::Conflict(format!(
1730 : "Node {node} failed to detach {tenant_shard_id}: {e}"
1731 : )));
1732 : }
1733 : Some(Ok(_)) => {}
1734 : };
1735 : }
1736 :
1737 : Ok(())
1738 : }
1739 :
1740 0 : pub(crate) async fn re_attach(
1741 0 : &self,
1742 0 : reattach_req: ReAttachRequest,
1743 0 : ) -> Result<ReAttachResponse, ApiError> {
1744 0 : if let Some(register_req) = reattach_req.register {
1745 0 : self.node_register(register_req).await?;
1746 0 : }
1747 :
1748 : // Ordering: we must persist generation number updates before making them visible in the in-memory state
1749 0 : let incremented_generations = self.persistence.re_attach(reattach_req.node_id).await?;
1750 :
1751 0 : tracing::info!(
1752 : node_id=%reattach_req.node_id,
1753 0 : "Incremented {} tenant shards' generations",
1754 0 : incremented_generations.len()
1755 : );
1756 :
1757 : // Apply the updated generation to our in-memory state, and
1758 : // gather discover secondary locations.
1759 0 : let mut locked = self.inner.write().unwrap();
1760 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
1761 0 :
1762 0 : let mut response = ReAttachResponse {
1763 0 : tenants: Vec::new(),
1764 0 : };
1765 :
1766 : // TODO: cancel/restart any running reconciliation for this tenant, it might be trying
1767 : // to call location_conf API with an old generation. Wait for cancellation to complete
1768 : // before responding to this request. Requires well implemented CancellationToken logic
1769 : // all the way to where we call location_conf. Even then, there can still be a location_conf
1770 : // request in flight over the network: TODO handle that by making location_conf API refuse
1771 : // to go backward in generations.
1772 :
1773 : // Scan through all shards, applying updates for ones where we updated generation
1774 : // and identifying shards that intend to have a secondary location on this node.
1775 0 : for (tenant_shard_id, shard) in tenants {
1776 0 : if let Some(new_gen) = incremented_generations.get(tenant_shard_id) {
1777 0 : let new_gen = *new_gen;
1778 0 : response.tenants.push(ReAttachResponseTenant {
1779 0 : id: *tenant_shard_id,
1780 0 : gen: Some(new_gen.into().unwrap()),
1781 0 : // A tenant is only put into multi or stale modes in the middle of a [`Reconciler::live_migrate`]
1782 0 : // execution. If a pageserver is restarted during that process, then the reconcile pass will
1783 0 : // fail, and start from scratch, so it doesn't make sense for us to try and preserve
1784 0 : // the stale/multi states at this point.
1785 0 : mode: LocationConfigMode::AttachedSingle,
1786 0 : });
1787 0 :
1788 0 : shard.generation = std::cmp::max(shard.generation, Some(new_gen));
1789 0 : if let Some(observed) = shard.observed.locations.get_mut(&reattach_req.node_id) {
1790 : // Why can we update `observed` even though we're not sure our response will be received
1791 : // by the pageserver? Because the pageserver will not proceed with startup until
1792 : // it has processed response: if it loses it, we'll see another request and increment
1793 : // generation again, avoiding any uncertainty about dirtiness of tenant's state.
1794 0 : if let Some(conf) = observed.conf.as_mut() {
1795 0 : conf.generation = new_gen.into();
1796 0 : }
1797 0 : } else {
1798 0 : // This node has no observed state for the shard: perhaps it was offline
1799 0 : // when the pageserver restarted. Insert a None, so that the Reconciler
1800 0 : // will be prompted to learn the location's state before it makes changes.
1801 0 : shard
1802 0 : .observed
1803 0 : .locations
1804 0 : .insert(reattach_req.node_id, ObservedStateLocation { conf: None });
1805 0 : }
1806 0 : } else if shard.intent.get_secondary().contains(&reattach_req.node_id) {
1807 0 : // Ordering: pageserver will not accept /location_config requests until it has
1808 0 : // finished processing the response from re-attach. So we can update our in-memory state
1809 0 : // now, and be confident that we are not stamping on the result of some later location config.
1810 0 : // TODO: however, we are not strictly ordered wrt ReconcileResults queue,
1811 0 : // so we might update observed state here, and then get over-written by some racing
1812 0 : // ReconcileResult. The impact is low however, since we have set state on pageserver something
1813 0 : // that matches intent, so worst case if we race then we end up doing a spurious reconcile.
1814 0 :
1815 0 : response.tenants.push(ReAttachResponseTenant {
1816 0 : id: *tenant_shard_id,
1817 0 : gen: None,
1818 0 : mode: LocationConfigMode::Secondary,
1819 0 : });
1820 0 :
1821 0 : // We must not update observed, because we have no guarantee that our
1822 0 : // response will be received by the pageserver. This could leave it
1823 0 : // falsely dirty, but the resulting reconcile should be idempotent.
1824 0 : }
1825 : }
1826 :
1827 : // We consider a node Active once we have composed a re-attach response, but we
1828 : // do not call [`Self::node_activate_reconcile`]: the handling of the re-attach response
1829 : // implicitly synchronizes the LocationConfigs on the node.
1830 : //
1831 : // Setting a node active unblocks any Reconcilers that might write to the location config API,
1832 : // but those requests will not be accepted by the node until it has finished processing
1833 : // the re-attach response.
1834 : //
1835 : // Additionally, reset the nodes scheduling policy to match the conditional update done
1836 : // in [`Persistence::re_attach`].
1837 0 : if let Some(node) = nodes.get(&reattach_req.node_id) {
1838 0 : let reset_scheduling = matches!(
1839 0 : node.get_scheduling(),
1840 : NodeSchedulingPolicy::PauseForRestart
1841 : | NodeSchedulingPolicy::Draining
1842 : | NodeSchedulingPolicy::Filling
1843 : );
1844 :
1845 0 : let mut new_nodes = (**nodes).clone();
1846 0 : if let Some(node) = new_nodes.get_mut(&reattach_req.node_id) {
1847 0 : if reset_scheduling {
1848 0 : node.set_scheduling(NodeSchedulingPolicy::Active);
1849 0 : }
1850 :
1851 0 : tracing::info!("Marking {} warming-up on reattach", reattach_req.node_id);
1852 0 : node.set_availability(NodeAvailability::WarmingUp(std::time::Instant::now()));
1853 0 :
1854 0 : scheduler.node_upsert(node);
1855 0 : let new_nodes = Arc::new(new_nodes);
1856 0 : *nodes = new_nodes;
1857 : } else {
1858 0 : tracing::error!(
1859 0 : "Reattaching node {} was removed while processing the request",
1860 : reattach_req.node_id
1861 : );
1862 : }
1863 0 : }
1864 :
1865 0 : Ok(response)
1866 0 : }
1867 :
1868 0 : pub(crate) async fn validate(
1869 0 : &self,
1870 0 : validate_req: ValidateRequest,
1871 0 : ) -> Result<ValidateResponse, DatabaseError> {
1872 : // Fast in-memory check: we may reject validation on anything that doesn't match our
1873 : // in-memory generation for a shard
1874 0 : let in_memory_result = {
1875 0 : let mut in_memory_result = Vec::new();
1876 0 : let locked = self.inner.read().unwrap();
1877 0 : for req_tenant in validate_req.tenants {
1878 0 : if let Some(tenant_shard) = locked.tenants.get(&req_tenant.id) {
1879 0 : let valid = tenant_shard.generation == Some(Generation::new(req_tenant.gen));
1880 0 : tracing::info!(
1881 0 : "handle_validate: {}(gen {}): valid={valid} (latest {:?})",
1882 : req_tenant.id,
1883 : req_tenant.gen,
1884 : tenant_shard.generation
1885 : );
1886 :
1887 0 : in_memory_result.push((req_tenant.id, Generation::new(req_tenant.gen), valid));
1888 : } else {
1889 : // This is legal: for example during a shard split the pageserver may still
1890 : // have deletions in its queue from the old pre-split shard, or after deletion
1891 : // of a tenant that was busy with compaction/gc while being deleted.
1892 0 : tracing::info!(
1893 0 : "Refusing deletion validation for missing shard {}",
1894 : req_tenant.id
1895 : );
1896 : }
1897 : }
1898 :
1899 0 : in_memory_result
1900 : };
1901 :
1902 : // Database calls to confirm validity for anything that passed the in-memory check. We must do this
1903 : // in case of controller split-brain, where some other controller process might have incremented the generation.
1904 0 : let db_generations = self
1905 0 : .persistence
1906 0 : .shard_generations(in_memory_result.iter().filter_map(|i| {
1907 0 : if i.2 {
1908 0 : Some(&i.0)
1909 : } else {
1910 0 : None
1911 : }
1912 0 : }))
1913 0 : .await?;
1914 0 : let db_generations = db_generations.into_iter().collect::<HashMap<_, _>>();
1915 0 :
1916 0 : let mut response = ValidateResponse {
1917 0 : tenants: Vec::new(),
1918 0 : };
1919 0 : for (tenant_shard_id, validate_generation, valid) in in_memory_result.into_iter() {
1920 0 : let valid = if valid {
1921 0 : let db_generation = db_generations.get(&tenant_shard_id);
1922 0 : db_generation == Some(&Some(validate_generation))
1923 : } else {
1924 : // If in-memory state says it's invalid, trust that. It's always safe to fail a validation, at worst
1925 : // this prevents a pageserver from cleaning up an object in S3.
1926 0 : false
1927 : };
1928 :
1929 0 : response.tenants.push(ValidateResponseTenant {
1930 0 : id: tenant_shard_id,
1931 0 : valid,
1932 0 : })
1933 : }
1934 :
1935 0 : Ok(response)
1936 0 : }
1937 :
1938 0 : pub(crate) async fn tenant_create(
1939 0 : &self,
1940 0 : create_req: TenantCreateRequest,
1941 0 : ) -> Result<TenantCreateResponse, ApiError> {
1942 0 : let tenant_id = create_req.new_tenant_id.tenant_id;
1943 :
1944 : // Exclude any concurrent attempts to create/access the same tenant ID
1945 0 : let _tenant_lock = trace_exclusive_lock(
1946 0 : &self.tenant_op_locks,
1947 0 : create_req.new_tenant_id.tenant_id,
1948 0 : TenantOperations::Create,
1949 0 : )
1950 0 : .await;
1951 0 : let (response, waiters) = self.do_tenant_create(create_req).await?;
1952 :
1953 0 : if let Err(e) = self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
1954 : // Avoid deadlock: reconcile may fail while notifying compute, if the cloud control plane refuses to
1955 : // accept compute notifications while it is in the process of creating. Reconciliation will
1956 : // be retried in the background.
1957 0 : tracing::warn!(%tenant_id, "Reconcile not done yet while creating tenant ({e})");
1958 0 : }
1959 0 : Ok(response)
1960 0 : }
1961 :
1962 0 : pub(crate) async fn do_tenant_create(
1963 0 : &self,
1964 0 : create_req: TenantCreateRequest,
1965 0 : ) -> Result<(TenantCreateResponse, Vec<ReconcilerWaiter>), ApiError> {
1966 0 : let placement_policy = create_req
1967 0 : .placement_policy
1968 0 : .clone()
1969 0 : // As a default, zero secondaries is convenient for tests that don't choose a policy.
1970 0 : .unwrap_or(PlacementPolicy::Attached(0));
1971 :
1972 : // This service expects to handle sharding itself: it is an error to try and directly create
1973 : // a particular shard here.
1974 0 : let tenant_id = if !create_req.new_tenant_id.is_unsharded() {
1975 0 : return Err(ApiError::BadRequest(anyhow::anyhow!(
1976 0 : "Attempted to create a specific shard, this API is for creating the whole tenant"
1977 0 : )));
1978 : } else {
1979 0 : create_req.new_tenant_id.tenant_id
1980 0 : };
1981 0 :
1982 0 : tracing::info!(
1983 0 : "Creating tenant {}, shard_count={:?}",
1984 : create_req.new_tenant_id,
1985 : create_req.shard_parameters.count,
1986 : );
1987 :
1988 0 : let create_ids = (0..create_req.shard_parameters.count.count())
1989 0 : .map(|i| TenantShardId {
1990 0 : tenant_id,
1991 0 : shard_number: ShardNumber(i),
1992 0 : shard_count: create_req.shard_parameters.count,
1993 0 : })
1994 0 : .collect::<Vec<_>>();
1995 :
1996 : // If the caller specifies a None generation, it means "start from default". This is different
1997 : // to [`Self::tenant_location_config`], where a None generation is used to represent
1998 : // an incompletely-onboarded tenant.
1999 0 : let initial_generation = if matches!(placement_policy, PlacementPolicy::Secondary) {
2000 0 : tracing::info!(
2001 0 : "tenant_create: secondary mode, generation is_some={}",
2002 0 : create_req.generation.is_some()
2003 : );
2004 0 : create_req.generation.map(Generation::new)
2005 : } else {
2006 0 : tracing::info!(
2007 0 : "tenant_create: not secondary mode, generation is_some={}",
2008 0 : create_req.generation.is_some()
2009 : );
2010 0 : Some(
2011 0 : create_req
2012 0 : .generation
2013 0 : .map(Generation::new)
2014 0 : .unwrap_or(INITIAL_GENERATION),
2015 0 : )
2016 : };
2017 :
2018 : // Ordering: we persist tenant shards before creating them on the pageserver. This enables a caller
2019 : // to clean up after themselves by issuing a tenant deletion if something goes wrong and we restart
2020 : // during the creation, rather than risking leaving orphan objects in S3.
2021 0 : let persist_tenant_shards = create_ids
2022 0 : .iter()
2023 0 : .map(|tenant_shard_id| TenantShardPersistence {
2024 0 : tenant_id: tenant_shard_id.tenant_id.to_string(),
2025 0 : shard_number: tenant_shard_id.shard_number.0 as i32,
2026 0 : shard_count: tenant_shard_id.shard_count.literal() as i32,
2027 0 : shard_stripe_size: create_req.shard_parameters.stripe_size.0 as i32,
2028 0 : generation: initial_generation.map(|g| g.into().unwrap() as i32),
2029 0 : // The pageserver is not known until scheduling happens: we will set this column when
2030 0 : // incrementing the generation the first time we attach to a pageserver.
2031 0 : generation_pageserver: None,
2032 0 : placement_policy: serde_json::to_string(&placement_policy).unwrap(),
2033 0 : config: serde_json::to_string(&create_req.config).unwrap(),
2034 0 : splitting: SplitState::default(),
2035 0 : scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
2036 0 : .unwrap(),
2037 0 : preferred_az_id: None,
2038 0 : })
2039 0 : .collect();
2040 0 :
2041 0 : match self
2042 0 : .persistence
2043 0 : .insert_tenant_shards(persist_tenant_shards)
2044 0 : .await
2045 : {
2046 0 : Ok(_) => {}
2047 : Err(DatabaseError::Query(diesel::result::Error::DatabaseError(
2048 : DatabaseErrorKind::UniqueViolation,
2049 : _,
2050 : ))) => {
2051 : // Unique key violation: this is probably a retry. Because the shard count is part of the unique key,
2052 : // if we see a unique key violation it means that the creation request's shard count matches the previous
2053 : // creation's shard count.
2054 0 : tracing::info!("Tenant shards already present in database, proceeding with idempotent creation...");
2055 : }
2056 : // Any other database error is unexpected and a bug.
2057 0 : Err(e) => return Err(ApiError::InternalServerError(anyhow::anyhow!(e))),
2058 : };
2059 :
2060 0 : let mut schedule_context = ScheduleContext::default();
2061 0 : let mut schedule_error = None;
2062 0 : let mut response_shards = Vec::new();
2063 0 : for tenant_shard_id in create_ids {
2064 0 : tracing::info!("Creating shard {tenant_shard_id}...");
2065 :
2066 0 : let outcome = self
2067 0 : .do_initial_shard_scheduling(
2068 0 : tenant_shard_id,
2069 0 : initial_generation,
2070 0 : &create_req.shard_parameters,
2071 0 : create_req.config.clone(),
2072 0 : placement_policy.clone(),
2073 0 : &mut schedule_context,
2074 0 : )
2075 0 : .await;
2076 :
2077 0 : match outcome {
2078 0 : InitialShardScheduleOutcome::Scheduled(resp) => response_shards.push(resp),
2079 0 : InitialShardScheduleOutcome::NotScheduled => {}
2080 0 : InitialShardScheduleOutcome::ShardScheduleError(err) => {
2081 0 : schedule_error = Some(err);
2082 0 : }
2083 : }
2084 : }
2085 :
2086 0 : let preferred_azs = {
2087 0 : let locked = self.inner.read().unwrap();
2088 0 : response_shards
2089 0 : .iter()
2090 0 : .filter_map(|resp| {
2091 0 : let az_id = locked
2092 0 : .nodes
2093 0 : .get(&resp.node_id)
2094 0 : .map(|n| n.get_availability_zone_id().to_string())?;
2095 :
2096 0 : Some((resp.shard_id, az_id))
2097 0 : })
2098 0 : .collect::<Vec<_>>()
2099 : };
2100 :
2101 : // Note that we persist the preferred AZ for the new shards separately.
2102 : // In theory, we could "peek" the scheduler to determine where the shard will
2103 : // land, but the subsequent "real" call into the scheduler might select a different
2104 : // node. Hence, we do this awkward update to keep things consistent.
2105 0 : let updated = self
2106 0 : .persistence
2107 0 : .set_tenant_shard_preferred_azs(preferred_azs)
2108 0 : .await
2109 0 : .map_err(|err| {
2110 0 : ApiError::InternalServerError(anyhow::anyhow!(
2111 0 : "Failed to persist preferred az ids: {err}"
2112 0 : ))
2113 0 : })?;
2114 :
2115 : {
2116 0 : let mut locked = self.inner.write().unwrap();
2117 0 : for (tid, az_id) in updated {
2118 0 : if let Some(shard) = locked.tenants.get_mut(&tid) {
2119 0 : shard.set_preferred_az(az_id);
2120 0 : }
2121 : }
2122 : }
2123 :
2124 : // If we failed to schedule shards, then they are still created in the controller,
2125 : // but we return an error to the requester to avoid a silent failure when someone
2126 : // tries to e.g. create a tenant whose placement policy requires more nodes than
2127 : // are present in the system. We do this here rather than in the above loop, to
2128 : // avoid situations where we only create a subset of shards in the tenant.
2129 0 : if let Some(e) = schedule_error {
2130 0 : return Err(ApiError::Conflict(format!(
2131 0 : "Failed to schedule shard(s): {e}"
2132 0 : )));
2133 0 : }
2134 0 :
2135 0 : let waiters = {
2136 0 : let mut locked = self.inner.write().unwrap();
2137 0 : let (nodes, tenants, _scheduler) = locked.parts_mut();
2138 0 : tenants
2139 0 : .range_mut(TenantShardId::tenant_range(tenant_id))
2140 0 : .filter_map(|(_shard_id, shard)| self.maybe_reconcile_shard(shard, nodes))
2141 0 : .collect::<Vec<_>>()
2142 0 : };
2143 0 :
2144 0 : Ok((
2145 0 : TenantCreateResponse {
2146 0 : shards: response_shards,
2147 0 : },
2148 0 : waiters,
2149 0 : ))
2150 0 : }
2151 :
2152 : /// Helper for tenant creation that does the scheduling for an individual shard. Covers both the
2153 : /// case of a new tenant and a pre-existing one.
2154 0 : async fn do_initial_shard_scheduling(
2155 0 : &self,
2156 0 : tenant_shard_id: TenantShardId,
2157 0 : initial_generation: Option<Generation>,
2158 0 : shard_params: &ShardParameters,
2159 0 : config: TenantConfig,
2160 0 : placement_policy: PlacementPolicy,
2161 0 : schedule_context: &mut ScheduleContext,
2162 0 : ) -> InitialShardScheduleOutcome {
2163 0 : let mut locked = self.inner.write().unwrap();
2164 0 : let (_nodes, tenants, scheduler) = locked.parts_mut();
2165 :
2166 : use std::collections::btree_map::Entry;
2167 0 : match tenants.entry(tenant_shard_id) {
2168 0 : Entry::Occupied(mut entry) => {
2169 0 : tracing::info!("Tenant shard {tenant_shard_id} already exists while creating");
2170 :
2171 : // TODO: schedule() should take an anti-affinity expression that pushes
2172 : // attached and secondary locations (independently) away frorm those
2173 : // pageservers also holding a shard for this tenant.
2174 :
2175 0 : if let Err(err) = entry.get_mut().schedule(scheduler, schedule_context) {
2176 0 : return InitialShardScheduleOutcome::ShardScheduleError(err);
2177 0 : }
2178 :
2179 0 : if let Some(node_id) = entry.get().intent.get_attached() {
2180 0 : let generation = entry
2181 0 : .get()
2182 0 : .generation
2183 0 : .expect("Generation is set when in attached mode");
2184 0 : InitialShardScheduleOutcome::Scheduled(TenantCreateResponseShard {
2185 0 : shard_id: tenant_shard_id,
2186 0 : node_id: *node_id,
2187 0 : generation: generation.into().unwrap(),
2188 0 : })
2189 : } else {
2190 0 : InitialShardScheduleOutcome::NotScheduled
2191 : }
2192 : }
2193 0 : Entry::Vacant(entry) => {
2194 0 : let state = entry.insert(TenantShard::new(
2195 0 : tenant_shard_id,
2196 0 : ShardIdentity::from_params(tenant_shard_id.shard_number, shard_params),
2197 0 : placement_policy,
2198 0 : ));
2199 0 :
2200 0 : state.generation = initial_generation;
2201 0 : state.config = config;
2202 0 : if let Err(e) = state.schedule(scheduler, schedule_context) {
2203 0 : return InitialShardScheduleOutcome::ShardScheduleError(e);
2204 0 : }
2205 :
2206 : // Only include shards in result if we are attaching: the purpose
2207 : // of the response is to tell the caller where the shards are attached.
2208 0 : if let Some(node_id) = state.intent.get_attached() {
2209 0 : let generation = state
2210 0 : .generation
2211 0 : .expect("Generation is set when in attached mode");
2212 0 : InitialShardScheduleOutcome::Scheduled(TenantCreateResponseShard {
2213 0 : shard_id: tenant_shard_id,
2214 0 : node_id: *node_id,
2215 0 : generation: generation.into().unwrap(),
2216 0 : })
2217 : } else {
2218 0 : InitialShardScheduleOutcome::NotScheduled
2219 : }
2220 : }
2221 : }
2222 0 : }
2223 :
2224 : /// Helper for functions that reconcile a number of shards, and would like to do a timeout-bounded
2225 : /// wait for reconciliation to complete before responding.
2226 0 : async fn await_waiters(
2227 0 : &self,
2228 0 : waiters: Vec<ReconcilerWaiter>,
2229 0 : timeout: Duration,
2230 0 : ) -> Result<(), ReconcileWaitError> {
2231 0 : let deadline = Instant::now().checked_add(timeout).unwrap();
2232 0 : for waiter in waiters {
2233 0 : let timeout = deadline.duration_since(Instant::now());
2234 0 : waiter.wait_timeout(timeout).await?;
2235 : }
2236 :
2237 0 : Ok(())
2238 0 : }
2239 :
2240 : /// Same as [`Service::await_waiters`], but returns the waiters which are still
2241 : /// in progress
2242 0 : async fn await_waiters_remainder(
2243 0 : &self,
2244 0 : waiters: Vec<ReconcilerWaiter>,
2245 0 : timeout: Duration,
2246 0 : ) -> Vec<ReconcilerWaiter> {
2247 0 : let deadline = Instant::now().checked_add(timeout).unwrap();
2248 0 : for waiter in waiters.iter() {
2249 0 : let timeout = deadline.duration_since(Instant::now());
2250 0 : let _ = waiter.wait_timeout(timeout).await;
2251 : }
2252 :
2253 0 : waiters
2254 0 : .into_iter()
2255 0 : .filter(|waiter| matches!(waiter.get_status(), ReconcilerStatus::InProgress))
2256 0 : .collect::<Vec<_>>()
2257 0 : }
2258 :
2259 : /// Part of [`Self::tenant_location_config`]: dissect an incoming location config request,
2260 : /// and transform it into either a tenant creation of a series of shard updates.
2261 : ///
2262 : /// If the incoming request makes no changes, a [`TenantCreateOrUpdate::Update`] result will
2263 : /// still be returned.
2264 0 : fn tenant_location_config_prepare(
2265 0 : &self,
2266 0 : tenant_id: TenantId,
2267 0 : req: TenantLocationConfigRequest,
2268 0 : ) -> TenantCreateOrUpdate {
2269 0 : let mut updates = Vec::new();
2270 0 : let mut locked = self.inner.write().unwrap();
2271 0 : let (nodes, tenants, _scheduler) = locked.parts_mut();
2272 0 : let tenant_shard_id = TenantShardId::unsharded(tenant_id);
2273 :
2274 : // Use location config mode as an indicator of policy.
2275 0 : let placement_policy = match req.config.mode {
2276 0 : LocationConfigMode::Detached => PlacementPolicy::Detached,
2277 0 : LocationConfigMode::Secondary => PlacementPolicy::Secondary,
2278 : LocationConfigMode::AttachedMulti
2279 : | LocationConfigMode::AttachedSingle
2280 : | LocationConfigMode::AttachedStale => {
2281 0 : if nodes.len() > 1 {
2282 0 : PlacementPolicy::Attached(1)
2283 : } else {
2284 : // Convenience for dev/test: if we just have one pageserver, import
2285 : // tenants into non-HA mode so that scheduling will succeed.
2286 0 : PlacementPolicy::Attached(0)
2287 : }
2288 : }
2289 : };
2290 :
2291 0 : let mut create = true;
2292 0 : for (shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
2293 : // Saw an existing shard: this is not a creation
2294 0 : create = false;
2295 :
2296 : // Shards may have initially been created by a Secondary request, where we
2297 : // would have left generation as None.
2298 : //
2299 : // We only update generation the first time we see an attached-mode request,
2300 : // and if there is no existing generation set. The caller is responsible for
2301 : // ensuring that no non-storage-controller pageserver ever uses a higher
2302 : // generation than they passed in here.
2303 : use LocationConfigMode::*;
2304 0 : let set_generation = match req.config.mode {
2305 0 : AttachedMulti | AttachedSingle | AttachedStale if shard.generation.is_none() => {
2306 0 : req.config.generation.map(Generation::new)
2307 : }
2308 0 : _ => None,
2309 : };
2310 :
2311 0 : updates.push(ShardUpdate {
2312 0 : tenant_shard_id: *shard_id,
2313 0 : placement_policy: placement_policy.clone(),
2314 0 : tenant_config: req.config.tenant_conf.clone(),
2315 0 : generation: set_generation,
2316 0 : });
2317 : }
2318 :
2319 0 : if create {
2320 : use LocationConfigMode::*;
2321 0 : let generation = match req.config.mode {
2322 0 : AttachedMulti | AttachedSingle | AttachedStale => req.config.generation,
2323 : // If a caller provided a generation in a non-attached request, ignore it
2324 : // and leave our generation as None: this enables a subsequent update to set
2325 : // the generation when setting an attached mode for the first time.
2326 0 : _ => None,
2327 : };
2328 :
2329 0 : TenantCreateOrUpdate::Create(
2330 0 : // Synthesize a creation request
2331 0 : TenantCreateRequest {
2332 0 : new_tenant_id: tenant_shard_id,
2333 0 : generation,
2334 0 : shard_parameters: ShardParameters {
2335 0 : count: tenant_shard_id.shard_count,
2336 0 : // We only import un-sharded or single-sharded tenants, so stripe
2337 0 : // size can be made up arbitrarily here.
2338 0 : stripe_size: ShardParameters::DEFAULT_STRIPE_SIZE,
2339 0 : },
2340 0 : placement_policy: Some(placement_policy),
2341 0 : config: req.config.tenant_conf,
2342 0 : },
2343 0 : )
2344 : } else {
2345 0 : assert!(!updates.is_empty());
2346 0 : TenantCreateOrUpdate::Update(updates)
2347 : }
2348 0 : }
2349 :
2350 : /// This API is used by the cloud control plane to migrate unsharded tenants that it created
2351 : /// directly with pageservers into this service.
2352 : ///
2353 : /// Cloud control plane MUST NOT continue issuing GENERATION NUMBERS for this tenant once it
2354 : /// has attempted to call this API. Failure to oblige to this rule may lead to S3 corruption.
2355 : /// Think of the first attempt to call this API as a transfer of absolute authority over the
2356 : /// tenant's source of generation numbers.
2357 : ///
2358 : /// The mode in this request coarse-grained control of tenants:
2359 : /// - Call with mode Attached* to upsert the tenant.
2360 : /// - Call with mode Secondary to either onboard a tenant without attaching it, or
2361 : /// to set an existing tenant to PolicyMode::Secondary
2362 : /// - Call with mode Detached to switch to PolicyMode::Detached
2363 0 : pub(crate) async fn tenant_location_config(
2364 0 : &self,
2365 0 : tenant_shard_id: TenantShardId,
2366 0 : req: TenantLocationConfigRequest,
2367 0 : ) -> Result<TenantLocationConfigResponse, ApiError> {
2368 : // We require an exclusive lock, because we are updating both persistent and in-memory state
2369 0 : let _tenant_lock = trace_exclusive_lock(
2370 0 : &self.tenant_op_locks,
2371 0 : tenant_shard_id.tenant_id,
2372 0 : TenantOperations::LocationConfig,
2373 0 : )
2374 0 : .await;
2375 :
2376 0 : if !tenant_shard_id.is_unsharded() {
2377 0 : return Err(ApiError::BadRequest(anyhow::anyhow!(
2378 0 : "This API is for importing single-sharded or unsharded tenants"
2379 0 : )));
2380 0 : }
2381 0 :
2382 0 : // First check if this is a creation or an update
2383 0 : let create_or_update = self.tenant_location_config_prepare(tenant_shard_id.tenant_id, req);
2384 0 :
2385 0 : let mut result = TenantLocationConfigResponse {
2386 0 : shards: Vec::new(),
2387 0 : stripe_size: None,
2388 0 : };
2389 0 : let waiters = match create_or_update {
2390 0 : TenantCreateOrUpdate::Create(create_req) => {
2391 0 : let (create_resp, waiters) = self.do_tenant_create(create_req).await?;
2392 0 : result.shards = create_resp
2393 0 : .shards
2394 0 : .into_iter()
2395 0 : .map(|s| TenantShardLocation {
2396 0 : node_id: s.node_id,
2397 0 : shard_id: s.shard_id,
2398 0 : })
2399 0 : .collect();
2400 0 : waiters
2401 : }
2402 0 : TenantCreateOrUpdate::Update(updates) => {
2403 0 : // Persist updates
2404 0 : // Ordering: write to the database before applying changes in-memory, so that
2405 0 : // we will not appear time-travel backwards on a restart.
2406 0 : let mut schedule_context = ScheduleContext::default();
2407 : for ShardUpdate {
2408 0 : tenant_shard_id,
2409 0 : placement_policy,
2410 0 : tenant_config,
2411 0 : generation,
2412 0 : } in &updates
2413 : {
2414 0 : self.persistence
2415 0 : .update_tenant_shard(
2416 0 : TenantFilter::Shard(*tenant_shard_id),
2417 0 : Some(placement_policy.clone()),
2418 0 : Some(tenant_config.clone()),
2419 0 : *generation,
2420 0 : None,
2421 0 : )
2422 0 : .await?;
2423 : }
2424 :
2425 : // Apply updates in-memory
2426 0 : let mut waiters = Vec::new();
2427 0 : {
2428 0 : let mut locked = self.inner.write().unwrap();
2429 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
2430 :
2431 : for ShardUpdate {
2432 0 : tenant_shard_id,
2433 0 : placement_policy,
2434 0 : tenant_config,
2435 0 : generation: update_generation,
2436 0 : } in updates
2437 : {
2438 0 : let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
2439 0 : tracing::warn!("Shard {tenant_shard_id} removed while updating");
2440 0 : continue;
2441 : };
2442 :
2443 : // Update stripe size
2444 0 : if result.stripe_size.is_none() && shard.shard.count.count() > 1 {
2445 0 : result.stripe_size = Some(shard.shard.stripe_size);
2446 0 : }
2447 :
2448 0 : shard.policy = placement_policy;
2449 0 : shard.config = tenant_config;
2450 0 : if let Some(generation) = update_generation {
2451 0 : shard.generation = Some(generation);
2452 0 : }
2453 :
2454 0 : shard.schedule(scheduler, &mut schedule_context)?;
2455 :
2456 0 : let maybe_waiter = self.maybe_reconcile_shard(shard, nodes);
2457 0 : if let Some(waiter) = maybe_waiter {
2458 0 : waiters.push(waiter);
2459 0 : }
2460 :
2461 0 : if let Some(node_id) = shard.intent.get_attached() {
2462 0 : result.shards.push(TenantShardLocation {
2463 0 : shard_id: tenant_shard_id,
2464 0 : node_id: *node_id,
2465 0 : })
2466 0 : }
2467 : }
2468 : }
2469 0 : waiters
2470 : }
2471 : };
2472 :
2473 0 : if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
2474 : // Do not treat a reconcile error as fatal: we have already applied any requested
2475 : // Intent changes, and the reconcile can fail for external reasons like unavailable
2476 : // compute notification API. In these cases, it is important that we do not
2477 : // cause the cloud control plane to retry forever on this API.
2478 0 : tracing::warn!(
2479 0 : "Failed to reconcile after /location_config: {e}, returning success anyway"
2480 : );
2481 0 : }
2482 :
2483 : // Logging the full result is useful because it lets us cross-check what the cloud control
2484 : // plane's tenant_shards table should contain.
2485 0 : tracing::info!("Complete, returning {result:?}");
2486 :
2487 0 : Ok(result)
2488 0 : }
2489 :
2490 0 : pub(crate) async fn tenant_config_set(&self, req: TenantConfigRequest) -> Result<(), ApiError> {
2491 : // We require an exclusive lock, because we are updating persistent and in-memory state
2492 0 : let _tenant_lock = trace_exclusive_lock(
2493 0 : &self.tenant_op_locks,
2494 0 : req.tenant_id,
2495 0 : TenantOperations::ConfigSet,
2496 0 : )
2497 0 : .await;
2498 :
2499 0 : let tenant_id = req.tenant_id;
2500 0 : let config = req.config;
2501 0 :
2502 0 : self.persistence
2503 0 : .update_tenant_shard(
2504 0 : TenantFilter::Tenant(req.tenant_id),
2505 0 : None,
2506 0 : Some(config.clone()),
2507 0 : None,
2508 0 : None,
2509 0 : )
2510 0 : .await?;
2511 :
2512 0 : let waiters = {
2513 0 : let mut waiters = Vec::new();
2514 0 : let mut locked = self.inner.write().unwrap();
2515 0 : let (nodes, tenants, _scheduler) = locked.parts_mut();
2516 0 : for (_shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
2517 0 : shard.config = config.clone();
2518 0 : if let Some(waiter) = self.maybe_reconcile_shard(shard, nodes) {
2519 0 : waiters.push(waiter);
2520 0 : }
2521 : }
2522 0 : waiters
2523 : };
2524 :
2525 0 : if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
2526 : // Treat this as success because we have stored the configuration. If e.g.
2527 : // a node was unavailable at this time, it should not stop us accepting a
2528 : // configuration change.
2529 0 : tracing::warn!(%tenant_id, "Accepted configuration update but reconciliation failed: {e}");
2530 0 : }
2531 :
2532 0 : Ok(())
2533 0 : }
2534 :
2535 0 : pub(crate) fn tenant_config_get(
2536 0 : &self,
2537 0 : tenant_id: TenantId,
2538 0 : ) -> Result<HashMap<&str, serde_json::Value>, ApiError> {
2539 0 : let config = {
2540 0 : let locked = self.inner.read().unwrap();
2541 0 :
2542 0 : match locked
2543 0 : .tenants
2544 0 : .range(TenantShardId::tenant_range(tenant_id))
2545 0 : .next()
2546 : {
2547 0 : Some((_tenant_shard_id, shard)) => shard.config.clone(),
2548 : None => {
2549 0 : return Err(ApiError::NotFound(
2550 0 : anyhow::anyhow!("Tenant not found").into(),
2551 0 : ))
2552 : }
2553 : }
2554 : };
2555 :
2556 : // Unlike the pageserver, we do not have a set of global defaults: the config is
2557 : // entirely per-tenant. Therefore the distinction between `tenant_specific_overrides`
2558 : // and `effective_config` in the response is meaningless, but we retain that syntax
2559 : // in order to remain compatible with the pageserver API.
2560 :
2561 0 : let response = HashMap::from([
2562 : (
2563 : "tenant_specific_overrides",
2564 0 : serde_json::to_value(&config)
2565 0 : .context("serializing tenant specific overrides")
2566 0 : .map_err(ApiError::InternalServerError)?,
2567 : ),
2568 : (
2569 0 : "effective_config",
2570 0 : serde_json::to_value(&config)
2571 0 : .context("serializing effective config")
2572 0 : .map_err(ApiError::InternalServerError)?,
2573 : ),
2574 : ]);
2575 :
2576 0 : Ok(response)
2577 0 : }
2578 :
2579 0 : pub(crate) async fn tenant_time_travel_remote_storage(
2580 0 : &self,
2581 0 : time_travel_req: &TenantTimeTravelRequest,
2582 0 : tenant_id: TenantId,
2583 0 : timestamp: Cow<'_, str>,
2584 0 : done_if_after: Cow<'_, str>,
2585 0 : ) -> Result<(), ApiError> {
2586 0 : let _tenant_lock = trace_exclusive_lock(
2587 0 : &self.tenant_op_locks,
2588 0 : tenant_id,
2589 0 : TenantOperations::TimeTravelRemoteStorage,
2590 0 : )
2591 0 : .await;
2592 :
2593 0 : let node = {
2594 0 : let mut locked = self.inner.write().unwrap();
2595 : // Just a sanity check to prevent misuse: the API expects that the tenant is fully
2596 : // detached everywhere, and nothing writes to S3 storage. Here, we verify that,
2597 : // but only at the start of the process, so it's really just to prevent operator
2598 : // mistakes.
2599 0 : for (shard_id, shard) in locked.tenants.range(TenantShardId::tenant_range(tenant_id)) {
2600 0 : if shard.intent.get_attached().is_some() || !shard.intent.get_secondary().is_empty()
2601 : {
2602 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
2603 0 : "We want tenant to be attached in shard with tenant_shard_id={shard_id}"
2604 0 : )));
2605 0 : }
2606 0 : let maybe_attached = shard
2607 0 : .observed
2608 0 : .locations
2609 0 : .iter()
2610 0 : .filter_map(|(node_id, observed_location)| {
2611 0 : observed_location
2612 0 : .conf
2613 0 : .as_ref()
2614 0 : .map(|loc| (node_id, observed_location, loc.mode))
2615 0 : })
2616 0 : .find(|(_, _, mode)| *mode != LocationConfigMode::Detached);
2617 0 : if let Some((node_id, _observed_location, mode)) = maybe_attached {
2618 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!("We observed attached={mode:?} tenant in node_id={node_id} shard with tenant_shard_id={shard_id}")));
2619 0 : }
2620 : }
2621 0 : let scheduler = &mut locked.scheduler;
2622 : // Right now we only perform the operation on a single node without parallelization
2623 : // TODO fan out the operation to multiple nodes for better performance
2624 0 : let node_id = scheduler.schedule_shard(&[], &ScheduleContext::default())?;
2625 0 : let node = locked
2626 0 : .nodes
2627 0 : .get(&node_id)
2628 0 : .expect("Pageservers may not be deleted while lock is active");
2629 0 : node.clone()
2630 0 : };
2631 0 :
2632 0 : // The shard count is encoded in the remote storage's URL, so we need to handle all historically used shard counts
2633 0 : let mut counts = time_travel_req
2634 0 : .shard_counts
2635 0 : .iter()
2636 0 : .copied()
2637 0 : .collect::<HashSet<_>>()
2638 0 : .into_iter()
2639 0 : .collect::<Vec<_>>();
2640 0 : counts.sort_unstable();
2641 :
2642 0 : for count in counts {
2643 0 : let shard_ids = (0..count.count())
2644 0 : .map(|i| TenantShardId {
2645 0 : tenant_id,
2646 0 : shard_number: ShardNumber(i),
2647 0 : shard_count: count,
2648 0 : })
2649 0 : .collect::<Vec<_>>();
2650 0 : for tenant_shard_id in shard_ids {
2651 0 : let client = PageserverClient::new(
2652 0 : node.get_id(),
2653 0 : node.base_url(),
2654 0 : self.config.jwt_token.as_deref(),
2655 0 : );
2656 0 :
2657 0 : tracing::info!("Doing time travel recovery for shard {tenant_shard_id}",);
2658 :
2659 0 : client
2660 0 : .tenant_time_travel_remote_storage(
2661 0 : tenant_shard_id,
2662 0 : ×tamp,
2663 0 : &done_if_after,
2664 0 : )
2665 0 : .await
2666 0 : .map_err(|e| {
2667 0 : ApiError::InternalServerError(anyhow::anyhow!(
2668 0 : "Error doing time travel recovery for shard {tenant_shard_id} on node {}: {e}",
2669 0 : node
2670 0 : ))
2671 0 : })?;
2672 : }
2673 : }
2674 0 : Ok(())
2675 0 : }
2676 :
2677 0 : pub(crate) async fn tenant_secondary_download(
2678 0 : &self,
2679 0 : tenant_id: TenantId,
2680 0 : wait: Option<Duration>,
2681 0 : ) -> Result<(StatusCode, SecondaryProgress), ApiError> {
2682 0 : let _tenant_lock = trace_shared_lock(
2683 0 : &self.tenant_op_locks,
2684 0 : tenant_id,
2685 0 : TenantOperations::SecondaryDownload,
2686 0 : )
2687 0 : .await;
2688 :
2689 : // Acquire lock and yield the collection of shard-node tuples which we will send requests onward to
2690 0 : let targets = {
2691 0 : let locked = self.inner.read().unwrap();
2692 0 : let mut targets = Vec::new();
2693 :
2694 0 : for (tenant_shard_id, shard) in
2695 0 : locked.tenants.range(TenantShardId::tenant_range(tenant_id))
2696 : {
2697 0 : for node_id in shard.intent.get_secondary() {
2698 0 : let node = locked
2699 0 : .nodes
2700 0 : .get(node_id)
2701 0 : .expect("Pageservers may not be deleted while referenced");
2702 0 :
2703 0 : targets.push((*tenant_shard_id, node.clone()));
2704 0 : }
2705 : }
2706 0 : targets
2707 0 : };
2708 0 :
2709 0 : // Issue concurrent requests to all shards' locations
2710 0 : let mut futs = FuturesUnordered::new();
2711 0 : for (tenant_shard_id, node) in targets {
2712 0 : let client = PageserverClient::new(
2713 0 : node.get_id(),
2714 0 : node.base_url(),
2715 0 : self.config.jwt_token.as_deref(),
2716 0 : );
2717 0 : futs.push(async move {
2718 0 : let result = client
2719 0 : .tenant_secondary_download(tenant_shard_id, wait)
2720 0 : .await;
2721 0 : (result, node, tenant_shard_id)
2722 0 : })
2723 : }
2724 :
2725 : // Handle any errors returned by pageservers. This includes cases like this request racing with
2726 : // a scheduling operation, such that the tenant shard we're calling doesn't exist on that pageserver any more, as
2727 : // well as more general cases like 503s, 500s, or timeouts.
2728 0 : let mut aggregate_progress = SecondaryProgress::default();
2729 0 : let mut aggregate_status: Option<StatusCode> = None;
2730 0 : let mut error: Option<mgmt_api::Error> = None;
2731 0 : while let Some((result, node, tenant_shard_id)) = futs.next().await {
2732 0 : match result {
2733 0 : Err(e) => {
2734 0 : // Secondary downloads are always advisory: if something fails, we nevertheless report success, so that whoever
2735 0 : // is calling us will proceed with whatever migration they're doing, albeit with a slightly less warm cache
2736 0 : // than they had hoped for.
2737 0 : tracing::warn!("Secondary download error from pageserver {node}: {e}",);
2738 0 : error = Some(e)
2739 : }
2740 0 : Ok((status_code, progress)) => {
2741 0 : tracing::info!(%tenant_shard_id, "Shard status={status_code} progress: {progress:?}");
2742 0 : aggregate_progress.layers_downloaded += progress.layers_downloaded;
2743 0 : aggregate_progress.layers_total += progress.layers_total;
2744 0 : aggregate_progress.bytes_downloaded += progress.bytes_downloaded;
2745 0 : aggregate_progress.bytes_total += progress.bytes_total;
2746 0 : aggregate_progress.heatmap_mtime =
2747 0 : std::cmp::max(aggregate_progress.heatmap_mtime, progress.heatmap_mtime);
2748 0 : aggregate_status = match aggregate_status {
2749 0 : None => Some(status_code),
2750 0 : Some(StatusCode::OK) => Some(status_code),
2751 0 : Some(cur) => {
2752 0 : // Other status codes (e.g. 202) -- do not overwrite.
2753 0 : Some(cur)
2754 : }
2755 : };
2756 : }
2757 : }
2758 : }
2759 :
2760 : // If any of the shards return 202, indicate our result as 202.
2761 0 : match aggregate_status {
2762 : None => {
2763 0 : match error {
2764 0 : Some(e) => {
2765 0 : // No successes, and an error: surface it
2766 0 : Err(ApiError::Conflict(format!("Error from pageserver: {e}")))
2767 : }
2768 : None => {
2769 : // No shards found
2770 0 : Err(ApiError::NotFound(
2771 0 : anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
2772 0 : ))
2773 : }
2774 : }
2775 : }
2776 0 : Some(aggregate_status) => Ok((aggregate_status, aggregate_progress)),
2777 : }
2778 0 : }
2779 :
2780 0 : pub(crate) async fn tenant_delete(&self, tenant_id: TenantId) -> Result<StatusCode, ApiError> {
2781 0 : let _tenant_lock =
2782 0 : trace_exclusive_lock(&self.tenant_op_locks, tenant_id, TenantOperations::Delete).await;
2783 :
2784 : // Detach all shards
2785 0 : let (detach_waiters, shard_ids, node) = {
2786 0 : let mut shard_ids = Vec::new();
2787 0 : let mut detach_waiters = Vec::new();
2788 0 : let mut locked = self.inner.write().unwrap();
2789 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
2790 0 : for (tenant_shard_id, shard) in
2791 0 : tenants.range_mut(TenantShardId::tenant_range(tenant_id))
2792 : {
2793 0 : shard_ids.push(*tenant_shard_id);
2794 0 :
2795 0 : // Update the tenant's intent to remove all attachments
2796 0 : shard.policy = PlacementPolicy::Detached;
2797 0 : shard
2798 0 : .schedule(scheduler, &mut ScheduleContext::default())
2799 0 : .expect("De-scheduling is infallible");
2800 0 : debug_assert!(shard.intent.get_attached().is_none());
2801 0 : debug_assert!(shard.intent.get_secondary().is_empty());
2802 :
2803 0 : if let Some(waiter) = self.maybe_reconcile_shard(shard, nodes) {
2804 0 : detach_waiters.push(waiter);
2805 0 : }
2806 : }
2807 :
2808 : // Pick an arbitrary node to use for remote deletions (does not have to be where the tenant
2809 : // was attached, just has to be able to see the S3 content)
2810 0 : let node_id = scheduler.schedule_shard(&[], &ScheduleContext::default())?;
2811 0 : let node = nodes
2812 0 : .get(&node_id)
2813 0 : .expect("Pageservers may not be deleted while lock is active");
2814 0 : (detach_waiters, shard_ids, node.clone())
2815 0 : };
2816 0 :
2817 0 : // This reconcile wait can fail in a few ways:
2818 0 : // A there is a very long queue for the reconciler semaphore
2819 0 : // B some pageserver is failing to handle a detach promptly
2820 0 : // C some pageserver goes offline right at the moment we send it a request.
2821 0 : //
2822 0 : // A and C are transient: the semaphore will eventually become available, and once a node is marked offline
2823 0 : // the next attempt to reconcile will silently skip detaches for an offline node and succeed. If B happens,
2824 0 : // it's a bug, and needs resolving at the pageserver level (we shouldn't just leave attachments behind while
2825 0 : // deleting the underlying data).
2826 0 : self.await_waiters(detach_waiters, RECONCILE_TIMEOUT)
2827 0 : .await?;
2828 :
2829 0 : let locations = shard_ids
2830 0 : .into_iter()
2831 0 : .map(|s| (s, node.clone()))
2832 0 : .collect::<Vec<_>>();
2833 0 : let results = self.tenant_for_shards_api(
2834 0 : locations,
2835 0 : |tenant_shard_id, client| async move { client.tenant_delete(tenant_shard_id).await },
2836 0 : 1,
2837 0 : 3,
2838 0 : RECONCILE_TIMEOUT,
2839 0 : &self.cancel,
2840 0 : )
2841 0 : .await;
2842 0 : for result in results {
2843 0 : match result {
2844 : Ok(StatusCode::ACCEPTED) => {
2845 : // This should never happen: we waited for detaches to finish above
2846 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
2847 0 : "Unexpectedly still attached on {}",
2848 0 : node
2849 0 : )));
2850 : }
2851 0 : Ok(_) => {}
2852 : Err(mgmt_api::Error::Cancelled) => {
2853 0 : return Err(ApiError::ShuttingDown);
2854 : }
2855 0 : Err(e) => {
2856 0 : // This is unexpected: remote deletion should be infallible, unless the object store
2857 0 : // at large is unavailable.
2858 0 : tracing::error!("Error deleting via node {}: {e}", node);
2859 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(e)));
2860 : }
2861 : }
2862 : }
2863 :
2864 : // Fall through: deletion of the tenant on pageservers is complete, we may proceed to drop
2865 : // our in-memory state and database state.
2866 :
2867 : // Ordering: we delete persistent state first: if we then
2868 : // crash, we will drop the in-memory state.
2869 :
2870 : // Drop persistent state.
2871 0 : self.persistence.delete_tenant(tenant_id).await?;
2872 :
2873 : // Drop in-memory state
2874 : {
2875 0 : let mut locked = self.inner.write().unwrap();
2876 0 : let (_nodes, tenants, scheduler) = locked.parts_mut();
2877 :
2878 : // Dereference Scheduler from shards before dropping them
2879 0 : for (_tenant_shard_id, shard) in
2880 0 : tenants.range_mut(TenantShardId::tenant_range(tenant_id))
2881 0 : {
2882 0 : shard.intent.clear(scheduler);
2883 0 : }
2884 :
2885 0 : tenants.retain(|tenant_shard_id, _shard| tenant_shard_id.tenant_id != tenant_id);
2886 0 : tracing::info!(
2887 0 : "Deleted tenant {tenant_id}, now have {} tenants",
2888 0 : locked.tenants.len()
2889 : );
2890 : };
2891 :
2892 : // Success is represented as 404, to imitate the existing pageserver deletion API
2893 0 : Ok(StatusCode::NOT_FOUND)
2894 0 : }
2895 :
2896 : /// Naming: this configures the storage controller's policies for a tenant, whereas [`Self::tenant_config_set`] is "set the TenantConfig"
2897 : /// for a tenant. The TenantConfig is passed through to pageservers, whereas this function modifies
2898 : /// the tenant's policies (configuration) within the storage controller
2899 0 : pub(crate) async fn tenant_update_policy(
2900 0 : &self,
2901 0 : tenant_id: TenantId,
2902 0 : req: TenantPolicyRequest,
2903 0 : ) -> Result<(), ApiError> {
2904 : // We require an exclusive lock, because we are updating persistent and in-memory state
2905 0 : let _tenant_lock = trace_exclusive_lock(
2906 0 : &self.tenant_op_locks,
2907 0 : tenant_id,
2908 0 : TenantOperations::UpdatePolicy,
2909 0 : )
2910 0 : .await;
2911 :
2912 0 : failpoint_support::sleep_millis_async!("tenant-update-policy-exclusive-lock");
2913 :
2914 : let TenantPolicyRequest {
2915 0 : placement,
2916 0 : scheduling,
2917 0 : } = req;
2918 0 :
2919 0 : self.persistence
2920 0 : .update_tenant_shard(
2921 0 : TenantFilter::Tenant(tenant_id),
2922 0 : placement.clone(),
2923 0 : None,
2924 0 : None,
2925 0 : scheduling,
2926 0 : )
2927 0 : .await?;
2928 :
2929 0 : let mut schedule_context = ScheduleContext::default();
2930 0 : let mut locked = self.inner.write().unwrap();
2931 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
2932 0 : for (shard_id, shard) in tenants.range_mut(TenantShardId::tenant_range(tenant_id)) {
2933 0 : if let Some(placement) = &placement {
2934 0 : shard.policy = placement.clone();
2935 0 :
2936 0 : tracing::info!(tenant_id=%shard_id.tenant_id, shard_id=%shard_id.shard_slug(),
2937 0 : "Updated placement policy to {placement:?}");
2938 0 : }
2939 :
2940 0 : if let Some(scheduling) = &scheduling {
2941 0 : shard.set_scheduling_policy(*scheduling);
2942 0 :
2943 0 : tracing::info!(tenant_id=%shard_id.tenant_id, shard_id=%shard_id.shard_slug(),
2944 0 : "Updated scheduling policy to {scheduling:?}");
2945 0 : }
2946 :
2947 : // In case scheduling is being switched back on, try it now.
2948 0 : shard.schedule(scheduler, &mut schedule_context).ok();
2949 0 : self.maybe_reconcile_shard(shard, nodes);
2950 : }
2951 :
2952 0 : Ok(())
2953 0 : }
2954 :
2955 0 : pub(crate) async fn tenant_timeline_create(
2956 0 : &self,
2957 0 : tenant_id: TenantId,
2958 0 : mut create_req: TimelineCreateRequest,
2959 0 : ) -> Result<TimelineInfo, ApiError> {
2960 0 : tracing::info!(
2961 0 : "Creating timeline {}/{}",
2962 : tenant_id,
2963 : create_req.new_timeline_id,
2964 : );
2965 :
2966 0 : let _tenant_lock = trace_shared_lock(
2967 0 : &self.tenant_op_locks,
2968 0 : tenant_id,
2969 0 : TenantOperations::TimelineCreate,
2970 0 : )
2971 0 : .await;
2972 0 : failpoint_support::sleep_millis_async!("tenant-create-timeline-shared-lock");
2973 :
2974 0 : self.tenant_remote_mutation(tenant_id, move |mut targets| async move {
2975 0 : if targets.is_empty() {
2976 0 : return Err(ApiError::NotFound(
2977 0 : anyhow::anyhow!("Tenant not found").into(),
2978 0 : ));
2979 0 : };
2980 0 : let shard_zero = targets.remove(0);
2981 :
2982 0 : async fn create_one(
2983 0 : tenant_shard_id: TenantShardId,
2984 0 : node: Node,
2985 0 : jwt: Option<String>,
2986 0 : create_req: TimelineCreateRequest,
2987 0 : ) -> Result<TimelineInfo, ApiError> {
2988 0 : tracing::info!(
2989 0 : "Creating timeline on shard {}/{}, attached to node {node}",
2990 : tenant_shard_id,
2991 : create_req.new_timeline_id,
2992 : );
2993 0 : let client = PageserverClient::new(node.get_id(), node.base_url(), jwt.as_deref());
2994 0 :
2995 0 : client
2996 0 : .timeline_create(tenant_shard_id, &create_req)
2997 0 : .await
2998 0 : .map_err(|e| passthrough_api_error(&node, e))
2999 0 : }
3000 :
3001 : // Because the caller might not provide an explicit LSN, we must do the creation first on a single shard, and then
3002 : // use whatever LSN that shard picked when creating on subsequent shards. We arbitrarily use shard zero as the shard
3003 : // that will get the first creation request, and propagate the LSN to all the >0 shards.
3004 0 : let timeline_info = create_one(
3005 0 : shard_zero.0,
3006 0 : shard_zero.1,
3007 0 : self.config.jwt_token.clone(),
3008 0 : create_req.clone(),
3009 0 : )
3010 0 : .await?;
3011 :
3012 : // Propagate the LSN that shard zero picked, if caller didn't provide one
3013 0 : if create_req.ancestor_timeline_id.is_some() && create_req.ancestor_start_lsn.is_none()
3014 0 : {
3015 0 : create_req.ancestor_start_lsn = timeline_info.ancestor_lsn;
3016 0 : }
3017 :
3018 : // Create timeline on remaining shards with number >0
3019 0 : if !targets.is_empty() {
3020 : // If we had multiple shards, issue requests for the remainder now.
3021 0 : let jwt = &self.config.jwt_token;
3022 0 : self.tenant_for_shards(
3023 0 : targets.iter().map(|t| (t.0, t.1.clone())).collect(),
3024 0 : |tenant_shard_id: TenantShardId, node: Node| {
3025 0 : let create_req = create_req.clone();
3026 0 : Box::pin(create_one(tenant_shard_id, node, jwt.clone(), create_req))
3027 0 : },
3028 0 : )
3029 0 : .await?;
3030 0 : }
3031 :
3032 0 : Ok(timeline_info)
3033 0 : })
3034 0 : .await?
3035 0 : }
3036 :
3037 0 : pub(crate) async fn tenant_timeline_archival_config(
3038 0 : &self,
3039 0 : tenant_id: TenantId,
3040 0 : timeline_id: TimelineId,
3041 0 : req: TimelineArchivalConfigRequest,
3042 0 : ) -> Result<(), ApiError> {
3043 0 : tracing::info!(
3044 0 : "Setting archival config of timeline {tenant_id}/{timeline_id} to '{:?}'",
3045 : req.state
3046 : );
3047 :
3048 0 : let _tenant_lock = trace_shared_lock(
3049 0 : &self.tenant_op_locks,
3050 0 : tenant_id,
3051 0 : TenantOperations::TimelineArchivalConfig,
3052 0 : )
3053 0 : .await;
3054 :
3055 0 : self.tenant_remote_mutation(tenant_id, move |targets| async move {
3056 0 : if targets.is_empty() {
3057 0 : return Err(ApiError::NotFound(
3058 0 : anyhow::anyhow!("Tenant not found").into(),
3059 0 : ));
3060 0 : }
3061 0 : async fn config_one(
3062 0 : tenant_shard_id: TenantShardId,
3063 0 : timeline_id: TimelineId,
3064 0 : node: Node,
3065 0 : jwt: Option<String>,
3066 0 : req: TimelineArchivalConfigRequest,
3067 0 : ) -> Result<(), ApiError> {
3068 0 : tracing::info!(
3069 0 : "Setting archival config of timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
3070 : );
3071 :
3072 0 : let client = PageserverClient::new(node.get_id(), node.base_url(), jwt.as_deref());
3073 0 :
3074 0 : client
3075 0 : .timeline_archival_config(tenant_shard_id, timeline_id, &req)
3076 0 : .await
3077 0 : .map_err(|e| match e {
3078 0 : mgmt_api::Error::ApiError(StatusCode::PRECONDITION_FAILED, msg) => {
3079 0 : ApiError::PreconditionFailed(msg.into_boxed_str())
3080 : }
3081 0 : _ => passthrough_api_error(&node, e),
3082 0 : })
3083 0 : }
3084 :
3085 : // no shard needs to go first/last; the operation should be idempotent
3086 : // TODO: it would be great to ensure that all shards return the same error
3087 0 : let results = self
3088 0 : .tenant_for_shards(targets, |tenant_shard_id, node| {
3089 0 : futures::FutureExt::boxed(config_one(
3090 0 : tenant_shard_id,
3091 0 : timeline_id,
3092 0 : node,
3093 0 : self.config.jwt_token.clone(),
3094 0 : req.clone(),
3095 0 : ))
3096 0 : })
3097 0 : .await?;
3098 0 : assert!(!results.is_empty(), "must have at least one result");
3099 :
3100 0 : Ok(())
3101 0 : }).await?
3102 0 : }
3103 :
3104 0 : pub(crate) async fn tenant_timeline_detach_ancestor(
3105 0 : &self,
3106 0 : tenant_id: TenantId,
3107 0 : timeline_id: TimelineId,
3108 0 : ) -> Result<models::detach_ancestor::AncestorDetached, ApiError> {
3109 0 : tracing::info!("Detaching timeline {tenant_id}/{timeline_id}",);
3110 :
3111 0 : let _tenant_lock = trace_shared_lock(
3112 0 : &self.tenant_op_locks,
3113 0 : tenant_id,
3114 0 : TenantOperations::TimelineDetachAncestor,
3115 0 : )
3116 0 : .await;
3117 :
3118 0 : self.tenant_remote_mutation(tenant_id, move |targets| async move {
3119 0 : if targets.is_empty() {
3120 0 : return Err(ApiError::NotFound(
3121 0 : anyhow::anyhow!("Tenant not found").into(),
3122 0 : ));
3123 0 : }
3124 :
3125 0 : async fn detach_one(
3126 0 : tenant_shard_id: TenantShardId,
3127 0 : timeline_id: TimelineId,
3128 0 : node: Node,
3129 0 : jwt: Option<String>,
3130 0 : ) -> Result<(ShardNumber, models::detach_ancestor::AncestorDetached), ApiError> {
3131 0 : tracing::info!(
3132 0 : "Detaching timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
3133 : );
3134 :
3135 0 : let client = PageserverClient::new(node.get_id(), node.base_url(), jwt.as_deref());
3136 0 :
3137 0 : client
3138 0 : .timeline_detach_ancestor(tenant_shard_id, timeline_id)
3139 0 : .await
3140 0 : .map_err(|e| {
3141 : use mgmt_api::Error;
3142 :
3143 0 : match e {
3144 : // no ancestor (ever)
3145 0 : Error::ApiError(StatusCode::CONFLICT, msg) => ApiError::Conflict(format!(
3146 0 : "{node}: {}",
3147 0 : msg.strip_prefix("Conflict: ").unwrap_or(&msg)
3148 0 : )),
3149 : // too many ancestors
3150 0 : Error::ApiError(StatusCode::BAD_REQUEST, msg) => {
3151 0 : ApiError::BadRequest(anyhow::anyhow!("{node}: {msg}"))
3152 : }
3153 0 : Error::ApiError(StatusCode::INTERNAL_SERVER_ERROR, msg) => {
3154 0 : // avoid turning these into conflicts to remain compatible with
3155 0 : // pageservers, 500 errors are sadly retryable with timeline ancestor
3156 0 : // detach
3157 0 : ApiError::InternalServerError(anyhow::anyhow!("{node}: {msg}"))
3158 : }
3159 : // rest can be mapped as usual
3160 0 : other => passthrough_api_error(&node, other),
3161 : }
3162 0 : })
3163 0 : .map(|res| (tenant_shard_id.shard_number, res))
3164 0 : }
3165 :
3166 : // no shard needs to go first/last; the operation should be idempotent
3167 0 : let mut results = self
3168 0 : .tenant_for_shards(targets, |tenant_shard_id, node| {
3169 0 : futures::FutureExt::boxed(detach_one(
3170 0 : tenant_shard_id,
3171 0 : timeline_id,
3172 0 : node,
3173 0 : self.config.jwt_token.clone(),
3174 0 : ))
3175 0 : })
3176 0 : .await?;
3177 :
3178 0 : let any = results.pop().expect("we must have at least one response");
3179 0 :
3180 0 : let mismatching = results
3181 0 : .iter()
3182 0 : .filter(|(_, res)| res != &any.1)
3183 0 : .collect::<Vec<_>>();
3184 0 : if !mismatching.is_empty() {
3185 : // this can be hit by races which should not happen because operation lock on cplane
3186 0 : let matching = results.len() - mismatching.len();
3187 0 : tracing::error!(
3188 : matching,
3189 : compared_against=?any,
3190 : ?mismatching,
3191 0 : "shards returned different results"
3192 : );
3193 :
3194 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!("pageservers returned mixed results for ancestor detach; manual intervention is required.")));
3195 0 : }
3196 0 :
3197 0 : Ok(any.1)
3198 0 : }).await?
3199 0 : }
3200 :
3201 0 : pub(crate) async fn tenant_timeline_block_unblock_gc(
3202 0 : &self,
3203 0 : tenant_id: TenantId,
3204 0 : timeline_id: TimelineId,
3205 0 : dir: BlockUnblock,
3206 0 : ) -> Result<(), ApiError> {
3207 0 : let _tenant_lock = trace_shared_lock(
3208 0 : &self.tenant_op_locks,
3209 0 : tenant_id,
3210 0 : TenantOperations::TimelineGcBlockUnblock,
3211 0 : )
3212 0 : .await;
3213 :
3214 0 : self.tenant_remote_mutation(tenant_id, move |targets| async move {
3215 0 : if targets.is_empty() {
3216 0 : return Err(ApiError::NotFound(
3217 0 : anyhow::anyhow!("Tenant not found").into(),
3218 0 : ));
3219 0 : }
3220 :
3221 0 : async fn do_one(
3222 0 : tenant_shard_id: TenantShardId,
3223 0 : timeline_id: TimelineId,
3224 0 : node: Node,
3225 0 : jwt: Option<String>,
3226 0 : dir: BlockUnblock,
3227 0 : ) -> Result<(), ApiError> {
3228 0 : let client = PageserverClient::new(node.get_id(), node.base_url(), jwt.as_deref());
3229 0 :
3230 0 : client
3231 0 : .timeline_block_unblock_gc(tenant_shard_id, timeline_id, dir)
3232 0 : .await
3233 0 : .map_err(|e| passthrough_api_error(&node, e))
3234 0 : }
3235 :
3236 : // no shard needs to go first/last; the operation should be idempotent
3237 0 : self.tenant_for_shards(targets, |tenant_shard_id, node| {
3238 0 : futures::FutureExt::boxed(do_one(
3239 0 : tenant_shard_id,
3240 0 : timeline_id,
3241 0 : node,
3242 0 : self.config.jwt_token.clone(),
3243 0 : dir,
3244 0 : ))
3245 0 : })
3246 0 : .await
3247 0 : })
3248 0 : .await??;
3249 0 : Ok(())
3250 0 : }
3251 :
3252 : /// Helper for concurrently calling a pageserver API on a number of shards, such as timeline creation.
3253 : ///
3254 : /// On success, the returned vector contains exactly the same number of elements as the input `locations`.
3255 0 : async fn tenant_for_shards<F, R>(
3256 0 : &self,
3257 0 : locations: Vec<(TenantShardId, Node)>,
3258 0 : mut req_fn: F,
3259 0 : ) -> Result<Vec<R>, ApiError>
3260 0 : where
3261 0 : F: FnMut(
3262 0 : TenantShardId,
3263 0 : Node,
3264 0 : )
3265 0 : -> std::pin::Pin<Box<dyn futures::Future<Output = Result<R, ApiError>> + Send>>,
3266 0 : {
3267 0 : let mut futs = FuturesUnordered::new();
3268 0 : let mut results = Vec::with_capacity(locations.len());
3269 :
3270 0 : for (tenant_shard_id, node) in locations {
3271 0 : futs.push(req_fn(tenant_shard_id, node));
3272 0 : }
3273 :
3274 0 : while let Some(r) = futs.next().await {
3275 0 : results.push(r?);
3276 : }
3277 :
3278 0 : Ok(results)
3279 0 : }
3280 :
3281 : /// Concurrently invoke a pageserver API call on many shards at once
3282 0 : pub(crate) async fn tenant_for_shards_api<T, O, F>(
3283 0 : &self,
3284 0 : locations: Vec<(TenantShardId, Node)>,
3285 0 : op: O,
3286 0 : warn_threshold: u32,
3287 0 : max_retries: u32,
3288 0 : timeout: Duration,
3289 0 : cancel: &CancellationToken,
3290 0 : ) -> Vec<mgmt_api::Result<T>>
3291 0 : where
3292 0 : O: Fn(TenantShardId, PageserverClient) -> F + Copy,
3293 0 : F: std::future::Future<Output = mgmt_api::Result<T>>,
3294 0 : {
3295 0 : let mut futs = FuturesUnordered::new();
3296 0 : let mut results = Vec::with_capacity(locations.len());
3297 :
3298 0 : for (tenant_shard_id, node) in locations {
3299 0 : futs.push(async move {
3300 0 : node.with_client_retries(
3301 0 : |client| op(tenant_shard_id, client),
3302 0 : &self.config.jwt_token,
3303 0 : warn_threshold,
3304 0 : max_retries,
3305 0 : timeout,
3306 0 : cancel,
3307 0 : )
3308 0 : .await
3309 0 : });
3310 0 : }
3311 :
3312 0 : while let Some(r) = futs.next().await {
3313 0 : let r = r.unwrap_or(Err(mgmt_api::Error::Cancelled));
3314 0 : results.push(r);
3315 0 : }
3316 :
3317 0 : results
3318 0 : }
3319 :
3320 : /// Helper for safely working with the shards in a tenant remotely on pageservers, for example
3321 : /// when creating and deleting timelines:
3322 : /// - Makes sure shards are attached somewhere if they weren't already
3323 : /// - Looks up the shards and the nodes where they were most recently attached
3324 : /// - Guarantees that after the inner function returns, the shards' generations haven't moved on: this
3325 : /// ensures that the remote operation acted on the most recent generation, and is therefore durable.
3326 0 : async fn tenant_remote_mutation<R, O, F>(
3327 0 : &self,
3328 0 : tenant_id: TenantId,
3329 0 : op: O,
3330 0 : ) -> Result<R, ApiError>
3331 0 : where
3332 0 : O: FnOnce(Vec<(TenantShardId, Node)>) -> F,
3333 0 : F: std::future::Future<Output = R>,
3334 0 : {
3335 0 : let target_gens = {
3336 0 : let mut targets = Vec::new();
3337 :
3338 : // Load the currently attached pageservers for the latest generation of each shard. This can
3339 : // run concurrently with reconciliations, and it is not guaranteed that the node we find here
3340 : // will still be the latest when we're done: we will check generations again at the end of
3341 : // this function to handle that.
3342 0 : let generations = self.persistence.tenant_generations(tenant_id).await?;
3343 :
3344 0 : if generations
3345 0 : .iter()
3346 0 : .any(|i| i.generation.is_none() || i.generation_pageserver.is_none())
3347 : {
3348 : // One or more shards has not been attached to a pageserver. Check if this is because it's configured
3349 : // to be detached (409: caller should give up), or because it's meant to be attached but isn't yet (503: caller should retry)
3350 0 : let locked = self.inner.read().unwrap();
3351 0 : for (shard_id, shard) in
3352 0 : locked.tenants.range(TenantShardId::tenant_range(tenant_id))
3353 : {
3354 0 : match shard.policy {
3355 0 : PlacementPolicy::Attached(_) => {
3356 0 : // This shard is meant to be attached: the caller is not wrong to try and
3357 0 : // use this function, but we can't service the request right now.
3358 0 : }
3359 : PlacementPolicy::Secondary | PlacementPolicy::Detached => {
3360 0 : return Err(ApiError::Conflict(format!(
3361 0 : "Shard {shard_id} tenant has policy {:?}",
3362 0 : shard.policy
3363 0 : )));
3364 : }
3365 : }
3366 : }
3367 :
3368 0 : return Err(ApiError::ResourceUnavailable(
3369 0 : "One or more shards in tenant is not yet attached".into(),
3370 0 : ));
3371 0 : }
3372 0 :
3373 0 : let locked = self.inner.read().unwrap();
3374 : for ShardGenerationState {
3375 0 : tenant_shard_id,
3376 0 : generation,
3377 0 : generation_pageserver,
3378 0 : } in generations
3379 : {
3380 0 : let node_id = generation_pageserver.expect("We checked for None above");
3381 0 : let node = locked
3382 0 : .nodes
3383 0 : .get(&node_id)
3384 0 : .ok_or(ApiError::Conflict(format!(
3385 0 : "Raced with removal of node {node_id}"
3386 0 : )))?;
3387 0 : targets.push((tenant_shard_id, node.clone(), generation));
3388 : }
3389 :
3390 0 : targets
3391 0 : };
3392 0 :
3393 0 : let targets = target_gens.iter().map(|t| (t.0, t.1.clone())).collect();
3394 0 : let result = op(targets).await;
3395 :
3396 : // Post-check: are all the generations of all the shards the same as they were initially? This proves that
3397 : // our remote operation executed on the latest generation and is therefore persistent.
3398 : {
3399 0 : let latest_generations = self.persistence.tenant_generations(tenant_id).await?;
3400 0 : if latest_generations
3401 0 : .into_iter()
3402 0 : .map(
3403 0 : |ShardGenerationState {
3404 : tenant_shard_id,
3405 : generation,
3406 : generation_pageserver: _,
3407 0 : }| (tenant_shard_id, generation),
3408 0 : )
3409 0 : .collect::<Vec<_>>()
3410 0 : != target_gens
3411 0 : .into_iter()
3412 0 : .map(|i| (i.0, i.2))
3413 0 : .collect::<Vec<_>>()
3414 : {
3415 : // We raced with something that incremented the generation, and therefore cannot be
3416 : // confident that our actions are persistent (they might have hit an old generation).
3417 : //
3418 : // This is safe but requires a retry: ask the client to do that by giving them a 503 response.
3419 0 : return Err(ApiError::ResourceUnavailable(
3420 0 : "Tenant attachment changed, please retry".into(),
3421 0 : ));
3422 0 : }
3423 0 : }
3424 0 :
3425 0 : Ok(result)
3426 0 : }
3427 :
3428 0 : pub(crate) async fn tenant_timeline_delete(
3429 0 : &self,
3430 0 : tenant_id: TenantId,
3431 0 : timeline_id: TimelineId,
3432 0 : ) -> Result<StatusCode, ApiError> {
3433 0 : tracing::info!("Deleting timeline {}/{}", tenant_id, timeline_id,);
3434 0 : let _tenant_lock = trace_shared_lock(
3435 0 : &self.tenant_op_locks,
3436 0 : tenant_id,
3437 0 : TenantOperations::TimelineDelete,
3438 0 : )
3439 0 : .await;
3440 :
3441 0 : self.tenant_remote_mutation(tenant_id, move |mut targets| async move {
3442 0 : if targets.is_empty() {
3443 0 : return Err(ApiError::NotFound(
3444 0 : anyhow::anyhow!("Tenant not found").into(),
3445 0 : ));
3446 0 : }
3447 0 : let shard_zero = targets.remove(0);
3448 :
3449 0 : async fn delete_one(
3450 0 : tenant_shard_id: TenantShardId,
3451 0 : timeline_id: TimelineId,
3452 0 : node: Node,
3453 0 : jwt: Option<String>,
3454 0 : ) -> Result<StatusCode, ApiError> {
3455 0 : tracing::info!(
3456 0 : "Deleting timeline on shard {tenant_shard_id}/{timeline_id}, attached to node {node}",
3457 : );
3458 :
3459 0 : let client = PageserverClient::new(node.get_id(), node.base_url(), jwt.as_deref());
3460 0 : client
3461 0 : .timeline_delete(tenant_shard_id, timeline_id)
3462 0 : .await
3463 0 : .map_err(|e| {
3464 0 : ApiError::InternalServerError(anyhow::anyhow!(
3465 0 : "Error deleting timeline {timeline_id} on {tenant_shard_id} on node {node}: {e}",
3466 0 : ))
3467 0 : })
3468 0 : }
3469 :
3470 0 : let statuses = self
3471 0 : .tenant_for_shards(targets, |tenant_shard_id: TenantShardId, node: Node| {
3472 0 : Box::pin(delete_one(
3473 0 : tenant_shard_id,
3474 0 : timeline_id,
3475 0 : node,
3476 0 : self.config.jwt_token.clone(),
3477 0 : ))
3478 0 : })
3479 0 : .await?;
3480 :
3481 : // If any shards >0 haven't finished deletion yet, don't start deletion on shard zero
3482 0 : if statuses.iter().any(|s| s != &StatusCode::NOT_FOUND) {
3483 0 : return Ok(StatusCode::ACCEPTED);
3484 0 : }
3485 :
3486 : // Delete shard zero last: this is not strictly necessary, but since a caller's GET on a timeline will be routed
3487 : // to shard zero, it gives a more obvious behavior that a GET returns 404 once the deletion is done.
3488 0 : let shard_zero_status = delete_one(
3489 0 : shard_zero.0,
3490 0 : timeline_id,
3491 0 : shard_zero.1,
3492 0 : self.config.jwt_token.clone(),
3493 0 : )
3494 0 : .await?;
3495 0 : Ok(shard_zero_status)
3496 0 : }).await?
3497 0 : }
3498 :
3499 : /// When you need to send an HTTP request to the pageserver that holds shard0 of a tenant, this
3500 : /// function looks up and returns node. If the tenant isn't found, returns Err(ApiError::NotFound)
3501 0 : pub(crate) fn tenant_shard0_node(
3502 0 : &self,
3503 0 : tenant_id: TenantId,
3504 0 : ) -> Result<(Node, TenantShardId), ApiError> {
3505 0 : let locked = self.inner.read().unwrap();
3506 0 : let Some((tenant_shard_id, shard)) = locked
3507 0 : .tenants
3508 0 : .range(TenantShardId::tenant_range(tenant_id))
3509 0 : .next()
3510 : else {
3511 0 : return Err(ApiError::NotFound(
3512 0 : anyhow::anyhow!("Tenant {tenant_id} not found").into(),
3513 0 : ));
3514 : };
3515 :
3516 : // TODO: should use the ID last published to compute_hook, rather than the intent: the intent might
3517 : // point to somewhere we haven't attached yet.
3518 0 : let Some(node_id) = shard.intent.get_attached() else {
3519 0 : tracing::warn!(
3520 0 : tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug(),
3521 0 : "Shard not scheduled (policy {:?}), cannot generate pass-through URL",
3522 : shard.policy
3523 : );
3524 0 : return Err(ApiError::Conflict(
3525 0 : "Cannot call timeline API on non-attached tenant".to_string(),
3526 0 : ));
3527 : };
3528 :
3529 0 : let Some(node) = locked.nodes.get(node_id) else {
3530 : // This should never happen
3531 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
3532 0 : "Shard refers to nonexistent node"
3533 0 : )));
3534 : };
3535 :
3536 0 : Ok((node.clone(), *tenant_shard_id))
3537 0 : }
3538 :
3539 0 : pub(crate) fn tenant_locate(
3540 0 : &self,
3541 0 : tenant_id: TenantId,
3542 0 : ) -> Result<TenantLocateResponse, ApiError> {
3543 0 : let locked = self.inner.read().unwrap();
3544 0 : tracing::info!("Locating shards for tenant {tenant_id}");
3545 :
3546 0 : let mut result = Vec::new();
3547 0 : let mut shard_params: Option<ShardParameters> = None;
3548 :
3549 0 : for (tenant_shard_id, shard) in locked.tenants.range(TenantShardId::tenant_range(tenant_id))
3550 : {
3551 0 : let node_id =
3552 0 : shard
3553 0 : .intent
3554 0 : .get_attached()
3555 0 : .ok_or(ApiError::BadRequest(anyhow::anyhow!(
3556 0 : "Cannot locate a tenant that is not attached"
3557 0 : )))?;
3558 :
3559 0 : let node = locked
3560 0 : .nodes
3561 0 : .get(&node_id)
3562 0 : .expect("Pageservers may not be deleted while referenced");
3563 0 :
3564 0 : result.push(node.shard_location(*tenant_shard_id));
3565 0 :
3566 0 : match &shard_params {
3567 0 : None => {
3568 0 : shard_params = Some(ShardParameters {
3569 0 : stripe_size: shard.shard.stripe_size,
3570 0 : count: shard.shard.count,
3571 0 : });
3572 0 : }
3573 0 : Some(params) => {
3574 0 : if params.stripe_size != shard.shard.stripe_size {
3575 : // This should never happen. We enforce at runtime because it's simpler than
3576 : // adding an extra per-tenant data structure to store the things that should be the same
3577 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
3578 0 : "Inconsistent shard stripe size parameters!"
3579 0 : )));
3580 0 : }
3581 : }
3582 : }
3583 : }
3584 :
3585 0 : if result.is_empty() {
3586 0 : return Err(ApiError::NotFound(
3587 0 : anyhow::anyhow!("No shards for this tenant ID found").into(),
3588 0 : ));
3589 0 : }
3590 0 : let shard_params = shard_params.expect("result is non-empty, therefore this is set");
3591 0 : tracing::info!(
3592 0 : "Located tenant {} with params {:?} on shards {}",
3593 0 : tenant_id,
3594 0 : shard_params,
3595 0 : result
3596 0 : .iter()
3597 0 : .map(|s| format!("{:?}", s))
3598 0 : .collect::<Vec<_>>()
3599 0 : .join(",")
3600 : );
3601 :
3602 0 : Ok(TenantLocateResponse {
3603 0 : shards: result,
3604 0 : shard_params,
3605 0 : })
3606 0 : }
3607 :
3608 : /// Returns None if the input iterator of shards does not include a shard with number=0
3609 0 : fn tenant_describe_impl<'a>(
3610 0 : &self,
3611 0 : shards: impl Iterator<Item = &'a TenantShard>,
3612 0 : ) -> Option<TenantDescribeResponse> {
3613 0 : let mut shard_zero = None;
3614 0 : let mut describe_shards = Vec::new();
3615 :
3616 0 : for shard in shards {
3617 0 : if shard.tenant_shard_id.is_shard_zero() {
3618 0 : shard_zero = Some(shard);
3619 0 : }
3620 :
3621 0 : describe_shards.push(TenantDescribeResponseShard {
3622 0 : tenant_shard_id: shard.tenant_shard_id,
3623 0 : node_attached: *shard.intent.get_attached(),
3624 0 : node_secondary: shard.intent.get_secondary().to_vec(),
3625 0 : last_error: shard
3626 0 : .last_error
3627 0 : .lock()
3628 0 : .unwrap()
3629 0 : .as_ref()
3630 0 : .map(|e| format!("{e}"))
3631 0 : .unwrap_or("".to_string())
3632 0 : .clone(),
3633 0 : is_reconciling: shard.reconciler.is_some(),
3634 0 : is_pending_compute_notification: shard.pending_compute_notification,
3635 0 : is_splitting: matches!(shard.splitting, SplitState::Splitting),
3636 0 : scheduling_policy: *shard.get_scheduling_policy(),
3637 0 : preferred_az_id: shard.preferred_az().map(ToString::to_string),
3638 : })
3639 : }
3640 :
3641 0 : let shard_zero = shard_zero?;
3642 :
3643 0 : Some(TenantDescribeResponse {
3644 0 : tenant_id: shard_zero.tenant_shard_id.tenant_id,
3645 0 : shards: describe_shards,
3646 0 : stripe_size: shard_zero.shard.stripe_size,
3647 0 : policy: shard_zero.policy.clone(),
3648 0 : config: shard_zero.config.clone(),
3649 0 : })
3650 0 : }
3651 :
3652 0 : pub(crate) fn tenant_describe(
3653 0 : &self,
3654 0 : tenant_id: TenantId,
3655 0 : ) -> Result<TenantDescribeResponse, ApiError> {
3656 0 : let locked = self.inner.read().unwrap();
3657 0 :
3658 0 : self.tenant_describe_impl(
3659 0 : locked
3660 0 : .tenants
3661 0 : .range(TenantShardId::tenant_range(tenant_id))
3662 0 : .map(|(_k, v)| v),
3663 0 : )
3664 0 : .ok_or_else(|| ApiError::NotFound(anyhow::anyhow!("Tenant {tenant_id} not found").into()))
3665 0 : }
3666 :
3667 0 : pub(crate) fn tenant_list(&self) -> Vec<TenantDescribeResponse> {
3668 0 : let locked = self.inner.read().unwrap();
3669 0 :
3670 0 : let mut result = Vec::new();
3671 0 : for (_tenant_id, tenant_shards) in
3672 0 : &locked.tenants.iter().group_by(|(id, _shard)| id.tenant_id)
3673 0 : {
3674 0 : result.push(
3675 0 : self.tenant_describe_impl(tenant_shards.map(|(_k, v)| v))
3676 0 : .expect("Groups are always non-empty"),
3677 0 : );
3678 0 : }
3679 :
3680 0 : result
3681 0 : }
3682 :
3683 0 : #[instrument(skip_all, fields(tenant_id=%op.tenant_id))]
3684 : async fn abort_tenant_shard_split(
3685 : &self,
3686 : op: &TenantShardSplitAbort,
3687 : ) -> Result<(), TenantShardSplitAbortError> {
3688 : // Cleaning up a split:
3689 : // - Parent shards are not destroyed during a split, just detached.
3690 : // - Failed pageserver split API calls can leave the remote node with just the parent attached,
3691 : // just the children attached, or both.
3692 : //
3693 : // Therefore our work to do is to:
3694 : // 1. Clean up storage controller's internal state to just refer to parents, no children
3695 : // 2. Call out to pageservers to ensure that children are detached
3696 : // 3. Call out to pageservers to ensure that parents are attached.
3697 : //
3698 : // Crash safety:
3699 : // - If the storage controller stops running during this cleanup *after* clearing the splitting state
3700 : // from our database, then [`Self::startup_reconcile`] will regard child attachments as garbage
3701 : // and detach them.
3702 : // - TODO: If the storage controller stops running during this cleanup *before* clearing the splitting state
3703 : // from our database, then we will re-enter this cleanup routine on startup.
3704 :
3705 : let TenantShardSplitAbort {
3706 : tenant_id,
3707 : new_shard_count,
3708 : new_stripe_size,
3709 : ..
3710 : } = op;
3711 :
3712 : // First abort persistent state, if any exists.
3713 : match self
3714 : .persistence
3715 : .abort_shard_split(*tenant_id, *new_shard_count)
3716 : .await?
3717 : {
3718 : AbortShardSplitStatus::Aborted => {
3719 : // Proceed to roll back any child shards created on pageservers
3720 : }
3721 : AbortShardSplitStatus::Complete => {
3722 : // The split completed (we might hit that path if e.g. our database transaction
3723 : // to write the completion landed in the database, but we dropped connection
3724 : // before seeing the result).
3725 : //
3726 : // We must update in-memory state to reflect the successful split.
3727 : self.tenant_shard_split_commit_inmem(
3728 : *tenant_id,
3729 : *new_shard_count,
3730 : *new_stripe_size,
3731 : );
3732 : return Ok(());
3733 : }
3734 : }
3735 :
3736 : // Clean up in-memory state, and accumulate the list of child locations that need detaching
3737 : let detach_locations: Vec<(Node, TenantShardId)> = {
3738 : let mut detach_locations = Vec::new();
3739 : let mut locked = self.inner.write().unwrap();
3740 : let (nodes, tenants, scheduler) = locked.parts_mut();
3741 :
3742 : for (tenant_shard_id, shard) in
3743 : tenants.range_mut(TenantShardId::tenant_range(op.tenant_id))
3744 : {
3745 : if shard.shard.count == op.new_shard_count {
3746 : // Surprising: the phase of [`Self::do_tenant_shard_split`] which inserts child shards in-memory
3747 : // is infallible, so if we got an error we shouldn't have got that far.
3748 : tracing::warn!(
3749 : "During split abort, child shard {tenant_shard_id} found in-memory"
3750 : );
3751 : continue;
3752 : }
3753 :
3754 : // Add the children of this shard to this list of things to detach
3755 : if let Some(node_id) = shard.intent.get_attached() {
3756 : for child_id in tenant_shard_id.split(*new_shard_count) {
3757 : detach_locations.push((
3758 : nodes
3759 : .get(node_id)
3760 : .expect("Intent references nonexistent node")
3761 : .clone(),
3762 : child_id,
3763 : ));
3764 : }
3765 : } else {
3766 : tracing::warn!(
3767 : "During split abort, shard {tenant_shard_id} has no attached location"
3768 : );
3769 : }
3770 :
3771 : tracing::info!("Restoring parent shard {tenant_shard_id}");
3772 : shard.splitting = SplitState::Idle;
3773 : if let Err(e) = shard.schedule(scheduler, &mut ScheduleContext::default()) {
3774 : // If this shard can't be scheduled now (perhaps due to offline nodes or
3775 : // capacity issues), that must not prevent us rolling back a split. In this
3776 : // case it should be eventually scheduled in the background.
3777 : tracing::warn!("Failed to schedule {tenant_shard_id} during shard abort: {e}")
3778 : }
3779 :
3780 : self.maybe_reconcile_shard(shard, nodes);
3781 : }
3782 :
3783 : // We don't expect any new_shard_count shards to exist here, but drop them just in case
3784 0 : tenants.retain(|_id, s| s.shard.count != *new_shard_count);
3785 :
3786 : detach_locations
3787 : };
3788 :
3789 : for (node, child_id) in detach_locations {
3790 : if !node.is_available() {
3791 : // An unavailable node cannot be cleaned up now: to avoid blocking forever, we will permit this, and
3792 : // rely on the reconciliation that happens when a node transitions to Active to clean up. Since we have
3793 : // removed child shards from our in-memory state and database, the reconciliation will implicitly remove
3794 : // them from the node.
3795 : tracing::warn!("Node {node} unavailable, can't clean up during split abort. It will be cleaned up when it is reactivated.");
3796 : continue;
3797 : }
3798 :
3799 : // Detach the remote child. If the pageserver split API call is still in progress, this call will get
3800 : // a 503 and retry, up to our limit.
3801 : tracing::info!("Detaching {child_id} on {node}...");
3802 : match node
3803 : .with_client_retries(
3804 0 : |client| async move {
3805 0 : let config = LocationConfig {
3806 0 : mode: LocationConfigMode::Detached,
3807 0 : generation: None,
3808 0 : secondary_conf: None,
3809 0 : shard_number: child_id.shard_number.0,
3810 0 : shard_count: child_id.shard_count.literal(),
3811 0 : // Stripe size and tenant config don't matter when detaching
3812 0 : shard_stripe_size: 0,
3813 0 : tenant_conf: TenantConfig::default(),
3814 0 : };
3815 0 :
3816 0 : client.location_config(child_id, config, None, false).await
3817 0 : },
3818 : &self.config.jwt_token,
3819 : 1,
3820 : 10,
3821 : Duration::from_secs(5),
3822 : &self.cancel,
3823 : )
3824 : .await
3825 : {
3826 : Some(Ok(_)) => {}
3827 : Some(Err(e)) => {
3828 : // We failed to communicate with the remote node. This is problematic: we may be
3829 : // leaving it with a rogue child shard.
3830 : tracing::warn!(
3831 : "Failed to detach child {child_id} from node {node} during abort"
3832 : );
3833 : return Err(e.into());
3834 : }
3835 : None => {
3836 : // Cancellation: we were shutdown or the node went offline. Shutdown is fine, we'll
3837 : // clean up on restart. The node going offline requires a retry.
3838 : return Err(TenantShardSplitAbortError::Unavailable);
3839 : }
3840 : };
3841 : }
3842 :
3843 : tracing::info!("Successfully aborted split");
3844 : Ok(())
3845 : }
3846 :
3847 : /// Infallible final stage of [`Self::tenant_shard_split`]: update the contents
3848 : /// of the tenant map to reflect the child shards that exist after the split.
3849 0 : fn tenant_shard_split_commit_inmem(
3850 0 : &self,
3851 0 : tenant_id: TenantId,
3852 0 : new_shard_count: ShardCount,
3853 0 : new_stripe_size: Option<ShardStripeSize>,
3854 0 : ) -> (
3855 0 : TenantShardSplitResponse,
3856 0 : Vec<(TenantShardId, NodeId, ShardStripeSize)>,
3857 0 : Vec<ReconcilerWaiter>,
3858 0 : ) {
3859 0 : let mut response = TenantShardSplitResponse {
3860 0 : new_shards: Vec::new(),
3861 0 : };
3862 0 : let mut child_locations = Vec::new();
3863 0 : let mut waiters = Vec::new();
3864 0 :
3865 0 : {
3866 0 : let mut locked = self.inner.write().unwrap();
3867 0 :
3868 0 : let parent_ids = locked
3869 0 : .tenants
3870 0 : .range(TenantShardId::tenant_range(tenant_id))
3871 0 : .map(|(shard_id, _)| *shard_id)
3872 0 : .collect::<Vec<_>>();
3873 0 :
3874 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
3875 0 : for parent_id in parent_ids {
3876 0 : let child_ids = parent_id.split(new_shard_count);
3877 :
3878 0 : let (pageserver, generation, policy, parent_ident, config) = {
3879 0 : let mut old_state = tenants
3880 0 : .remove(&parent_id)
3881 0 : .expect("It was present, we just split it");
3882 0 :
3883 0 : // A non-splitting state is impossible, because [`Self::tenant_shard_split`] holds
3884 0 : // a TenantId lock and passes it through to [`TenantShardSplitAbort`] in case of cleanup:
3885 0 : // nothing else can clear this.
3886 0 : assert!(matches!(old_state.splitting, SplitState::Splitting));
3887 :
3888 0 : let old_attached = old_state.intent.get_attached().unwrap();
3889 0 : old_state.intent.clear(scheduler);
3890 0 : let generation = old_state.generation.expect("Shard must have been attached");
3891 0 : (
3892 0 : old_attached,
3893 0 : generation,
3894 0 : old_state.policy,
3895 0 : old_state.shard,
3896 0 : old_state.config,
3897 0 : )
3898 0 : };
3899 0 :
3900 0 : let mut schedule_context = ScheduleContext::default();
3901 0 : for child in child_ids {
3902 0 : let mut child_shard = parent_ident;
3903 0 : child_shard.number = child.shard_number;
3904 0 : child_shard.count = child.shard_count;
3905 0 : if let Some(stripe_size) = new_stripe_size {
3906 0 : child_shard.stripe_size = stripe_size;
3907 0 : }
3908 :
3909 0 : let mut child_observed: HashMap<NodeId, ObservedStateLocation> = HashMap::new();
3910 0 : child_observed.insert(
3911 0 : pageserver,
3912 0 : ObservedStateLocation {
3913 0 : conf: Some(attached_location_conf(
3914 0 : generation,
3915 0 : &child_shard,
3916 0 : &config,
3917 0 : &policy,
3918 0 : )),
3919 0 : },
3920 0 : );
3921 0 :
3922 0 : let mut child_state = TenantShard::new(child, child_shard, policy.clone());
3923 0 : child_state.intent = IntentState::single(scheduler, Some(pageserver));
3924 0 : child_state.observed = ObservedState {
3925 0 : locations: child_observed,
3926 0 : };
3927 0 : child_state.generation = Some(generation);
3928 0 : child_state.config = config.clone();
3929 0 :
3930 0 : // The child's TenantShard::splitting is intentionally left at the default value of Idle,
3931 0 : // as at this point in the split process we have succeeded and this part is infallible:
3932 0 : // we will never need to do any special recovery from this state.
3933 0 :
3934 0 : child_locations.push((child, pageserver, child_shard.stripe_size));
3935 :
3936 0 : if let Err(e) = child_state.schedule(scheduler, &mut schedule_context) {
3937 : // This is not fatal, because we've implicitly already got an attached
3938 : // location for the child shard. Failure here just means we couldn't
3939 : // find a secondary (e.g. because cluster is overloaded).
3940 0 : tracing::warn!("Failed to schedule child shard {child}: {e}");
3941 0 : }
3942 : // In the background, attach secondary locations for the new shards
3943 0 : if let Some(waiter) = self.maybe_reconcile_shard(&mut child_state, nodes) {
3944 0 : waiters.push(waiter);
3945 0 : }
3946 :
3947 0 : tenants.insert(child, child_state);
3948 0 : response.new_shards.push(child);
3949 : }
3950 : }
3951 0 : (response, child_locations, waiters)
3952 0 : }
3953 0 : }
3954 :
3955 0 : async fn tenant_shard_split_start_secondaries(
3956 0 : &self,
3957 0 : tenant_id: TenantId,
3958 0 : waiters: Vec<ReconcilerWaiter>,
3959 0 : ) {
3960 : // Wait for initial reconcile of child shards, this creates the secondary locations
3961 0 : if let Err(e) = self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
3962 : // This is not a failure to split: it's some issue reconciling the new child shards, perhaps
3963 : // their secondaries couldn't be attached.
3964 0 : tracing::warn!("Failed to reconcile after split: {e}");
3965 0 : return;
3966 0 : }
3967 :
3968 : // Take the state lock to discover the attached & secondary intents for all shards
3969 0 : let (attached, secondary) = {
3970 0 : let locked = self.inner.read().unwrap();
3971 0 : let mut attached = Vec::new();
3972 0 : let mut secondary = Vec::new();
3973 :
3974 0 : for (tenant_shard_id, shard) in
3975 0 : locked.tenants.range(TenantShardId::tenant_range(tenant_id))
3976 : {
3977 0 : let Some(node_id) = shard.intent.get_attached() else {
3978 : // Unexpected. Race with a PlacementPolicy change?
3979 0 : tracing::warn!(
3980 0 : "No attached node on {tenant_shard_id} immediately after shard split!"
3981 : );
3982 0 : continue;
3983 : };
3984 :
3985 0 : let Some(secondary_node_id) = shard.intent.get_secondary().first() else {
3986 : // No secondary location. Nothing for us to do.
3987 0 : continue;
3988 : };
3989 :
3990 0 : let attached_node = locked
3991 0 : .nodes
3992 0 : .get(node_id)
3993 0 : .expect("Pageservers may not be deleted while referenced");
3994 0 :
3995 0 : let secondary_node = locked
3996 0 : .nodes
3997 0 : .get(secondary_node_id)
3998 0 : .expect("Pageservers may not be deleted while referenced");
3999 0 :
4000 0 : attached.push((*tenant_shard_id, attached_node.clone()));
4001 0 : secondary.push((*tenant_shard_id, secondary_node.clone()));
4002 : }
4003 0 : (attached, secondary)
4004 0 : };
4005 0 :
4006 0 : if secondary.is_empty() {
4007 : // No secondary locations; nothing for us to do
4008 0 : return;
4009 0 : }
4010 :
4011 0 : for result in self
4012 0 : .tenant_for_shards_api(
4013 0 : attached,
4014 0 : |tenant_shard_id, client| async move {
4015 0 : client.tenant_heatmap_upload(tenant_shard_id).await
4016 0 : },
4017 0 : 1,
4018 0 : 1,
4019 0 : SHORT_RECONCILE_TIMEOUT,
4020 0 : &self.cancel,
4021 0 : )
4022 0 : .await
4023 : {
4024 0 : if let Err(e) = result {
4025 0 : tracing::warn!("Error calling heatmap upload after shard split: {e}");
4026 0 : return;
4027 0 : }
4028 : }
4029 :
4030 0 : for result in self
4031 0 : .tenant_for_shards_api(
4032 0 : secondary,
4033 0 : |tenant_shard_id, client| async move {
4034 0 : client
4035 0 : .tenant_secondary_download(tenant_shard_id, Some(Duration::ZERO))
4036 0 : .await
4037 0 : },
4038 0 : 1,
4039 0 : 1,
4040 0 : SHORT_RECONCILE_TIMEOUT,
4041 0 : &self.cancel,
4042 0 : )
4043 0 : .await
4044 : {
4045 0 : if let Err(e) = result {
4046 0 : tracing::warn!("Error calling secondary download after shard split: {e}");
4047 0 : return;
4048 0 : }
4049 : }
4050 0 : }
4051 :
4052 0 : pub(crate) async fn tenant_shard_split(
4053 0 : &self,
4054 0 : tenant_id: TenantId,
4055 0 : split_req: TenantShardSplitRequest,
4056 0 : ) -> Result<TenantShardSplitResponse, ApiError> {
4057 : // TODO: return 503 if we get stuck waiting for this lock
4058 : // (issue https://github.com/neondatabase/neon/issues/7108)
4059 0 : let _tenant_lock = trace_exclusive_lock(
4060 0 : &self.tenant_op_locks,
4061 0 : tenant_id,
4062 0 : TenantOperations::ShardSplit,
4063 0 : )
4064 0 : .await;
4065 :
4066 0 : let new_shard_count = ShardCount::new(split_req.new_shard_count);
4067 0 : let new_stripe_size = split_req.new_stripe_size;
4068 :
4069 : // Validate the request and construct parameters. This phase is fallible, but does not require
4070 : // rollback on errors, as it does no I/O and mutates no state.
4071 0 : let shard_split_params = match self.prepare_tenant_shard_split(tenant_id, split_req)? {
4072 0 : ShardSplitAction::NoOp(resp) => return Ok(resp),
4073 0 : ShardSplitAction::Split(params) => params,
4074 : };
4075 :
4076 : // Execute this split: this phase mutates state and does remote I/O on pageservers. If it fails,
4077 : // we must roll back.
4078 0 : let r = self
4079 0 : .do_tenant_shard_split(tenant_id, shard_split_params)
4080 0 : .await;
4081 :
4082 0 : let (response, waiters) = match r {
4083 0 : Ok(r) => r,
4084 0 : Err(e) => {
4085 0 : // Split might be part-done, we must do work to abort it.
4086 0 : tracing::warn!("Enqueuing background abort of split on {tenant_id}");
4087 0 : self.abort_tx
4088 0 : .send(TenantShardSplitAbort {
4089 0 : tenant_id,
4090 0 : new_shard_count,
4091 0 : new_stripe_size,
4092 0 : _tenant_lock,
4093 0 : })
4094 0 : // Ignore error sending: that just means we're shutting down: aborts are ephemeral so it's fine to drop it.
4095 0 : .ok();
4096 0 : return Err(e);
4097 : }
4098 : };
4099 :
4100 : // The split is now complete. As an optimization, we will trigger all the child shards to upload
4101 : // a heatmap immediately, and all their secondary locations to start downloading: this avoids waiting
4102 : // for the background heatmap/download interval before secondaries get warm enough to migrate shards
4103 : // in [`Self::optimize_all`]
4104 0 : self.tenant_shard_split_start_secondaries(tenant_id, waiters)
4105 0 : .await;
4106 0 : Ok(response)
4107 0 : }
4108 :
4109 0 : fn prepare_tenant_shard_split(
4110 0 : &self,
4111 0 : tenant_id: TenantId,
4112 0 : split_req: TenantShardSplitRequest,
4113 0 : ) -> Result<ShardSplitAction, ApiError> {
4114 0 : fail::fail_point!("shard-split-validation", |_| Err(ApiError::BadRequest(
4115 0 : anyhow::anyhow!("failpoint")
4116 0 : )));
4117 :
4118 0 : let mut policy = None;
4119 0 : let mut config = None;
4120 0 : let mut shard_ident = None;
4121 : // Validate input, and calculate which shards we will create
4122 0 : let (old_shard_count, targets) =
4123 : {
4124 0 : let locked = self.inner.read().unwrap();
4125 0 :
4126 0 : let pageservers = locked.nodes.clone();
4127 0 :
4128 0 : let mut targets = Vec::new();
4129 0 :
4130 0 : // In case this is a retry, count how many already-split shards we found
4131 0 : let mut children_found = Vec::new();
4132 0 : let mut old_shard_count = None;
4133 :
4134 0 : for (tenant_shard_id, shard) in
4135 0 : locked.tenants.range(TenantShardId::tenant_range(tenant_id))
4136 : {
4137 0 : match shard.shard.count.count().cmp(&split_req.new_shard_count) {
4138 : Ordering::Equal => {
4139 : // Already split this
4140 0 : children_found.push(*tenant_shard_id);
4141 0 : continue;
4142 : }
4143 : Ordering::Greater => {
4144 0 : return Err(ApiError::BadRequest(anyhow::anyhow!(
4145 0 : "Requested count {} but already have shards at count {}",
4146 0 : split_req.new_shard_count,
4147 0 : shard.shard.count.count()
4148 0 : )));
4149 : }
4150 0 : Ordering::Less => {
4151 0 : // Fall through: this shard has lower count than requested,
4152 0 : // is a candidate for splitting.
4153 0 : }
4154 0 : }
4155 0 :
4156 0 : match old_shard_count {
4157 0 : None => old_shard_count = Some(shard.shard.count),
4158 0 : Some(old_shard_count) => {
4159 0 : if old_shard_count != shard.shard.count {
4160 : // We may hit this case if a caller asked for two splits to
4161 : // different sizes, before the first one is complete.
4162 : // e.g. 1->2, 2->4, where the 4 call comes while we have a mixture
4163 : // of shard_count=1 and shard_count=2 shards in the map.
4164 0 : return Err(ApiError::Conflict(
4165 0 : "Cannot split, currently mid-split".to_string(),
4166 0 : ));
4167 0 : }
4168 : }
4169 : }
4170 0 : if policy.is_none() {
4171 0 : policy = Some(shard.policy.clone());
4172 0 : }
4173 0 : if shard_ident.is_none() {
4174 0 : shard_ident = Some(shard.shard);
4175 0 : }
4176 0 : if config.is_none() {
4177 0 : config = Some(shard.config.clone());
4178 0 : }
4179 :
4180 0 : if tenant_shard_id.shard_count.count() == split_req.new_shard_count {
4181 0 : tracing::info!(
4182 0 : "Tenant shard {} already has shard count {}",
4183 : tenant_shard_id,
4184 : split_req.new_shard_count
4185 : );
4186 0 : continue;
4187 0 : }
4188 :
4189 0 : let node_id = shard.intent.get_attached().ok_or(ApiError::BadRequest(
4190 0 : anyhow::anyhow!("Cannot split a tenant that is not attached"),
4191 0 : ))?;
4192 :
4193 0 : let node = pageservers
4194 0 : .get(&node_id)
4195 0 : .expect("Pageservers may not be deleted while referenced");
4196 0 :
4197 0 : targets.push(ShardSplitTarget {
4198 0 : parent_id: *tenant_shard_id,
4199 0 : node: node.clone(),
4200 0 : child_ids: tenant_shard_id
4201 0 : .split(ShardCount::new(split_req.new_shard_count)),
4202 0 : });
4203 : }
4204 :
4205 0 : if targets.is_empty() {
4206 0 : if children_found.len() == split_req.new_shard_count as usize {
4207 0 : return Ok(ShardSplitAction::NoOp(TenantShardSplitResponse {
4208 0 : new_shards: children_found,
4209 0 : }));
4210 : } else {
4211 : // No shards found to split, and no existing children found: the
4212 : // tenant doesn't exist at all.
4213 0 : return Err(ApiError::NotFound(
4214 0 : anyhow::anyhow!("Tenant {} not found", tenant_id).into(),
4215 0 : ));
4216 : }
4217 0 : }
4218 0 :
4219 0 : (old_shard_count, targets)
4220 0 : };
4221 0 :
4222 0 : // unwrap safety: we would have returned above if we didn't find at least one shard to split
4223 0 : let old_shard_count = old_shard_count.unwrap();
4224 0 : let shard_ident = if let Some(new_stripe_size) = split_req.new_stripe_size {
4225 : // This ShardIdentity will be used as the template for all children, so this implicitly
4226 : // applies the new stripe size to the children.
4227 0 : let mut shard_ident = shard_ident.unwrap();
4228 0 : if shard_ident.count.count() > 1 && shard_ident.stripe_size != new_stripe_size {
4229 0 : return Err(ApiError::BadRequest(anyhow::anyhow!("Attempted to change stripe size ({:?}->{new_stripe_size:?}) on a tenant with multiple shards", shard_ident.stripe_size)));
4230 0 : }
4231 0 :
4232 0 : shard_ident.stripe_size = new_stripe_size;
4233 0 : tracing::info!("applied stripe size {}", shard_ident.stripe_size.0);
4234 0 : shard_ident
4235 : } else {
4236 0 : shard_ident.unwrap()
4237 : };
4238 0 : let policy = policy.unwrap();
4239 0 : let config = config.unwrap();
4240 0 :
4241 0 : Ok(ShardSplitAction::Split(Box::new(ShardSplitParams {
4242 0 : old_shard_count,
4243 0 : new_shard_count: ShardCount::new(split_req.new_shard_count),
4244 0 : new_stripe_size: split_req.new_stripe_size,
4245 0 : targets,
4246 0 : policy,
4247 0 : config,
4248 0 : shard_ident,
4249 0 : })))
4250 0 : }
4251 :
4252 0 : async fn do_tenant_shard_split(
4253 0 : &self,
4254 0 : tenant_id: TenantId,
4255 0 : params: Box<ShardSplitParams>,
4256 0 : ) -> Result<(TenantShardSplitResponse, Vec<ReconcilerWaiter>), ApiError> {
4257 0 : // FIXME: we have dropped self.inner lock, and not yet written anything to the database: another
4258 0 : // request could occur here, deleting or mutating the tenant. begin_shard_split checks that the
4259 0 : // parent shards exist as expected, but it would be neater to do the above pre-checks within the
4260 0 : // same database transaction rather than pre-check in-memory and then maybe-fail the database write.
4261 0 : // (https://github.com/neondatabase/neon/issues/6676)
4262 0 :
4263 0 : let ShardSplitParams {
4264 0 : old_shard_count,
4265 0 : new_shard_count,
4266 0 : new_stripe_size,
4267 0 : mut targets,
4268 0 : policy,
4269 0 : config,
4270 0 : shard_ident,
4271 0 : } = *params;
4272 :
4273 : // Drop any secondary locations: pageservers do not support splitting these, and in any case the
4274 : // end-state for a split tenant will usually be to have secondary locations on different nodes.
4275 : // The reconciliation calls in this block also implicitly cancel+barrier wrt any ongoing reconciliation
4276 : // at the time of split.
4277 0 : let waiters = {
4278 0 : let mut locked = self.inner.write().unwrap();
4279 0 : let mut waiters = Vec::new();
4280 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
4281 0 : for target in &mut targets {
4282 0 : let Some(shard) = tenants.get_mut(&target.parent_id) else {
4283 : // Paranoia check: this shouldn't happen: we have the oplock for this tenant ID.
4284 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
4285 0 : "Shard {} not found",
4286 0 : target.parent_id
4287 0 : )));
4288 : };
4289 :
4290 0 : if shard.intent.get_attached() != &Some(target.node.get_id()) {
4291 : // Paranoia check: this shouldn't happen: we have the oplock for this tenant ID.
4292 0 : return Err(ApiError::Conflict(format!(
4293 0 : "Shard {} unexpectedly rescheduled during split",
4294 0 : target.parent_id
4295 0 : )));
4296 0 : }
4297 0 :
4298 0 : // Irrespective of PlacementPolicy, clear secondary locations from intent
4299 0 : shard.intent.clear_secondary(scheduler);
4300 :
4301 : // Run Reconciler to execute detach fo secondary locations.
4302 0 : if let Some(waiter) = self.maybe_reconcile_shard(shard, nodes) {
4303 0 : waiters.push(waiter);
4304 0 : }
4305 : }
4306 0 : waiters
4307 0 : };
4308 0 : self.await_waiters(waiters, RECONCILE_TIMEOUT).await?;
4309 :
4310 : // Before creating any new child shards in memory or on the pageservers, persist them: this
4311 : // enables us to ensure that we will always be able to clean up if something goes wrong. This also
4312 : // acts as the protection against two concurrent attempts to split: one of them will get a database
4313 : // error trying to insert the child shards.
4314 0 : let mut child_tsps = Vec::new();
4315 0 : for target in &targets {
4316 0 : let mut this_child_tsps = Vec::new();
4317 0 : for child in &target.child_ids {
4318 0 : let mut child_shard = shard_ident;
4319 0 : child_shard.number = child.shard_number;
4320 0 : child_shard.count = child.shard_count;
4321 0 :
4322 0 : tracing::info!(
4323 0 : "Create child shard persistence with stripe size {}",
4324 : shard_ident.stripe_size.0
4325 : );
4326 :
4327 0 : this_child_tsps.push(TenantShardPersistence {
4328 0 : tenant_id: child.tenant_id.to_string(),
4329 0 : shard_number: child.shard_number.0 as i32,
4330 0 : shard_count: child.shard_count.literal() as i32,
4331 0 : shard_stripe_size: shard_ident.stripe_size.0 as i32,
4332 0 : // Note: this generation is a placeholder, [`Persistence::begin_shard_split`] will
4333 0 : // populate the correct generation as part of its transaction, to protect us
4334 0 : // against racing with changes in the state of the parent.
4335 0 : generation: None,
4336 0 : generation_pageserver: Some(target.node.get_id().0 as i64),
4337 0 : placement_policy: serde_json::to_string(&policy).unwrap(),
4338 0 : config: serde_json::to_string(&config).unwrap(),
4339 0 : splitting: SplitState::Splitting,
4340 0 :
4341 0 : // Scheduling policies and preferred AZ do not carry through to children
4342 0 : scheduling_policy: serde_json::to_string(&ShardSchedulingPolicy::default())
4343 0 : .unwrap(),
4344 0 : preferred_az_id: None,
4345 0 : });
4346 : }
4347 :
4348 0 : child_tsps.push((target.parent_id, this_child_tsps));
4349 : }
4350 :
4351 0 : if let Err(e) = self
4352 0 : .persistence
4353 0 : .begin_shard_split(old_shard_count, tenant_id, child_tsps)
4354 0 : .await
4355 : {
4356 0 : match e {
4357 : DatabaseError::Query(diesel::result::Error::DatabaseError(
4358 : DatabaseErrorKind::UniqueViolation,
4359 : _,
4360 : )) => {
4361 : // Inserting a child shard violated a unique constraint: we raced with another call to
4362 : // this function
4363 0 : tracing::warn!("Conflicting attempt to split {tenant_id}: {e}");
4364 0 : return Err(ApiError::Conflict("Tenant is already splitting".into()));
4365 : }
4366 0 : _ => return Err(ApiError::InternalServerError(e.into())),
4367 : }
4368 0 : }
4369 0 : fail::fail_point!("shard-split-post-begin", |_| Err(
4370 0 : ApiError::InternalServerError(anyhow::anyhow!("failpoint"))
4371 0 : ));
4372 :
4373 : // Now that I have persisted the splitting state, apply it in-memory. This is infallible, so
4374 : // callers may assume that if splitting is set in memory, then it was persisted, and if splitting
4375 : // is not set in memory, then it was not persisted.
4376 : {
4377 0 : let mut locked = self.inner.write().unwrap();
4378 0 : for target in &targets {
4379 0 : if let Some(parent_shard) = locked.tenants.get_mut(&target.parent_id) {
4380 0 : parent_shard.splitting = SplitState::Splitting;
4381 0 : // Put the observed state to None, to reflect that it is indeterminate once we start the
4382 0 : // split operation.
4383 0 : parent_shard
4384 0 : .observed
4385 0 : .locations
4386 0 : .insert(target.node.get_id(), ObservedStateLocation { conf: None });
4387 0 : }
4388 : }
4389 : }
4390 :
4391 : // TODO: issue split calls concurrently (this only matters once we're splitting
4392 : // N>1 shards into M shards -- initially we're usually splitting 1 shard into N).
4393 :
4394 0 : for target in &targets {
4395 : let ShardSplitTarget {
4396 0 : parent_id,
4397 0 : node,
4398 0 : child_ids,
4399 0 : } = target;
4400 0 : let client = PageserverClient::new(
4401 0 : node.get_id(),
4402 0 : node.base_url(),
4403 0 : self.config.jwt_token.as_deref(),
4404 0 : );
4405 0 : let response = client
4406 0 : .tenant_shard_split(
4407 0 : *parent_id,
4408 0 : TenantShardSplitRequest {
4409 0 : new_shard_count: new_shard_count.literal(),
4410 0 : new_stripe_size,
4411 0 : },
4412 0 : )
4413 0 : .await
4414 0 : .map_err(|e| ApiError::Conflict(format!("Failed to split {}: {}", parent_id, e)))?;
4415 :
4416 0 : fail::fail_point!("shard-split-post-remote", |_| Err(ApiError::Conflict(
4417 0 : "failpoint".to_string()
4418 0 : )));
4419 :
4420 0 : failpoint_support::sleep_millis_async!("shard-split-post-remote-sleep", &self.cancel);
4421 :
4422 0 : tracing::info!(
4423 0 : "Split {} into {}",
4424 0 : parent_id,
4425 0 : response
4426 0 : .new_shards
4427 0 : .iter()
4428 0 : .map(|s| format!("{:?}", s))
4429 0 : .collect::<Vec<_>>()
4430 0 : .join(",")
4431 : );
4432 :
4433 0 : if &response.new_shards != child_ids {
4434 : // This should never happen: the pageserver should agree with us on how shard splits work.
4435 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
4436 0 : "Splitting shard {} resulted in unexpected IDs: {:?} (expected {:?})",
4437 0 : parent_id,
4438 0 : response.new_shards,
4439 0 : child_ids
4440 0 : )));
4441 0 : }
4442 : }
4443 :
4444 : // TODO: if the pageserver restarted concurrently with our split API call,
4445 : // the actual generation of the child shard might differ from the generation
4446 : // we expect it to have. In order for our in-database generation to end up
4447 : // correct, we should carry the child generation back in the response and apply it here
4448 : // in complete_shard_split (and apply the correct generation in memory)
4449 : // (or, we can carry generation in the request and reject the request if
4450 : // it doesn't match, but that requires more retry logic on this side)
4451 :
4452 0 : self.persistence
4453 0 : .complete_shard_split(tenant_id, old_shard_count)
4454 0 : .await?;
4455 :
4456 0 : fail::fail_point!("shard-split-post-complete", |_| Err(
4457 0 : ApiError::InternalServerError(anyhow::anyhow!("failpoint"))
4458 0 : ));
4459 :
4460 : // Replace all the shards we just split with their children: this phase is infallible.
4461 0 : let (response, child_locations, waiters) =
4462 0 : self.tenant_shard_split_commit_inmem(tenant_id, new_shard_count, new_stripe_size);
4463 0 :
4464 0 : // Now that we have scheduled the child shards, attempt to set their preferred AZ
4465 0 : // to that of the pageserver they've been attached on.
4466 0 : let preferred_azs = {
4467 0 : let locked = self.inner.read().unwrap();
4468 0 : child_locations
4469 0 : .iter()
4470 0 : .filter_map(|(tid, node_id, _stripe_size)| {
4471 0 : let az_id = locked
4472 0 : .nodes
4473 0 : .get(node_id)
4474 0 : .map(|n| n.get_availability_zone_id().to_string())?;
4475 :
4476 0 : Some((*tid, az_id))
4477 0 : })
4478 0 : .collect::<Vec<_>>()
4479 : };
4480 :
4481 0 : let updated = self
4482 0 : .persistence
4483 0 : .set_tenant_shard_preferred_azs(preferred_azs)
4484 0 : .await
4485 0 : .map_err(|err| {
4486 0 : ApiError::InternalServerError(anyhow::anyhow!(
4487 0 : "Failed to persist preferred az ids: {err}"
4488 0 : ))
4489 0 : });
4490 0 :
4491 0 : match updated {
4492 0 : Ok(updated) => {
4493 0 : let mut locked = self.inner.write().unwrap();
4494 0 : for (tid, az_id) in updated {
4495 0 : if let Some(shard) = locked.tenants.get_mut(&tid) {
4496 0 : shard.set_preferred_az(az_id);
4497 0 : }
4498 : }
4499 : }
4500 0 : Err(err) => {
4501 0 : tracing::warn!("Failed to persist preferred AZs after split: {err}");
4502 : }
4503 : }
4504 :
4505 : // Send compute notifications for all the new shards
4506 0 : let mut failed_notifications = Vec::new();
4507 0 : for (child_id, child_ps, stripe_size) in child_locations {
4508 0 : if let Err(e) = self
4509 0 : .compute_hook
4510 0 : .notify(child_id, child_ps, stripe_size, &self.cancel)
4511 0 : .await
4512 : {
4513 0 : tracing::warn!("Failed to update compute of {}->{} during split, proceeding anyway to complete split ({e})",
4514 : child_id, child_ps);
4515 0 : failed_notifications.push(child_id);
4516 0 : }
4517 : }
4518 :
4519 : // If we failed any compute notifications, make a note to retry later.
4520 0 : if !failed_notifications.is_empty() {
4521 0 : let mut locked = self.inner.write().unwrap();
4522 0 : for failed in failed_notifications {
4523 0 : if let Some(shard) = locked.tenants.get_mut(&failed) {
4524 0 : shard.pending_compute_notification = true;
4525 0 : }
4526 : }
4527 0 : }
4528 :
4529 0 : Ok((response, waiters))
4530 0 : }
4531 :
4532 0 : pub(crate) async fn tenant_shard_migrate(
4533 0 : &self,
4534 0 : tenant_shard_id: TenantShardId,
4535 0 : migrate_req: TenantShardMigrateRequest,
4536 0 : ) -> Result<TenantShardMigrateResponse, ApiError> {
4537 0 : let waiter = {
4538 0 : let mut locked = self.inner.write().unwrap();
4539 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
4540 :
4541 0 : let Some(node) = nodes.get(&migrate_req.node_id) else {
4542 0 : return Err(ApiError::BadRequest(anyhow::anyhow!(
4543 0 : "Node {} not found",
4544 0 : migrate_req.node_id
4545 0 : )));
4546 : };
4547 :
4548 0 : if !node.is_available() {
4549 : // Warn but proceed: the caller may intend to manually adjust the placement of
4550 : // a shard even if the node is down, e.g. if intervening during an incident.
4551 0 : tracing::warn!("Migrating to unavailable node {node}");
4552 0 : }
4553 :
4554 0 : let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
4555 0 : return Err(ApiError::NotFound(
4556 0 : anyhow::anyhow!("Tenant shard not found").into(),
4557 0 : ));
4558 : };
4559 :
4560 0 : if shard.intent.get_attached() == &Some(migrate_req.node_id) {
4561 : // No-op case: we will still proceed to wait for reconciliation in case it is
4562 : // incomplete from an earlier update to the intent.
4563 0 : tracing::info!("Migrating: intent is unchanged {:?}", shard.intent);
4564 : } else {
4565 0 : let old_attached = *shard.intent.get_attached();
4566 0 :
4567 0 : match shard.policy {
4568 0 : PlacementPolicy::Attached(n) => {
4569 0 : // If our new attached node was a secondary, it no longer should be.
4570 0 : shard.intent.remove_secondary(scheduler, migrate_req.node_id);
4571 :
4572 : // If we were already attached to something, demote that to a secondary
4573 0 : if let Some(old_attached) = old_attached {
4574 0 : if n > 0 {
4575 : // Remove other secondaries to make room for the location we'll demote
4576 0 : while shard.intent.get_secondary().len() >= n {
4577 0 : shard.intent.pop_secondary(scheduler);
4578 0 : }
4579 :
4580 0 : shard.intent.push_secondary(scheduler, old_attached);
4581 0 : }
4582 0 : }
4583 :
4584 0 : shard.intent.set_attached(scheduler, Some(migrate_req.node_id));
4585 : }
4586 0 : PlacementPolicy::Secondary => {
4587 0 : shard.intent.clear(scheduler);
4588 0 : shard.intent.push_secondary(scheduler, migrate_req.node_id);
4589 0 : }
4590 : PlacementPolicy::Detached => {
4591 0 : return Err(ApiError::BadRequest(anyhow::anyhow!(
4592 0 : "Cannot migrate a tenant that is PlacementPolicy::Detached: configure it to an attached policy first"
4593 0 : )))
4594 : }
4595 : }
4596 :
4597 0 : tracing::info!("Migrating: new intent {:?}", shard.intent);
4598 0 : shard.sequence = shard.sequence.next();
4599 : }
4600 :
4601 0 : self.maybe_reconcile_shard(shard, nodes)
4602 : };
4603 :
4604 0 : if let Some(waiter) = waiter {
4605 0 : waiter.wait_timeout(RECONCILE_TIMEOUT).await?;
4606 : } else {
4607 0 : tracing::info!("Migration is a no-op");
4608 : }
4609 :
4610 0 : Ok(TenantShardMigrateResponse {})
4611 0 : }
4612 :
4613 : /// This is for debug/support only: we simply drop all state for a tenant, without
4614 : /// detaching or deleting it on pageservers.
4615 0 : pub(crate) async fn tenant_drop(&self, tenant_id: TenantId) -> Result<(), ApiError> {
4616 0 : self.persistence.delete_tenant(tenant_id).await?;
4617 :
4618 0 : let mut locked = self.inner.write().unwrap();
4619 0 : let (_nodes, tenants, scheduler) = locked.parts_mut();
4620 0 : let mut shards = Vec::new();
4621 0 : for (tenant_shard_id, _) in tenants.range(TenantShardId::tenant_range(tenant_id)) {
4622 0 : shards.push(*tenant_shard_id);
4623 0 : }
4624 :
4625 0 : for shard_id in shards {
4626 0 : if let Some(mut shard) = tenants.remove(&shard_id) {
4627 0 : shard.intent.clear(scheduler);
4628 0 : }
4629 : }
4630 :
4631 0 : Ok(())
4632 0 : }
4633 :
4634 : /// This is for debug/support only: assuming tenant data is already present in S3, we "create" a
4635 : /// tenant with a very high generation number so that it will see the existing data.
4636 0 : pub(crate) async fn tenant_import(
4637 0 : &self,
4638 0 : tenant_id: TenantId,
4639 0 : ) -> Result<TenantCreateResponse, ApiError> {
4640 0 : // Pick an arbitrary available pageserver to use for scanning the tenant in remote storage
4641 0 : let maybe_node = {
4642 0 : self.inner
4643 0 : .read()
4644 0 : .unwrap()
4645 0 : .nodes
4646 0 : .values()
4647 0 : .find(|n| n.is_available())
4648 0 : .cloned()
4649 : };
4650 0 : let Some(node) = maybe_node else {
4651 0 : return Err(ApiError::BadRequest(anyhow::anyhow!("No nodes available")));
4652 : };
4653 :
4654 0 : let client = PageserverClient::new(
4655 0 : node.get_id(),
4656 0 : node.base_url(),
4657 0 : self.config.jwt_token.as_deref(),
4658 0 : );
4659 :
4660 0 : let scan_result = client
4661 0 : .tenant_scan_remote_storage(tenant_id)
4662 0 : .await
4663 0 : .map_err(|e| passthrough_api_error(&node, e))?;
4664 :
4665 : // A post-split tenant may contain a mixture of shard counts in remote storage: pick the highest count.
4666 0 : let Some(shard_count) = scan_result
4667 0 : .shards
4668 0 : .iter()
4669 0 : .map(|s| s.tenant_shard_id.shard_count)
4670 0 : .max()
4671 : else {
4672 0 : return Err(ApiError::NotFound(
4673 0 : anyhow::anyhow!("No shards found").into(),
4674 0 : ));
4675 : };
4676 :
4677 : // Ideally we would set each newly imported shard's generation independently, but for correctness it is sufficient
4678 : // to
4679 0 : let generation = scan_result
4680 0 : .shards
4681 0 : .iter()
4682 0 : .map(|s| s.generation)
4683 0 : .max()
4684 0 : .expect("We already validated >0 shards");
4685 0 :
4686 0 : // FIXME: we have no way to recover the shard stripe size from contents of remote storage: this will
4687 0 : // only work if they were using the default stripe size.
4688 0 : let stripe_size = ShardParameters::DEFAULT_STRIPE_SIZE;
4689 :
4690 0 : let (response, waiters) = self
4691 0 : .do_tenant_create(TenantCreateRequest {
4692 0 : new_tenant_id: TenantShardId::unsharded(tenant_id),
4693 0 : generation,
4694 0 :
4695 0 : shard_parameters: ShardParameters {
4696 0 : count: shard_count,
4697 0 : stripe_size,
4698 0 : },
4699 0 : placement_policy: Some(PlacementPolicy::Attached(0)), // No secondaries, for convenient debug/hacking
4700 0 :
4701 0 : // There is no way to know what the tenant's config was: revert to defaults
4702 0 : //
4703 0 : // TODO: remove `switch_aux_file_policy` once we finish auxv2 migration
4704 0 : //
4705 0 : // we write to both v1+v2 storage, so that the test case can use either storage format for testing
4706 0 : config: TenantConfig {
4707 0 : switch_aux_file_policy: Some(models::AuxFilePolicy::CrossValidation),
4708 0 : ..TenantConfig::default()
4709 0 : },
4710 0 : })
4711 0 : .await?;
4712 :
4713 0 : if let Err(e) = self.await_waiters(waiters, SHORT_RECONCILE_TIMEOUT).await {
4714 : // Since this is a debug/support operation, all kinds of weird issues are possible (e.g. this
4715 : // tenant doesn't exist in the control plane), so don't fail the request if it can't fully
4716 : // reconcile, as reconciliation includes notifying compute.
4717 0 : tracing::warn!(%tenant_id, "Reconcile not done yet while importing tenant ({e})");
4718 0 : }
4719 :
4720 0 : Ok(response)
4721 0 : }
4722 :
4723 : /// For debug/support: a full JSON dump of TenantShards. Returns a response so that
4724 : /// we don't have to make TenantShard clonable in the return path.
4725 0 : pub(crate) fn tenants_dump(&self) -> Result<hyper::Response<hyper::Body>, ApiError> {
4726 0 : let serialized = {
4727 0 : let locked = self.inner.read().unwrap();
4728 0 : let result = locked.tenants.values().collect::<Vec<_>>();
4729 0 : serde_json::to_string(&result).map_err(|e| ApiError::InternalServerError(e.into()))?
4730 : };
4731 :
4732 0 : hyper::Response::builder()
4733 0 : .status(hyper::StatusCode::OK)
4734 0 : .header(hyper::header::CONTENT_TYPE, "application/json")
4735 0 : .body(hyper::Body::from(serialized))
4736 0 : .map_err(|e| ApiError::InternalServerError(e.into()))
4737 0 : }
4738 :
4739 : /// Check the consistency of in-memory state vs. persistent state, and check that the
4740 : /// scheduler's statistics are up to date.
4741 : ///
4742 : /// These consistency checks expect an **idle** system. If changes are going on while
4743 : /// we run, then we can falsely indicate a consistency issue. This is sufficient for end-of-test
4744 : /// checks, but not suitable for running continuously in the background in the field.
4745 0 : pub(crate) async fn consistency_check(&self) -> Result<(), ApiError> {
4746 0 : let (mut expect_nodes, mut expect_shards) = {
4747 0 : let locked = self.inner.read().unwrap();
4748 0 :
4749 0 : locked
4750 0 : .scheduler
4751 0 : .consistency_check(locked.nodes.values(), locked.tenants.values())
4752 0 : .context("Scheduler checks")
4753 0 : .map_err(ApiError::InternalServerError)?;
4754 :
4755 0 : let expect_nodes = locked
4756 0 : .nodes
4757 0 : .values()
4758 0 : .map(|n| n.to_persistent())
4759 0 : .collect::<Vec<_>>();
4760 0 :
4761 0 : let expect_shards = locked
4762 0 : .tenants
4763 0 : .values()
4764 0 : .map(|t| t.to_persistent())
4765 0 : .collect::<Vec<_>>();
4766 :
4767 : // This method can only validate the state of an idle system: if a reconcile is in
4768 : // progress, fail out early to avoid giving false errors on state that won't match
4769 : // between database and memory under a ReconcileResult is processed.
4770 0 : for t in locked.tenants.values() {
4771 0 : if t.reconciler.is_some() {
4772 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
4773 0 : "Shard {} reconciliation in progress",
4774 0 : t.tenant_shard_id
4775 0 : )));
4776 0 : }
4777 : }
4778 :
4779 0 : (expect_nodes, expect_shards)
4780 : };
4781 :
4782 0 : let mut nodes = self.persistence.list_nodes().await?;
4783 0 : expect_nodes.sort_by_key(|n| n.node_id);
4784 0 : nodes.sort_by_key(|n| n.node_id);
4785 0 :
4786 0 : if nodes != expect_nodes {
4787 0 : tracing::error!("Consistency check failed on nodes.");
4788 0 : tracing::error!(
4789 0 : "Nodes in memory: {}",
4790 0 : serde_json::to_string(&expect_nodes)
4791 0 : .map_err(|e| ApiError::InternalServerError(e.into()))?
4792 : );
4793 0 : tracing::error!(
4794 0 : "Nodes in database: {}",
4795 0 : serde_json::to_string(&nodes)
4796 0 : .map_err(|e| ApiError::InternalServerError(e.into()))?
4797 : );
4798 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
4799 0 : "Node consistency failure"
4800 0 : )));
4801 0 : }
4802 :
4803 0 : let mut shards = self.persistence.list_tenant_shards().await?;
4804 0 : shards.sort_by_key(|tsp| (tsp.tenant_id.clone(), tsp.shard_number, tsp.shard_count));
4805 0 : expect_shards.sort_by_key(|tsp| (tsp.tenant_id.clone(), tsp.shard_number, tsp.shard_count));
4806 0 :
4807 0 : if shards != expect_shards {
4808 0 : tracing::error!("Consistency check failed on shards.");
4809 0 : tracing::error!(
4810 0 : "Shards in memory: {}",
4811 0 : serde_json::to_string(&expect_shards)
4812 0 : .map_err(|e| ApiError::InternalServerError(e.into()))?
4813 : );
4814 0 : tracing::error!(
4815 0 : "Shards in database: {}",
4816 0 : serde_json::to_string(&shards)
4817 0 : .map_err(|e| ApiError::InternalServerError(e.into()))?
4818 : );
4819 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
4820 0 : "Shard consistency failure"
4821 0 : )));
4822 0 : }
4823 0 :
4824 0 : Ok(())
4825 0 : }
4826 :
4827 : /// For debug/support: a JSON dump of the [`Scheduler`]. Returns a response so that
4828 : /// we don't have to make TenantShard clonable in the return path.
4829 0 : pub(crate) fn scheduler_dump(&self) -> Result<hyper::Response<hyper::Body>, ApiError> {
4830 0 : let serialized = {
4831 0 : let locked = self.inner.read().unwrap();
4832 0 : serde_json::to_string(&locked.scheduler)
4833 0 : .map_err(|e| ApiError::InternalServerError(e.into()))?
4834 : };
4835 :
4836 0 : hyper::Response::builder()
4837 0 : .status(hyper::StatusCode::OK)
4838 0 : .header(hyper::header::CONTENT_TYPE, "application/json")
4839 0 : .body(hyper::Body::from(serialized))
4840 0 : .map_err(|e| ApiError::InternalServerError(e.into()))
4841 0 : }
4842 :
4843 : /// This is for debug/support only: we simply drop all state for a tenant, without
4844 : /// detaching or deleting it on pageservers. We do not try and re-schedule any
4845 : /// tenants that were on this node.
4846 0 : pub(crate) async fn node_drop(&self, node_id: NodeId) -> Result<(), ApiError> {
4847 0 : self.persistence.delete_node(node_id).await?;
4848 :
4849 0 : let mut locked = self.inner.write().unwrap();
4850 :
4851 0 : for shard in locked.tenants.values_mut() {
4852 0 : shard.deref_node(node_id);
4853 0 : shard.observed.locations.remove(&node_id);
4854 0 : }
4855 :
4856 0 : let mut nodes = (*locked.nodes).clone();
4857 0 : nodes.remove(&node_id);
4858 0 : locked.nodes = Arc::new(nodes);
4859 0 :
4860 0 : locked.scheduler.node_remove(node_id);
4861 0 :
4862 0 : Ok(())
4863 0 : }
4864 :
4865 : /// If a node has any work on it, it will be rescheduled: this is "clean" in the sense
4866 : /// that we don't leave any bad state behind in the storage controller, but unclean
4867 : /// in the sense that we are not carefully draining the node.
4868 0 : pub(crate) async fn node_delete(&self, node_id: NodeId) -> Result<(), ApiError> {
4869 0 : let _node_lock =
4870 0 : trace_exclusive_lock(&self.node_op_locks, node_id, NodeOperations::Delete).await;
4871 :
4872 : // 1. Atomically update in-memory state:
4873 : // - set the scheduling state to Pause to make subsequent scheduling ops skip it
4874 : // - update shards' intents to exclude the node, and reschedule any shards whose intents we modified.
4875 : // - drop the node from the main nodes map, so that when running reconciles complete they do not
4876 : // re-insert references to this node into the ObservedState of shards
4877 : // - drop the node from the scheduler
4878 : {
4879 0 : let mut locked = self.inner.write().unwrap();
4880 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
4881 0 :
4882 0 : {
4883 0 : let mut nodes_mut = (*nodes).deref().clone();
4884 0 : match nodes_mut.get_mut(&node_id) {
4885 0 : Some(node) => {
4886 0 : // We do not bother setting this in the database, because we're about to delete the row anyway, and
4887 0 : // if we crash it would not be desirable to leave the node paused after a restart.
4888 0 : node.set_scheduling(NodeSchedulingPolicy::Pause);
4889 0 : }
4890 : None => {
4891 0 : tracing::info!(
4892 0 : "Node not found: presuming this is a retry and returning success"
4893 : );
4894 0 : return Ok(());
4895 : }
4896 : }
4897 :
4898 0 : *nodes = Arc::new(nodes_mut);
4899 : }
4900 :
4901 0 : for (tenant_shard_id, shard) in tenants {
4902 0 : if shard.deref_node(node_id) {
4903 : // FIXME: we need to build a ScheduleContext that reflects this shard's peers, otherwise
4904 : // it won't properly do anti-affinity.
4905 0 : let mut schedule_context = ScheduleContext::default();
4906 :
4907 0 : if let Err(e) = shard.schedule(scheduler, &mut schedule_context) {
4908 : // TODO: implement force flag to remove a node even if we can't reschedule
4909 : // a tenant
4910 0 : tracing::error!("Refusing to delete node, shard {tenant_shard_id} can't be rescheduled: {e}");
4911 0 : return Err(e.into());
4912 : } else {
4913 0 : tracing::info!(
4914 0 : "Rescheduled shard {tenant_shard_id} away from node during deletion"
4915 : )
4916 : }
4917 :
4918 0 : self.maybe_reconcile_shard(shard, nodes);
4919 0 : }
4920 :
4921 : // Here we remove an existing observed location for the node we're removing, and it will
4922 : // not be re-added by a reconciler's completion because we filter out removed nodes in
4923 : // process_result.
4924 : //
4925 : // Note that we update the shard's observed state _after_ calling maybe_reconcile_shard: that
4926 : // means any reconciles we spawned will know about the node we're deleting, enabling them
4927 : // to do live migrations if it's still online.
4928 0 : shard.observed.locations.remove(&node_id);
4929 : }
4930 :
4931 0 : scheduler.node_remove(node_id);
4932 0 :
4933 0 : {
4934 0 : let mut nodes_mut = (**nodes).clone();
4935 0 : nodes_mut.remove(&node_id);
4936 0 : *nodes = Arc::new(nodes_mut);
4937 0 : }
4938 0 : }
4939 0 :
4940 0 : // Note: some `generation_pageserver` columns on tenant shards in the database may still refer to
4941 0 : // the removed node, as this column means "The pageserver to which this generation was issued", and
4942 0 : // their generations won't get updated until the reconcilers moving them away from this node complete.
4943 0 : // That is safe because in Service::spawn we only use generation_pageserver if it refers to a node
4944 0 : // that exists.
4945 0 :
4946 0 : // 2. Actually delete the node from the database and from in-memory state
4947 0 : tracing::info!("Deleting node from database");
4948 0 : self.persistence.delete_node(node_id).await?;
4949 :
4950 0 : Ok(())
4951 0 : }
4952 :
4953 0 : pub(crate) async fn node_list(&self) -> Result<Vec<Node>, ApiError> {
4954 0 : let nodes = {
4955 0 : self.inner
4956 0 : .read()
4957 0 : .unwrap()
4958 0 : .nodes
4959 0 : .values()
4960 0 : .cloned()
4961 0 : .collect::<Vec<_>>()
4962 0 : };
4963 0 :
4964 0 : Ok(nodes)
4965 0 : }
4966 :
4967 0 : pub(crate) async fn get_node(&self, node_id: NodeId) -> Result<Node, ApiError> {
4968 0 : self.inner
4969 0 : .read()
4970 0 : .unwrap()
4971 0 : .nodes
4972 0 : .get(&node_id)
4973 0 : .cloned()
4974 0 : .ok_or(ApiError::NotFound(
4975 0 : format!("Node {node_id} not registered").into(),
4976 0 : ))
4977 0 : }
4978 :
4979 0 : pub(crate) async fn get_node_shards(
4980 0 : &self,
4981 0 : node_id: NodeId,
4982 0 : ) -> Result<NodeShardResponse, ApiError> {
4983 0 : let locked = self.inner.read().unwrap();
4984 0 : let mut shards = Vec::new();
4985 0 : for (tid, tenant) in locked.tenants.iter() {
4986 0 : let is_intended_secondary = match (
4987 0 : tenant.intent.get_attached() == &Some(node_id),
4988 0 : tenant.intent.get_secondary().contains(&node_id),
4989 0 : ) {
4990 : (true, true) => {
4991 0 : return Err(ApiError::InternalServerError(anyhow::anyhow!(
4992 0 : "{} attached as primary+secondary on the same node",
4993 0 : tid
4994 0 : )))
4995 : }
4996 0 : (true, false) => Some(false),
4997 0 : (false, true) => Some(true),
4998 0 : (false, false) => None,
4999 : };
5000 0 : let is_observed_secondary = if let Some(ObservedStateLocation { conf: Some(conf) }) =
5001 0 : tenant.observed.locations.get(&node_id)
5002 : {
5003 0 : Some(conf.secondary_conf.is_some())
5004 : } else {
5005 0 : None
5006 : };
5007 0 : if is_intended_secondary.is_some() || is_observed_secondary.is_some() {
5008 0 : shards.push(NodeShard {
5009 0 : tenant_shard_id: *tid,
5010 0 : is_intended_secondary,
5011 0 : is_observed_secondary,
5012 0 : });
5013 0 : }
5014 : }
5015 0 : Ok(NodeShardResponse { node_id, shards })
5016 0 : }
5017 :
5018 0 : pub(crate) async fn get_leader(&self) -> DatabaseResult<Option<ControllerPersistence>> {
5019 0 : self.persistence.get_leader().await
5020 0 : }
5021 :
5022 0 : pub(crate) async fn node_register(
5023 0 : &self,
5024 0 : register_req: NodeRegisterRequest,
5025 0 : ) -> Result<(), ApiError> {
5026 0 : let _node_lock = trace_exclusive_lock(
5027 0 : &self.node_op_locks,
5028 0 : register_req.node_id,
5029 0 : NodeOperations::Register,
5030 0 : )
5031 0 : .await;
5032 :
5033 : enum RegistrationStatus {
5034 : Matched,
5035 : Mismatched,
5036 : New,
5037 : }
5038 :
5039 0 : let registration_status = {
5040 0 : let locked = self.inner.read().unwrap();
5041 0 : if let Some(node) = locked.nodes.get(®ister_req.node_id) {
5042 0 : if node.registration_match(®ister_req) {
5043 0 : RegistrationStatus::Matched
5044 : } else {
5045 0 : RegistrationStatus::Mismatched
5046 : }
5047 : } else {
5048 0 : RegistrationStatus::New
5049 : }
5050 : };
5051 :
5052 0 : match registration_status {
5053 : RegistrationStatus::Matched => {
5054 0 : tracing::info!(
5055 0 : "Node {} re-registered with matching address",
5056 : register_req.node_id
5057 : );
5058 :
5059 0 : return Ok(());
5060 : }
5061 : RegistrationStatus::Mismatched => {
5062 : // TODO: decide if we want to allow modifying node addresses without removing and re-adding
5063 : // the node. Safest/simplest thing is to refuse it, and usually we deploy with
5064 : // a fixed address through the lifetime of a node.
5065 0 : tracing::warn!(
5066 0 : "Node {} tried to register with different address",
5067 : register_req.node_id
5068 : );
5069 0 : return Err(ApiError::Conflict(
5070 0 : "Node is already registered with different address".to_string(),
5071 0 : ));
5072 : }
5073 0 : RegistrationStatus::New => {
5074 0 : // fallthrough
5075 0 : }
5076 0 : }
5077 0 :
5078 0 : // We do not require that a node is actually online when registered (it will start life
5079 0 : // with it's availability set to Offline), but we _do_ require that its DNS record exists. We're
5080 0 : // therefore not immune to asymmetric L3 connectivity issues, but we are protected against nodes
5081 0 : // that register themselves with a broken DNS config. We check only the HTTP hostname, because
5082 0 : // the postgres hostname might only be resolvable to clients (e.g. if we're on a different VPC than clients).
5083 0 : if tokio::net::lookup_host(format!(
5084 0 : "{}:{}",
5085 0 : register_req.listen_http_addr, register_req.listen_http_port
5086 0 : ))
5087 0 : .await
5088 0 : .is_err()
5089 : {
5090 : // If we have a transient DNS issue, it's up to the caller to retry their registration. Because
5091 : // we can't robustly distinguish between an intermittent issue and a totally bogus DNS situation,
5092 : // we return a soft 503 error, to encourage callers to retry past transient issues.
5093 0 : return Err(ApiError::ResourceUnavailable(
5094 0 : format!(
5095 0 : "Node {} tried to register with unknown DNS name '{}'",
5096 0 : register_req.node_id, register_req.listen_http_addr
5097 0 : )
5098 0 : .into(),
5099 0 : ));
5100 0 : }
5101 0 :
5102 0 : // Ordering: we must persist the new node _before_ adding it to in-memory state.
5103 0 : // This ensures that before we use it for anything or expose it via any external
5104 0 : // API, it is guaranteed to be available after a restart.
5105 0 : let new_node = Node::new(
5106 0 : register_req.node_id,
5107 0 : register_req.listen_http_addr,
5108 0 : register_req.listen_http_port,
5109 0 : register_req.listen_pg_addr,
5110 0 : register_req.listen_pg_port,
5111 0 : register_req.availability_zone_id,
5112 0 : );
5113 0 :
5114 0 : // TODO: idempotency if the node already exists in the database
5115 0 : self.persistence.insert_node(&new_node).await?;
5116 :
5117 0 : let mut locked = self.inner.write().unwrap();
5118 0 : let mut new_nodes = (*locked.nodes).clone();
5119 0 :
5120 0 : locked.scheduler.node_upsert(&new_node);
5121 0 : new_nodes.insert(register_req.node_id, new_node);
5122 0 :
5123 0 : locked.nodes = Arc::new(new_nodes);
5124 0 :
5125 0 : tracing::info!(
5126 0 : "Registered pageserver {}, now have {} pageservers",
5127 0 : register_req.node_id,
5128 0 : locked.nodes.len()
5129 : );
5130 0 : Ok(())
5131 0 : }
5132 :
5133 0 : pub(crate) async fn node_configure(
5134 0 : &self,
5135 0 : node_id: NodeId,
5136 0 : availability: Option<NodeAvailability>,
5137 0 : scheduling: Option<NodeSchedulingPolicy>,
5138 0 : ) -> Result<(), ApiError> {
5139 0 : let _node_lock =
5140 0 : trace_exclusive_lock(&self.node_op_locks, node_id, NodeOperations::Configure).await;
5141 :
5142 0 : if let Some(scheduling) = scheduling {
5143 : // Scheduling is a persistent part of Node: we must write updates to the database before
5144 : // applying them in memory
5145 0 : self.persistence.update_node(node_id, scheduling).await?;
5146 0 : }
5147 :
5148 : // If we're activating a node, then before setting it active we must reconcile any shard locations
5149 : // on that node, in case it is out of sync, e.g. due to being unavailable during controller startup,
5150 : // by calling [`Self::node_activate_reconcile`]
5151 : //
5152 : // The transition we calculate here remains valid later in the function because we hold the op lock on the node:
5153 : // nothing else can mutate its availability while we run.
5154 0 : let availability_transition = if let Some(input_availability) = availability.as_ref() {
5155 0 : let (activate_node, availability_transition) = {
5156 0 : let locked = self.inner.read().unwrap();
5157 0 : let Some(node) = locked.nodes.get(&node_id) else {
5158 0 : return Err(ApiError::NotFound(
5159 0 : anyhow::anyhow!("Node {} not registered", node_id).into(),
5160 0 : ));
5161 : };
5162 :
5163 0 : (
5164 0 : node.clone(),
5165 0 : node.get_availability_transition(input_availability),
5166 0 : )
5167 : };
5168 :
5169 0 : if matches!(availability_transition, AvailabilityTransition::ToActive) {
5170 0 : self.node_activate_reconcile(activate_node, &_node_lock)
5171 0 : .await?;
5172 0 : }
5173 0 : availability_transition
5174 : } else {
5175 0 : AvailabilityTransition::Unchanged
5176 : };
5177 :
5178 : // Apply changes from the request to our in-memory state for the Node
5179 0 : let mut locked = self.inner.write().unwrap();
5180 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
5181 0 :
5182 0 : let mut new_nodes = (**nodes).clone();
5183 :
5184 0 : let Some(node) = new_nodes.get_mut(&node_id) else {
5185 0 : return Err(ApiError::NotFound(
5186 0 : anyhow::anyhow!("Node not registered").into(),
5187 0 : ));
5188 : };
5189 :
5190 0 : if let Some(availability) = availability.as_ref() {
5191 0 : node.set_availability(availability.clone());
5192 0 : }
5193 :
5194 0 : if let Some(scheduling) = scheduling {
5195 0 : node.set_scheduling(scheduling);
5196 0 : }
5197 :
5198 : // Update the scheduler, in case the elegibility of the node for new shards has changed
5199 0 : scheduler.node_upsert(node);
5200 0 :
5201 0 : let new_nodes = Arc::new(new_nodes);
5202 0 :
5203 0 : // Modify scheduling state for any Tenants that are affected by a change in the node's availability state.
5204 0 : match availability_transition {
5205 : AvailabilityTransition::ToOffline => {
5206 0 : tracing::info!("Node {} transition to offline", node_id);
5207 0 : let mut tenants_affected: usize = 0;
5208 :
5209 0 : for (tenant_shard_id, tenant_shard) in tenants {
5210 0 : if let Some(observed_loc) = tenant_shard.observed.locations.get_mut(&node_id) {
5211 0 : // When a node goes offline, we set its observed configuration to None, indicating unknown: we will
5212 0 : // not assume our knowledge of the node's configuration is accurate until it comes back online
5213 0 : observed_loc.conf = None;
5214 0 : }
5215 :
5216 0 : if new_nodes.len() == 1 {
5217 : // Special case for single-node cluster: there is no point trying to reschedule
5218 : // any tenant shards: avoid doing so, in order to avoid spewing warnings about
5219 : // failures to schedule them.
5220 0 : continue;
5221 0 : }
5222 0 :
5223 0 : if !new_nodes
5224 0 : .values()
5225 0 : .any(|n| matches!(n.may_schedule(), MaySchedule::Yes(_)))
5226 : {
5227 : // Special case for when all nodes are unavailable and/or unschedulable: there is no point
5228 : // trying to reschedule since there's nowhere else to go. Without this
5229 : // branch we incorrectly detach tenants in response to node unavailability.
5230 0 : continue;
5231 0 : }
5232 0 :
5233 0 : if tenant_shard.intent.demote_attached(scheduler, node_id) {
5234 0 : tenant_shard.sequence = tenant_shard.sequence.next();
5235 0 :
5236 0 : // TODO: populate a ScheduleContext including all shards in the same tenant_id (only matters
5237 0 : // for tenants without secondary locations: if they have a secondary location, then this
5238 0 : // schedule() call is just promoting an existing secondary)
5239 0 : let mut schedule_context = ScheduleContext::default();
5240 0 :
5241 0 : match tenant_shard.schedule(scheduler, &mut schedule_context) {
5242 0 : Err(e) => {
5243 0 : // It is possible that some tenants will become unschedulable when too many pageservers
5244 0 : // go offline: in this case there isn't much we can do other than make the issue observable.
5245 0 : // TODO: give TenantShard a scheduling error attribute to be queried later.
5246 0 : tracing::warn!(%tenant_shard_id, "Scheduling error when marking pageserver {} offline: {e}", node_id);
5247 : }
5248 : Ok(()) => {
5249 0 : if self
5250 0 : .maybe_reconcile_shard(tenant_shard, &new_nodes)
5251 0 : .is_some()
5252 0 : {
5253 0 : tenants_affected += 1;
5254 0 : };
5255 : }
5256 : }
5257 0 : }
5258 : }
5259 0 : tracing::info!(
5260 0 : "Launched {} reconciler tasks for tenants affected by node {} going offline",
5261 : tenants_affected,
5262 : node_id
5263 : )
5264 : }
5265 : AvailabilityTransition::ToActive => {
5266 0 : tracing::info!("Node {} transition to active", node_id);
5267 : // When a node comes back online, we must reconcile any tenant that has a None observed
5268 : // location on the node.
5269 0 : for tenant_shard in locked.tenants.values_mut() {
5270 : // If a reconciliation is already in progress, rely on the previous scheduling
5271 : // decision and skip triggering a new reconciliation.
5272 0 : if tenant_shard.reconciler.is_some() {
5273 0 : continue;
5274 0 : }
5275 :
5276 0 : if let Some(observed_loc) = tenant_shard.observed.locations.get_mut(&node_id) {
5277 0 : if observed_loc.conf.is_none() {
5278 0 : self.maybe_reconcile_shard(tenant_shard, &new_nodes);
5279 0 : }
5280 0 : }
5281 : }
5282 :
5283 : // TODO: in the background, we should balance work back onto this pageserver
5284 : }
5285 : // No action required for the intermediate unavailable state.
5286 : // When we transition into active or offline from the unavailable state,
5287 : // the correct handling above will kick in.
5288 : AvailabilityTransition::ToWarmingUpFromActive => {
5289 0 : tracing::info!("Node {} transition to unavailable from active", node_id);
5290 : }
5291 : AvailabilityTransition::ToWarmingUpFromOffline => {
5292 0 : tracing::info!("Node {} transition to unavailable from offline", node_id);
5293 : }
5294 : AvailabilityTransition::Unchanged => {
5295 0 : tracing::debug!("Node {} no availability change during config", node_id);
5296 : }
5297 : }
5298 :
5299 0 : locked.nodes = new_nodes;
5300 0 :
5301 0 : Ok(())
5302 0 : }
5303 :
5304 : /// Wrapper around [`Self::node_configure`] which only allows changes while there is no ongoing
5305 : /// operation for HTTP api.
5306 0 : pub(crate) async fn external_node_configure(
5307 0 : &self,
5308 0 : node_id: NodeId,
5309 0 : availability: Option<NodeAvailability>,
5310 0 : scheduling: Option<NodeSchedulingPolicy>,
5311 0 : ) -> Result<(), ApiError> {
5312 0 : {
5313 0 : let locked = self.inner.read().unwrap();
5314 0 : if let Some(op) = locked.ongoing_operation.as_ref().map(|op| op.operation) {
5315 0 : return Err(ApiError::PreconditionFailed(
5316 0 : format!("Ongoing background operation forbids configuring: {op}").into(),
5317 0 : ));
5318 0 : }
5319 0 : }
5320 0 :
5321 0 : self.node_configure(node_id, availability, scheduling).await
5322 0 : }
5323 :
5324 0 : pub(crate) async fn start_node_drain(
5325 0 : self: &Arc<Self>,
5326 0 : node_id: NodeId,
5327 0 : ) -> Result<(), ApiError> {
5328 0 : let (ongoing_op, node_available, node_policy, schedulable_nodes_count) = {
5329 0 : let locked = self.inner.read().unwrap();
5330 0 : let nodes = &locked.nodes;
5331 0 : let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
5332 0 : anyhow::anyhow!("Node {} not registered", node_id).into(),
5333 0 : ))?;
5334 0 : let schedulable_nodes_count = nodes
5335 0 : .iter()
5336 0 : .filter(|(_, n)| matches!(n.may_schedule(), MaySchedule::Yes(_)))
5337 0 : .count();
5338 0 :
5339 0 : (
5340 0 : locked
5341 0 : .ongoing_operation
5342 0 : .as_ref()
5343 0 : .map(|ongoing| ongoing.operation),
5344 0 : node.is_available(),
5345 0 : node.get_scheduling(),
5346 0 : schedulable_nodes_count,
5347 0 : )
5348 0 : };
5349 :
5350 0 : if let Some(ongoing) = ongoing_op {
5351 0 : return Err(ApiError::PreconditionFailed(
5352 0 : format!("Background operation already ongoing for node: {}", ongoing).into(),
5353 0 : ));
5354 0 : }
5355 0 :
5356 0 : if !node_available {
5357 0 : return Err(ApiError::ResourceUnavailable(
5358 0 : format!("Node {node_id} is currently unavailable").into(),
5359 0 : ));
5360 0 : }
5361 0 :
5362 0 : if schedulable_nodes_count == 0 {
5363 0 : return Err(ApiError::PreconditionFailed(
5364 0 : "No other schedulable nodes to drain to".into(),
5365 0 : ));
5366 0 : }
5367 0 :
5368 0 : match node_policy {
5369 : NodeSchedulingPolicy::Active | NodeSchedulingPolicy::Pause => {
5370 0 : self.node_configure(node_id, None, Some(NodeSchedulingPolicy::Draining))
5371 0 : .await?;
5372 :
5373 0 : let cancel = self.cancel.child_token();
5374 0 : let gate_guard = self.gate.enter().map_err(|_| ApiError::ShuttingDown)?;
5375 :
5376 0 : self.inner.write().unwrap().ongoing_operation = Some(OperationHandler {
5377 0 : operation: Operation::Drain(Drain { node_id }),
5378 0 : cancel: cancel.clone(),
5379 0 : });
5380 :
5381 0 : let span = tracing::info_span!(parent: None, "drain_node", %node_id);
5382 :
5383 0 : tokio::task::spawn({
5384 0 : let service = self.clone();
5385 0 : let cancel = cancel.clone();
5386 0 : async move {
5387 0 : let _gate_guard = gate_guard;
5388 0 :
5389 0 : scopeguard::defer! {
5390 0 : let prev = service.inner.write().unwrap().ongoing_operation.take();
5391 0 :
5392 0 : if let Some(Operation::Drain(removed_drain)) = prev.map(|h| h.operation) {
5393 0 : assert_eq!(removed_drain.node_id, node_id, "We always take the same operation");
5394 0 : } else {
5395 0 : panic!("We always remove the same operation")
5396 0 : }
5397 0 : }
5398 0 :
5399 0 : tracing::info!("Drain background operation starting");
5400 0 : let res = service.drain_node(node_id, cancel).await;
5401 0 : match res {
5402 : Ok(()) => {
5403 0 : tracing::info!("Drain background operation completed successfully");
5404 : }
5405 : Err(OperationError::Cancelled) => {
5406 0 : tracing::info!("Drain background operation was cancelled");
5407 : }
5408 0 : Err(err) => {
5409 0 : tracing::error!("Drain background operation encountered: {err}")
5410 : }
5411 : }
5412 0 : }
5413 0 : }.instrument(span));
5414 0 : }
5415 : NodeSchedulingPolicy::Draining => {
5416 0 : return Err(ApiError::Conflict(format!(
5417 0 : "Node {node_id} has drain in progress"
5418 0 : )));
5419 : }
5420 0 : policy => {
5421 0 : return Err(ApiError::PreconditionFailed(
5422 0 : format!("Node {node_id} cannot be drained due to {policy:?} policy").into(),
5423 0 : ));
5424 : }
5425 : }
5426 :
5427 0 : Ok(())
5428 0 : }
5429 :
5430 0 : pub(crate) async fn cancel_node_drain(&self, node_id: NodeId) -> Result<(), ApiError> {
5431 0 : let node_available = {
5432 0 : let locked = self.inner.read().unwrap();
5433 0 : let nodes = &locked.nodes;
5434 0 : let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
5435 0 : anyhow::anyhow!("Node {} not registered", node_id).into(),
5436 0 : ))?;
5437 :
5438 0 : node.is_available()
5439 0 : };
5440 0 :
5441 0 : if !node_available {
5442 0 : return Err(ApiError::ResourceUnavailable(
5443 0 : format!("Node {node_id} is currently unavailable").into(),
5444 0 : ));
5445 0 : }
5446 :
5447 0 : if let Some(op_handler) = self.inner.read().unwrap().ongoing_operation.as_ref() {
5448 0 : if let Operation::Drain(drain) = op_handler.operation {
5449 0 : if drain.node_id == node_id {
5450 0 : tracing::info!("Cancelling background drain operation for node {node_id}");
5451 0 : op_handler.cancel.cancel();
5452 0 : return Ok(());
5453 0 : }
5454 0 : }
5455 0 : }
5456 :
5457 0 : Err(ApiError::PreconditionFailed(
5458 0 : format!("Node {node_id} has no drain in progress").into(),
5459 0 : ))
5460 0 : }
5461 :
5462 0 : pub(crate) async fn start_node_fill(self: &Arc<Self>, node_id: NodeId) -> Result<(), ApiError> {
5463 0 : let (ongoing_op, node_available, node_policy, total_nodes_count) = {
5464 0 : let locked = self.inner.read().unwrap();
5465 0 : let nodes = &locked.nodes;
5466 0 : let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
5467 0 : anyhow::anyhow!("Node {} not registered", node_id).into(),
5468 0 : ))?;
5469 :
5470 0 : (
5471 0 : locked
5472 0 : .ongoing_operation
5473 0 : .as_ref()
5474 0 : .map(|ongoing| ongoing.operation),
5475 0 : node.is_available(),
5476 0 : node.get_scheduling(),
5477 0 : nodes.len(),
5478 0 : )
5479 0 : };
5480 :
5481 0 : if let Some(ongoing) = ongoing_op {
5482 0 : return Err(ApiError::PreconditionFailed(
5483 0 : format!("Background operation already ongoing for node: {}", ongoing).into(),
5484 0 : ));
5485 0 : }
5486 0 :
5487 0 : if !node_available {
5488 0 : return Err(ApiError::ResourceUnavailable(
5489 0 : format!("Node {node_id} is currently unavailable").into(),
5490 0 : ));
5491 0 : }
5492 0 :
5493 0 : if total_nodes_count <= 1 {
5494 0 : return Err(ApiError::PreconditionFailed(
5495 0 : "No other nodes to fill from".into(),
5496 0 : ));
5497 0 : }
5498 0 :
5499 0 : match node_policy {
5500 : NodeSchedulingPolicy::Active => {
5501 0 : self.node_configure(node_id, None, Some(NodeSchedulingPolicy::Filling))
5502 0 : .await?;
5503 :
5504 0 : let cancel = self.cancel.child_token();
5505 0 : let gate_guard = self.gate.enter().map_err(|_| ApiError::ShuttingDown)?;
5506 :
5507 0 : self.inner.write().unwrap().ongoing_operation = Some(OperationHandler {
5508 0 : operation: Operation::Fill(Fill { node_id }),
5509 0 : cancel: cancel.clone(),
5510 0 : });
5511 :
5512 0 : let span = tracing::info_span!(parent: None, "fill_node", %node_id);
5513 :
5514 0 : tokio::task::spawn({
5515 0 : let service = self.clone();
5516 0 : let cancel = cancel.clone();
5517 0 : async move {
5518 0 : let _gate_guard = gate_guard;
5519 0 :
5520 0 : scopeguard::defer! {
5521 0 : let prev = service.inner.write().unwrap().ongoing_operation.take();
5522 0 :
5523 0 : if let Some(Operation::Fill(removed_fill)) = prev.map(|h| h.operation) {
5524 0 : assert_eq!(removed_fill.node_id, node_id, "We always take the same operation");
5525 0 : } else {
5526 0 : panic!("We always remove the same operation")
5527 0 : }
5528 0 : }
5529 0 :
5530 0 : tracing::info!("Fill background operation starting");
5531 0 : let res = service.fill_node(node_id, cancel).await;
5532 0 : match res {
5533 : Ok(()) => {
5534 0 : tracing::info!("Fill background operation completed successfully");
5535 : }
5536 : Err(OperationError::Cancelled) => {
5537 0 : tracing::info!("Fill background operation was cancelled");
5538 : }
5539 0 : Err(err) => {
5540 0 : tracing::error!("Fill background operation encountered: {err}")
5541 : }
5542 : }
5543 0 : }
5544 0 : }.instrument(span));
5545 0 : }
5546 : NodeSchedulingPolicy::Filling => {
5547 0 : return Err(ApiError::Conflict(format!(
5548 0 : "Node {node_id} has fill in progress"
5549 0 : )));
5550 : }
5551 0 : policy => {
5552 0 : return Err(ApiError::PreconditionFailed(
5553 0 : format!("Node {node_id} cannot be filled due to {policy:?} policy").into(),
5554 0 : ));
5555 : }
5556 : }
5557 :
5558 0 : Ok(())
5559 0 : }
5560 :
5561 0 : pub(crate) async fn cancel_node_fill(&self, node_id: NodeId) -> Result<(), ApiError> {
5562 0 : let node_available = {
5563 0 : let locked = self.inner.read().unwrap();
5564 0 : let nodes = &locked.nodes;
5565 0 : let node = nodes.get(&node_id).ok_or(ApiError::NotFound(
5566 0 : anyhow::anyhow!("Node {} not registered", node_id).into(),
5567 0 : ))?;
5568 :
5569 0 : node.is_available()
5570 0 : };
5571 0 :
5572 0 : if !node_available {
5573 0 : return Err(ApiError::ResourceUnavailable(
5574 0 : format!("Node {node_id} is currently unavailable").into(),
5575 0 : ));
5576 0 : }
5577 :
5578 0 : if let Some(op_handler) = self.inner.read().unwrap().ongoing_operation.as_ref() {
5579 0 : if let Operation::Fill(fill) = op_handler.operation {
5580 0 : if fill.node_id == node_id {
5581 0 : tracing::info!("Cancelling background drain operation for node {node_id}");
5582 0 : op_handler.cancel.cancel();
5583 0 : return Ok(());
5584 0 : }
5585 0 : }
5586 0 : }
5587 :
5588 0 : Err(ApiError::PreconditionFailed(
5589 0 : format!("Node {node_id} has no fill in progress").into(),
5590 0 : ))
5591 0 : }
5592 :
5593 : /// Like [`Self::maybe_configured_reconcile_shard`], but uses the default reconciler
5594 : /// configuration
5595 0 : fn maybe_reconcile_shard(
5596 0 : &self,
5597 0 : shard: &mut TenantShard,
5598 0 : nodes: &Arc<HashMap<NodeId, Node>>,
5599 0 : ) -> Option<ReconcilerWaiter> {
5600 0 : self.maybe_configured_reconcile_shard(shard, nodes, ReconcilerConfig::default())
5601 0 : }
5602 :
5603 : /// Wrap [`TenantShard`] reconciliation methods with acquisition of [`Gate`] and [`ReconcileUnits`],
5604 0 : fn maybe_configured_reconcile_shard(
5605 0 : &self,
5606 0 : shard: &mut TenantShard,
5607 0 : nodes: &Arc<HashMap<NodeId, Node>>,
5608 0 : reconciler_config: ReconcilerConfig,
5609 0 : ) -> Option<ReconcilerWaiter> {
5610 0 : let reconcile_needed = shard.get_reconcile_needed(nodes);
5611 0 :
5612 0 : match reconcile_needed {
5613 0 : ReconcileNeeded::No => return None,
5614 0 : ReconcileNeeded::WaitExisting(waiter) => return Some(waiter),
5615 0 : ReconcileNeeded::Yes => {
5616 0 : // Fall through to try and acquire units for spawning reconciler
5617 0 : }
5618 : };
5619 :
5620 0 : let units = match self.reconciler_concurrency.clone().try_acquire_owned() {
5621 0 : Ok(u) => ReconcileUnits::new(u),
5622 : Err(_) => {
5623 0 : tracing::info!(tenant_id=%shard.tenant_shard_id.tenant_id, shard_id=%shard.tenant_shard_id.shard_slug(),
5624 0 : "Concurrency limited: enqueued for reconcile later");
5625 0 : if !shard.delayed_reconcile {
5626 0 : match self.delayed_reconcile_tx.try_send(shard.tenant_shard_id) {
5627 0 : Err(TrySendError::Closed(_)) => {
5628 0 : // Weird mid-shutdown case?
5629 0 : }
5630 : Err(TrySendError::Full(_)) => {
5631 : // It is safe to skip sending our ID in the channel: we will eventually get retried by the background reconcile task.
5632 0 : tracing::warn!(
5633 0 : "Many shards are waiting to reconcile: delayed_reconcile queue is full"
5634 : );
5635 : }
5636 0 : Ok(()) => {
5637 0 : shard.delayed_reconcile = true;
5638 0 : }
5639 : }
5640 0 : }
5641 :
5642 : // We won't spawn a reconciler, but we will construct a waiter that waits for the shard's sequence
5643 : // number to advance. When this function is eventually called again and succeeds in getting units,
5644 : // it will spawn a reconciler that makes this waiter complete.
5645 0 : return Some(shard.future_reconcile_waiter());
5646 : }
5647 : };
5648 :
5649 0 : let Ok(gate_guard) = self.reconcilers_gate.enter() else {
5650 : // Gate closed: we're shutting down, drop out.
5651 0 : return None;
5652 : };
5653 :
5654 0 : shard.spawn_reconciler(
5655 0 : &self.result_tx,
5656 0 : nodes,
5657 0 : &self.compute_hook,
5658 0 : reconciler_config,
5659 0 : &self.config,
5660 0 : &self.persistence,
5661 0 : units,
5662 0 : gate_guard,
5663 0 : &self.reconcilers_cancel,
5664 0 : )
5665 0 : }
5666 :
5667 : /// Check all tenants for pending reconciliation work, and reconcile those in need.
5668 : /// Additionally, reschedule tenants that require it.
5669 : ///
5670 : /// Returns how many reconciliation tasks were started, or `1` if no reconciles were
5671 : /// spawned but some _would_ have been spawned if `reconciler_concurrency` units where
5672 : /// available. A return value of 0 indicates that everything is fully reconciled already.
5673 0 : fn reconcile_all(&self) -> usize {
5674 0 : let mut locked = self.inner.write().unwrap();
5675 0 : let (nodes, tenants, _scheduler) = locked.parts_mut();
5676 0 : let pageservers = nodes.clone();
5677 0 :
5678 0 : let mut schedule_context = ScheduleContext::default();
5679 0 :
5680 0 : let mut reconciles_spawned = 0;
5681 0 : for (tenant_shard_id, shard) in tenants.iter_mut() {
5682 0 : if tenant_shard_id.is_shard_zero() {
5683 0 : schedule_context = ScheduleContext::default();
5684 0 : }
5685 :
5686 : // Skip checking if this shard is already enqueued for reconciliation
5687 0 : if shard.delayed_reconcile && self.reconciler_concurrency.available_permits() == 0 {
5688 : // If there is something delayed, then return a nonzero count so that
5689 : // callers like reconcile_all_now do not incorrectly get the impression
5690 : // that the system is in a quiescent state.
5691 0 : reconciles_spawned = std::cmp::max(1, reconciles_spawned);
5692 0 : continue;
5693 0 : }
5694 0 :
5695 0 : // Eventual consistency: if an earlier reconcile job failed, and the shard is still
5696 0 : // dirty, spawn another rone
5697 0 : if self.maybe_reconcile_shard(shard, &pageservers).is_some() {
5698 0 : reconciles_spawned += 1;
5699 0 : }
5700 :
5701 0 : schedule_context.avoid(&shard.intent.all_pageservers());
5702 : }
5703 :
5704 0 : reconciles_spawned
5705 0 : }
5706 :
5707 : /// `optimize` in this context means identifying shards which have valid scheduled locations, but
5708 : /// could be scheduled somewhere better:
5709 : /// - Cutting over to a secondary if the node with the secondary is more lightly loaded
5710 : /// * e.g. after a node fails then recovers, to move some work back to it
5711 : /// - Cutting over to a secondary if it improves the spread of shard attachments within a tenant
5712 : /// * e.g. after a shard split, the initial attached locations will all be on the node where
5713 : /// we did the split, but are probably better placed elsewhere.
5714 : /// - Creating new secondary locations if it improves the spreading of a sharded tenant
5715 : /// * e.g. after a shard split, some locations will be on the same node (where the split
5716 : /// happened), and will probably be better placed elsewhere.
5717 : ///
5718 : /// To put it more briefly: whereas the scheduler respects soft constraints in a ScheduleContext at
5719 : /// the time of scheduling, this function looks for cases where a better-scoring location is available
5720 : /// according to those same soft constraints.
5721 0 : async fn optimize_all(&self) -> usize {
5722 : // Limit on how many shards' optmizations each call to this function will execute. Combined
5723 : // with the frequency of background calls, this acts as an implicit rate limit that runs a small
5724 : // trickle of optimizations in the background, rather than executing a large number in parallel
5725 : // when a change occurs.
5726 : const MAX_OPTIMIZATIONS_EXEC_PER_PASS: usize = 2;
5727 :
5728 : // Synchronous prepare: scan shards for possible scheduling optimizations
5729 0 : let candidate_work = self.optimize_all_plan();
5730 0 : let candidate_work_len = candidate_work.len();
5731 :
5732 : // Asynchronous validate: I/O to pageservers to make sure shards are in a good state to apply validation
5733 0 : let validated_work = self.optimize_all_validate(candidate_work).await;
5734 :
5735 0 : let was_work_filtered = validated_work.len() != candidate_work_len;
5736 0 :
5737 0 : // Synchronous apply: update the shards' intent states according to validated optimisations
5738 0 : let mut reconciles_spawned = 0;
5739 0 : let mut optimizations_applied = 0;
5740 0 : let mut locked = self.inner.write().unwrap();
5741 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
5742 0 : for (tenant_shard_id, optimization) in validated_work {
5743 0 : let Some(shard) = tenants.get_mut(&tenant_shard_id) else {
5744 : // Shard was dropped between planning and execution;
5745 0 : continue;
5746 : };
5747 0 : if shard.apply_optimization(scheduler, optimization) {
5748 0 : optimizations_applied += 1;
5749 0 : if self.maybe_reconcile_shard(shard, nodes).is_some() {
5750 0 : reconciles_spawned += 1;
5751 0 : }
5752 0 : }
5753 :
5754 0 : if optimizations_applied >= MAX_OPTIMIZATIONS_EXEC_PER_PASS {
5755 0 : break;
5756 0 : }
5757 : }
5758 :
5759 0 : if was_work_filtered {
5760 0 : // If we filtered any work out during validation, ensure we return a nonzero value to indicate
5761 0 : // to callers that the system is not in a truly quiet state, it's going to do some work as soon
5762 0 : // as these validations start passing.
5763 0 : reconciles_spawned = std::cmp::max(reconciles_spawned, 1);
5764 0 : }
5765 :
5766 0 : reconciles_spawned
5767 0 : }
5768 :
5769 0 : fn optimize_all_plan(&self) -> Vec<(TenantShardId, ScheduleOptimization)> {
5770 0 : let mut schedule_context = ScheduleContext::default();
5771 0 :
5772 0 : let mut tenant_shards: Vec<&TenantShard> = Vec::new();
5773 :
5774 : // How many candidate optimizations we will generate, before evaluating them for readniess: setting
5775 : // this higher than the execution limit gives us a chance to execute some work even if the first
5776 : // few optimizations we find are not ready.
5777 : const MAX_OPTIMIZATIONS_PLAN_PER_PASS: usize = 8;
5778 :
5779 0 : let mut work = Vec::new();
5780 0 :
5781 0 : let mut locked = self.inner.write().unwrap();
5782 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
5783 0 : for (tenant_shard_id, shard) in tenants.iter() {
5784 0 : if tenant_shard_id.is_shard_zero() {
5785 0 : // Reset accumulators on the first shard in a tenant
5786 0 : schedule_context = ScheduleContext::default();
5787 0 : schedule_context.mode = ScheduleMode::Speculative;
5788 0 : tenant_shards.clear();
5789 0 : }
5790 :
5791 0 : if work.len() >= MAX_OPTIMIZATIONS_PLAN_PER_PASS {
5792 0 : break;
5793 0 : }
5794 0 :
5795 0 : match shard.get_scheduling_policy() {
5796 0 : ShardSchedulingPolicy::Active => {
5797 0 : // Ok to do optimization
5798 0 : }
5799 : ShardSchedulingPolicy::Essential
5800 : | ShardSchedulingPolicy::Pause
5801 : | ShardSchedulingPolicy::Stop => {
5802 : // Policy prevents optimizing this shard.
5803 0 : continue;
5804 : }
5805 : }
5806 :
5807 : // Accumulate the schedule context for all the shards in a tenant: we must have
5808 : // the total view of all shards before we can try to optimize any of them.
5809 0 : schedule_context.avoid(&shard.intent.all_pageservers());
5810 0 : if let Some(attached) = shard.intent.get_attached() {
5811 0 : schedule_context.push_attached(*attached);
5812 0 : }
5813 0 : tenant_shards.push(shard);
5814 0 :
5815 0 : // Once we have seen the last shard in the tenant, proceed to search across all shards
5816 0 : // in the tenant for optimizations
5817 0 : if shard.shard.number.0 == shard.shard.count.count() - 1 {
5818 0 : if tenant_shards.iter().any(|s| s.reconciler.is_some()) {
5819 : // Do not start any optimizations while another change to the tenant is ongoing: this
5820 : // is not necessary for correctness, but simplifies operations and implicitly throttles
5821 : // optimization changes to happen in a "trickle" over time.
5822 0 : continue;
5823 0 : }
5824 0 :
5825 0 : if tenant_shards.iter().any(|s| {
5826 0 : !matches!(s.splitting, SplitState::Idle)
5827 0 : || matches!(s.policy, PlacementPolicy::Detached)
5828 0 : }) {
5829 : // Never attempt to optimize a tenant that is currently being split, or
5830 : // a tenant that is meant to be detached
5831 0 : continue;
5832 0 : }
5833 :
5834 : // TODO: optimization calculations are relatively expensive: create some fast-path for
5835 : // the common idle case (avoiding the search on tenants that we have recently checked)
5836 :
5837 0 : for shard in &tenant_shards {
5838 0 : if let Some(optimization) =
5839 : // If idle, maybe ptimize attachments: if a shard has a secondary location that is preferable to
5840 : // its primary location based on soft constraints, cut it over.
5841 0 : shard.optimize_attachment(nodes, &schedule_context)
5842 : {
5843 0 : work.push((shard.tenant_shard_id, optimization));
5844 0 : break;
5845 0 : } else if let Some(optimization) =
5846 : // If idle, maybe optimize secondary locations: if a shard has a secondary location that would be
5847 : // better placed on another node, based on ScheduleContext, then adjust it. This
5848 : // covers cases like after a shard split, where we might have too many shards
5849 : // in the same tenant with secondary locations on the node where they originally split.
5850 0 : shard.optimize_secondary(scheduler, &schedule_context)
5851 : {
5852 0 : work.push((shard.tenant_shard_id, optimization));
5853 0 : break;
5854 0 : }
5855 :
5856 : // TODO: extend this mechanism to prefer attaching on nodes with fewer attached
5857 : // tenants (i.e. extend schedule state to distinguish attached from secondary counts),
5858 : // for the total number of attachments on a node (not just within a tenant.)
5859 : }
5860 0 : }
5861 : }
5862 :
5863 0 : work
5864 0 : }
5865 :
5866 0 : async fn optimize_all_validate(
5867 0 : &self,
5868 0 : candidate_work: Vec<(TenantShardId, ScheduleOptimization)>,
5869 0 : ) -> Vec<(TenantShardId, ScheduleOptimization)> {
5870 0 : // Take a clone of the node map to use outside the lock in async validation phase
5871 0 : let validation_nodes = { self.inner.read().unwrap().nodes.clone() };
5872 0 :
5873 0 : let mut want_secondary_status = Vec::new();
5874 0 :
5875 0 : // Validate our plans: this is an async phase where we may do I/O to pageservers to
5876 0 : // check that the state of locations is acceptable to run the optimization, such as
5877 0 : // checking that a secondary location is sufficiently warmed-up to cleanly cut over
5878 0 : // in a live migration.
5879 0 : let mut validated_work = Vec::new();
5880 0 : for (tenant_shard_id, optimization) in candidate_work {
5881 0 : match optimization.action {
5882 : ScheduleOptimizationAction::MigrateAttachment(MigrateAttachment {
5883 : old_attached_node_id: _,
5884 0 : new_attached_node_id,
5885 0 : }) => {
5886 0 : match validation_nodes.get(&new_attached_node_id) {
5887 0 : None => {
5888 0 : // Node was dropped between planning and validation
5889 0 : }
5890 0 : Some(node) => {
5891 0 : if !node.is_available() {
5892 0 : tracing::info!("Skipping optimization migration of {tenant_shard_id} to {new_attached_node_id} because node unavailable");
5893 0 : } else {
5894 0 : // Accumulate optimizations that require fetching secondary status, so that we can execute these
5895 0 : // remote API requests concurrently.
5896 0 : want_secondary_status.push((
5897 0 : tenant_shard_id,
5898 0 : node.clone(),
5899 0 : optimization,
5900 0 : ));
5901 0 : }
5902 : }
5903 : }
5904 : }
5905 : ScheduleOptimizationAction::ReplaceSecondary(_) => {
5906 : // No extra checks needed to replace a secondary: this does not interrupt client access
5907 0 : validated_work.push((tenant_shard_id, optimization))
5908 : }
5909 : };
5910 : }
5911 :
5912 : // Call into pageserver API to find out if the destination secondary location is warm enough for a reasonably smooth migration: we
5913 : // do this so that we avoid spawning a Reconciler that would have to wait minutes/hours for a destination to warm up: that reconciler
5914 : // would hold a precious reconcile semaphore unit the whole time it was waiting for the destination to warm up.
5915 0 : let results = self
5916 0 : .tenant_for_shards_api(
5917 0 : want_secondary_status
5918 0 : .iter()
5919 0 : .map(|i| (i.0, i.1.clone()))
5920 0 : .collect(),
5921 0 : |tenant_shard_id, client| async move {
5922 0 : client.tenant_secondary_status(tenant_shard_id).await
5923 0 : },
5924 0 : 1,
5925 0 : 1,
5926 0 : SHORT_RECONCILE_TIMEOUT,
5927 0 : &self.cancel,
5928 0 : )
5929 0 : .await;
5930 :
5931 0 : for ((tenant_shard_id, node, optimization), secondary_status) in
5932 0 : want_secondary_status.into_iter().zip(results.into_iter())
5933 : {
5934 0 : match secondary_status {
5935 0 : Err(e) => {
5936 0 : tracing::info!("Skipping migration of {tenant_shard_id} to {node}, error querying secondary: {e}");
5937 : }
5938 0 : Ok(progress) => {
5939 : // We require secondary locations to have less than 10GiB of downloads pending before we will use
5940 : // them in an optimization
5941 : const DOWNLOAD_FRESHNESS_THRESHOLD: u64 = 10 * 1024 * 1024 * 1024;
5942 :
5943 0 : if progress.heatmap_mtime.is_none()
5944 0 : || progress.bytes_total < DOWNLOAD_FRESHNESS_THRESHOLD
5945 0 : && progress.bytes_downloaded != progress.bytes_total
5946 0 : || progress.bytes_total - progress.bytes_downloaded
5947 0 : > DOWNLOAD_FRESHNESS_THRESHOLD
5948 : {
5949 0 : tracing::info!("Skipping migration of {tenant_shard_id} to {node} because secondary isn't ready: {progress:?}");
5950 : } else {
5951 : // Location looks ready: proceed
5952 0 : tracing::info!(
5953 0 : "{tenant_shard_id} secondary on {node} is warm enough for migration: {progress:?}"
5954 : );
5955 0 : validated_work.push((tenant_shard_id, optimization))
5956 : }
5957 : }
5958 : }
5959 : }
5960 :
5961 0 : validated_work
5962 0 : }
5963 :
5964 : /// Look for shards which are oversized and in need of splitting
5965 0 : async fn autosplit_tenants(self: &Arc<Self>) {
5966 0 : let Some(split_threshold) = self.config.split_threshold else {
5967 : // Auto-splitting is disabled
5968 0 : return;
5969 : };
5970 :
5971 0 : let nodes = self.inner.read().unwrap().nodes.clone();
5972 :
5973 : const SPLIT_TO_MAX: ShardCount = ShardCount::new(8);
5974 :
5975 0 : let mut top_n = Vec::new();
5976 0 :
5977 0 : // Call into each node to look for big tenants
5978 0 : let top_n_request = TopTenantShardsRequest {
5979 0 : // We currently split based on logical size, for simplicity: logical size is a signal of
5980 0 : // the user's intent to run a large database, whereas physical/resident size can be symptoms
5981 0 : // of compaction issues. Eventually we should switch to using resident size to bound the
5982 0 : // disk space impact of one shard.
5983 0 : order_by: models::TenantSorting::MaxLogicalSize,
5984 0 : limit: 10,
5985 0 : where_shards_lt: Some(SPLIT_TO_MAX),
5986 0 : where_gt: Some(split_threshold),
5987 0 : };
5988 0 : for node in nodes.values() {
5989 0 : let request_ref = &top_n_request;
5990 0 : match node
5991 0 : .with_client_retries(
5992 0 : |client| async move {
5993 0 : let request = request_ref.clone();
5994 0 : client.top_tenant_shards(request.clone()).await
5995 0 : },
5996 0 : &self.config.jwt_token,
5997 0 : 3,
5998 0 : 3,
5999 0 : Duration::from_secs(5),
6000 0 : &self.cancel,
6001 0 : )
6002 0 : .await
6003 : {
6004 0 : Some(Ok(node_top_n)) => {
6005 0 : top_n.extend(node_top_n.shards.into_iter());
6006 0 : }
6007 : Some(Err(mgmt_api::Error::Cancelled)) => {
6008 0 : continue;
6009 : }
6010 0 : Some(Err(e)) => {
6011 0 : tracing::warn!("Failed to fetch top N tenants from {node}: {e}");
6012 0 : continue;
6013 : }
6014 : None => {
6015 : // Node is shutting down
6016 0 : continue;
6017 : }
6018 : };
6019 : }
6020 :
6021 : // Pick the biggest tenant to split first
6022 0 : top_n.sort_by_key(|i| i.resident_size);
6023 0 : let Some(split_candidate) = top_n.into_iter().next() else {
6024 0 : tracing::debug!("No split-elegible shards found");
6025 0 : return;
6026 : };
6027 :
6028 : // We spawn a task to run this, so it's exactly like some external API client requesting it. We don't
6029 : // want to block the background reconcile loop on this.
6030 0 : tracing::info!("Auto-splitting tenant for size threshold {split_threshold}: current size {split_candidate:?}");
6031 :
6032 0 : let this = self.clone();
6033 0 : tokio::spawn(
6034 0 : async move {
6035 0 : match this
6036 0 : .tenant_shard_split(
6037 0 : split_candidate.id.tenant_id,
6038 0 : TenantShardSplitRequest {
6039 0 : // Always split to the max number of shards: this avoids stepping through
6040 0 : // intervening shard counts and encountering the overrhead of a split+cleanup
6041 0 : // each time as a tenant grows, and is not too expensive because our max shard
6042 0 : // count is relatively low anyway.
6043 0 : // This policy will be adjusted in future once we support higher shard count.
6044 0 : new_shard_count: SPLIT_TO_MAX.literal(),
6045 0 : new_stripe_size: Some(ShardParameters::DEFAULT_STRIPE_SIZE),
6046 0 : },
6047 0 : )
6048 0 : .await
6049 : {
6050 : Ok(_) => {
6051 0 : tracing::info!("Successful auto-split");
6052 : }
6053 0 : Err(e) => {
6054 0 : tracing::error!("Auto-split failed: {e}");
6055 : }
6056 : }
6057 0 : }
6058 0 : .instrument(tracing::info_span!("auto_split", tenant_id=%split_candidate.id.tenant_id)),
6059 : );
6060 0 : }
6061 :
6062 : /// Useful for tests: run whatever work a background [`Self::reconcile_all`] would have done, but
6063 : /// also wait for any generated Reconcilers to complete. Calling this until it returns zero should
6064 : /// put the system into a quiescent state where future background reconciliations won't do anything.
6065 0 : pub(crate) async fn reconcile_all_now(&self) -> Result<usize, ReconcileWaitError> {
6066 0 : let reconciles_spawned = self.reconcile_all();
6067 0 : let reconciles_spawned = if reconciles_spawned == 0 {
6068 : // Only optimize when we are otherwise idle
6069 0 : self.optimize_all().await
6070 : } else {
6071 0 : reconciles_spawned
6072 : };
6073 :
6074 0 : let waiters = {
6075 0 : let mut waiters = Vec::new();
6076 0 : let locked = self.inner.read().unwrap();
6077 0 : for (_tenant_shard_id, shard) in locked.tenants.iter() {
6078 0 : if let Some(waiter) = shard.get_waiter() {
6079 0 : waiters.push(waiter);
6080 0 : }
6081 : }
6082 0 : waiters
6083 0 : };
6084 0 :
6085 0 : let waiter_count = waiters.len();
6086 0 : match self.await_waiters(waiters, RECONCILE_TIMEOUT).await {
6087 0 : Ok(()) => {}
6088 0 : Err(ReconcileWaitError::Failed(_, reconcile_error))
6089 0 : if matches!(*reconcile_error, ReconcileError::Cancel) =>
6090 0 : {
6091 0 : // Ignore reconciler cancel errors: this reconciler might have shut down
6092 0 : // because some other change superceded it. We will return a nonzero number,
6093 0 : // so the caller knows they might have to call again to quiesce the system.
6094 0 : }
6095 0 : Err(e) => {
6096 0 : return Err(e);
6097 : }
6098 : };
6099 :
6100 0 : tracing::info!(
6101 0 : "{} reconciles in reconcile_all, {} waiters",
6102 : reconciles_spawned,
6103 : waiter_count
6104 : );
6105 :
6106 0 : Ok(std::cmp::max(waiter_count, reconciles_spawned))
6107 0 : }
6108 :
6109 0 : async fn stop_reconciliations(&self, reason: StopReconciliationsReason) {
6110 0 : // Cancel all on-going reconciles and wait for them to exit the gate.
6111 0 : tracing::info!("{reason}: cancelling and waiting for in-flight reconciles");
6112 0 : self.reconcilers_cancel.cancel();
6113 0 : self.reconcilers_gate.close().await;
6114 :
6115 : // Signal the background loop in [`Service::process_results`] to exit once
6116 : // it has proccessed the results from all the reconciles we cancelled earlier.
6117 0 : tracing::info!("{reason}: processing results from previously in-flight reconciles");
6118 0 : self.result_tx.send(ReconcileResultRequest::Stop).ok();
6119 0 : self.result_tx.closed().await;
6120 0 : }
6121 :
6122 0 : pub async fn shutdown(&self) {
6123 0 : self.stop_reconciliations(StopReconciliationsReason::ShuttingDown)
6124 0 : .await;
6125 :
6126 : // Background tasks hold gate guards: this notifies them of the cancellation and
6127 : // waits for them all to complete.
6128 0 : tracing::info!("Shutting down: cancelling and waiting for background tasks to exit");
6129 0 : self.cancel.cancel();
6130 0 : self.gate.close().await;
6131 0 : }
6132 :
6133 : /// Spot check the download lag for a secondary location of a shard.
6134 : /// Should be used as a heuristic, since it's not always precise: the
6135 : /// secondary might have not downloaded the new heat map yet and, hence,
6136 : /// is not aware of the lag.
6137 : ///
6138 : /// Returns:
6139 : /// * Ok(None) if the lag could not be determined from the status,
6140 : /// * Ok(Some(_)) if the lag could be determind
6141 : /// * Err on failures to query the pageserver.
6142 0 : async fn secondary_lag(
6143 0 : &self,
6144 0 : secondary: &NodeId,
6145 0 : tenant_shard_id: TenantShardId,
6146 0 : ) -> Result<Option<u64>, mgmt_api::Error> {
6147 0 : let nodes = self.inner.read().unwrap().nodes.clone();
6148 0 : let node = nodes.get(secondary).ok_or(mgmt_api::Error::ApiError(
6149 0 : StatusCode::NOT_FOUND,
6150 0 : format!("Node with id {} not found", secondary),
6151 0 : ))?;
6152 :
6153 0 : match node
6154 0 : .with_client_retries(
6155 0 : |client| async move { client.tenant_secondary_status(tenant_shard_id).await },
6156 0 : &self.config.jwt_token,
6157 0 : 1,
6158 0 : 3,
6159 0 : Duration::from_millis(250),
6160 0 : &self.cancel,
6161 0 : )
6162 0 : .await
6163 : {
6164 0 : Some(Ok(status)) => match status.heatmap_mtime {
6165 0 : Some(_) => Ok(Some(status.bytes_total - status.bytes_downloaded)),
6166 0 : None => Ok(None),
6167 : },
6168 0 : Some(Err(e)) => Err(e),
6169 0 : None => Err(mgmt_api::Error::Cancelled),
6170 : }
6171 0 : }
6172 :
6173 : /// Drain a node by moving the shards attached to it as primaries.
6174 : /// This is a long running operation and it should run as a separate Tokio task.
6175 0 : pub(crate) async fn drain_node(
6176 0 : self: &Arc<Self>,
6177 0 : node_id: NodeId,
6178 0 : cancel: CancellationToken,
6179 0 : ) -> Result<(), OperationError> {
6180 : const MAX_SECONDARY_LAG_BYTES_DEFAULT: u64 = 256 * 1024 * 1024;
6181 0 : let max_secondary_lag_bytes = self
6182 0 : .config
6183 0 : .max_secondary_lag_bytes
6184 0 : .unwrap_or(MAX_SECONDARY_LAG_BYTES_DEFAULT);
6185 :
6186 : // By default, live migrations are generous about the wait time for getting
6187 : // the secondary location up to speed. When draining, give up earlier in order
6188 : // to not stall the operation when a cold secondary is encountered.
6189 : const SECONDARY_WARMUP_TIMEOUT: Duration = Duration::from_secs(20);
6190 : const SECONDARY_DOWNLOAD_REQUEST_TIMEOUT: Duration = Duration::from_secs(5);
6191 0 : let reconciler_config = ReconcilerConfigBuilder::new()
6192 0 : .secondary_warmup_timeout(SECONDARY_WARMUP_TIMEOUT)
6193 0 : .secondary_download_request_timeout(SECONDARY_DOWNLOAD_REQUEST_TIMEOUT)
6194 0 : .build();
6195 0 :
6196 0 : let mut waiters = Vec::new();
6197 0 :
6198 0 : let mut tid_iter = TenantShardIterator::new({
6199 0 : let service = self.clone();
6200 0 : move |last_inspected_shard: Option<TenantShardId>| {
6201 0 : let locked = &service.inner.read().unwrap();
6202 0 : let tenants = &locked.tenants;
6203 0 : let entry = match last_inspected_shard {
6204 0 : Some(skip_past) => {
6205 0 : // Skip to the last seen tenant shard id
6206 0 : let mut cursor = tenants.iter().skip_while(|(tid, _)| **tid != skip_past);
6207 0 :
6208 0 : // Skip past the last seen
6209 0 : cursor.nth(1)
6210 : }
6211 0 : None => tenants.first_key_value(),
6212 : };
6213 :
6214 0 : entry.map(|(tid, _)| tid).copied()
6215 0 : }
6216 0 : });
6217 :
6218 0 : while !tid_iter.finished() {
6219 0 : if cancel.is_cancelled() {
6220 0 : match self
6221 0 : .node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
6222 0 : .await
6223 : {
6224 0 : Ok(()) => return Err(OperationError::Cancelled),
6225 0 : Err(err) => {
6226 0 : return Err(OperationError::FinalizeError(
6227 0 : format!(
6228 0 : "Failed to finalise drain cancel of {} by setting scheduling policy to Active: {}",
6229 0 : node_id, err
6230 0 : )
6231 0 : .into(),
6232 0 : ));
6233 : }
6234 : }
6235 0 : }
6236 0 :
6237 0 : drain_utils::validate_node_state(&node_id, self.inner.read().unwrap().nodes.clone())?;
6238 :
6239 0 : while waiters.len() < MAX_RECONCILES_PER_OPERATION {
6240 0 : let tid = match tid_iter.next() {
6241 0 : Some(tid) => tid,
6242 : None => {
6243 0 : break;
6244 : }
6245 : };
6246 :
6247 0 : let tid_drain = TenantShardDrain {
6248 0 : drained_node: node_id,
6249 0 : tenant_shard_id: tid,
6250 0 : };
6251 :
6252 0 : let dest_node_id = {
6253 0 : let locked = self.inner.read().unwrap();
6254 0 :
6255 0 : match tid_drain
6256 0 : .tenant_shard_eligible_for_drain(&locked.tenants, &locked.scheduler)
6257 : {
6258 0 : Some(node_id) => node_id,
6259 : None => {
6260 0 : continue;
6261 : }
6262 : }
6263 : };
6264 :
6265 0 : match self.secondary_lag(&dest_node_id, tid).await {
6266 0 : Ok(Some(lag)) if lag <= max_secondary_lag_bytes => {
6267 0 : // The secondary is reasonably up to date.
6268 0 : // Migrate to it
6269 0 : }
6270 0 : Ok(Some(lag)) => {
6271 0 : tracing::info!(
6272 0 : tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
6273 0 : "Secondary on node {dest_node_id} is lagging by {lag}. Skipping reconcile."
6274 : );
6275 0 : continue;
6276 : }
6277 : Ok(None) => {
6278 0 : tracing::info!(
6279 0 : tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
6280 0 : "Could not determine lag for secondary on node {dest_node_id}. Skipping reconcile."
6281 : );
6282 0 : continue;
6283 : }
6284 0 : Err(err) => {
6285 0 : tracing::warn!(
6286 0 : tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
6287 0 : "Failed to get secondary lag from node {dest_node_id}. Skipping reconcile: {err}"
6288 : );
6289 0 : continue;
6290 : }
6291 : }
6292 :
6293 : {
6294 0 : let mut locked = self.inner.write().unwrap();
6295 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
6296 0 : let rescheduled = tid_drain.reschedule_to_secondary(
6297 0 : dest_node_id,
6298 0 : tenants,
6299 0 : scheduler,
6300 0 : nodes,
6301 0 : )?;
6302 :
6303 0 : if let Some(tenant_shard) = rescheduled {
6304 0 : let waiter = self.maybe_configured_reconcile_shard(
6305 0 : tenant_shard,
6306 0 : nodes,
6307 0 : reconciler_config,
6308 0 : );
6309 0 : if let Some(some) = waiter {
6310 0 : waiters.push(some);
6311 0 : }
6312 0 : }
6313 : }
6314 : }
6315 :
6316 0 : waiters = self
6317 0 : .await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
6318 0 : .await;
6319 :
6320 0 : failpoint_support::sleep_millis_async!("sleepy-drain-loop", &cancel);
6321 : }
6322 :
6323 0 : while !waiters.is_empty() {
6324 0 : if cancel.is_cancelled() {
6325 0 : match self
6326 0 : .node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
6327 0 : .await
6328 : {
6329 0 : Ok(()) => return Err(OperationError::Cancelled),
6330 0 : Err(err) => {
6331 0 : return Err(OperationError::FinalizeError(
6332 0 : format!(
6333 0 : "Failed to finalise drain cancel of {} by setting scheduling policy to Active: {}",
6334 0 : node_id, err
6335 0 : )
6336 0 : .into(),
6337 0 : ));
6338 : }
6339 : }
6340 0 : }
6341 0 :
6342 0 : tracing::info!("Awaiting {} pending drain reconciliations", waiters.len());
6343 :
6344 0 : waiters = self
6345 0 : .await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
6346 0 : .await;
6347 : }
6348 :
6349 : // At this point we have done the best we could to drain shards from this node.
6350 : // Set the node scheduling policy to `[NodeSchedulingPolicy::PauseForRestart]`
6351 : // to complete the drain.
6352 0 : if let Err(err) = self
6353 0 : .node_configure(node_id, None, Some(NodeSchedulingPolicy::PauseForRestart))
6354 0 : .await
6355 : {
6356 : // This is not fatal. Anything that is polling the node scheduling policy to detect
6357 : // the end of the drain operations will hang, but all such places should enforce an
6358 : // overall timeout. The scheduling policy will be updated upon node re-attach and/or
6359 : // by the counterpart fill operation.
6360 0 : return Err(OperationError::FinalizeError(
6361 0 : format!(
6362 0 : "Failed to finalise drain of {node_id} by setting scheduling policy to PauseForRestart: {err}"
6363 0 : )
6364 0 : .into(),
6365 0 : ));
6366 0 : }
6367 0 :
6368 0 : Ok(())
6369 0 : }
6370 :
6371 : /// Create a node fill plan (pick secondaries to promote) that meets the following requirements:
6372 : /// 1. The node should be filled until it reaches the expected cluster average of
6373 : /// attached shards. If there are not enough secondaries on the node, the plan stops early.
6374 : /// 2. Select tenant shards to promote such that the number of attached shards is balanced
6375 : /// throughout the cluster. We achieve this by picking tenant shards from each node,
6376 : /// starting from the ones with the largest number of attached shards, until the node
6377 : /// reaches the expected cluster average.
6378 : /// 3. Avoid promoting more shards of the same tenant than required. The upper bound
6379 : /// for the number of tenants from the same shard promoted to the node being filled is:
6380 : /// shard count for the tenant divided by the number of nodes in the cluster.
6381 0 : fn fill_node_plan(&self, node_id: NodeId) -> Vec<TenantShardId> {
6382 0 : let mut locked = self.inner.write().unwrap();
6383 0 : let fill_requirement = locked.scheduler.compute_fill_requirement(node_id);
6384 0 :
6385 0 : let mut tids_by_node = locked
6386 0 : .tenants
6387 0 : .iter_mut()
6388 0 : .filter_map(|(tid, tenant_shard)| {
6389 0 : if tenant_shard.intent.get_secondary().contains(&node_id) {
6390 0 : if let Some(primary) = tenant_shard.intent.get_attached() {
6391 0 : return Some((*primary, *tid));
6392 0 : }
6393 0 : }
6394 :
6395 0 : None
6396 0 : })
6397 0 : .into_group_map();
6398 0 :
6399 0 : let expected_attached = locked.scheduler.expected_attached_shard_count();
6400 0 : let nodes_by_load = locked.scheduler.nodes_by_attached_shard_count();
6401 0 :
6402 0 : let mut promoted_per_tenant: HashMap<TenantId, usize> = HashMap::new();
6403 0 : let mut plan = Vec::new();
6404 :
6405 0 : for (node_id, attached) in nodes_by_load {
6406 0 : let available = locked
6407 0 : .nodes
6408 0 : .get(&node_id)
6409 0 : .map_or(false, |n| n.is_available());
6410 0 : if !available {
6411 0 : continue;
6412 0 : }
6413 0 :
6414 0 : if plan.len() >= fill_requirement
6415 0 : || tids_by_node.is_empty()
6416 0 : || attached <= expected_attached
6417 : {
6418 0 : break;
6419 0 : }
6420 0 :
6421 0 : let can_take = attached - expected_attached;
6422 0 : let needed = fill_requirement - plan.len();
6423 0 : let mut take = std::cmp::min(can_take, needed);
6424 0 :
6425 0 : let mut remove_node = false;
6426 0 : while take > 0 {
6427 0 : match tids_by_node.get_mut(&node_id) {
6428 0 : Some(tids) => match tids.pop() {
6429 0 : Some(tid) => {
6430 0 : let max_promote_for_tenant = std::cmp::max(
6431 0 : tid.shard_count.count() as usize / locked.nodes.len(),
6432 0 : 1,
6433 0 : );
6434 0 : let promoted = promoted_per_tenant.entry(tid.tenant_id).or_default();
6435 0 : if *promoted < max_promote_for_tenant {
6436 0 : plan.push(tid);
6437 0 : *promoted += 1;
6438 0 : take -= 1;
6439 0 : }
6440 : }
6441 : None => {
6442 0 : remove_node = true;
6443 0 : break;
6444 : }
6445 : },
6446 : None => {
6447 0 : break;
6448 : }
6449 : }
6450 : }
6451 :
6452 0 : if remove_node {
6453 0 : tids_by_node.remove(&node_id);
6454 0 : }
6455 : }
6456 :
6457 0 : plan
6458 0 : }
6459 :
6460 : /// Fill a node by promoting its secondaries until the cluster is balanced
6461 : /// with regards to attached shard counts. Note that this operation only
6462 : /// makes sense as a counterpart to the drain implemented in [`Service::drain_node`].
6463 : /// This is a long running operation and it should run as a separate Tokio task.
6464 0 : pub(crate) async fn fill_node(
6465 0 : &self,
6466 0 : node_id: NodeId,
6467 0 : cancel: CancellationToken,
6468 0 : ) -> Result<(), OperationError> {
6469 : const SECONDARY_WARMUP_TIMEOUT: Duration = Duration::from_secs(20);
6470 : const SECONDARY_DOWNLOAD_REQUEST_TIMEOUT: Duration = Duration::from_secs(5);
6471 0 : let reconciler_config = ReconcilerConfigBuilder::new()
6472 0 : .secondary_warmup_timeout(SECONDARY_WARMUP_TIMEOUT)
6473 0 : .secondary_download_request_timeout(SECONDARY_DOWNLOAD_REQUEST_TIMEOUT)
6474 0 : .build();
6475 0 :
6476 0 : let mut tids_to_promote = self.fill_node_plan(node_id);
6477 0 : let mut waiters = Vec::new();
6478 :
6479 : // Execute the plan we've composed above. Before aplying each move from the plan,
6480 : // we validate to ensure that it has not gone stale in the meantime.
6481 0 : while !tids_to_promote.is_empty() {
6482 0 : if cancel.is_cancelled() {
6483 0 : match self
6484 0 : .node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
6485 0 : .await
6486 : {
6487 0 : Ok(()) => return Err(OperationError::Cancelled),
6488 0 : Err(err) => {
6489 0 : return Err(OperationError::FinalizeError(
6490 0 : format!(
6491 0 : "Failed to finalise drain cancel of {} by setting scheduling policy to Active: {}",
6492 0 : node_id, err
6493 0 : )
6494 0 : .into(),
6495 0 : ));
6496 : }
6497 : }
6498 0 : }
6499 0 :
6500 0 : {
6501 0 : let mut locked = self.inner.write().unwrap();
6502 0 : let (nodes, tenants, scheduler) = locked.parts_mut();
6503 :
6504 0 : let node = nodes.get(&node_id).ok_or(OperationError::NodeStateChanged(
6505 0 : format!("node {node_id} was removed").into(),
6506 0 : ))?;
6507 :
6508 0 : let current_policy = node.get_scheduling();
6509 0 : if !matches!(current_policy, NodeSchedulingPolicy::Filling) {
6510 : // TODO(vlad): maybe cancel pending reconciles before erroring out. need to think
6511 : // about it
6512 0 : return Err(OperationError::NodeStateChanged(
6513 0 : format!("node {node_id} changed state to {current_policy:?}").into(),
6514 0 : ));
6515 0 : }
6516 :
6517 0 : while waiters.len() < MAX_RECONCILES_PER_OPERATION {
6518 0 : if let Some(tid) = tids_to_promote.pop() {
6519 0 : if let Some(tenant_shard) = tenants.get_mut(&tid) {
6520 : // If the node being filled is not a secondary anymore,
6521 : // skip the promotion.
6522 0 : if !tenant_shard.intent.get_secondary().contains(&node_id) {
6523 0 : continue;
6524 0 : }
6525 0 :
6526 0 : let previously_attached_to = *tenant_shard.intent.get_attached();
6527 0 : match tenant_shard.reschedule_to_secondary(Some(node_id), scheduler) {
6528 0 : Err(e) => {
6529 0 : tracing::warn!(
6530 0 : tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
6531 0 : "Scheduling error when filling pageserver {} : {e}", node_id
6532 : );
6533 : }
6534 : Ok(()) => {
6535 0 : tracing::info!(
6536 0 : tenant_id=%tid.tenant_id, shard_id=%tid.shard_slug(),
6537 0 : "Rescheduled shard while filling node {}: {:?} -> {}",
6538 : node_id,
6539 : previously_attached_to,
6540 : node_id
6541 : );
6542 :
6543 0 : if let Some(waiter) = self.maybe_configured_reconcile_shard(
6544 0 : tenant_shard,
6545 0 : nodes,
6546 0 : reconciler_config,
6547 0 : ) {
6548 0 : waiters.push(waiter);
6549 0 : }
6550 : }
6551 : }
6552 0 : }
6553 : } else {
6554 0 : break;
6555 : }
6556 : }
6557 : }
6558 :
6559 0 : waiters = self
6560 0 : .await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
6561 0 : .await;
6562 : }
6563 :
6564 0 : while !waiters.is_empty() {
6565 0 : if cancel.is_cancelled() {
6566 0 : match self
6567 0 : .node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
6568 0 : .await
6569 : {
6570 0 : Ok(()) => return Err(OperationError::Cancelled),
6571 0 : Err(err) => {
6572 0 : return Err(OperationError::FinalizeError(
6573 0 : format!(
6574 0 : "Failed to finalise drain cancel of {} by setting scheduling policy to Active: {}",
6575 0 : node_id, err
6576 0 : )
6577 0 : .into(),
6578 0 : ));
6579 : }
6580 : }
6581 0 : }
6582 0 :
6583 0 : tracing::info!("Awaiting {} pending fill reconciliations", waiters.len());
6584 :
6585 0 : waiters = self
6586 0 : .await_waiters_remainder(waiters, SHORT_RECONCILE_TIMEOUT)
6587 0 : .await;
6588 : }
6589 :
6590 0 : if let Err(err) = self
6591 0 : .node_configure(node_id, None, Some(NodeSchedulingPolicy::Active))
6592 0 : .await
6593 : {
6594 : // This isn't a huge issue since the filling process starts upon request. However, it
6595 : // will prevent the next drain from starting. The only case in which this can fail
6596 : // is database unavailability. Such a case will require manual intervention.
6597 0 : return Err(OperationError::FinalizeError(
6598 0 : format!("Failed to finalise fill of {node_id} by setting scheduling policy to Active: {err}")
6599 0 : .into(),
6600 0 : ));
6601 0 : }
6602 0 :
6603 0 : Ok(())
6604 0 : }
6605 :
6606 : /// Updates scrubber metadata health check results.
6607 0 : pub(crate) async fn metadata_health_update(
6608 0 : &self,
6609 0 : update_req: MetadataHealthUpdateRequest,
6610 0 : ) -> Result<(), ApiError> {
6611 0 : let now = chrono::offset::Utc::now();
6612 0 : let (healthy_records, unhealthy_records) = {
6613 0 : let locked = self.inner.read().unwrap();
6614 0 : let healthy_records = update_req
6615 0 : .healthy_tenant_shards
6616 0 : .into_iter()
6617 0 : // Retain only health records associated with tenant shards managed by storage controller.
6618 0 : .filter(|tenant_shard_id| locked.tenants.contains_key(tenant_shard_id))
6619 0 : .map(|tenant_shard_id| MetadataHealthPersistence::new(tenant_shard_id, true, now))
6620 0 : .collect();
6621 0 : let unhealthy_records = update_req
6622 0 : .unhealthy_tenant_shards
6623 0 : .into_iter()
6624 0 : .filter(|tenant_shard_id| locked.tenants.contains_key(tenant_shard_id))
6625 0 : .map(|tenant_shard_id| MetadataHealthPersistence::new(tenant_shard_id, false, now))
6626 0 : .collect();
6627 0 :
6628 0 : (healthy_records, unhealthy_records)
6629 0 : };
6630 0 :
6631 0 : self.persistence
6632 0 : .update_metadata_health_records(healthy_records, unhealthy_records, now)
6633 0 : .await?;
6634 0 : Ok(())
6635 0 : }
6636 :
6637 : /// Lists the tenant shards that has unhealthy metadata status.
6638 0 : pub(crate) async fn metadata_health_list_unhealthy(
6639 0 : &self,
6640 0 : ) -> Result<Vec<TenantShardId>, ApiError> {
6641 0 : let result = self
6642 0 : .persistence
6643 0 : .list_unhealthy_metadata_health_records()
6644 0 : .await?
6645 0 : .iter()
6646 0 : .map(|p| p.get_tenant_shard_id().unwrap())
6647 0 : .collect();
6648 0 :
6649 0 : Ok(result)
6650 0 : }
6651 :
6652 : /// Lists the tenant shards that have not been scrubbed for some duration.
6653 0 : pub(crate) async fn metadata_health_list_outdated(
6654 0 : &self,
6655 0 : not_scrubbed_for: Duration,
6656 0 : ) -> Result<Vec<MetadataHealthRecord>, ApiError> {
6657 0 : let earlier = chrono::offset::Utc::now() - not_scrubbed_for;
6658 0 : let result = self
6659 0 : .persistence
6660 0 : .list_outdated_metadata_health_records(earlier)
6661 0 : .await?
6662 0 : .into_iter()
6663 0 : .map(|record| record.into())
6664 0 : .collect();
6665 0 : Ok(result)
6666 0 : }
6667 :
6668 0 : pub(crate) fn get_leadership_status(&self) -> LeadershipStatus {
6669 0 : self.inner.read().unwrap().get_leadership_status()
6670 0 : }
6671 :
6672 0 : pub(crate) async fn step_down(&self) -> GlobalObservedState {
6673 0 : tracing::info!("Received step down request from peer");
6674 0 : failpoint_support::sleep_millis_async!("sleep-on-step-down-handling");
6675 :
6676 0 : self.inner.write().unwrap().step_down();
6677 0 : // TODO: would it make sense to have a time-out for this?
6678 0 : self.stop_reconciliations(StopReconciliationsReason::SteppingDown)
6679 0 : .await;
6680 :
6681 0 : let mut global_observed = GlobalObservedState::default();
6682 0 : let locked = self.inner.read().unwrap();
6683 0 : for (tid, tenant_shard) in locked.tenants.iter() {
6684 0 : global_observed
6685 0 : .0
6686 0 : .insert(*tid, tenant_shard.observed.clone());
6687 0 : }
6688 :
6689 0 : global_observed
6690 0 : }
6691 :
6692 0 : pub(crate) async fn get_safekeeper(
6693 0 : &self,
6694 0 : id: i64,
6695 0 : ) -> Result<crate::persistence::SafekeeperPersistence, DatabaseError> {
6696 0 : self.persistence.safekeeper_get(id).await
6697 0 : }
6698 :
6699 0 : pub(crate) async fn upsert_safekeeper(
6700 0 : &self,
6701 0 : record: crate::persistence::SafekeeperPersistence,
6702 0 : ) -> Result<(), DatabaseError> {
6703 0 : self.persistence.safekeeper_upsert(record).await
6704 0 : }
6705 :
6706 0 : pub(crate) async fn update_shards_preferred_azs(
6707 0 : &self,
6708 0 : req: ShardsPreferredAzsRequest,
6709 0 : ) -> Result<ShardsPreferredAzsResponse, ApiError> {
6710 0 : let preferred_azs = req.preferred_az_ids.into_iter().collect::<Vec<_>>();
6711 0 : let updated = self
6712 0 : .persistence
6713 0 : .set_tenant_shard_preferred_azs(preferred_azs)
6714 0 : .await
6715 0 : .map_err(|err| {
6716 0 : ApiError::InternalServerError(anyhow::anyhow!(
6717 0 : "Failed to persist preferred AZs: {err}"
6718 0 : ))
6719 0 : })?;
6720 :
6721 0 : let mut updated_in_mem_and_db = Vec::default();
6722 0 :
6723 0 : let mut locked = self.inner.write().unwrap();
6724 0 : for (tid, az_id) in updated {
6725 0 : let shard = locked.tenants.get_mut(&tid);
6726 0 : if let Some(shard) = shard {
6727 0 : shard.set_preferred_az(az_id);
6728 0 : updated_in_mem_and_db.push(tid);
6729 0 : }
6730 : }
6731 :
6732 0 : Ok(ShardsPreferredAzsResponse {
6733 0 : updated: updated_in_mem_and_db,
6734 0 : })
6735 0 : }
6736 : }
|