LCOV - code coverage report
Current view: top level - pageserver/src/tenant - storage_layer.rs (source / functions) Coverage Total Hit
Test: f2bfe5dc5ab550768e936d6bc7b94d9b2e2d4cc9.info Lines: 79.1 % 546 432
Test Date: 2025-01-27 20:39:28 Functions: 80.2 % 81 65

            Line data    Source code
       1              : //! Common traits and structs for layers
       2              : 
       3              : pub mod batch_split_writer;
       4              : pub mod delta_layer;
       5              : pub mod filter_iterator;
       6              : pub mod image_layer;
       7              : pub mod inmemory_layer;
       8              : pub(crate) mod layer;
       9              : mod layer_desc;
      10              : mod layer_name;
      11              : pub mod merge_iterator;
      12              : 
      13              : use crate::config::PageServerConf;
      14              : use crate::context::{AccessStatsBehavior, RequestContext};
      15              : use bytes::Bytes;
      16              : use futures::stream::FuturesUnordered;
      17              : use futures::StreamExt;
      18              : use pageserver_api::key::Key;
      19              : use pageserver_api::keyspace::{KeySpace, KeySpaceRandomAccum};
      20              : use pageserver_api::record::NeonWalRecord;
      21              : use pageserver_api::value::Value;
      22              : use std::cmp::Ordering;
      23              : use std::collections::hash_map::Entry;
      24              : use std::collections::{BinaryHeap, HashMap};
      25              : use std::future::Future;
      26              : use std::ops::Range;
      27              : use std::pin::Pin;
      28              : use std::sync::atomic::AtomicUsize;
      29              : use std::sync::Arc;
      30              : use std::time::{Duration, SystemTime, UNIX_EPOCH};
      31              : use tracing::{trace, Instrument};
      32              : use utils::sync::gate::GateGuard;
      33              : 
      34              : use utils::lsn::Lsn;
      35              : 
      36              : pub use delta_layer::{DeltaLayer, DeltaLayerWriter, ValueRef};
      37              : pub use image_layer::{ImageLayer, ImageLayerWriter};
      38              : pub use inmemory_layer::InMemoryLayer;
      39              : pub use layer_desc::{PersistentLayerDesc, PersistentLayerKey};
      40              : pub use layer_name::{DeltaLayerName, ImageLayerName, LayerName};
      41              : 
      42              : pub(crate) use layer::{EvictionError, Layer, ResidentLayer};
      43              : 
      44              : use self::inmemory_layer::InMemoryLayerFileId;
      45              : 
      46              : use super::timeline::GetVectoredError;
      47              : use super::PageReconstructError;
      48              : 
      49            0 : pub fn range_overlaps<T>(a: &Range<T>, b: &Range<T>) -> bool
      50            0 : where
      51            0 :     T: PartialOrd<T>,
      52            0 : {
      53            0 :     if a.start < b.start {
      54            0 :         a.end > b.start
      55              :     } else {
      56            0 :         b.end > a.start
      57              :     }
      58            0 : }
      59              : 
      60              : /// Struct used to communicate across calls to 'get_value_reconstruct_data'.
      61              : ///
      62              : /// Before first call, you can fill in 'page_img' if you have an older cached
      63              : /// version of the page available. That can save work in
      64              : /// 'get_value_reconstruct_data', as it can stop searching for page versions
      65              : /// when all the WAL records going back to the cached image have been collected.
      66              : ///
      67              : /// When get_value_reconstruct_data returns Complete, 'img' is set to an image
      68              : /// of the page, or the oldest WAL record in 'records' is a will_init-type
      69              : /// record that initializes the page without requiring a previous image.
      70              : ///
      71              : /// If 'get_page_reconstruct_data' returns Continue, some 'records' may have
      72              : /// been collected, but there are more records outside the current layer. Pass
      73              : /// the same ValueReconstructState struct in the next 'get_value_reconstruct_data'
      74              : /// call, to collect more records.
      75              : ///
      76              : #[derive(Debug, Default)]
      77              : pub(crate) struct ValueReconstructState {
      78              :     pub(crate) records: Vec<(Lsn, NeonWalRecord)>,
      79              :     pub(crate) img: Option<(Lsn, Bytes)>,
      80              : }
      81              : 
      82              : #[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
      83              : pub(crate) enum ValueReconstructSituation {
      84              :     Complete,
      85              :     #[default]
      86              :     Continue,
      87              : }
      88              : 
      89              : /// On disk representation of a value loaded in a buffer
      90              : #[derive(Debug)]
      91              : pub(crate) enum OnDiskValue {
      92              :     /// Unencoded [`Value::Image`]
      93              :     RawImage(Bytes),
      94              :     /// Encoded [`Value`]. Can deserialize into an image or a WAL record
      95              :     WalRecordOrImage(Bytes),
      96              : }
      97              : 
      98              : /// Reconstruct data accumulated for a single key during a vectored get
      99              : #[derive(Debug, Default)]
     100              : pub(crate) struct VectoredValueReconstructState {
     101              :     pub(crate) on_disk_values: Vec<(Lsn, OnDiskValueIoWaiter)>,
     102              : 
     103              :     pub(crate) situation: ValueReconstructSituation,
     104              : }
     105              : 
     106              : #[derive(Debug)]
     107              : pub(crate) struct OnDiskValueIoWaiter {
     108              :     rx: tokio::sync::oneshot::Receiver<OnDiskValueIoResult>,
     109              : }
     110              : 
     111              : #[derive(Debug)]
     112              : #[must_use]
     113              : pub(crate) enum OnDiskValueIo {
     114              :     /// Traversal identified this IO as required to complete the vectored get.
     115              :     Required {
     116              :         num_active_ios: Arc<AtomicUsize>,
     117              :         tx: tokio::sync::oneshot::Sender<OnDiskValueIoResult>,
     118              :     },
     119              :     /// Sparse keyspace reads always read all the values for a given key,
     120              :     /// even though only the first value is needed.
     121              :     ///
     122              :     /// This variant represents the unnecessary IOs for those values at lower LSNs
     123              :     /// that aren't needed, but are currently still being done.
     124              :     ///
     125              :     /// The execution of unnecessary IOs was a pre-existing behavior before concurrent IO.
     126              :     /// We added this explicit representation here so that we can drop
     127              :     /// unnecessary IO results immediately, instead of buffering them in
     128              :     /// `oneshot` channels inside [`VectoredValueReconstructState`] until
     129              :     /// [`VectoredValueReconstructState::collect_pending_ios`] gets called.
     130              :     Unnecessary,
     131              : }
     132              : 
     133              : type OnDiskValueIoResult = Result<OnDiskValue, std::io::Error>;
     134              : 
     135              : impl OnDiskValueIo {
     136      1482101 :     pub(crate) fn complete(self, res: OnDiskValueIoResult) {
     137      1482101 :         match self {
     138      1337359 :             OnDiskValueIo::Required { num_active_ios, tx } => {
     139      1337359 :                 num_active_ios.fetch_sub(1, std::sync::atomic::Ordering::Release);
     140      1337359 :                 let _ = tx.send(res);
     141      1337359 :             }
     142       144742 :             OnDiskValueIo::Unnecessary => {
     143       144742 :                 // Nobody cared, see variant doc comment.
     144       144742 :             }
     145              :         }
     146      1482101 :     }
     147              : }
     148              : 
     149              : #[derive(Debug, thiserror::Error)]
     150              : pub(crate) enum WaitCompletionError {
     151              :     #[error("OnDiskValueIo was dropped without completing, likely the sidecar task panicked")]
     152              :     IoDropped,
     153              : }
     154              : 
     155              : impl OnDiskValueIoWaiter {
     156      1337357 :     pub(crate) async fn wait_completion(self) -> Result<OnDiskValueIoResult, WaitCompletionError> {
     157      1337357 :         // NB: for Unnecessary IOs, this method never gets called because we don't add them to `on_disk_values`.
     158      1337357 :         self.rx.await.map_err(|_| WaitCompletionError::IoDropped)
     159      1337357 :     }
     160              : }
     161              : 
     162              : impl VectoredValueReconstructState {
     163              :     /// # Cancel-Safety
     164              :     ///
     165              :     /// Technically fine to stop polling this future, but, the IOs will still
     166              :     /// be executed to completion by the sidecar task and hold on to / consume resources.
     167              :     /// Better not do it to make reasonsing about the system easier.
     168      1336045 :     pub(crate) async fn collect_pending_ios(
     169      1336045 :         self,
     170      1336045 :     ) -> Result<ValueReconstructState, PageReconstructError> {
     171              :         use utils::bin_ser::BeSer;
     172              : 
     173      1336045 :         let mut res = Ok(ValueReconstructState::default());
     174              : 
     175              :         // We should try hard not to bail early, so that by the time we return from this
     176              :         // function, all IO for this value is done. It's not required -- we could totally
     177              :         // stop polling the IO futures in the sidecar task, they need to support that,
     178              :         // but just stopping to poll doesn't reduce the IO load on the disk. It's easier
     179              :         // to reason about the system if we just wait for all IO to complete, even if
     180              :         // we're no longer interested in the result.
     181              :         //
     182              :         // Revisit this when IO futures are replaced with a more sophisticated IO system
     183              :         // and an IO scheduler, where we know which IOs were submitted and which ones
     184              :         // just queued. Cf the comment on IoConcurrency::spawn_io.
     185      2673402 :         for (lsn, waiter) in self.on_disk_values {
     186      1337357 :             let value_recv_res = waiter
     187      1337357 :                 .wait_completion()
     188      1337357 :                 // we rely on the caller to poll us to completion, so this is not a bail point
     189      1337357 :                 .await;
     190              :             // Force not bailing early by wrapping the code into a closure.
     191              :             #[allow(clippy::redundant_closure_call)]
     192      1337357 :             let _: () = (|| {
     193      1337357 :                 match (&mut res, value_recv_res) {
     194            0 :                     (Err(_), _) => {
     195            0 :                         // We've already failed, no need to process more.
     196            0 :                     }
     197            0 :                     (Ok(_), Err(wait_err)) => {
     198            0 :                         // This shouldn't happen - likely the sidecar task panicked.
     199            0 :                         res = Err(PageReconstructError::Other(wait_err.into()));
     200            0 :                     }
     201            0 :                     (Ok(_), Ok(Err(err))) => {
     202            0 :                         let err: std::io::Error = err;
     203            0 :                         // TODO: returning IO error here will fail a compute query.
     204            0 :                         // Probably not what we want, we're not doing `maybe_fatal_err`
     205            0 :                         // in the IO futures.
     206            0 :                         // But it's been like that for a long time, not changing it
     207            0 :                         // as part of concurrent IO.
     208            0 :                         // => https://github.com/neondatabase/neon/issues/10454
     209            0 :                         res = Err(PageReconstructError::Other(err.into()));
     210            0 :                     }
     211        38411 :                     (Ok(ok), Ok(Ok(OnDiskValue::RawImage(img)))) => {
     212        38411 :                         assert!(ok.img.is_none());
     213        38411 :                         ok.img = Some((lsn, img));
     214              :                     }
     215      1298946 :                     (Ok(ok), Ok(Ok(OnDiskValue::WalRecordOrImage(buf)))) => {
     216      1298946 :                         match Value::des(&buf) {
     217         1400 :                             Ok(Value::WalRecord(rec)) => {
     218         1400 :                                 ok.records.push((lsn, rec));
     219         1400 :                             }
     220      1297546 :                             Ok(Value::Image(img)) => {
     221      1297546 :                                 assert!(ok.img.is_none());
     222      1297546 :                                 ok.img = Some((lsn, img));
     223              :                             }
     224            0 :                             Err(err) => {
     225            0 :                                 res = Err(PageReconstructError::Other(err.into()));
     226            0 :                             }
     227              :                         }
     228              :                     }
     229              :                 }
     230      1337357 :             })();
     231      1337357 :         }
     232              : 
     233      1336045 :         res
     234      1336045 :     }
     235              : }
     236              : 
     237              : /// Bag of data accumulated during a vectored get..
     238              : pub(crate) struct ValuesReconstructState {
     239              :     /// The keys will be removed after `get_vectored` completes. The caller outside `Timeline`
     240              :     /// should not expect to get anything from this hashmap.
     241              :     pub(crate) keys: HashMap<Key, VectoredValueReconstructState>,
     242              :     /// The keys which are already retrieved
     243              :     keys_done: KeySpaceRandomAccum,
     244              : 
     245              :     /// The keys covered by the image layers
     246              :     keys_with_image_coverage: Option<Range<Key>>,
     247              : 
     248              :     // Statistics that are still accessible as a caller of `get_vectored_impl`.
     249              :     layers_visited: u32,
     250              :     delta_layers_visited: u32,
     251              : 
     252              :     pub(crate) io_concurrency: IoConcurrency,
     253              :     num_active_ios: Arc<AtomicUsize>,
     254              : }
     255              : 
     256              : /// The level of IO concurrency to be used on the read path
     257              : ///
     258              : /// The desired end state is that we always do parallel IO.
     259              : /// This struct and the dispatching in the impl will be removed once
     260              : /// we've built enough confidence.
     261              : pub(crate) enum IoConcurrency {
     262              :     Sequential,
     263              :     SidecarTask {
     264              :         task_id: usize,
     265              :         ios_tx: tokio::sync::mpsc::UnboundedSender<IoFuture>,
     266              :     },
     267              : }
     268              : 
     269              : type IoFuture = Pin<Box<dyn Send + Future<Output = ()>>>;
     270              : 
     271              : pub(crate) enum SelectedIoConcurrency {
     272              :     Sequential,
     273              :     SidecarTask(GateGuard),
     274              : }
     275              : 
     276              : impl std::fmt::Debug for IoConcurrency {
     277            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     278            0 :         match self {
     279            0 :             IoConcurrency::Sequential => write!(f, "Sequential"),
     280            0 :             IoConcurrency::SidecarTask { .. } => write!(f, "SidecarTask"),
     281              :         }
     282            0 :     }
     283              : }
     284              : 
     285              : impl std::fmt::Debug for SelectedIoConcurrency {
     286           64 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     287           64 :         match self {
     288           32 :             SelectedIoConcurrency::Sequential => write!(f, "Sequential"),
     289           32 :             SelectedIoConcurrency::SidecarTask(_) => write!(f, "SidecarTask"),
     290              :         }
     291           64 :     }
     292              : }
     293              : 
     294              : impl IoConcurrency {
     295              :     /// Force sequential IO. This is a temporary workaround until we have
     296              :     /// moved plumbing-through-the-call-stack
     297              :     /// of IoConcurrency into `RequestContextq.
     298              :     ///
     299              :     /// DO NOT USE for new code.
     300              :     ///
     301              :     /// Tracking issue: <https://github.com/neondatabase/neon/issues/10460>.
     302      1215185 :     pub(crate) fn sequential() -> Self {
     303      1215185 :         Self::spawn(SelectedIoConcurrency::Sequential)
     304      1215185 :     }
     305              : 
     306         1012 :     pub(crate) fn spawn_from_conf(
     307         1012 :         conf: &'static PageServerConf,
     308         1012 :         gate_guard: GateGuard,
     309         1012 :     ) -> IoConcurrency {
     310              :         use pageserver_api::config::GetVectoredConcurrentIo;
     311         1012 :         let selected = match conf.get_vectored_concurrent_io {
     312         1012 :             GetVectoredConcurrentIo::Sequential => SelectedIoConcurrency::Sequential,
     313            0 :             GetVectoredConcurrentIo::SidecarTask => SelectedIoConcurrency::SidecarTask(gate_guard),
     314              :         };
     315         1012 :         Self::spawn(selected)
     316         1012 :     }
     317              : 
     318      1216261 :     pub(crate) fn spawn(io_concurrency: SelectedIoConcurrency) -> Self {
     319      1216261 :         match io_concurrency {
     320      1216229 :             SelectedIoConcurrency::Sequential => IoConcurrency::Sequential,
     321           32 :             SelectedIoConcurrency::SidecarTask(gate_guard) => {
     322           32 :                 let (ios_tx, ios_rx) = tokio::sync::mpsc::unbounded_channel();
     323              :                 static TASK_ID: AtomicUsize = AtomicUsize::new(0);
     324           32 :                 let task_id = TASK_ID.fetch_add(1, std::sync::atomic::Ordering::Relaxed);
     325              :                 // TODO: enrich the span with more context (tenant,shard,timeline) + (basebackup|pagestream|...)
     326           32 :                 let span =
     327           32 :                     tracing::info_span!(parent: None, "IoConcurrency_sidecar", task_id = task_id);
     328           32 :                 trace!(task_id, "spawning sidecar task");
     329           32 :                 tokio::spawn(async move {
     330           32 :                     trace!("start");
     331           32 :                     scopeguard::defer!{ trace!("end") };
     332              :                     type IosRx = tokio::sync::mpsc::UnboundedReceiver<IoFuture>;
     333              :                     enum State {
     334              :                         Waiting {
     335              :                             // invariant: is_empty(), but we recycle the allocation
     336              :                             empty_futures: FuturesUnordered<IoFuture>,
     337              :                             ios_rx: IosRx,
     338              :                         },
     339              :                         Executing {
     340              :                             futures: FuturesUnordered<IoFuture>,
     341              :                             ios_rx: IosRx,
     342              :                         },
     343              :                         ShuttingDown {
     344              :                             futures: FuturesUnordered<IoFuture>,
     345              :                         },
     346              :                     }
     347           32 :                     let mut state = State::Waiting {
     348           32 :                         empty_futures: FuturesUnordered::new(),
     349           32 :                         ios_rx,
     350           32 :                     };
     351              :                     loop {
     352        39122 :                         match state {
     353              :                             State::Waiting {
     354        18551 :                                 empty_futures,
     355        18551 :                                 mut ios_rx,
     356        18551 :                             } => {
     357        18551 :                                 assert!(empty_futures.is_empty());
     358        18551 :                                 tokio::select! {
     359        18551 :                                     fut = ios_rx.recv() => {
     360        18519 :                                         if let Some(fut) = fut {
     361        18519 :                                             trace!("received new io future");
     362        18519 :                                             empty_futures.push(fut);
     363        18519 :                                             state = State::Executing { futures: empty_futures, ios_rx };
     364              :                                         } else {
     365            0 :                                             state = State::ShuttingDown { futures: empty_futures }
     366              :                                         }
     367              :                                     }
     368              :                                 }
     369              :                             }
     370              :                             State::Executing {
     371        20571 :                                 mut futures,
     372        20571 :                                 mut ios_rx,
     373        20571 :                             } => {
     374        20571 :                                 tokio::select! {
     375        20571 :                                     res = futures.next() => {
     376        19545 :                                         trace!("io future completed");
     377        19545 :                                         assert!(res.is_some());
     378        19545 :                                         if futures.is_empty() {
     379        18519 :                                             state = State::Waiting { empty_futures: futures, ios_rx};
     380        18519 :                                         } else {
     381         1026 :                                             state = State::Executing { futures, ios_rx };
     382         1026 :                                         }
     383              :                                     }
     384        20571 :                                     fut = ios_rx.recv() => {
     385         1026 :                                         if let Some(fut) = fut {
     386         1026 :                                             trace!("received new io future");
     387         1026 :                                             futures.push(fut);
     388         1026 :                                             state =  State::Executing { futures, ios_rx};
     389            0 :                                         } else {
     390            0 :                                             state = State::ShuttingDown { futures };
     391            0 :                                         }
     392              :                                     }
     393              :                                 }
     394              :                             }
     395              :                             State::ShuttingDown {
     396            0 :                                 mut futures,
     397            0 :                             } => {
     398            0 :                                 trace!("shutting down");
     399            0 :                                 while let Some(()) = futures.next().await {
     400            0 :                                     trace!("io future completed (shutdown)");
     401              :                                     // drain
     402              :                                 }
     403            0 :                                 trace!("shutdown complete");
     404            0 :                                 break;
     405            0 :                             }
     406            0 :                         }
     407            0 :                     }
     408            0 :                     drop(gate_guard); // drop it right before we exit
     409           32 :                 }.instrument(span));
     410           32 :                 IoConcurrency::SidecarTask { task_id, ios_tx }
     411              :             }
     412              :         }
     413      1216261 :     }
     414              : 
     415        76338 :     pub(crate) fn clone(&self) -> Self {
     416        76338 :         match self {
     417        39460 :             IoConcurrency::Sequential => IoConcurrency::Sequential,
     418        36878 :             IoConcurrency::SidecarTask { task_id, ios_tx } => IoConcurrency::SidecarTask {
     419        36878 :                 task_id: *task_id,
     420        36878 :                 ios_tx: ios_tx.clone(),
     421        36878 :             },
     422              :         }
     423        76338 :     }
     424              : 
     425              :     /// Submit an IO to be executed in the background. DEADLOCK RISK, read the full doc string.
     426              :     ///
     427              :     /// The IO is represented as an opaque future.
     428              :     /// IO completion must be handled inside the future, e.g., through a oneshot channel.
     429              :     ///
     430              :     /// The API seems simple but there are multiple **pitfalls** involving
     431              :     /// DEADLOCK RISK.
     432              :     ///
     433              :     /// First, there are no guarantees about the exexecution of the IO.
     434              :     /// It may be `await`ed in-place before this function returns.
     435              :     /// It may be polled partially by this task and handed off to another task to be finished.
     436              :     /// It may be polled and then dropped before returning ready.
     437              :     ///
     438              :     /// This means that submitted IOs must not be interedependent.
     439              :     /// Interdependence may be through shared limited resources, e.g.,
     440              :     /// - VirtualFile file descriptor cache slot acquisition
     441              :     /// - tokio-epoll-uring slot
     442              :     ///
     443              :     /// # Why current usage is safe from deadlocks
     444              :     ///
     445              :     /// Textbook condition for a deadlock is that _all_ of the following be given
     446              :     /// - Mutual exclusion
     447              :     /// - Hold and wait
     448              :     /// - No preemption
     449              :     /// - Circular wait
     450              :     ///
     451              :     /// The current usage is safe because:
     452              :     /// - Mutual exclusion: IO futures definitely use mutexes, no way around that for now
     453              :     /// - Hold and wait: IO futures currently hold two kinds of locks/resources while waiting
     454              :     ///   for acquisition of other resources:
     455              :     ///    - VirtualFile file descriptor cache slot tokio mutex
     456              :     ///    - tokio-epoll-uring slot (uses tokio notify => wait queue, much like mutex)
     457              :     /// - No preemption: there's no taking-away of acquired locks/resources => given
     458              :     /// - Circular wait: this is the part of the condition that isn't met: all IO futures
     459              :     ///   first acquire VirtualFile mutex, then tokio-epoll-uring slot.
     460              :     ///   There is no IO future that acquires slot before VirtualFile.
     461              :     ///   Hence there can be no circular waiting.
     462              :     ///   Hence there cannot be a deadlock.
     463              :     ///
     464              :     /// This is a very fragile situation and must be revisited whenver any code called from
     465              :     /// inside the IO futures is changed.
     466              :     ///
     467              :     /// We will move away from opaque IO futures towards well-defined IOs at some point in
     468              :     /// the future when we have shipped this first version of concurrent IO to production
     469              :     /// and are ready to retire the Sequential mode which runs the futures in place.
     470              :     /// Right now, while brittle, the opaque IO approach allows us to ship the feature
     471              :     /// with minimal changes to the code and minimal changes to existing behavior in Sequential mode.
     472              :     ///
     473              :     /// Also read the comment in `collect_pending_ios`.
     474      1525270 :     pub(crate) async fn spawn_io<F>(&mut self, fut: F)
     475      1525270 :     where
     476      1525270 :         F: std::future::Future<Output = ()> + Send + 'static,
     477      1525270 :     {
     478      1525270 :         match self {
     479      1505725 :             IoConcurrency::Sequential => fut.await,
     480        19545 :             IoConcurrency::SidecarTask { ios_tx, .. } => {
     481        19545 :                 let fut = Box::pin(fut);
     482        19545 :                 // NB: experiments showed that doing an opportunistic poll of `fut` here was bad for throughput
     483        19545 :                 // while insignificant for latency.
     484        19545 :                 // It would make sense to revisit the tokio-epoll-uring API in the future such that we can try
     485        19545 :                 // a submission here, but never poll the future. That way, io_uring can make proccess while
     486        19545 :                 // the future sits in the ios_tx queue.
     487        19545 :                 match ios_tx.send(fut) {
     488        19545 :                     Ok(()) => {}
     489              :                     Err(_) => {
     490            0 :                         unreachable!("the io task must have exited, likely it panicked")
     491              :                     }
     492              :                 }
     493              :             }
     494              :         }
     495      1525270 :     }
     496              : 
     497              :     #[cfg(test)]
     498           64 :     pub(crate) fn spawn_for_test() -> impl std::ops::DerefMut<Target = Self> {
     499              :         use std::ops::{Deref, DerefMut};
     500              :         use tracing::info;
     501              :         use utils::sync::gate::Gate;
     502              : 
     503              :         // Spawn needs a Gate, give it one.
     504              :         struct Wrapper {
     505              :             inner: IoConcurrency,
     506              :             #[allow(dead_code)]
     507              :             gate: Box<Gate>,
     508              :         }
     509              :         impl Deref for Wrapper {
     510              :             type Target = IoConcurrency;
     511              : 
     512        36974 :             fn deref(&self) -> &Self::Target {
     513        36974 :                 &self.inner
     514        36974 :             }
     515              :         }
     516              :         impl DerefMut for Wrapper {
     517            0 :             fn deref_mut(&mut self) -> &mut Self::Target {
     518            0 :                 &mut self.inner
     519            0 :             }
     520              :         }
     521           64 :         let gate = Box::new(Gate::default());
     522              : 
     523              :         // The default behavior when running Rust unit tests without any further
     524              :         // flags is to use the new behavior.
     525              :         // The CI uses the following environment variable to unit test both old
     526              :         // and new behavior.
     527              :         // NB: the Python regression & perf tests take the `else` branch
     528              :         // below and have their own defaults management.
     529           64 :         let selected = {
     530              :             // The pageserver_api::config type is unsuitable because it's internally tagged.
     531           64 :             #[derive(serde::Deserialize)]
     532              :             #[serde(rename_all = "kebab-case")]
     533              :             enum TestOverride {
     534              :                 Sequential,
     535              :                 SidecarTask,
     536              :             }
     537              :             use once_cell::sync::Lazy;
     538           64 :             static TEST_OVERRIDE: Lazy<TestOverride> = Lazy::new(|| {
     539           64 :                 utils::env::var_serde_json_string(
     540           64 :                     "NEON_PAGESERVER_UNIT_TEST_GET_VECTORED_CONCURRENT_IO",
     541           64 :                 )
     542           64 :                 .unwrap_or(TestOverride::SidecarTask)
     543           64 :             });
     544              : 
     545           64 :             match *TEST_OVERRIDE {
     546           32 :                 TestOverride::Sequential => SelectedIoConcurrency::Sequential,
     547              :                 TestOverride::SidecarTask => {
     548           32 :                     SelectedIoConcurrency::SidecarTask(gate.enter().expect("just created it"))
     549              :                 }
     550              :             }
     551              :         };
     552              : 
     553           64 :         info!(?selected, "get_vectored_concurrent_io test");
     554              : 
     555           64 :         Wrapper {
     556           64 :             inner: Self::spawn(selected),
     557           64 :             gate,
     558           64 :         }
     559           64 :     }
     560              : }
     561              : 
     562              : /// Make noise in case the [`ValuesReconstructState`] gets dropped while
     563              : /// there are still IOs in flight.
     564              : /// Refer to `collect_pending_ios` for why we prefer not to do that.
     565              : //
     566              : /// We log from here instead of from the sidecar task because the [`ValuesReconstructState`]
     567              : /// gets dropped in a tracing span with more context.
     568              : /// We repeat the sidecar tasks's `task_id` so we can correlate what we emit here with
     569              : /// the logs / panic handler logs from the sidecar task, which also logs the `task_id`.
     570              : impl Drop for ValuesReconstructState {
     571      1255295 :     fn drop(&mut self) {
     572      1255295 :         let num_active_ios = self
     573      1255295 :             .num_active_ios
     574      1255295 :             .load(std::sync::atomic::Ordering::Acquire);
     575      1255295 :         if num_active_ios == 0 {
     576      1255293 :             return;
     577            2 :         }
     578            2 :         let sidecar_task_id = match &self.io_concurrency {
     579            0 :             IoConcurrency::Sequential => None,
     580            2 :             IoConcurrency::SidecarTask { task_id, .. } => Some(*task_id),
     581              :         };
     582            2 :         tracing::warn!(
     583              :             num_active_ios,
     584              :             ?sidecar_task_id,
     585            0 :             backtrace=%std::backtrace::Backtrace::force_capture(),
     586            0 :             "dropping ValuesReconstructState while some IOs have not been completed",
     587              :         );
     588      1255295 :     }
     589              : }
     590              : 
     591              : impl ValuesReconstructState {
     592      1255295 :     pub(crate) fn new(io_concurrency: IoConcurrency) -> Self {
     593      1255295 :         Self {
     594      1255295 :             keys: HashMap::new(),
     595      1255295 :             keys_done: KeySpaceRandomAccum::new(),
     596      1255295 :             keys_with_image_coverage: None,
     597      1255295 :             layers_visited: 0,
     598      1255295 :             delta_layers_visited: 0,
     599      1255295 :             io_concurrency,
     600      1255295 :             num_active_ios: Arc::new(AtomicUsize::new(0)),
     601      1255295 :         }
     602      1255295 :     }
     603              : 
     604              :     /// Absolutely read [`IoConcurrency::spawn_io`] to learn about assumptions & pitfalls.
     605      1525270 :     pub(crate) async fn spawn_io<F>(&mut self, fut: F)
     606      1525270 :     where
     607      1525270 :         F: std::future::Future<Output = ()> + Send + 'static,
     608      1525270 :     {
     609      1525270 :         self.io_concurrency.spawn_io(fut).await;
     610      1525270 :     }
     611              : 
     612      1693398 :     pub(crate) fn on_layer_visited(&mut self, layer: &ReadableLayer) {
     613      1693398 :         self.layers_visited += 1;
     614      1693398 :         if let ReadableLayer::PersistentLayer(layer) = layer {
     615       480166 :             if layer.layer_desc().is_delta() {
     616       435074 :                 self.delta_layers_visited += 1;
     617       435074 :             }
     618      1213232 :         }
     619      1693398 :     }
     620              : 
     621          456 :     pub(crate) fn get_delta_layers_visited(&self) -> u32 {
     622          456 :         self.delta_layers_visited
     623          456 :     }
     624              : 
     625      1255237 :     pub(crate) fn get_layers_visited(&self) -> u32 {
     626      1255237 :         self.layers_visited
     627      1255237 :     }
     628              : 
     629              :     /// On hitting image layer, we can mark all keys in this range as done, because
     630              :     /// if the image layer does not contain a key, it is deleted/never added.
     631        45116 :     pub(crate) fn on_image_layer_visited(&mut self, key_range: &Range<Key>) {
     632        45116 :         let prev_val = self.keys_with_image_coverage.replace(key_range.clone());
     633        45116 :         assert_eq!(
     634              :             prev_val, None,
     635            0 :             "should consume the keyspace before the next iteration"
     636              :         );
     637        45116 :     }
     638              : 
     639              :     /// Update the state collected for a given key.
     640              :     /// Returns true if this was the last value needed for the key and false otherwise.
     641              :     ///
     642              :     /// If the key is done after the update, mark it as such.
     643              :     ///
     644              :     /// If the key is in the sparse keyspace (i.e., aux files), we do not track them in
     645              :     /// `key_done`.
     646              :     // TODO: rename this method & update description.
     647      1482101 :     pub(crate) fn update_key(&mut self, key: &Key, lsn: Lsn, completes: bool) -> OnDiskValueIo {
     648      1482101 :         let state = self.keys.entry(*key).or_default();
     649      1482101 : 
     650      1482101 :         let is_sparse_key = key.is_sparse();
     651              : 
     652      1482101 :         let required_io = match state.situation {
     653              :             ValueReconstructSituation::Complete => {
     654       144742 :                 if is_sparse_key {
     655              :                     // Sparse keyspace might be visited multiple times because
     656              :                     // we don't track unmapped keyspaces.
     657       144742 :                     return OnDiskValueIo::Unnecessary;
     658              :                 } else {
     659            0 :                     unreachable!()
     660              :                 }
     661              :             }
     662              :             ValueReconstructSituation::Continue => {
     663      1337359 :                 self.num_active_ios
     664      1337359 :                     .fetch_add(1, std::sync::atomic::Ordering::Release);
     665      1337359 :                 let (tx, rx) = tokio::sync::oneshot::channel();
     666      1337359 :                 state.on_disk_values.push((lsn, OnDiskValueIoWaiter { rx }));
     667      1337359 :                 OnDiskValueIo::Required {
     668      1337359 :                     tx,
     669      1337359 :                     num_active_ios: Arc::clone(&self.num_active_ios),
     670      1337359 :                 }
     671      1337359 :             }
     672      1337359 :         };
     673      1337359 : 
     674      1337359 :         if completes && state.situation == ValueReconstructSituation::Continue {
     675      1336047 :             state.situation = ValueReconstructSituation::Complete;
     676      1336047 :             if !is_sparse_key {
     677      1208531 :                 self.keys_done.add_key(*key);
     678      1208531 :             }
     679         1312 :         }
     680              : 
     681      1337359 :         required_io
     682      1482101 :     }
     683              : 
     684              :     /// Returns the key space describing the keys that have
     685              :     /// been marked as completed since the last call to this function.
     686              :     /// Returns individual keys done, and the image layer coverage.
     687      3399834 :     pub(crate) fn consume_done_keys(&mut self) -> (KeySpace, Option<Range<Key>>) {
     688      3399834 :         (
     689      3399834 :             self.keys_done.consume_keyspace(),
     690      3399834 :             self.keys_with_image_coverage.take(),
     691      3399834 :         )
     692      3399834 :     }
     693              : }
     694              : 
     695              : /// A key that uniquely identifies a layer in a timeline
     696              : #[derive(Debug, PartialEq, Eq, Clone, Hash)]
     697              : pub(crate) enum LayerId {
     698              :     PersitentLayerId(PersistentLayerKey),
     699              :     InMemoryLayerId(InMemoryLayerFileId),
     700              : }
     701              : 
     702              : /// Uniquely identify a layer visit by the layer
     703              : /// and LSN floor (or start LSN) of the reads.
     704              : /// The layer itself is not enough since we may
     705              : /// have different LSN lower bounds for delta layer reads.
     706              : #[derive(Debug, PartialEq, Eq, Clone, Hash)]
     707              : struct LayerToVisitId {
     708              :     layer_id: LayerId,
     709              :     lsn_floor: Lsn,
     710              : }
     711              : 
     712              : /// Layer wrapper for the read path. Note that it is valid
     713              : /// to use these layers even after external operations have
     714              : /// been performed on them (compaction, freeze, etc.).
     715              : #[derive(Debug)]
     716              : pub(crate) enum ReadableLayer {
     717              :     PersistentLayer(Layer),
     718              :     InMemoryLayer(Arc<InMemoryLayer>),
     719              : }
     720              : 
     721              : /// A partial description of a read to be done.
     722              : #[derive(Debug, Clone)]
     723              : struct LayerVisit {
     724              :     /// An id used to resolve the readable layer within the fringe
     725              :     layer_to_visit_id: LayerToVisitId,
     726              :     /// Lsn range for the read, used for selecting the next read
     727              :     lsn_range: Range<Lsn>,
     728              : }
     729              : 
     730              : /// Data structure which maintains a fringe of layers for the
     731              : /// read path. The fringe is the set of layers which intersects
     732              : /// the current keyspace that the search is descending on.
     733              : /// Each layer tracks the keyspace that intersects it.
     734              : ///
     735              : /// The fringe must appear sorted by Lsn. Hence, it uses
     736              : /// a two layer indexing scheme.
     737              : #[derive(Debug)]
     738              : pub(crate) struct LayerFringe {
     739              :     planned_visits_by_lsn: BinaryHeap<LayerVisit>,
     740              :     visit_reads: HashMap<LayerToVisitId, LayerVisitReads>,
     741              : }
     742              : 
     743              : #[derive(Debug)]
     744              : struct LayerVisitReads {
     745              :     layer: ReadableLayer,
     746              :     target_keyspace: KeySpaceRandomAccum,
     747              : }
     748              : 
     749              : impl LayerFringe {
     750      1706436 :     pub(crate) fn new() -> Self {
     751      1706436 :         LayerFringe {
     752      1706436 :             planned_visits_by_lsn: BinaryHeap::new(),
     753      1706436 :             visit_reads: HashMap::new(),
     754      1706436 :         }
     755      1706436 :     }
     756              : 
     757      3399834 :     pub(crate) fn next_layer(&mut self) -> Option<(ReadableLayer, KeySpace, Range<Lsn>)> {
     758      3399834 :         let read_desc = self.planned_visits_by_lsn.pop()?;
     759              : 
     760      1693398 :         let removed = self.visit_reads.remove_entry(&read_desc.layer_to_visit_id);
     761      1693398 : 
     762      1693398 :         match removed {
     763              :             Some((
     764              :                 _,
     765              :                 LayerVisitReads {
     766      1693398 :                     layer,
     767      1693398 :                     mut target_keyspace,
     768      1693398 :                 },
     769      1693398 :             )) => Some((
     770      1693398 :                 layer,
     771      1693398 :                 target_keyspace.consume_keyspace(),
     772      1693398 :                 read_desc.lsn_range,
     773      1693398 :             )),
     774            0 :             None => unreachable!("fringe internals are always consistent"),
     775              :         }
     776      3399834 :     }
     777              : 
     778      1693426 :     pub(crate) fn update(
     779      1693426 :         &mut self,
     780      1693426 :         layer: ReadableLayer,
     781      1693426 :         keyspace: KeySpace,
     782      1693426 :         lsn_range: Range<Lsn>,
     783      1693426 :     ) {
     784      1693426 :         let layer_to_visit_id = LayerToVisitId {
     785      1693426 :             layer_id: layer.id(),
     786      1693426 :             lsn_floor: lsn_range.start,
     787      1693426 :         };
     788      1693426 : 
     789      1693426 :         let entry = self.visit_reads.entry(layer_to_visit_id.clone());
     790      1693426 :         match entry {
     791           28 :             Entry::Occupied(mut entry) => {
     792           28 :                 entry.get_mut().target_keyspace.add_keyspace(keyspace);
     793           28 :             }
     794      1693398 :             Entry::Vacant(entry) => {
     795      1693398 :                 self.planned_visits_by_lsn.push(LayerVisit {
     796      1693398 :                     lsn_range,
     797      1693398 :                     layer_to_visit_id: layer_to_visit_id.clone(),
     798      1693398 :                 });
     799      1693398 :                 let mut accum = KeySpaceRandomAccum::new();
     800      1693398 :                 accum.add_keyspace(keyspace);
     801      1693398 :                 entry.insert(LayerVisitReads {
     802      1693398 :                     layer,
     803      1693398 :                     target_keyspace: accum,
     804      1693398 :                 });
     805      1693398 :             }
     806              :         }
     807      1693426 :     }
     808              : }
     809              : 
     810              : impl Default for LayerFringe {
     811            0 :     fn default() -> Self {
     812            0 :         Self::new()
     813            0 :     }
     814              : }
     815              : 
     816              : impl Ord for LayerVisit {
     817           60 :     fn cmp(&self, other: &Self) -> Ordering {
     818           60 :         let ord = self.lsn_range.end.cmp(&other.lsn_range.end);
     819           60 :         if ord == std::cmp::Ordering::Equal {
     820           44 :             self.lsn_range.start.cmp(&other.lsn_range.start).reverse()
     821              :         } else {
     822           16 :             ord
     823              :         }
     824           60 :     }
     825              : }
     826              : 
     827              : impl PartialOrd for LayerVisit {
     828           60 :     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
     829           60 :         Some(self.cmp(other))
     830           60 :     }
     831              : }
     832              : 
     833              : impl PartialEq for LayerVisit {
     834            0 :     fn eq(&self, other: &Self) -> bool {
     835            0 :         self.lsn_range == other.lsn_range
     836            0 :     }
     837              : }
     838              : 
     839              : impl Eq for LayerVisit {}
     840              : 
     841              : impl ReadableLayer {
     842      1693426 :     pub(crate) fn id(&self) -> LayerId {
     843      1693426 :         match self {
     844       480194 :             Self::PersistentLayer(layer) => LayerId::PersitentLayerId(layer.layer_desc().key()),
     845      1213232 :             Self::InMemoryLayer(layer) => LayerId::InMemoryLayerId(layer.file_id()),
     846              :         }
     847      1693426 :     }
     848              : 
     849      1693398 :     pub(crate) async fn get_values_reconstruct_data(
     850      1693398 :         &self,
     851      1693398 :         keyspace: KeySpace,
     852      1693398 :         lsn_range: Range<Lsn>,
     853      1693398 :         reconstruct_state: &mut ValuesReconstructState,
     854      1693398 :         ctx: &RequestContext,
     855      1693398 :     ) -> Result<(), GetVectoredError> {
     856      1693398 :         match self {
     857       480166 :             ReadableLayer::PersistentLayer(layer) => {
     858       480166 :                 layer
     859       480166 :                     .get_values_reconstruct_data(keyspace, lsn_range, reconstruct_state, ctx)
     860       480166 :                     .await
     861              :             }
     862      1213232 :             ReadableLayer::InMemoryLayer(layer) => {
     863      1213232 :                 layer
     864      1213232 :                     .get_values_reconstruct_data(keyspace, lsn_range.end, reconstruct_state, ctx)
     865      1213232 :                     .await
     866              :             }
     867              :         }
     868      1693398 :     }
     869              : }
     870              : 
     871              : /// Layers contain a hint indicating whether they are likely to be used for reads.
     872              : ///
     873              : /// This is a hint rather than an authoritative value, so that we do not have to update it synchronously
     874              : /// when changing the visibility of layers (for example when creating a branch that makes some previously
     875              : /// covered layers visible).  It should be used for cache management but not for correctness-critical checks.
     876              : #[derive(Debug, Clone, PartialEq, Eq)]
     877              : pub enum LayerVisibilityHint {
     878              :     /// A Visible layer might be read while serving a read, because there is not an image layer between it
     879              :     /// and a readable LSN (the tip of the branch or a child's branch point)
     880              :     Visible,
     881              :     /// A Covered layer probably won't be read right now, but _can_ be read in future if someone creates
     882              :     /// a branch or ephemeral endpoint at an LSN below the layer that covers this.
     883              :     Covered,
     884              : }
     885              : 
     886              : pub(crate) struct LayerAccessStats(std::sync::atomic::AtomicU64);
     887              : 
     888            0 : #[derive(Clone, Copy, strum_macros::EnumString)]
     889              : pub(crate) enum LayerAccessStatsReset {
     890              :     NoReset,
     891              :     AllStats,
     892              : }
     893              : 
     894              : impl Default for LayerAccessStats {
     895         3836 :     fn default() -> Self {
     896         3836 :         // Default value is to assume resident since creation time, and visible.
     897         3836 :         let (_mask, mut value) = Self::to_low_res_timestamp(Self::RTIME_SHIFT, SystemTime::now());
     898         3836 :         value |= 0x1 << Self::VISIBILITY_SHIFT;
     899         3836 : 
     900         3836 :         Self(std::sync::atomic::AtomicU64::new(value))
     901         3836 :     }
     902              : }
     903              : 
     904              : // Efficient store of two very-low-resolution timestamps and some bits.  Used for storing last access time and
     905              : // last residence change time.
     906              : impl LayerAccessStats {
     907              :     // How many high bits to drop from a u32 timestamp?
     908              :     // - Only storing up to a u32 timestamp will work fine until 2038 (if this code is still in use
     909              :     //   after that, this software has been very successful!)
     910              :     // - Dropping the top bit is implicitly safe because unix timestamps are meant to be
     911              :     // stored in an i32, so they never used it.
     912              :     // - Dropping the next two bits is safe because this code is only running on systems in
     913              :     // years >= 2024, and these bits have been 1 since 2021
     914              :     //
     915              :     // Therefore we may store only 28 bits for a timestamp with one second resolution.  We do
     916              :     // this truncation to make space for some flags in the high bits of our u64.
     917              :     const TS_DROP_HIGH_BITS: u32 = u32::count_ones(Self::TS_ONES) + 1;
     918              :     const TS_MASK: u32 = 0x1f_ff_ff_ff;
     919              :     const TS_ONES: u32 = 0x60_00_00_00;
     920              : 
     921              :     const ATIME_SHIFT: u32 = 0;
     922              :     const RTIME_SHIFT: u32 = 32 - Self::TS_DROP_HIGH_BITS;
     923              :     const VISIBILITY_SHIFT: u32 = 64 - 2 * Self::TS_DROP_HIGH_BITS;
     924              : 
     925       480406 :     fn write_bits(&self, mask: u64, value: u64) -> u64 {
     926       480406 :         self.0
     927       480406 :             .fetch_update(
     928       480406 :                 // TODO: decide what orderings are correct
     929       480406 :                 std::sync::atomic::Ordering::Relaxed,
     930       480406 :                 std::sync::atomic::Ordering::Relaxed,
     931       480406 :                 |v| Some((v & !mask) | (value & mask)),
     932       480406 :             )
     933       480406 :             .expect("Inner function is infallible")
     934       480406 :     }
     935              : 
     936       483522 :     fn to_low_res_timestamp(shift: u32, time: SystemTime) -> (u64, u64) {
     937       483522 :         // Drop the low three bits of the timestamp, for an ~8s accuracy
     938       483522 :         let timestamp = time.duration_since(UNIX_EPOCH).unwrap().as_secs() & (Self::TS_MASK as u64);
     939       483522 : 
     940       483522 :         ((Self::TS_MASK as u64) << shift, timestamp << shift)
     941       483522 :     }
     942              : 
     943          124 :     fn read_low_res_timestamp(&self, shift: u32) -> Option<SystemTime> {
     944          124 :         let read = self.0.load(std::sync::atomic::Ordering::Relaxed);
     945          124 : 
     946          124 :         let ts_bits = (read & ((Self::TS_MASK as u64) << shift)) >> shift;
     947          124 :         if ts_bits == 0 {
     948           48 :             None
     949              :         } else {
     950           76 :             Some(UNIX_EPOCH + Duration::from_secs(ts_bits | (Self::TS_ONES as u64)))
     951              :         }
     952          124 :     }
     953              : 
     954              :     /// Record a change in layer residency.
     955              :     ///
     956              :     /// Recording the event must happen while holding the layer map lock to
     957              :     /// ensure that latest-activity-threshold-based layer eviction (eviction_task.rs)
     958              :     /// can do an "imitate access" to this layer, before it observes `now-latest_activity() > threshold`.
     959              :     ///
     960              :     /// If we instead recorded the residence event with a timestamp from before grabbing the layer map lock,
     961              :     /// the following race could happen:
     962              :     ///
     963              :     /// - Compact: Write out an L1 layer from several L0 layers. This records residence event LayerCreate with the current timestamp.
     964              :     /// - Eviction: imitate access logical size calculation. This accesses the L0 layers because the L1 layer is not yet in the layer map.
     965              :     /// - Compact: Grab layer map lock, add the new L1 to layer map and remove the L0s, release layer map lock.
     966              :     /// - Eviction: observes the new L1 layer whose only activity timestamp is the LayerCreate event.
     967           52 :     pub(crate) fn record_residence_event_at(&self, now: SystemTime) {
     968           52 :         let (mask, value) = Self::to_low_res_timestamp(Self::RTIME_SHIFT, now);
     969           52 :         self.write_bits(mask, value);
     970           52 :     }
     971              : 
     972           48 :     pub(crate) fn record_residence_event(&self) {
     973           48 :         self.record_residence_event_at(SystemTime::now())
     974           48 :     }
     975              : 
     976       479634 :     fn record_access_at(&self, now: SystemTime) -> bool {
     977       479634 :         let (mut mask, mut value) = Self::to_low_res_timestamp(Self::ATIME_SHIFT, now);
     978       479634 : 
     979       479634 :         // A layer which is accessed must be visible.
     980       479634 :         mask |= 0x1 << Self::VISIBILITY_SHIFT;
     981       479634 :         value |= 0x1 << Self::VISIBILITY_SHIFT;
     982       479634 : 
     983       479634 :         let old_bits = self.write_bits(mask, value);
     984            4 :         !matches!(
     985       479634 :             self.decode_visibility(old_bits),
     986              :             LayerVisibilityHint::Visible
     987              :         )
     988       479634 :     }
     989              : 
     990              :     /// Returns true if we modified the layer's visibility to set it to Visible implicitly
     991              :     /// as a result of this access
     992       480190 :     pub(crate) fn record_access(&self, ctx: &RequestContext) -> bool {
     993       480190 :         if ctx.access_stats_behavior() == AccessStatsBehavior::Skip {
     994          568 :             return false;
     995       479622 :         }
     996       479622 : 
     997       479622 :         self.record_access_at(SystemTime::now())
     998       480190 :     }
     999              : 
    1000            0 :     fn as_api_model(
    1001            0 :         &self,
    1002            0 :         reset: LayerAccessStatsReset,
    1003            0 :     ) -> pageserver_api::models::LayerAccessStats {
    1004            0 :         let ret = pageserver_api::models::LayerAccessStats {
    1005            0 :             access_time: self
    1006            0 :                 .read_low_res_timestamp(Self::ATIME_SHIFT)
    1007            0 :                 .unwrap_or(UNIX_EPOCH),
    1008            0 :             residence_time: self
    1009            0 :                 .read_low_res_timestamp(Self::RTIME_SHIFT)
    1010            0 :                 .unwrap_or(UNIX_EPOCH),
    1011            0 :             visible: matches!(self.visibility(), LayerVisibilityHint::Visible),
    1012              :         };
    1013            0 :         match reset {
    1014            0 :             LayerAccessStatsReset::NoReset => {}
    1015            0 :             LayerAccessStatsReset::AllStats => {
    1016            0 :                 self.write_bits((Self::TS_MASK as u64) << Self::ATIME_SHIFT, 0x0);
    1017            0 :                 self.write_bits((Self::TS_MASK as u64) << Self::RTIME_SHIFT, 0x0);
    1018            0 :             }
    1019              :         }
    1020            0 :         ret
    1021            0 :     }
    1022              : 
    1023              :     /// Get the latest access timestamp, falling back to latest residence event.  The latest residence event
    1024              :     /// will be this Layer's construction time, if its residence hasn't changed since then.
    1025           32 :     pub(crate) fn latest_activity(&self) -> SystemTime {
    1026           32 :         if let Some(t) = self.read_low_res_timestamp(Self::ATIME_SHIFT) {
    1027           12 :             t
    1028              :         } else {
    1029           20 :             self.read_low_res_timestamp(Self::RTIME_SHIFT)
    1030           20 :                 .expect("Residence time is set on construction")
    1031              :         }
    1032           32 :     }
    1033              : 
    1034              :     /// Whether this layer has been accessed (excluding in [`AccessStatsBehavior::Skip`]).
    1035              :     ///
    1036              :     /// This indicates whether the layer has been used for some purpose that would motivate
    1037              :     /// us to keep it on disk, such as for serving a getpage request.
    1038           36 :     fn accessed(&self) -> bool {
    1039           36 :         // Consider it accessed if the most recent access is more recent than
    1040           36 :         // the most recent change in residence status.
    1041           36 :         match (
    1042           36 :             self.read_low_res_timestamp(Self::ATIME_SHIFT),
    1043           36 :             self.read_low_res_timestamp(Self::RTIME_SHIFT),
    1044              :         ) {
    1045           28 :             (None, _) => false,
    1046            0 :             (Some(_), None) => true,
    1047            8 :             (Some(a), Some(r)) => a >= r,
    1048              :         }
    1049           36 :     }
    1050              : 
    1051              :     /// Helper for extracting the visibility hint from the literal value of our inner u64
    1052       481782 :     fn decode_visibility(&self, bits: u64) -> LayerVisibilityHint {
    1053       481782 :         match (bits >> Self::VISIBILITY_SHIFT) & 0x1 {
    1054       481738 :             1 => LayerVisibilityHint::Visible,
    1055           44 :             0 => LayerVisibilityHint::Covered,
    1056            0 :             _ => unreachable!(),
    1057              :         }
    1058       481782 :     }
    1059              : 
    1060              :     /// Returns the old value which has been replaced
    1061          720 :     pub(crate) fn set_visibility(&self, visibility: LayerVisibilityHint) -> LayerVisibilityHint {
    1062          720 :         let value = match visibility {
    1063          616 :             LayerVisibilityHint::Visible => 0x1 << Self::VISIBILITY_SHIFT,
    1064          104 :             LayerVisibilityHint::Covered => 0x0,
    1065              :         };
    1066              : 
    1067          720 :         let old_bits = self.write_bits(0x1 << Self::VISIBILITY_SHIFT, value);
    1068          720 :         self.decode_visibility(old_bits)
    1069          720 :     }
    1070              : 
    1071         1428 :     pub(crate) fn visibility(&self) -> LayerVisibilityHint {
    1072         1428 :         let read = self.0.load(std::sync::atomic::Ordering::Relaxed);
    1073         1428 :         self.decode_visibility(read)
    1074         1428 :     }
    1075              : }
    1076              : 
    1077              : /// Get a layer descriptor from a layer.
    1078              : pub(crate) trait AsLayerDesc {
    1079              :     /// Get the layer descriptor.
    1080              :     fn layer_desc(&self) -> &PersistentLayerDesc;
    1081              : }
    1082              : 
    1083              : pub mod tests {
    1084              :     use pageserver_api::shard::TenantShardId;
    1085              :     use utils::id::TimelineId;
    1086              : 
    1087              :     use super::*;
    1088              : 
    1089              :     impl From<DeltaLayerName> for PersistentLayerDesc {
    1090            0 :         fn from(value: DeltaLayerName) -> Self {
    1091            0 :             PersistentLayerDesc::new_delta(
    1092            0 :                 TenantShardId::from([0; 18]),
    1093            0 :                 TimelineId::from_array([0; 16]),
    1094            0 :                 value.key_range,
    1095            0 :                 value.lsn_range,
    1096            0 :                 233,
    1097            0 :             )
    1098            0 :         }
    1099              :     }
    1100              : 
    1101              :     impl From<ImageLayerName> for PersistentLayerDesc {
    1102            0 :         fn from(value: ImageLayerName) -> Self {
    1103            0 :             PersistentLayerDesc::new_img(
    1104            0 :                 TenantShardId::from([0; 18]),
    1105            0 :                 TimelineId::from_array([0; 16]),
    1106            0 :                 value.key_range,
    1107            0 :                 value.lsn,
    1108            0 :                 233,
    1109            0 :             )
    1110            0 :         }
    1111              :     }
    1112              : 
    1113              :     impl From<LayerName> for PersistentLayerDesc {
    1114            0 :         fn from(value: LayerName) -> Self {
    1115            0 :             match value {
    1116            0 :                 LayerName::Delta(d) => Self::from(d),
    1117            0 :                 LayerName::Image(i) => Self::from(i),
    1118              :             }
    1119            0 :         }
    1120              :     }
    1121              : }
    1122              : 
    1123              : /// Range wrapping newtype, which uses display to render Debug.
    1124              : ///
    1125              : /// Useful with `Key`, which has too verbose `{:?}` for printing multiple layers.
    1126              : struct RangeDisplayDebug<'a, T: std::fmt::Display>(&'a Range<T>);
    1127              : 
    1128              : impl<T: std::fmt::Display> std::fmt::Debug for RangeDisplayDebug<'_, T> {
    1129            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
    1130            0 :         write!(f, "{}..{}", self.0.start, self.0.end)
    1131            0 :     }
    1132              : }
    1133              : 
    1134              : #[cfg(test)]
    1135              : mod tests2 {
    1136              :     use pageserver_api::key::DBDIR_KEY;
    1137              :     use tracing::info;
    1138              : 
    1139              :     use super::*;
    1140              :     use crate::tenant::storage_layer::IoConcurrency;
    1141              : 
    1142              :     /// TODO: currently this test relies on manual visual inspection of the --no-capture output.
    1143              :     /// Should look like so:
    1144              :     /// ```text
    1145              :     /// RUST_LOG=trace cargo nextest run  --features testing  --no-capture test_io_concurrency_noise
    1146              :     /// running 1 test
    1147              :     /// 2025-01-21T17:42:01.335679Z  INFO get_vectored_concurrent_io test selected=SidecarTask
    1148              :     /// 2025-01-21T17:42:01.335680Z TRACE spawning sidecar task task_id=0
    1149              :     /// 2025-01-21T17:42:01.335937Z TRACE IoConcurrency_sidecar{task_id=0}: start
    1150              :     /// 2025-01-21T17:42:01.335972Z TRACE IoConcurrency_sidecar{task_id=0}: received new io future
    1151              :     /// 2025-01-21T17:42:01.335999Z  INFO IoConcurrency_sidecar{task_id=0}: waiting for signal to complete IO
    1152              :     /// 2025-01-21T17:42:01.336229Z  WARN dropping ValuesReconstructState while some IOs have not been completed num_active_ios=1 sidecar_task_id=Some(0) backtrace=   0: <pageserver::tenant::storage_layer::ValuesReconstructState as core::ops::drop::Drop>::drop
    1153              :     ///              at ./src/tenant/storage_layer.rs:553:24
    1154              :     ///    1: core::ptr::drop_in_place<pageserver::tenant::storage_layer::ValuesReconstructState>
    1155              :     ///              at /home/christian/.rustup/toolchains/1.84.0-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/ptr/mod.rs:521:1
    1156              :     ///    2: core::mem::drop
    1157              :     ///              at /home/christian/.rustup/toolchains/1.84.0-x86_64-unknown-linux-gnu/lib/rustlib/src/rust/library/core/src/mem/mod.rs:942:24
    1158              :     ///    3: pageserver::tenant::storage_layer::tests2::test_io_concurrency_noise::{{closure}}
    1159              :     ///              at ./src/tenant/storage_layer.rs:1159:9
    1160              :     ///   ...
    1161              :     ///   49: <unknown>
    1162              :     /// 2025-01-21T17:42:01.452293Z  INFO IoConcurrency_sidecar{task_id=0}: completing IO
    1163              :     /// 2025-01-21T17:42:01.452357Z TRACE IoConcurrency_sidecar{task_id=0}: io future completed
    1164              :     /// 2025-01-21T17:42:01.452473Z TRACE IoConcurrency_sidecar{task_id=0}: end
    1165              :     /// test tenant::storage_layer::tests2::test_io_concurrency_noise ... ok
    1166              :     ///
    1167              :     /// ```
    1168              :     #[tokio::test]
    1169            4 :     async fn test_io_concurrency_noise() {
    1170            4 :         crate::tenant::harness::setup_logging();
    1171            4 : 
    1172            4 :         let io_concurrency = IoConcurrency::spawn_for_test();
    1173            4 :         match *io_concurrency {
    1174            4 :             IoConcurrency::Sequential => {
    1175            4 :                 // This test asserts behavior in sidecar mode, doesn't make sense in sequential mode.
    1176            4 :                 return;
    1177            4 :             }
    1178            4 :             IoConcurrency::SidecarTask { .. } => {}
    1179            2 :         }
    1180            2 :         let mut reconstruct_state = ValuesReconstructState::new(io_concurrency.clone());
    1181            2 : 
    1182            2 :         let (io_fut_is_waiting_tx, io_fut_is_waiting) = tokio::sync::oneshot::channel();
    1183            2 :         let (do_complete_io, should_complete_io) = tokio::sync::oneshot::channel();
    1184            2 :         let (io_fut_exiting_tx, io_fut_exiting) = tokio::sync::oneshot::channel();
    1185            2 : 
    1186            2 :         let io = reconstruct_state.update_key(&DBDIR_KEY, Lsn(8), true);
    1187            2 :         reconstruct_state
    1188            2 :             .spawn_io(async move {
    1189            2 :                 info!("waiting for signal to complete IO");
    1190            4 :                 io_fut_is_waiting_tx.send(()).unwrap();
    1191            2 :                 should_complete_io.await.unwrap();
    1192            2 :                 info!("completing IO");
    1193            4 :                 io.complete(Ok(OnDiskValue::RawImage(Bytes::new())));
    1194            2 :                 io_fut_exiting_tx.send(()).unwrap();
    1195            2 :             })
    1196            2 :             .await;
    1197            4 : 
    1198            4 :         io_fut_is_waiting.await.unwrap();
    1199            2 : 
    1200            2 :         // this is what makes the noise
    1201            2 :         drop(reconstruct_state);
    1202            2 : 
    1203            2 :         do_complete_io.send(()).unwrap();
    1204            2 : 
    1205            2 :         io_fut_exiting.await.unwrap();
    1206            4 :     }
    1207              : }
        

Generated by: LCOV version 2.1-beta