Line data Source code
1 : //! New compaction implementation. The algorithm itself is implemented in the
2 : //! compaction crate. This file implements the callbacks and structs that allow
3 : //! the algorithm to drive the process.
4 : //!
5 : //! The old legacy algorithm is implemented directly in `timeline.rs`.
6 :
7 : use std::collections::{BinaryHeap, HashMap, HashSet};
8 : use std::ops::{Deref, Range};
9 : use std::sync::Arc;
10 :
11 : use super::layer_manager::LayerManager;
12 : use super::{
13 : CompactFlags, CompactOptions, CompactRange, CreateImageLayersError, DurationRecorder,
14 : ImageLayerCreationMode, RecordedDuration, Timeline,
15 : };
16 :
17 : use anyhow::{anyhow, bail, Context};
18 : use bytes::Bytes;
19 : use fail::fail_point;
20 : use itertools::Itertools;
21 : use pageserver_api::key::KEY_SIZE;
22 : use pageserver_api::keyspace::ShardedRange;
23 : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
24 : use serde::Serialize;
25 : use tokio_util::sync::CancellationToken;
26 : use tracing::{debug, info, info_span, trace, warn, Instrument};
27 : use utils::id::TimelineId;
28 :
29 : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
30 : use crate::page_cache;
31 : use crate::statvfs::Statvfs;
32 : use crate::tenant::remote_timeline_client::WaitCompletionError;
33 : use crate::tenant::storage_layer::batch_split_writer::{
34 : BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
35 : };
36 : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
37 : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
38 : use crate::tenant::storage_layer::{
39 : AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
40 : };
41 : use crate::tenant::timeline::ImageLayerCreationOutcome;
42 : use crate::tenant::timeline::{drop_rlock, DeltaLayerWriter, ImageLayerWriter};
43 : use crate::tenant::timeline::{Layer, ResidentLayer};
44 : use crate::tenant::{gc_block, DeltaLayer, MaybeOffloaded};
45 : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
46 : use pageserver_api::config::tenant_conf_defaults::{
47 : DEFAULT_CHECKPOINT_DISTANCE, DEFAULT_COMPACTION_THRESHOLD,
48 : };
49 :
50 : use pageserver_api::key::Key;
51 : use pageserver_api::keyspace::KeySpace;
52 : use pageserver_api::record::NeonWalRecord;
53 : use pageserver_api::value::Value;
54 :
55 : use utils::lsn::Lsn;
56 :
57 : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
58 : use pageserver_compaction::interface::*;
59 :
60 : use super::CompactionError;
61 :
62 : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
63 : const COMPACTION_DELTA_THRESHOLD: usize = 5;
64 :
65 : /// A scheduled compaction task.
66 : pub(crate) struct ScheduledCompactionTask {
67 : pub options: CompactOptions,
68 : /// The channel to send the compaction result. If this is a subcompaction, the last compaction job holds the sender.
69 : pub result_tx: Option<tokio::sync::oneshot::Sender<()>>,
70 : /// Hold the GC block. If this is a subcompaction, the last compaction job holds the gc block guard.
71 : pub gc_block: Option<gc_block::Guard>,
72 : }
73 :
74 : pub struct GcCompactionJobDescription {
75 : /// All layers to read in the compaction job
76 : selected_layers: Vec<Layer>,
77 : /// GC cutoff of the job
78 : gc_cutoff: Lsn,
79 : /// LSNs to retain for the job
80 : retain_lsns_below_horizon: Vec<Lsn>,
81 : /// Maximum layer LSN processed in this compaction
82 : max_layer_lsn: Lsn,
83 : /// Only compact layers overlapping with this range
84 : compaction_key_range: Range<Key>,
85 : /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
86 : /// This field is here solely for debugging. The field will not be read once the compaction
87 : /// description is generated.
88 : rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
89 : }
90 :
91 : /// The result of bottom-most compaction for a single key at each LSN.
92 : #[derive(Debug)]
93 : #[cfg_attr(test, derive(PartialEq))]
94 : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
95 :
96 : /// The result of bottom-most compaction.
97 : #[derive(Debug)]
98 : #[cfg_attr(test, derive(PartialEq))]
99 : pub(crate) struct KeyHistoryRetention {
100 : /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
101 : pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
102 : /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
103 : pub(crate) above_horizon: KeyLogAtLsn,
104 : }
105 :
106 : impl KeyHistoryRetention {
107 : /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
108 : ///
109 : /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
110 : /// For example, consider the case where a single delta with range [0x10,0x50) exists.
111 : /// And we have branches at LSN 0x10, 0x20, 0x30.
112 : /// Then we delete branch @ 0x20.
113 : /// Bottom-most compaction may now delete the delta [0x20,0x30).
114 : /// And that wouldnt' change the shape of the layer.
115 : ///
116 : /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
117 : ///
118 : /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
119 58 : async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
120 58 : if dry_run {
121 0 : return true;
122 58 : }
123 58 : let guard = tline.layers.read().await;
124 58 : if !guard.contains_key(key) {
125 38 : return false;
126 20 : }
127 20 : let layer_generation = guard.get_from_key(key).metadata().generation;
128 20 : drop(guard);
129 20 : if layer_generation == tline.generation {
130 20 : info!(
131 : key=%key,
132 : ?layer_generation,
133 0 : "discard layer due to duplicated layer key in the same generation",
134 : );
135 20 : true
136 : } else {
137 0 : false
138 : }
139 58 : }
140 :
141 : /// Pipe a history of a single key to the writers.
142 : ///
143 : /// If `image_writer` is none, the images will be placed into the delta layers.
144 : /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
145 : #[allow(clippy::too_many_arguments)]
146 530 : async fn pipe_to(
147 530 : self,
148 530 : key: Key,
149 530 : delta_writer: &mut SplitDeltaLayerWriter,
150 530 : mut image_writer: Option<&mut SplitImageLayerWriter>,
151 530 : stat: &mut CompactionStatistics,
152 530 : ctx: &RequestContext,
153 530 : ) -> anyhow::Result<()> {
154 530 : let mut first_batch = true;
155 1658 : for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
156 1128 : if first_batch {
157 530 : if logs.len() == 1 && logs[0].1.is_image() {
158 516 : let Value::Image(img) = &logs[0].1 else {
159 0 : unreachable!()
160 : };
161 516 : stat.produce_image_key(img);
162 516 : if let Some(image_writer) = image_writer.as_mut() {
163 516 : image_writer.put_image(key, img.clone(), ctx).await?;
164 : } else {
165 0 : delta_writer
166 0 : .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
167 0 : .await?;
168 : }
169 : } else {
170 28 : for (lsn, val) in logs {
171 14 : stat.produce_key(&val);
172 14 : delta_writer.put_value(key, lsn, val, ctx).await?;
173 : }
174 : }
175 530 : first_batch = false;
176 : } else {
177 684 : for (lsn, val) in logs {
178 86 : stat.produce_key(&val);
179 86 : delta_writer.put_value(key, lsn, val, ctx).await?;
180 : }
181 : }
182 : }
183 530 : let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
184 568 : for (lsn, val) in above_horizon_logs {
185 38 : stat.produce_key(&val);
186 38 : delta_writer.put_value(key, lsn, val, ctx).await?;
187 : }
188 530 : Ok(())
189 530 : }
190 : }
191 :
192 : #[derive(Debug, Serialize, Default)]
193 : struct CompactionStatisticsNumSize {
194 : num: u64,
195 : size: u64,
196 : }
197 :
198 : #[derive(Debug, Serialize, Default)]
199 : pub struct CompactionStatistics {
200 : delta_layer_visited: CompactionStatisticsNumSize,
201 : image_layer_visited: CompactionStatisticsNumSize,
202 : delta_layer_produced: CompactionStatisticsNumSize,
203 : image_layer_produced: CompactionStatisticsNumSize,
204 : num_delta_layer_discarded: usize,
205 : num_image_layer_discarded: usize,
206 : num_unique_keys_visited: usize,
207 : wal_keys_visited: CompactionStatisticsNumSize,
208 : image_keys_visited: CompactionStatisticsNumSize,
209 : wal_produced: CompactionStatisticsNumSize,
210 : image_produced: CompactionStatisticsNumSize,
211 : }
212 :
213 : impl CompactionStatistics {
214 846 : fn estimated_size_of_value(val: &Value) -> usize {
215 304 : match val {
216 542 : Value::Image(img) => img.len(),
217 0 : Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
218 304 : _ => std::mem::size_of::<NeonWalRecord>(),
219 : }
220 846 : }
221 1372 : fn estimated_size_of_key() -> usize {
222 1372 : KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
223 1372 : }
224 62 : fn visit_delta_layer(&mut self, size: u64) {
225 62 : self.delta_layer_visited.num += 1;
226 62 : self.delta_layer_visited.size += size;
227 62 : }
228 58 : fn visit_image_layer(&mut self, size: u64) {
229 58 : self.image_layer_visited.num += 1;
230 58 : self.image_layer_visited.size += size;
231 58 : }
232 530 : fn on_unique_key_visited(&mut self) {
233 530 : self.num_unique_keys_visited += 1;
234 530 : }
235 176 : fn visit_wal_key(&mut self, val: &Value) {
236 176 : self.wal_keys_visited.num += 1;
237 176 : self.wal_keys_visited.size +=
238 176 : Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
239 176 : }
240 542 : fn visit_image_key(&mut self, val: &Value) {
241 542 : self.image_keys_visited.num += 1;
242 542 : self.image_keys_visited.size +=
243 542 : Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
244 542 : }
245 138 : fn produce_key(&mut self, val: &Value) {
246 138 : match val {
247 10 : Value::Image(img) => self.produce_image_key(img),
248 128 : Value::WalRecord(_) => self.produce_wal_key(val),
249 : }
250 138 : }
251 128 : fn produce_wal_key(&mut self, val: &Value) {
252 128 : self.wal_produced.num += 1;
253 128 : self.wal_produced.size +=
254 128 : Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
255 128 : }
256 526 : fn produce_image_key(&mut self, val: &Bytes) {
257 526 : self.image_produced.num += 1;
258 526 : self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
259 526 : }
260 12 : fn discard_delta_layer(&mut self) {
261 12 : self.num_delta_layer_discarded += 1;
262 12 : }
263 8 : fn discard_image_layer(&mut self) {
264 8 : self.num_image_layer_discarded += 1;
265 8 : }
266 12 : fn produce_delta_layer(&mut self, size: u64) {
267 12 : self.delta_layer_produced.num += 1;
268 12 : self.delta_layer_produced.size += size;
269 12 : }
270 26 : fn produce_image_layer(&mut self, size: u64) {
271 26 : self.image_layer_produced.num += 1;
272 26 : self.image_layer_produced.size += size;
273 26 : }
274 : }
275 :
276 : impl Timeline {
277 : /// TODO: cancellation
278 : ///
279 : /// Returns whether the compaction has pending tasks.
280 364 : pub(crate) async fn compact_legacy(
281 364 : self: &Arc<Self>,
282 364 : cancel: &CancellationToken,
283 364 : options: CompactOptions,
284 364 : ctx: &RequestContext,
285 364 : ) -> Result<bool, CompactionError> {
286 364 : if options
287 364 : .flags
288 364 : .contains(CompactFlags::EnhancedGcBottomMostCompaction)
289 : {
290 0 : self.compact_with_gc(cancel, options, ctx)
291 0 : .await
292 0 : .map_err(CompactionError::Other)?;
293 0 : return Ok(false);
294 364 : }
295 364 :
296 364 : if options.flags.contains(CompactFlags::DryRun) {
297 0 : return Err(CompactionError::Other(anyhow!(
298 0 : "dry-run mode is not supported for legacy compaction for now"
299 0 : )));
300 364 : }
301 364 :
302 364 : if options.compact_range.is_some() {
303 : // maybe useful in the future? could implement this at some point
304 0 : return Err(CompactionError::Other(anyhow!(
305 0 : "compaction range is not supported for legacy compaction for now"
306 0 : )));
307 364 : }
308 364 :
309 364 : // High level strategy for compaction / image creation:
310 364 : //
311 364 : // 1. First, calculate the desired "partitioning" of the
312 364 : // currently in-use key space. The goal is to partition the
313 364 : // key space into roughly fixed-size chunks, but also take into
314 364 : // account any existing image layers, and try to align the
315 364 : // chunk boundaries with the existing image layers to avoid
316 364 : // too much churn. Also try to align chunk boundaries with
317 364 : // relation boundaries. In principle, we don't know about
318 364 : // relation boundaries here, we just deal with key-value
319 364 : // pairs, and the code in pgdatadir_mapping.rs knows how to
320 364 : // map relations into key-value pairs. But in practice we know
321 364 : // that 'field6' is the block number, and the fields 1-5
322 364 : // identify a relation. This is just an optimization,
323 364 : // though.
324 364 : //
325 364 : // 2. Once we know the partitioning, for each partition,
326 364 : // decide if it's time to create a new image layer. The
327 364 : // criteria is: there has been too much "churn" since the last
328 364 : // image layer? The "churn" is fuzzy concept, it's a
329 364 : // combination of too many delta files, or too much WAL in
330 364 : // total in the delta file. Or perhaps: if creating an image
331 364 : // file would allow to delete some older files.
332 364 : //
333 364 : // 3. After that, we compact all level0 delta files if there
334 364 : // are too many of them. While compacting, we also garbage
335 364 : // collect any page versions that are no longer needed because
336 364 : // of the new image layers we created in step 2.
337 364 : //
338 364 : // TODO: This high level strategy hasn't been implemented yet.
339 364 : // Below are functions compact_level0() and create_image_layers()
340 364 : // but they are a bit ad hoc and don't quite work like it's explained
341 364 : // above. Rewrite it.
342 364 :
343 364 : // Is the timeline being deleted?
344 364 : if self.is_stopping() {
345 0 : trace!("Dropping out of compaction on timeline shutdown");
346 0 : return Err(CompactionError::ShuttingDown);
347 364 : }
348 364 :
349 364 : let target_file_size = self.get_checkpoint_distance();
350 :
351 : // Define partitioning schema if needed
352 :
353 : // FIXME: the match should only cover repartitioning, not the next steps
354 364 : let (partition_count, has_pending_tasks) = match self
355 364 : .repartition(
356 364 : self.get_last_record_lsn(),
357 364 : self.get_compaction_target_size(),
358 364 : options.flags,
359 364 : ctx,
360 364 : )
361 364 : .await
362 : {
363 364 : Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
364 364 : // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
365 364 : let image_ctx = RequestContextBuilder::extend(ctx)
366 364 : .access_stats_behavior(AccessStatsBehavior::Skip)
367 364 : .build();
368 364 :
369 364 : // 2. Compact
370 364 : let timer = self.metrics.compact_time_histo.start_timer();
371 364 : let fully_compacted = self
372 364 : .compact_level0(
373 364 : target_file_size,
374 364 : options.flags.contains(CompactFlags::ForceL0Compaction),
375 364 : ctx,
376 364 : )
377 364 : .await?;
378 364 : timer.stop_and_record();
379 364 :
380 364 : let mut partitioning = dense_partitioning;
381 364 : partitioning
382 364 : .parts
383 364 : .extend(sparse_partitioning.into_dense().parts);
384 364 :
385 364 : // 3. Create new image layers for partitions that have been modified
386 364 : // "enough". Skip image layer creation if L0 compaction cannot keep up.
387 364 : if fully_compacted {
388 364 : let image_layers = self
389 364 : .create_image_layers(
390 364 : &partitioning,
391 364 : lsn,
392 364 : if options
393 364 : .flags
394 364 : .contains(CompactFlags::ForceImageLayerCreation)
395 : {
396 14 : ImageLayerCreationMode::Force
397 : } else {
398 350 : ImageLayerCreationMode::Try
399 : },
400 364 : &image_ctx,
401 364 : )
402 364 : .await?;
403 :
404 364 : self.upload_new_image_layers(image_layers)?;
405 : } else {
406 0 : info!("skipping image layer generation due to L0 compaction did not include all layers.");
407 : }
408 364 : (partitioning.parts.len(), !fully_compacted)
409 : }
410 0 : Err(err) => {
411 0 : // no partitioning? This is normal, if the timeline was just created
412 0 : // as an empty timeline. Also in unit tests, when we use the timeline
413 0 : // as a simple key-value store, ignoring the datadir layout. Log the
414 0 : // error but continue.
415 0 : //
416 0 : // Suppress error when it's due to cancellation
417 0 : if !self.cancel.is_cancelled() && !err.is_cancelled() {
418 0 : tracing::error!("could not compact, repartitioning keyspace failed: {err:?}");
419 0 : }
420 0 : (1, false)
421 : }
422 : };
423 :
424 364 : if self.shard_identity.count >= ShardCount::new(2) {
425 : // Limit the number of layer rewrites to the number of partitions: this means its
426 : // runtime should be comparable to a full round of image layer creations, rather than
427 : // being potentially much longer.
428 0 : let rewrite_max = partition_count;
429 0 :
430 0 : self.compact_shard_ancestors(rewrite_max, ctx).await?;
431 364 : }
432 :
433 364 : Ok(has_pending_tasks)
434 364 : }
435 :
436 : /// Check for layers that are elegible to be rewritten:
437 : /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
438 : /// we don't indefinitely retain keys in this shard that aren't needed.
439 : /// - For future use: layers beyond pitr_interval that are in formats we would
440 : /// rather not maintain compatibility with indefinitely.
441 : ///
442 : /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
443 : /// how much work it will try to do in each compaction pass.
444 0 : async fn compact_shard_ancestors(
445 0 : self: &Arc<Self>,
446 0 : rewrite_max: usize,
447 0 : ctx: &RequestContext,
448 0 : ) -> Result<(), CompactionError> {
449 0 : let mut drop_layers = Vec::new();
450 0 : let mut layers_to_rewrite: Vec<Layer> = Vec::new();
451 0 :
452 0 : // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
453 0 : // layer is behind this Lsn, it indicates that the layer is being retained beyond the
454 0 : // pitr_interval, for example because a branchpoint references it.
455 0 : //
456 0 : // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
457 0 : // are rewriting layers.
458 0 : let latest_gc_cutoff = self.get_latest_gc_cutoff_lsn();
459 0 :
460 0 : tracing::info!(
461 0 : "latest_gc_cutoff: {}, pitr cutoff {}",
462 0 : *latest_gc_cutoff,
463 0 : self.gc_info.read().unwrap().cutoffs.time
464 : );
465 :
466 0 : let layers = self.layers.read().await;
467 0 : for layer_desc in layers.layer_map()?.iter_historic_layers() {
468 0 : let layer = layers.get_from_desc(&layer_desc);
469 0 : if layer.metadata().shard.shard_count == self.shard_identity.count {
470 : // This layer does not belong to a historic ancestor, no need to re-image it.
471 0 : continue;
472 0 : }
473 0 :
474 0 : // This layer was created on an ancestor shard: check if it contains any data for this shard.
475 0 : let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
476 0 : let layer_local_page_count = sharded_range.page_count();
477 0 : let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
478 0 : if layer_local_page_count == 0 {
479 : // This ancestral layer only covers keys that belong to other shards.
480 : // We include the full metadata in the log: if we had some critical bug that caused
481 : // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
482 0 : info!(%layer, old_metadata=?layer.metadata(),
483 0 : "dropping layer after shard split, contains no keys for this shard.",
484 : );
485 :
486 0 : if cfg!(debug_assertions) {
487 : // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
488 : // wrong. If ShardedRange claims the local page count is zero, then no keys in this layer
489 : // should be !is_key_disposable()
490 0 : let range = layer_desc.get_key_range();
491 0 : let mut key = range.start;
492 0 : while key < range.end {
493 0 : debug_assert!(self.shard_identity.is_key_disposable(&key));
494 0 : key = key.next();
495 : }
496 0 : }
497 :
498 0 : drop_layers.push(layer);
499 0 : continue;
500 0 : } else if layer_local_page_count != u32::MAX
501 0 : && layer_local_page_count == layer_raw_page_count
502 : {
503 0 : debug!(%layer,
504 0 : "layer is entirely shard local ({} keys), no need to filter it",
505 : layer_local_page_count
506 : );
507 0 : continue;
508 0 : }
509 0 :
510 0 : // Don't bother re-writing a layer unless it will at least halve its size
511 0 : if layer_local_page_count != u32::MAX
512 0 : && layer_local_page_count > layer_raw_page_count / 2
513 : {
514 0 : debug!(%layer,
515 0 : "layer is already mostly local ({}/{}), not rewriting",
516 : layer_local_page_count,
517 : layer_raw_page_count
518 : );
519 0 : }
520 :
521 : // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
522 : // without incurring the I/O cost of a rewrite.
523 0 : if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
524 0 : debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
525 0 : layer_desc.get_lsn_range().end, *latest_gc_cutoff);
526 0 : continue;
527 0 : }
528 0 :
529 0 : if layer_desc.is_delta() {
530 : // We do not yet implement rewrite of delta layers
531 0 : debug!(%layer, "Skipping rewrite of delta layer");
532 0 : continue;
533 0 : }
534 0 :
535 0 : // Only rewrite layers if their generations differ. This guarantees:
536 0 : // - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
537 0 : // - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
538 0 : if layer.metadata().generation == self.generation {
539 0 : debug!(%layer, "Skipping rewrite, is not from old generation");
540 0 : continue;
541 0 : }
542 0 :
543 0 : if layers_to_rewrite.len() >= rewrite_max {
544 0 : tracing::info!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
545 0 : layers_to_rewrite.len()
546 : );
547 0 : continue;
548 0 : }
549 0 :
550 0 : // Fall through: all our conditions for doing a rewrite passed.
551 0 : layers_to_rewrite.push(layer);
552 : }
553 :
554 : // Drop read lock on layer map before we start doing time-consuming I/O
555 0 : drop(layers);
556 0 :
557 0 : let mut replace_image_layers = Vec::new();
558 :
559 0 : for layer in layers_to_rewrite {
560 0 : tracing::info!(layer=%layer, "Rewriting layer after shard split...");
561 0 : let mut image_layer_writer = ImageLayerWriter::new(
562 0 : self.conf,
563 0 : self.timeline_id,
564 0 : self.tenant_shard_id,
565 0 : &layer.layer_desc().key_range,
566 0 : layer.layer_desc().image_layer_lsn(),
567 0 : ctx,
568 0 : )
569 0 : .await
570 0 : .map_err(CompactionError::Other)?;
571 :
572 : // Safety of layer rewrites:
573 : // - We are writing to a different local file path than we are reading from, so the old Layer
574 : // cannot interfere with the new one.
575 : // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
576 : // is different for two layers with the same name (in `ImageLayerInner::new` we always
577 : // acquire a fresh id from [`crate::page_cache::next_file_id`]. So readers do not risk
578 : // reading the index from one layer file, and then data blocks from the rewritten layer file.
579 : // - Any readers that have a reference to the old layer will keep it alive until they are done
580 : // with it. If they are trying to promote from remote storage, that will fail, but this is the same
581 : // as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
582 : // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
583 : // - GC, which at worst witnesses us "undelete" a layer that they just deleted.
584 : // - ingestion, which only inserts layers, therefore cannot collide with us.
585 0 : let resident = layer.download_and_keep_resident().await?;
586 :
587 0 : let keys_written = resident
588 0 : .filter(&self.shard_identity, &mut image_layer_writer, ctx)
589 0 : .await?;
590 :
591 0 : if keys_written > 0 {
592 0 : let (desc, path) = image_layer_writer
593 0 : .finish(ctx)
594 0 : .await
595 0 : .map_err(CompactionError::Other)?;
596 0 : let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
597 0 : .map_err(CompactionError::Other)?;
598 0 : tracing::info!(layer=%new_layer, "Rewrote layer, {} -> {} bytes",
599 0 : layer.metadata().file_size,
600 0 : new_layer.metadata().file_size);
601 :
602 0 : replace_image_layers.push((layer, new_layer));
603 0 : } else {
604 0 : // Drop the old layer. Usually for this case we would already have noticed that
605 0 : // the layer has no data for us with the ShardedRange check above, but
606 0 : drop_layers.push(layer);
607 0 : }
608 : }
609 :
610 : // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
611 : // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
612 : // to remote index) and be removed. This is inefficient but safe.
613 0 : fail::fail_point!("compact-shard-ancestors-localonly");
614 0 :
615 0 : // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
616 0 : self.rewrite_layers(replace_image_layers, drop_layers)
617 0 : .await?;
618 :
619 0 : fail::fail_point!("compact-shard-ancestors-enqueued");
620 0 :
621 0 : // We wait for all uploads to complete before finishing this compaction stage. This is not
622 0 : // necessary for correctness, but it simplifies testing, and avoids proceeding with another
623 0 : // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
624 0 : // load.
625 0 : match self.remote_client.wait_completion().await {
626 0 : Ok(()) => (),
627 0 : Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
628 : Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
629 0 : return Err(CompactionError::ShuttingDown)
630 : }
631 : }
632 :
633 0 : fail::fail_point!("compact-shard-ancestors-persistent");
634 0 :
635 0 : Ok(())
636 0 : }
637 :
638 : /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
639 : /// an image layer between them and the most recent readable LSN (branch point or tip of timeline). The
640 : /// purpose of the visibility hint is to record which layers need to be available to service reads.
641 : ///
642 : /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
643 : /// that we know won't be needed for reads.
644 198 : pub(super) async fn update_layer_visibility(
645 198 : &self,
646 198 : ) -> Result<(), super::layer_manager::Shutdown> {
647 198 : let head_lsn = self.get_last_record_lsn();
648 :
649 : // We will sweep through layers in reverse-LSN order. We only do historic layers. L0 deltas
650 : // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
651 : // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
652 : // they will be subject to L0->L1 compaction in the near future.
653 198 : let layer_manager = self.layers.read().await;
654 198 : let layer_map = layer_manager.layer_map()?;
655 :
656 198 : let readable_points = {
657 198 : let children = self.gc_info.read().unwrap().retain_lsns.clone();
658 198 :
659 198 : let mut readable_points = Vec::with_capacity(children.len() + 1);
660 198 : for (child_lsn, _child_timeline_id, is_offloaded) in &children {
661 0 : if *is_offloaded == MaybeOffloaded::Yes {
662 0 : continue;
663 0 : }
664 0 : readable_points.push(*child_lsn);
665 : }
666 198 : readable_points.push(head_lsn);
667 198 : readable_points
668 198 : };
669 198 :
670 198 : let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
671 516 : for (layer_desc, visibility) in layer_visibility {
672 318 : // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
673 318 : let layer = layer_manager.get_from_desc(&layer_desc);
674 318 : layer.set_visibility(visibility);
675 318 : }
676 :
677 : // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
678 : // avoid assuming that everything at a branch point is visible.
679 198 : drop(covered);
680 198 : Ok(())
681 198 : }
682 :
683 : /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
684 : /// as Level 1 files. Returns whether the L0 layers are fully compacted.
685 364 : async fn compact_level0(
686 364 : self: &Arc<Self>,
687 364 : target_file_size: u64,
688 364 : force_compaction_ignore_threshold: bool,
689 364 : ctx: &RequestContext,
690 364 : ) -> Result<bool, CompactionError> {
691 : let CompactLevel0Phase1Result {
692 364 : new_layers,
693 364 : deltas_to_compact,
694 364 : fully_compacted,
695 : } = {
696 364 : let phase1_span = info_span!("compact_level0_phase1");
697 364 : let ctx = ctx.attached_child();
698 364 : let mut stats = CompactLevel0Phase1StatsBuilder {
699 364 : version: Some(2),
700 364 : tenant_id: Some(self.tenant_shard_id),
701 364 : timeline_id: Some(self.timeline_id),
702 364 : ..Default::default()
703 364 : };
704 364 :
705 364 : let begin = tokio::time::Instant::now();
706 364 : let phase1_layers_locked = self.layers.read().await;
707 364 : let now = tokio::time::Instant::now();
708 364 : stats.read_lock_acquisition_micros =
709 364 : DurationRecorder::Recorded(RecordedDuration(now - begin), now);
710 364 : self.compact_level0_phase1(
711 364 : phase1_layers_locked,
712 364 : stats,
713 364 : target_file_size,
714 364 : force_compaction_ignore_threshold,
715 364 : &ctx,
716 364 : )
717 364 : .instrument(phase1_span)
718 364 : .await?
719 : };
720 :
721 364 : if new_layers.is_empty() && deltas_to_compact.is_empty() {
722 : // nothing to do
723 336 : return Ok(true);
724 28 : }
725 28 :
726 28 : self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
727 28 : .await?;
728 28 : Ok(fully_compacted)
729 364 : }
730 :
731 : /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
732 364 : async fn compact_level0_phase1<'a>(
733 364 : self: &'a Arc<Self>,
734 364 : guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
735 364 : mut stats: CompactLevel0Phase1StatsBuilder,
736 364 : target_file_size: u64,
737 364 : force_compaction_ignore_threshold: bool,
738 364 : ctx: &RequestContext,
739 364 : ) -> Result<CompactLevel0Phase1Result, CompactionError> {
740 364 : stats.read_lock_held_spawn_blocking_startup_micros =
741 364 : stats.read_lock_acquisition_micros.till_now(); // set by caller
742 364 : let layers = guard.layer_map()?;
743 364 : let level0_deltas = layers.level0_deltas();
744 364 : stats.level0_deltas_count = Some(level0_deltas.len());
745 364 :
746 364 : // Only compact if enough layers have accumulated.
747 364 : let threshold = self.get_compaction_threshold();
748 364 : if level0_deltas.is_empty() || level0_deltas.len() < threshold {
749 336 : if force_compaction_ignore_threshold {
750 0 : if !level0_deltas.is_empty() {
751 0 : info!(
752 0 : level0_deltas = level0_deltas.len(),
753 0 : threshold, "too few deltas to compact, but forcing compaction"
754 : );
755 : } else {
756 0 : info!(
757 0 : level0_deltas = level0_deltas.len(),
758 0 : threshold, "too few deltas to compact, cannot force compaction"
759 : );
760 0 : return Ok(CompactLevel0Phase1Result::default());
761 : }
762 : } else {
763 336 : debug!(
764 0 : level0_deltas = level0_deltas.len(),
765 0 : threshold, "too few deltas to compact"
766 : );
767 336 : return Ok(CompactLevel0Phase1Result::default());
768 : }
769 28 : }
770 :
771 28 : let mut level0_deltas = level0_deltas
772 28 : .iter()
773 402 : .map(|x| guard.get_from_desc(x))
774 28 : .collect::<Vec<_>>();
775 28 :
776 28 : // Gather the files to compact in this iteration.
777 28 : //
778 28 : // Start with the oldest Level 0 delta file, and collect any other
779 28 : // level 0 files that form a contiguous sequence, such that the end
780 28 : // LSN of previous file matches the start LSN of the next file.
781 28 : //
782 28 : // Note that if the files don't form such a sequence, we might
783 28 : // "compact" just a single file. That's a bit pointless, but it allows
784 28 : // us to get rid of the level 0 file, and compact the other files on
785 28 : // the next iteration. This could probably made smarter, but such
786 28 : // "gaps" in the sequence of level 0 files should only happen in case
787 28 : // of a crash, partial download from cloud storage, or something like
788 28 : // that, so it's not a big deal in practice.
789 748 : level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
790 28 : let mut level0_deltas_iter = level0_deltas.iter();
791 28 :
792 28 : let first_level0_delta = level0_deltas_iter.next().unwrap();
793 28 : let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
794 28 : let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
795 28 :
796 28 : // Accumulate the size of layers in `deltas_to_compact`
797 28 : let mut deltas_to_compact_bytes = 0;
798 28 :
799 28 : // Under normal circumstances, we will accumulate up to compaction_interval L0s of size
800 28 : // checkpoint_distance each. To avoid edge cases using extra system resources, bound our
801 28 : // work in this function to only operate on this much delta data at once.
802 28 : //
803 28 : // Take the max of the configured value & the default, so that tests that configure tiny values
804 28 : // can still use a sensible amount of memory, but if a deployed system configures bigger values we
805 28 : // still let them compact a full stack of L0s in one go.
806 28 : let delta_size_limit = std::cmp::max(
807 28 : self.get_compaction_threshold(),
808 28 : DEFAULT_COMPACTION_THRESHOLD,
809 28 : ) as u64
810 28 : * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
811 28 :
812 28 : let mut fully_compacted = true;
813 28 :
814 28 : deltas_to_compact.push(first_level0_delta.download_and_keep_resident().await?);
815 402 : for l in level0_deltas_iter {
816 374 : let lsn_range = &l.layer_desc().lsn_range;
817 374 :
818 374 : if lsn_range.start != prev_lsn_end {
819 0 : break;
820 374 : }
821 374 : deltas_to_compact.push(l.download_and_keep_resident().await?);
822 374 : deltas_to_compact_bytes += l.metadata().file_size;
823 374 : prev_lsn_end = lsn_range.end;
824 374 :
825 374 : if deltas_to_compact_bytes >= delta_size_limit {
826 0 : info!(
827 0 : l0_deltas_selected = deltas_to_compact.len(),
828 0 : l0_deltas_total = level0_deltas.len(),
829 0 : "L0 compaction picker hit max delta layer size limit: {}",
830 : delta_size_limit
831 : );
832 0 : fully_compacted = false;
833 0 :
834 0 : // Proceed with compaction, but only a subset of L0s
835 0 : break;
836 374 : }
837 : }
838 28 : let lsn_range = Range {
839 28 : start: deltas_to_compact
840 28 : .first()
841 28 : .unwrap()
842 28 : .layer_desc()
843 28 : .lsn_range
844 28 : .start,
845 28 : end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
846 28 : };
847 28 :
848 28 : info!(
849 0 : "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
850 0 : lsn_range.start,
851 0 : lsn_range.end,
852 0 : deltas_to_compact.len(),
853 0 : level0_deltas.len()
854 : );
855 :
856 402 : for l in deltas_to_compact.iter() {
857 402 : info!("compact includes {l}");
858 : }
859 :
860 : // We don't need the original list of layers anymore. Drop it so that
861 : // we don't accidentally use it later in the function.
862 28 : drop(level0_deltas);
863 28 :
864 28 : stats.read_lock_held_prerequisites_micros = stats
865 28 : .read_lock_held_spawn_blocking_startup_micros
866 28 : .till_now();
867 :
868 : // TODO: replace with streaming k-merge
869 28 : let all_keys = {
870 28 : let mut all_keys = Vec::new();
871 402 : for l in deltas_to_compact.iter() {
872 402 : if self.cancel.is_cancelled() {
873 0 : return Err(CompactionError::ShuttingDown);
874 402 : }
875 402 : let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
876 402 : let keys = delta
877 402 : .index_entries(ctx)
878 402 : .await
879 402 : .map_err(CompactionError::Other)?;
880 402 : all_keys.extend(keys);
881 : }
882 : // The current stdlib sorting implementation is designed in a way where it is
883 : // particularly fast where the slice is made up of sorted sub-ranges.
884 4423784 : all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
885 28 : all_keys
886 28 : };
887 28 :
888 28 : stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
889 :
890 : // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
891 : //
892 : // A hole is a key range for which this compaction doesn't have any WAL records.
893 : // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
894 : // cover the hole, but actually don't contain any WAL records for that key range.
895 : // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
896 : // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
897 : //
898 : // The algorithm chooses holes as follows.
899 : // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
900 : // - Filter: min threshold on range length
901 : // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
902 : //
903 : // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
904 : #[derive(PartialEq, Eq)]
905 : struct Hole {
906 : key_range: Range<Key>,
907 : coverage_size: usize,
908 : }
909 28 : let holes: Vec<Hole> = {
910 : use std::cmp::Ordering;
911 : impl Ord for Hole {
912 0 : fn cmp(&self, other: &Self) -> Ordering {
913 0 : self.coverage_size.cmp(&other.coverage_size).reverse()
914 0 : }
915 : }
916 : impl PartialOrd for Hole {
917 0 : fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
918 0 : Some(self.cmp(other))
919 0 : }
920 : }
921 28 : let max_holes = deltas_to_compact.len();
922 28 : let last_record_lsn = self.get_last_record_lsn();
923 28 : let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
924 28 : let min_hole_coverage_size = 3; // TODO: something more flexible?
925 28 : // min-heap (reserve space for one more element added before eviction)
926 28 : let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
927 28 : let mut prev: Option<Key> = None;
928 :
929 2064038 : for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
930 2064038 : if let Some(prev_key) = prev {
931 : // just first fast filter, do not create hole entries for metadata keys. The last hole in the
932 : // compaction is the gap between data key and metadata keys.
933 2064010 : if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
934 0 : && !Key::is_metadata_key(&prev_key)
935 : {
936 0 : let key_range = prev_key..next_key;
937 0 : // Measuring hole by just subtraction of i128 representation of key range boundaries
938 0 : // has not so much sense, because largest holes will corresponds field1/field2 changes.
939 0 : // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
940 0 : // That is why it is better to measure size of hole as number of covering image layers.
941 0 : let coverage_size =
942 0 : layers.image_coverage(&key_range, last_record_lsn).len();
943 0 : if coverage_size >= min_hole_coverage_size {
944 0 : heap.push(Hole {
945 0 : key_range,
946 0 : coverage_size,
947 0 : });
948 0 : if heap.len() > max_holes {
949 0 : heap.pop(); // remove smallest hole
950 0 : }
951 0 : }
952 2064010 : }
953 28 : }
954 2064038 : prev = Some(next_key.next());
955 : }
956 28 : let mut holes = heap.into_vec();
957 28 : holes.sort_unstable_by_key(|hole| hole.key_range.start);
958 28 : holes
959 28 : };
960 28 : stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
961 28 : drop_rlock(guard);
962 28 :
963 28 : if self.cancel.is_cancelled() {
964 0 : return Err(CompactionError::ShuttingDown);
965 28 : }
966 28 :
967 28 : stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
968 :
969 : // This iterator walks through all key-value pairs from all the layers
970 : // we're compacting, in key, LSN order.
971 : // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
972 : // then the Value::Image is ordered before Value::WalRecord.
973 28 : let mut all_values_iter = {
974 28 : let mut deltas = Vec::with_capacity(deltas_to_compact.len());
975 402 : for l in deltas_to_compact.iter() {
976 402 : let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
977 402 : deltas.push(l);
978 : }
979 28 : MergeIterator::create(&deltas, &[], ctx)
980 28 : };
981 28 :
982 28 : // This iterator walks through all keys and is needed to calculate size used by each key
983 28 : let mut all_keys_iter = all_keys
984 28 : .iter()
985 2064038 : .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
986 2064010 : .coalesce(|mut prev, cur| {
987 2064010 : // Coalesce keys that belong to the same key pair.
988 2064010 : // This ensures that compaction doesn't put them
989 2064010 : // into different layer files.
990 2064010 : // Still limit this by the target file size,
991 2064010 : // so that we keep the size of the files in
992 2064010 : // check.
993 2064010 : if prev.0 == cur.0 && prev.2 < target_file_size {
994 40038 : prev.2 += cur.2;
995 40038 : Ok(prev)
996 : } else {
997 2023972 : Err((prev, cur))
998 : }
999 2064010 : });
1000 28 :
1001 28 : // Merge the contents of all the input delta layers into a new set
1002 28 : // of delta layers, based on the current partitioning.
1003 28 : //
1004 28 : // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
1005 28 : // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
1006 28 : // would be too large. In that case, we also split on the LSN dimension.
1007 28 : //
1008 28 : // LSN
1009 28 : // ^
1010 28 : // |
1011 28 : // | +-----------+ +--+--+--+--+
1012 28 : // | | | | | | | |
1013 28 : // | +-----------+ | | | | |
1014 28 : // | | | | | | | |
1015 28 : // | +-----------+ ==> | | | | |
1016 28 : // | | | | | | | |
1017 28 : // | +-----------+ | | | | |
1018 28 : // | | | | | | | |
1019 28 : // | +-----------+ +--+--+--+--+
1020 28 : // |
1021 28 : // +--------------> key
1022 28 : //
1023 28 : //
1024 28 : // If one key (X) has a lot of page versions:
1025 28 : //
1026 28 : // LSN
1027 28 : // ^
1028 28 : // | (X)
1029 28 : // | +-----------+ +--+--+--+--+
1030 28 : // | | | | | | | |
1031 28 : // | +-----------+ | | +--+ |
1032 28 : // | | | | | | | |
1033 28 : // | +-----------+ ==> | | | | |
1034 28 : // | | | | | +--+ |
1035 28 : // | +-----------+ | | | | |
1036 28 : // | | | | | | | |
1037 28 : // | +-----------+ +--+--+--+--+
1038 28 : // |
1039 28 : // +--------------> key
1040 28 : // TODO: this actually divides the layers into fixed-size chunks, not
1041 28 : // based on the partitioning.
1042 28 : //
1043 28 : // TODO: we should also opportunistically materialize and
1044 28 : // garbage collect what we can.
1045 28 : let mut new_layers = Vec::new();
1046 28 : let mut prev_key: Option<Key> = None;
1047 28 : let mut writer: Option<DeltaLayerWriter> = None;
1048 28 : let mut key_values_total_size = 0u64;
1049 28 : let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
1050 28 : let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
1051 28 : let mut next_hole = 0; // index of next hole in holes vector
1052 28 :
1053 28 : let mut keys = 0;
1054 :
1055 2064066 : while let Some((key, lsn, value)) = all_values_iter
1056 2064066 : .next()
1057 2064066 : .await
1058 2064066 : .map_err(CompactionError::Other)?
1059 : {
1060 2064038 : keys += 1;
1061 2064038 :
1062 2064038 : if keys % 32_768 == 0 && self.cancel.is_cancelled() {
1063 : // avoid hitting the cancellation token on every key. in benches, we end up
1064 : // shuffling an order of million keys per layer, this means we'll check it
1065 : // around tens of times per layer.
1066 0 : return Err(CompactionError::ShuttingDown);
1067 2064038 : }
1068 2064038 :
1069 2064038 : let same_key = prev_key.map_or(false, |prev_key| prev_key == key);
1070 2064038 : // We need to check key boundaries once we reach next key or end of layer with the same key
1071 2064038 : if !same_key || lsn == dup_end_lsn {
1072 2024000 : let mut next_key_size = 0u64;
1073 2024000 : let is_dup_layer = dup_end_lsn.is_valid();
1074 2024000 : dup_start_lsn = Lsn::INVALID;
1075 2024000 : if !same_key {
1076 2024000 : dup_end_lsn = Lsn::INVALID;
1077 2024000 : }
1078 : // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
1079 2024000 : for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
1080 2024000 : next_key_size = next_size;
1081 2024000 : if key != next_key {
1082 2023972 : if dup_end_lsn.is_valid() {
1083 0 : // We are writting segment with duplicates:
1084 0 : // place all remaining values of this key in separate segment
1085 0 : dup_start_lsn = dup_end_lsn; // new segments starts where old stops
1086 0 : dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
1087 2023972 : }
1088 2023972 : break;
1089 28 : }
1090 28 : key_values_total_size += next_size;
1091 28 : // Check if it is time to split segment: if total keys size is larger than target file size.
1092 28 : // We need to avoid generation of empty segments if next_size > target_file_size.
1093 28 : if key_values_total_size > target_file_size && lsn != next_lsn {
1094 : // Split key between multiple layers: such layer can contain only single key
1095 0 : dup_start_lsn = if dup_end_lsn.is_valid() {
1096 0 : dup_end_lsn // new segment with duplicates starts where old one stops
1097 : } else {
1098 0 : lsn // start with the first LSN for this key
1099 : };
1100 0 : dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
1101 0 : break;
1102 28 : }
1103 : }
1104 : // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
1105 2024000 : if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
1106 0 : dup_start_lsn = dup_end_lsn;
1107 0 : dup_end_lsn = lsn_range.end;
1108 2024000 : }
1109 2024000 : if writer.is_some() {
1110 2023972 : let written_size = writer.as_mut().unwrap().size();
1111 2023972 : let contains_hole =
1112 2023972 : next_hole < holes.len() && key >= holes[next_hole].key_range.end;
1113 : // check if key cause layer overflow or contains hole...
1114 2023972 : if is_dup_layer
1115 2023972 : || dup_end_lsn.is_valid()
1116 2023972 : || written_size + key_values_total_size > target_file_size
1117 2023692 : || contains_hole
1118 : {
1119 : // ... if so, flush previous layer and prepare to write new one
1120 280 : let (desc, path) = writer
1121 280 : .take()
1122 280 : .unwrap()
1123 280 : .finish(prev_key.unwrap().next(), ctx)
1124 280 : .await
1125 280 : .map_err(CompactionError::Other)?;
1126 280 : let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
1127 280 : .map_err(CompactionError::Other)?;
1128 :
1129 280 : new_layers.push(new_delta);
1130 280 : writer = None;
1131 280 :
1132 280 : if contains_hole {
1133 0 : // skip hole
1134 0 : next_hole += 1;
1135 280 : }
1136 2023692 : }
1137 28 : }
1138 : // Remember size of key value because at next iteration we will access next item
1139 2024000 : key_values_total_size = next_key_size;
1140 40038 : }
1141 2064038 : fail_point!("delta-layer-writer-fail-before-finish", |_| {
1142 0 : Err(CompactionError::Other(anyhow::anyhow!(
1143 0 : "failpoint delta-layer-writer-fail-before-finish"
1144 0 : )))
1145 2064038 : });
1146 :
1147 2064038 : if !self.shard_identity.is_key_disposable(&key) {
1148 2064038 : if writer.is_none() {
1149 308 : if self.cancel.is_cancelled() {
1150 : // to be somewhat responsive to cancellation, check for each new layer
1151 0 : return Err(CompactionError::ShuttingDown);
1152 308 : }
1153 : // Create writer if not initiaized yet
1154 308 : writer = Some(
1155 : DeltaLayerWriter::new(
1156 308 : self.conf,
1157 308 : self.timeline_id,
1158 308 : self.tenant_shard_id,
1159 308 : key,
1160 308 : if dup_end_lsn.is_valid() {
1161 : // this is a layer containing slice of values of the same key
1162 0 : debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
1163 0 : dup_start_lsn..dup_end_lsn
1164 : } else {
1165 308 : debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
1166 308 : lsn_range.clone()
1167 : },
1168 308 : ctx,
1169 308 : )
1170 308 : .await
1171 308 : .map_err(CompactionError::Other)?,
1172 : );
1173 :
1174 308 : keys = 0;
1175 2063730 : }
1176 :
1177 2064038 : writer
1178 2064038 : .as_mut()
1179 2064038 : .unwrap()
1180 2064038 : .put_value(key, lsn, value, ctx)
1181 2064038 : .await
1182 2064038 : .map_err(CompactionError::Other)?;
1183 : } else {
1184 0 : let shard = self.shard_identity.shard_index();
1185 0 : let owner = self.shard_identity.get_shard_number(&key);
1186 0 : if cfg!(debug_assertions) {
1187 0 : panic!("key {key} does not belong on shard {shard}, owned by {owner}");
1188 0 : }
1189 0 : debug!("dropping key {key} during compaction (it belongs on shard {owner})");
1190 : }
1191 :
1192 2064038 : if !new_layers.is_empty() {
1193 19786 : fail_point!("after-timeline-compacted-first-L1");
1194 2044252 : }
1195 :
1196 2064038 : prev_key = Some(key);
1197 : }
1198 28 : if let Some(writer) = writer {
1199 28 : let (desc, path) = writer
1200 28 : .finish(prev_key.unwrap().next(), ctx)
1201 28 : .await
1202 28 : .map_err(CompactionError::Other)?;
1203 28 : let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
1204 28 : .map_err(CompactionError::Other)?;
1205 28 : new_layers.push(new_delta);
1206 0 : }
1207 :
1208 : // Sync layers
1209 28 : if !new_layers.is_empty() {
1210 : // Print a warning if the created layer is larger than double the target size
1211 : // Add two pages for potential overhead. This should in theory be already
1212 : // accounted for in the target calculation, but for very small targets,
1213 : // we still might easily hit the limit otherwise.
1214 28 : let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
1215 308 : for layer in new_layers.iter() {
1216 308 : if layer.layer_desc().file_size > warn_limit {
1217 0 : warn!(
1218 : %layer,
1219 0 : "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
1220 : );
1221 308 : }
1222 : }
1223 :
1224 : // The writer.finish() above already did the fsync of the inodes.
1225 : // We just need to fsync the directory in which these inodes are linked,
1226 : // which we know to be the timeline directory.
1227 : //
1228 : // We use fatal_err() below because the after writer.finish() returns with success,
1229 : // the in-memory state of the filesystem already has the layer file in its final place,
1230 : // and subsequent pageserver code could think it's durable while it really isn't.
1231 28 : let timeline_dir = VirtualFile::open(
1232 28 : &self
1233 28 : .conf
1234 28 : .timeline_path(&self.tenant_shard_id, &self.timeline_id),
1235 28 : ctx,
1236 28 : )
1237 28 : .await
1238 28 : .fatal_err("VirtualFile::open for timeline dir fsync");
1239 28 : timeline_dir
1240 28 : .sync_all()
1241 28 : .await
1242 28 : .fatal_err("VirtualFile::sync_all timeline dir");
1243 0 : }
1244 :
1245 28 : stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
1246 28 : stats.new_deltas_count = Some(new_layers.len());
1247 308 : stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
1248 28 :
1249 28 : match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
1250 28 : .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
1251 : {
1252 28 : Ok(stats_json) => {
1253 28 : info!(
1254 0 : stats_json = stats_json.as_str(),
1255 0 : "compact_level0_phase1 stats available"
1256 : )
1257 : }
1258 0 : Err(e) => {
1259 0 : warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
1260 : }
1261 : }
1262 :
1263 : // Without this, rustc complains about deltas_to_compact still
1264 : // being borrowed when we `.into_iter()` below.
1265 28 : drop(all_values_iter);
1266 28 :
1267 28 : Ok(CompactLevel0Phase1Result {
1268 28 : new_layers,
1269 28 : deltas_to_compact: deltas_to_compact
1270 28 : .into_iter()
1271 402 : .map(|x| x.drop_eviction_guard())
1272 28 : .collect::<Vec<_>>(),
1273 28 : fully_compacted,
1274 28 : })
1275 364 : }
1276 : }
1277 :
1278 : #[derive(Default)]
1279 : struct CompactLevel0Phase1Result {
1280 : new_layers: Vec<ResidentLayer>,
1281 : deltas_to_compact: Vec<Layer>,
1282 : // Whether we have included all L0 layers, or selected only part of them due to the
1283 : // L0 compaction size limit.
1284 : fully_compacted: bool,
1285 : }
1286 :
1287 : #[derive(Default)]
1288 : struct CompactLevel0Phase1StatsBuilder {
1289 : version: Option<u64>,
1290 : tenant_id: Option<TenantShardId>,
1291 : timeline_id: Option<TimelineId>,
1292 : read_lock_acquisition_micros: DurationRecorder,
1293 : read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
1294 : read_lock_held_key_sort_micros: DurationRecorder,
1295 : read_lock_held_prerequisites_micros: DurationRecorder,
1296 : read_lock_held_compute_holes_micros: DurationRecorder,
1297 : read_lock_drop_micros: DurationRecorder,
1298 : write_layer_files_micros: DurationRecorder,
1299 : level0_deltas_count: Option<usize>,
1300 : new_deltas_count: Option<usize>,
1301 : new_deltas_size: Option<u64>,
1302 : }
1303 :
1304 : #[derive(serde::Serialize)]
1305 : struct CompactLevel0Phase1Stats {
1306 : version: u64,
1307 : tenant_id: TenantShardId,
1308 : timeline_id: TimelineId,
1309 : read_lock_acquisition_micros: RecordedDuration,
1310 : read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
1311 : read_lock_held_key_sort_micros: RecordedDuration,
1312 : read_lock_held_prerequisites_micros: RecordedDuration,
1313 : read_lock_held_compute_holes_micros: RecordedDuration,
1314 : read_lock_drop_micros: RecordedDuration,
1315 : write_layer_files_micros: RecordedDuration,
1316 : level0_deltas_count: usize,
1317 : new_deltas_count: usize,
1318 : new_deltas_size: u64,
1319 : }
1320 :
1321 : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
1322 : type Error = anyhow::Error;
1323 :
1324 28 : fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
1325 28 : Ok(Self {
1326 28 : version: value.version.ok_or_else(|| anyhow!("version not set"))?,
1327 28 : tenant_id: value
1328 28 : .tenant_id
1329 28 : .ok_or_else(|| anyhow!("tenant_id not set"))?,
1330 28 : timeline_id: value
1331 28 : .timeline_id
1332 28 : .ok_or_else(|| anyhow!("timeline_id not set"))?,
1333 28 : read_lock_acquisition_micros: value
1334 28 : .read_lock_acquisition_micros
1335 28 : .into_recorded()
1336 28 : .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
1337 28 : read_lock_held_spawn_blocking_startup_micros: value
1338 28 : .read_lock_held_spawn_blocking_startup_micros
1339 28 : .into_recorded()
1340 28 : .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
1341 28 : read_lock_held_key_sort_micros: value
1342 28 : .read_lock_held_key_sort_micros
1343 28 : .into_recorded()
1344 28 : .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
1345 28 : read_lock_held_prerequisites_micros: value
1346 28 : .read_lock_held_prerequisites_micros
1347 28 : .into_recorded()
1348 28 : .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
1349 28 : read_lock_held_compute_holes_micros: value
1350 28 : .read_lock_held_compute_holes_micros
1351 28 : .into_recorded()
1352 28 : .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
1353 28 : read_lock_drop_micros: value
1354 28 : .read_lock_drop_micros
1355 28 : .into_recorded()
1356 28 : .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
1357 28 : write_layer_files_micros: value
1358 28 : .write_layer_files_micros
1359 28 : .into_recorded()
1360 28 : .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
1361 28 : level0_deltas_count: value
1362 28 : .level0_deltas_count
1363 28 : .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
1364 28 : new_deltas_count: value
1365 28 : .new_deltas_count
1366 28 : .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
1367 28 : new_deltas_size: value
1368 28 : .new_deltas_size
1369 28 : .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
1370 : })
1371 28 : }
1372 : }
1373 :
1374 : impl Timeline {
1375 : /// Entry point for new tiered compaction algorithm.
1376 : ///
1377 : /// All the real work is in the implementation in the pageserver_compaction
1378 : /// crate. The code here would apply to any algorithm implemented by the
1379 : /// same interface, but tiered is the only one at the moment.
1380 : ///
1381 : /// TODO: cancellation
1382 0 : pub(crate) async fn compact_tiered(
1383 0 : self: &Arc<Self>,
1384 0 : _cancel: &CancellationToken,
1385 0 : ctx: &RequestContext,
1386 0 : ) -> Result<(), CompactionError> {
1387 0 : let fanout = self.get_compaction_threshold() as u64;
1388 0 : let target_file_size = self.get_checkpoint_distance();
1389 :
1390 : // Find the top of the historical layers
1391 0 : let end_lsn = {
1392 0 : let guard = self.layers.read().await;
1393 0 : let layers = guard.layer_map()?;
1394 :
1395 0 : let l0_deltas = layers.level0_deltas();
1396 0 :
1397 0 : // As an optimization, if we find that there are too few L0 layers,
1398 0 : // bail out early. We know that the compaction algorithm would do
1399 0 : // nothing in that case.
1400 0 : if l0_deltas.len() < fanout as usize {
1401 : // doesn't need compacting
1402 0 : return Ok(());
1403 0 : }
1404 0 : l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
1405 0 : };
1406 0 :
1407 0 : // Is the timeline being deleted?
1408 0 : if self.is_stopping() {
1409 0 : trace!("Dropping out of compaction on timeline shutdown");
1410 0 : return Err(CompactionError::ShuttingDown);
1411 0 : }
1412 :
1413 0 : let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
1414 : // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
1415 0 : let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
1416 0 :
1417 0 : pageserver_compaction::compact_tiered::compact_tiered(
1418 0 : &mut adaptor,
1419 0 : end_lsn,
1420 0 : target_file_size,
1421 0 : fanout,
1422 0 : ctx,
1423 0 : )
1424 0 : .await
1425 : // TODO: compact_tiered needs to return CompactionError
1426 0 : .map_err(CompactionError::Other)?;
1427 :
1428 0 : adaptor.flush_updates().await?;
1429 0 : Ok(())
1430 0 : }
1431 :
1432 : /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
1433 : ///
1434 : /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
1435 : /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
1436 : /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
1437 : ///
1438 : /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
1439 : ///
1440 : /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
1441 : /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
1442 : ///
1443 : /// The function will produce:
1444 : ///
1445 : /// ```plain
1446 : /// 0x20(retain_lsn) -> img=AB@0x20 always produce a single image below the lowest retain LSN
1447 : /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40] two deltas since the last base image, keeping the deltas
1448 : /// 0x50(horizon) -> deltas=[ABCDE@0x50] three deltas since the last base image, generate an image but put it in the delta
1449 : /// above_horizon -> deltas=[+F@0x60] full history above the horizon
1450 : /// ```
1451 : ///
1452 : /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
1453 538 : pub(crate) async fn generate_key_retention(
1454 538 : self: &Arc<Timeline>,
1455 538 : key: Key,
1456 538 : full_history: &[(Key, Lsn, Value)],
1457 538 : horizon: Lsn,
1458 538 : retain_lsn_below_horizon: &[Lsn],
1459 538 : delta_threshold_cnt: usize,
1460 538 : base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
1461 538 : ) -> anyhow::Result<KeyHistoryRetention> {
1462 538 : // Pre-checks for the invariants
1463 538 : if cfg!(debug_assertions) {
1464 1306 : for (log_key, _, _) in full_history {
1465 768 : assert_eq!(log_key, &key, "mismatched key");
1466 : }
1467 538 : for i in 1..full_history.len() {
1468 230 : assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
1469 230 : if full_history[i - 1].1 == full_history[i].1 {
1470 0 : assert!(
1471 0 : matches!(full_history[i - 1].2, Value::Image(_)),
1472 0 : "unordered delta/image, or duplicated delta"
1473 : );
1474 230 : }
1475 : }
1476 : // There was an assertion for no base image that checks if the first
1477 : // record in the history is `will_init` before, but it was removed.
1478 : // This is explained in the test cases for generate_key_retention.
1479 : // Search "incomplete history" for more information.
1480 1148 : for lsn in retain_lsn_below_horizon {
1481 610 : assert!(lsn < &horizon, "retain lsn must be below horizon")
1482 : }
1483 538 : for i in 1..retain_lsn_below_horizon.len() {
1484 278 : assert!(
1485 278 : retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
1486 0 : "unordered LSN"
1487 : );
1488 : }
1489 0 : }
1490 538 : let has_ancestor = base_img_from_ancestor.is_some();
1491 : // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
1492 : // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
1493 538 : let (mut split_history, lsn_split_points) = {
1494 538 : let mut split_history = Vec::new();
1495 538 : split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
1496 538 : let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
1497 1148 : for lsn in retain_lsn_below_horizon {
1498 610 : lsn_split_points.push(*lsn);
1499 610 : }
1500 538 : lsn_split_points.push(horizon);
1501 538 : let mut current_idx = 0;
1502 1306 : for item @ (_, lsn, _) in full_history {
1503 944 : while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
1504 176 : current_idx += 1;
1505 176 : }
1506 768 : split_history[current_idx].push(item);
1507 : }
1508 538 : (split_history, lsn_split_points)
1509 : };
1510 : // Step 2: filter out duplicated records due to the k-merge of image/delta layers
1511 2224 : for split_for_lsn in &mut split_history {
1512 1686 : let mut prev_lsn = None;
1513 1686 : let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
1514 1686 : for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
1515 768 : if let Some(prev_lsn) = &prev_lsn {
1516 106 : if *prev_lsn == lsn {
1517 : // The case that we have an LSN with both data from the delta layer and the image layer. As
1518 : // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
1519 : // drop this delta and keep the image.
1520 : //
1521 : // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
1522 : // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
1523 : // dropped.
1524 : //
1525 : // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
1526 : // threshold, we could have kept delta instead to save space. This is an optimization for the future.
1527 0 : continue;
1528 106 : }
1529 662 : }
1530 768 : prev_lsn = Some(lsn);
1531 768 : new_split_for_lsn.push(record);
1532 : }
1533 1686 : *split_for_lsn = new_split_for_lsn;
1534 : }
1535 : // Step 3: generate images when necessary
1536 538 : let mut retention = Vec::with_capacity(split_history.len());
1537 538 : let mut records_since_last_image = 0;
1538 538 : let batch_cnt = split_history.len();
1539 538 : assert!(
1540 538 : batch_cnt >= 2,
1541 0 : "should have at least below + above horizon batches"
1542 : );
1543 538 : let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
1544 538 : if let Some((key, lsn, img)) = base_img_from_ancestor {
1545 18 : replay_history.push((key, lsn, Value::Image(img)));
1546 520 : }
1547 :
1548 : /// Generate debug information for the replay history
1549 0 : fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
1550 : use std::fmt::Write;
1551 0 : let mut output = String::new();
1552 0 : if let Some((key, _, _)) = replay_history.first() {
1553 0 : write!(output, "key={} ", key).unwrap();
1554 0 : let mut cnt = 0;
1555 0 : for (_, lsn, val) in replay_history {
1556 0 : if val.is_image() {
1557 0 : write!(output, "i@{} ", lsn).unwrap();
1558 0 : } else if val.will_init() {
1559 0 : write!(output, "di@{} ", lsn).unwrap();
1560 0 : } else {
1561 0 : write!(output, "d@{} ", lsn).unwrap();
1562 0 : }
1563 0 : cnt += 1;
1564 0 : if cnt >= 128 {
1565 0 : write!(output, "... and more").unwrap();
1566 0 : break;
1567 0 : }
1568 : }
1569 0 : } else {
1570 0 : write!(output, "<no history>").unwrap();
1571 0 : }
1572 0 : output
1573 0 : }
1574 :
1575 0 : fn generate_debug_trace(
1576 0 : replay_history: Option<&[(Key, Lsn, Value)]>,
1577 0 : full_history: &[(Key, Lsn, Value)],
1578 0 : lsns: &[Lsn],
1579 0 : horizon: Lsn,
1580 0 : ) -> String {
1581 : use std::fmt::Write;
1582 0 : let mut output = String::new();
1583 0 : if let Some(replay_history) = replay_history {
1584 0 : writeln!(
1585 0 : output,
1586 0 : "replay_history: {}",
1587 0 : generate_history_trace(replay_history)
1588 0 : )
1589 0 : .unwrap();
1590 0 : } else {
1591 0 : writeln!(output, "replay_history: <disabled>",).unwrap();
1592 0 : }
1593 0 : writeln!(
1594 0 : output,
1595 0 : "full_history: {}",
1596 0 : generate_history_trace(full_history)
1597 0 : )
1598 0 : .unwrap();
1599 0 : writeln!(
1600 0 : output,
1601 0 : "when processing: [{}] horizon={}",
1602 0 : lsns.iter().map(|l| format!("{l}")).join(","),
1603 0 : horizon
1604 0 : )
1605 0 : .unwrap();
1606 0 : output
1607 0 : }
1608 :
1609 1686 : for (i, split_for_lsn) in split_history.into_iter().enumerate() {
1610 : // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
1611 1686 : records_since_last_image += split_for_lsn.len();
1612 1686 : let generate_image = if i == 0 && !has_ancestor {
1613 : // We always generate images for the first batch (below horizon / lowest retain_lsn)
1614 520 : true
1615 1166 : } else if i == batch_cnt - 1 {
1616 : // Do not generate images for the last batch (above horizon)
1617 538 : false
1618 628 : } else if records_since_last_image >= delta_threshold_cnt {
1619 : // Generate images when there are too many records
1620 6 : true
1621 : } else {
1622 622 : false
1623 : };
1624 1686 : replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
1625 : // Only retain the items after the last image record
1626 2030 : for idx in (0..replay_history.len()).rev() {
1627 2030 : if replay_history[idx].2.will_init() {
1628 1686 : replay_history = replay_history[idx..].to_vec();
1629 1686 : break;
1630 344 : }
1631 : }
1632 1686 : if let Some((_, _, val)) = replay_history.first() {
1633 1686 : if !val.will_init() {
1634 0 : return Err(anyhow::anyhow!("invalid history, no base image")).with_context(
1635 0 : || {
1636 0 : generate_debug_trace(
1637 0 : Some(&replay_history),
1638 0 : full_history,
1639 0 : retain_lsn_below_horizon,
1640 0 : horizon,
1641 0 : )
1642 0 : },
1643 0 : );
1644 1686 : }
1645 0 : }
1646 1686 : if generate_image && records_since_last_image > 0 {
1647 526 : records_since_last_image = 0;
1648 526 : let replay_history_for_debug = if cfg!(debug_assertions) {
1649 526 : Some(replay_history.clone())
1650 : } else {
1651 0 : None
1652 : };
1653 526 : let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
1654 526 : let history = std::mem::take(&mut replay_history);
1655 526 : let mut img = None;
1656 526 : let mut records = Vec::with_capacity(history.len());
1657 526 : if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
1658 504 : img = Some((*lsn, val.clone()));
1659 504 : for (_, lsn, val) in history.into_iter().skip(1) {
1660 34 : let Value::WalRecord(rec) = val else {
1661 0 : return Err(anyhow::anyhow!(
1662 0 : "invalid record, first record is image, expect walrecords"
1663 0 : ))
1664 0 : .with_context(|| {
1665 0 : generate_debug_trace(
1666 0 : replay_history_for_debug_ref,
1667 0 : full_history,
1668 0 : retain_lsn_below_horizon,
1669 0 : horizon,
1670 0 : )
1671 0 : });
1672 : };
1673 34 : records.push((lsn, rec));
1674 : }
1675 : } else {
1676 36 : for (_, lsn, val) in history.into_iter() {
1677 36 : let Value::WalRecord(rec) = val else {
1678 0 : return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
1679 0 : .with_context(|| generate_debug_trace(
1680 0 : replay_history_for_debug_ref,
1681 0 : full_history,
1682 0 : retain_lsn_below_horizon,
1683 0 : horizon,
1684 0 : ));
1685 : };
1686 36 : records.push((lsn, rec));
1687 : }
1688 : }
1689 526 : records.reverse();
1690 526 : let state = ValueReconstructState { img, records };
1691 526 : let request_lsn = lsn_split_points[i]; // last batch does not generate image so i is always in range
1692 526 : let img = self.reconstruct_value(key, request_lsn, state).await?;
1693 526 : replay_history.push((key, request_lsn, Value::Image(img.clone())));
1694 526 : retention.push(vec![(request_lsn, Value::Image(img))]);
1695 1160 : } else {
1696 1160 : let deltas = split_for_lsn
1697 1160 : .iter()
1698 1160 : .map(|(_, lsn, value)| (*lsn, value.clone()))
1699 1160 : .collect_vec();
1700 1160 : retention.push(deltas);
1701 1160 : }
1702 : }
1703 538 : let mut result = Vec::with_capacity(retention.len());
1704 538 : assert_eq!(retention.len(), lsn_split_points.len() + 1);
1705 1686 : for (idx, logs) in retention.into_iter().enumerate() {
1706 1686 : if idx == lsn_split_points.len() {
1707 538 : return Ok(KeyHistoryRetention {
1708 538 : below_horizon: result,
1709 538 : above_horizon: KeyLogAtLsn(logs),
1710 538 : });
1711 1148 : } else {
1712 1148 : result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
1713 1148 : }
1714 : }
1715 0 : unreachable!("key retention is empty")
1716 538 : }
1717 :
1718 : /// Check how much space is left on the disk
1719 40 : async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
1720 40 : let tenants_dir = self.conf.tenants_path();
1721 :
1722 40 : let stat = Statvfs::get(&tenants_dir, None)
1723 40 : .context("statvfs failed, presumably directory got unlinked")?;
1724 :
1725 40 : let (avail_bytes, _) = stat.get_avail_total_bytes();
1726 40 :
1727 40 : Ok(avail_bytes)
1728 40 : }
1729 :
1730 : /// Check if the compaction can proceed safely without running out of space. We assume the size
1731 : /// upper bound of the produced files of a compaction job is the same as all layers involved in
1732 : /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
1733 : /// compaction.
1734 40 : async fn check_compaction_space(
1735 40 : self: &Arc<Self>,
1736 40 : layer_selection: &[Layer],
1737 40 : ) -> anyhow::Result<()> {
1738 40 : let available_space = self.check_available_space().await?;
1739 40 : let mut remote_layer_size = 0;
1740 40 : let mut all_layer_size = 0;
1741 160 : for layer in layer_selection {
1742 120 : let needs_download = layer.needs_download().await?;
1743 120 : if needs_download.is_some() {
1744 0 : remote_layer_size += layer.layer_desc().file_size;
1745 120 : }
1746 120 : all_layer_size += layer.layer_desc().file_size;
1747 : }
1748 40 : let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
1749 40 : if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
1750 : {
1751 0 : return Err(anyhow!("not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
1752 0 : available_space, allocated_space, all_layer_size, remote_layer_size, all_layer_size + remote_layer_size));
1753 40 : }
1754 40 : Ok(())
1755 40 : }
1756 :
1757 : /// Split a gc-compaction job into multiple compaction jobs. Optimally, this function should return a vector of
1758 : /// `GcCompactionJobDesc`. But we want to keep it simple on the tenant scheduling side without exposing too much
1759 : /// ad-hoc information about gc compaction itself.
1760 0 : pub(crate) async fn gc_compaction_split_jobs(
1761 0 : self: &Arc<Self>,
1762 0 : options: CompactOptions,
1763 0 : ) -> anyhow::Result<Vec<CompactOptions>> {
1764 0 : if !options.sub_compaction {
1765 0 : return Ok(vec![options]);
1766 0 : }
1767 0 : let compact_range = options.compact_range.clone().unwrap_or(CompactRange {
1768 0 : start: Key::MIN,
1769 0 : end: Key::MAX,
1770 0 : });
1771 0 : let compact_below_lsn = if let Some(compact_below_lsn) = options.compact_below_lsn {
1772 0 : compact_below_lsn
1773 : } else {
1774 0 : *self.get_latest_gc_cutoff_lsn() // use the real gc cutoff
1775 : };
1776 0 : let mut compact_jobs = Vec::new();
1777 : // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
1778 : // by estimating the amount of files read for a compaction job. We should also partition on LSN.
1779 0 : let Ok(partition) = self.partitioning.try_lock() else {
1780 0 : bail!("failed to acquire partition lock");
1781 : };
1782 0 : let ((dense_ks, sparse_ks), _) = &*partition;
1783 : // Truncate the key range to be within user specified compaction range.
1784 0 : fn truncate_to(
1785 0 : source_start: &Key,
1786 0 : source_end: &Key,
1787 0 : target_start: &Key,
1788 0 : target_end: &Key,
1789 0 : ) -> Option<(Key, Key)> {
1790 0 : let start = source_start.max(target_start);
1791 0 : let end = source_end.min(target_end);
1792 0 : if start < end {
1793 0 : Some((*start, *end))
1794 : } else {
1795 0 : None
1796 : }
1797 0 : }
1798 0 : let mut split_key_ranges = Vec::new();
1799 0 : let ranges = dense_ks
1800 0 : .parts
1801 0 : .iter()
1802 0 : .map(|partition| partition.ranges.iter())
1803 0 : .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
1804 0 : .flatten()
1805 0 : .cloned()
1806 0 : .collect_vec();
1807 0 : for range in ranges.iter() {
1808 0 : let Some((start, end)) = truncate_to(
1809 0 : &range.start,
1810 0 : &range.end,
1811 0 : &compact_range.start,
1812 0 : &compact_range.end,
1813 0 : ) else {
1814 0 : continue;
1815 : };
1816 0 : split_key_ranges.push((start, end));
1817 : }
1818 0 : split_key_ranges.sort();
1819 0 : let guard = self.layers.read().await;
1820 0 : let layer_map = guard.layer_map()?;
1821 0 : let mut current_start = None;
1822 : // Split compaction job to about 2GB each
1823 : const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024; // 4GB, TODO: should be configuration in the future
1824 0 : let ranges_num = split_key_ranges.len();
1825 0 : for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
1826 0 : if current_start.is_none() {
1827 0 : current_start = Some(start);
1828 0 : }
1829 0 : let start = current_start.unwrap();
1830 0 : if start >= end {
1831 : // We have already processed this partition.
1832 0 : continue;
1833 0 : }
1834 0 : let res = layer_map.range_search(start..end, compact_below_lsn);
1835 0 : let total_size = res.found.keys().map(|x| x.layer.file_size()).sum::<u64>();
1836 0 : if total_size > GC_COMPACT_MAX_SIZE_MB * 1024 * 1024 || ranges_num == idx + 1 {
1837 0 : let mut compact_options = options.clone();
1838 0 : // Try to extend the compaction range so that we include at least one full layer file.
1839 0 : let extended_end = res
1840 0 : .found
1841 0 : .keys()
1842 0 : .map(|layer| layer.layer.key_range.end)
1843 0 : .min();
1844 : // It is possible that the search range does not contain any layer files when we reach the end of the loop.
1845 : // In this case, we simply use the specified key range end.
1846 0 : let end = if let Some(extended_end) = extended_end {
1847 0 : extended_end.max(end)
1848 : } else {
1849 0 : end
1850 : };
1851 0 : info!(
1852 0 : "splitting compaction job: {}..{}, estimated_size={}",
1853 : start, end, total_size
1854 : );
1855 0 : compact_options.compact_range = Some(CompactRange { start, end });
1856 0 : compact_options.compact_below_lsn = Some(compact_below_lsn);
1857 0 : compact_options.sub_compaction = false;
1858 0 : compact_jobs.push(compact_options);
1859 0 : current_start = Some(end);
1860 0 : }
1861 : }
1862 0 : drop(guard);
1863 0 : Ok(compact_jobs)
1864 0 : }
1865 :
1866 : /// An experimental compaction building block that combines compaction with garbage collection.
1867 : ///
1868 : /// The current implementation picks all delta + image layers that are below or intersecting with
1869 : /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
1870 : /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
1871 : /// and create delta layers with all deltas >= gc horizon.
1872 : ///
1873 : /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
1874 : /// Partial compaction will read and process all layers overlapping with the key range, even if it might
1875 : /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
1876 : /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
1877 : /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
1878 : /// part of the range.
1879 : ///
1880 : /// If `options.compact_below_lsn` is provided, the compaction will only compact layers below or intersect with
1881 : /// the LSN. Otherwise, it will use the gc cutoff by default.
1882 40 : pub(crate) async fn compact_with_gc(
1883 40 : self: &Arc<Self>,
1884 40 : cancel: &CancellationToken,
1885 40 : options: CompactOptions,
1886 40 : ctx: &RequestContext,
1887 40 : ) -> anyhow::Result<()> {
1888 40 : if options.sub_compaction {
1889 0 : info!("running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs");
1890 0 : let jobs = self.gc_compaction_split_jobs(options).await?;
1891 0 : let jobs_len = jobs.len();
1892 0 : for (idx, job) in jobs.into_iter().enumerate() {
1893 0 : info!(
1894 0 : "running enhanced gc bottom-most compaction, sub-compaction {}/{}",
1895 0 : idx + 1,
1896 : jobs_len
1897 : );
1898 0 : self.compact_with_gc_inner(cancel, job, ctx).await?;
1899 : }
1900 0 : if jobs_len == 0 {
1901 0 : info!("no jobs to run, skipping gc bottom-most compaction");
1902 0 : }
1903 0 : return Ok(());
1904 40 : }
1905 40 : self.compact_with_gc_inner(cancel, options, ctx).await
1906 40 : }
1907 :
1908 40 : async fn compact_with_gc_inner(
1909 40 : self: &Arc<Self>,
1910 40 : cancel: &CancellationToken,
1911 40 : options: CompactOptions,
1912 40 : ctx: &RequestContext,
1913 40 : ) -> anyhow::Result<()> {
1914 40 : assert!(
1915 40 : !options.sub_compaction,
1916 0 : "sub-compaction should be handled by the outer function"
1917 : );
1918 : // Block other compaction/GC tasks from running for now. GC-compaction could run along
1919 : // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
1920 : // Note that we already acquired the compaction lock when the outer `compact` function gets called.
1921 :
1922 40 : let gc_lock = async {
1923 40 : tokio::select! {
1924 40 : guard = self.gc_lock.lock() => Ok(guard),
1925 : // TODO: refactor to CompactionError to correctly pass cancelled error
1926 40 : _ = cancel.cancelled() => Err(anyhow!("cancelled")),
1927 : }
1928 40 : };
1929 :
1930 40 : let gc_lock = crate::timed(
1931 40 : gc_lock,
1932 40 : "acquires gc lock",
1933 40 : std::time::Duration::from_secs(5),
1934 40 : )
1935 40 : .await?;
1936 :
1937 40 : let flags = options.flags;
1938 40 : let compaction_key_range = options
1939 40 : .compact_range
1940 40 : .map(|range| range.start..range.end)
1941 40 : .unwrap_or_else(|| Key::MIN..Key::MAX);
1942 40 :
1943 40 : let dry_run = flags.contains(CompactFlags::DryRun);
1944 40 :
1945 40 : if compaction_key_range == (Key::MIN..Key::MAX) {
1946 30 : info!("running enhanced gc bottom-most compaction, dry_run={dry_run}, compaction_key_range={}..{}", compaction_key_range.start, compaction_key_range.end);
1947 : } else {
1948 10 : info!("running enhanced gc bottom-most compaction, dry_run={dry_run}");
1949 : }
1950 :
1951 40 : scopeguard::defer! {
1952 40 : info!("done enhanced gc bottom-most compaction");
1953 40 : };
1954 40 :
1955 40 : let mut stat = CompactionStatistics::default();
1956 :
1957 : // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
1958 : // The layer selection has the following properties:
1959 : // 1. If a layer is in the selection, all layers below it are in the selection.
1960 : // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
1961 40 : let job_desc = {
1962 40 : let guard = self.layers.read().await;
1963 40 : let layers = guard.layer_map()?;
1964 40 : let gc_info = self.gc_info.read().unwrap();
1965 40 : let mut retain_lsns_below_horizon = Vec::new();
1966 40 : let gc_cutoff = {
1967 : // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
1968 : // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
1969 : // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
1970 : // to get the truth data.
1971 40 : let real_gc_cutoff = *self.get_latest_gc_cutoff_lsn();
1972 40 : // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
1973 40 : // each of the retain_lsn. Therefore, if the user-provided `compact_below_lsn` is larger than the real gc cutoff, we will use
1974 40 : // the real cutoff.
1975 40 : let mut gc_cutoff = options.compact_below_lsn.unwrap_or(real_gc_cutoff);
1976 40 : if gc_cutoff > real_gc_cutoff {
1977 0 : warn!("provided compact_below_lsn={} is larger than the real_gc_cutoff={}, using the real gc cutoff", gc_cutoff, real_gc_cutoff);
1978 0 : gc_cutoff = real_gc_cutoff;
1979 40 : }
1980 40 : gc_cutoff
1981 : };
1982 44 : for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
1983 44 : if lsn < &gc_cutoff {
1984 44 : retain_lsns_below_horizon.push(*lsn);
1985 44 : }
1986 : }
1987 40 : for lsn in gc_info.leases.keys() {
1988 0 : if lsn < &gc_cutoff {
1989 0 : retain_lsns_below_horizon.push(*lsn);
1990 0 : }
1991 : }
1992 40 : let mut selected_layers: Vec<Layer> = Vec::new();
1993 40 : drop(gc_info);
1994 : // Pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
1995 40 : let Some(max_layer_lsn) = layers
1996 40 : .iter_historic_layers()
1997 182 : .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
1998 150 : .map(|desc| desc.get_lsn_range().end)
1999 40 : .max()
2000 : else {
2001 0 : info!("no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}", gc_cutoff);
2002 0 : return Ok(());
2003 : };
2004 : // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
2005 : // layers to compact.
2006 40 : let mut rewrite_layers = Vec::new();
2007 182 : for desc in layers.iter_historic_layers() {
2008 182 : if desc.get_lsn_range().end <= max_layer_lsn
2009 150 : && overlaps_with(&desc.get_key_range(), &compaction_key_range)
2010 : {
2011 : // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
2012 : // even if it might contain extra keys
2013 120 : selected_layers.push(guard.get_from_desc(&desc));
2014 120 : // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
2015 120 : // to overlap image layers)
2016 120 : if desc.is_delta()
2017 62 : && !fully_contains(&compaction_key_range, &desc.get_key_range())
2018 2 : {
2019 2 : rewrite_layers.push(desc);
2020 118 : }
2021 62 : }
2022 : }
2023 40 : if selected_layers.is_empty() {
2024 0 : info!("no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}", gc_cutoff, compaction_key_range.start, compaction_key_range.end);
2025 0 : return Ok(());
2026 40 : }
2027 40 : retain_lsns_below_horizon.sort();
2028 40 : GcCompactionJobDescription {
2029 40 : selected_layers,
2030 40 : gc_cutoff,
2031 40 : retain_lsns_below_horizon,
2032 40 : max_layer_lsn,
2033 40 : compaction_key_range,
2034 40 : rewrite_layers,
2035 40 : }
2036 : };
2037 40 : let lowest_retain_lsn = if self.ancestor_timeline.is_some() {
2038 2 : Lsn(self.ancestor_lsn.0 + 1)
2039 : } else {
2040 38 : let res = job_desc
2041 38 : .retain_lsns_below_horizon
2042 38 : .first()
2043 38 : .copied()
2044 38 : .unwrap_or(job_desc.gc_cutoff);
2045 38 : if cfg!(debug_assertions) {
2046 38 : assert_eq!(
2047 38 : res,
2048 38 : job_desc
2049 38 : .retain_lsns_below_horizon
2050 38 : .iter()
2051 38 : .min()
2052 38 : .copied()
2053 38 : .unwrap_or(job_desc.gc_cutoff)
2054 38 : );
2055 0 : }
2056 38 : res
2057 : };
2058 40 : info!(
2059 0 : "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}",
2060 0 : job_desc.selected_layers.len(),
2061 0 : job_desc.rewrite_layers.len(),
2062 : job_desc.max_layer_lsn,
2063 : job_desc.gc_cutoff,
2064 : lowest_retain_lsn,
2065 : job_desc.compaction_key_range.start,
2066 : job_desc.compaction_key_range.end
2067 : );
2068 :
2069 160 : for layer in &job_desc.selected_layers {
2070 120 : debug!("read layer: {}", layer.layer_desc().key());
2071 : }
2072 42 : for layer in &job_desc.rewrite_layers {
2073 2 : debug!("rewrite layer: {}", layer.key());
2074 : }
2075 :
2076 40 : self.check_compaction_space(&job_desc.selected_layers)
2077 40 : .await?;
2078 :
2079 : // Generate statistics for the compaction
2080 160 : for layer in &job_desc.selected_layers {
2081 120 : let desc = layer.layer_desc();
2082 120 : if desc.is_delta() {
2083 62 : stat.visit_delta_layer(desc.file_size());
2084 62 : } else {
2085 58 : stat.visit_image_layer(desc.file_size());
2086 58 : }
2087 : }
2088 :
2089 : // Step 1: construct a k-merge iterator over all layers.
2090 : // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
2091 : // disable the check for now because we need to adjust the check for partial compactions, will enable later.
2092 : // let layer_names = job_desc
2093 : // .selected_layers
2094 : // .iter()
2095 : // .map(|layer| layer.layer_desc().layer_name())
2096 : // .collect_vec();
2097 : // if let Some(err) = check_valid_layermap(&layer_names) {
2098 : // warn!("gc-compaction layer map check failed because {}, this is normal if partial compaction is not finished yet", err);
2099 : // }
2100 : // The maximum LSN we are processing in this compaction loop
2101 40 : let end_lsn = job_desc
2102 40 : .selected_layers
2103 40 : .iter()
2104 120 : .map(|l| l.layer_desc().lsn_range.end)
2105 40 : .max()
2106 40 : .unwrap();
2107 40 : let mut delta_layers = Vec::new();
2108 40 : let mut image_layers = Vec::new();
2109 40 : let mut downloaded_layers = Vec::new();
2110 160 : for layer in &job_desc.selected_layers {
2111 120 : let resident_layer = layer.download_and_keep_resident().await?;
2112 120 : downloaded_layers.push(resident_layer);
2113 : }
2114 160 : for resident_layer in &downloaded_layers {
2115 120 : if resident_layer.layer_desc().is_delta() {
2116 62 : let layer = resident_layer.get_as_delta(ctx).await?;
2117 62 : delta_layers.push(layer);
2118 : } else {
2119 58 : let layer = resident_layer.get_as_image(ctx).await?;
2120 58 : image_layers.push(layer);
2121 : }
2122 : }
2123 40 : let (dense_ks, sparse_ks) = self.collect_gc_compaction_keyspace().await?;
2124 40 : let mut merge_iter = FilterIterator::create(
2125 40 : MergeIterator::create(&delta_layers, &image_layers, ctx),
2126 40 : dense_ks,
2127 40 : sparse_ks,
2128 40 : )?;
2129 :
2130 : // Step 2: Produce images+deltas.
2131 40 : let mut accumulated_values = Vec::new();
2132 40 : let mut last_key: Option<Key> = None;
2133 :
2134 : // Only create image layers when there is no ancestor branches. TODO: create covering image layer
2135 : // when some condition meet.
2136 40 : let mut image_layer_writer = if self.ancestor_timeline.is_none() {
2137 : Some(
2138 38 : SplitImageLayerWriter::new(
2139 38 : self.conf,
2140 38 : self.timeline_id,
2141 38 : self.tenant_shard_id,
2142 38 : job_desc.compaction_key_range.start,
2143 38 : lowest_retain_lsn,
2144 38 : self.get_compaction_target_size(),
2145 38 : ctx,
2146 38 : )
2147 38 : .await?,
2148 : )
2149 : } else {
2150 2 : None
2151 : };
2152 :
2153 40 : let mut delta_layer_writer = SplitDeltaLayerWriter::new(
2154 40 : self.conf,
2155 40 : self.timeline_id,
2156 40 : self.tenant_shard_id,
2157 40 : lowest_retain_lsn..end_lsn,
2158 40 : self.get_compaction_target_size(),
2159 40 : )
2160 40 : .await?;
2161 :
2162 : #[derive(Default)]
2163 : struct RewritingLayers {
2164 : before: Option<DeltaLayerWriter>,
2165 : after: Option<DeltaLayerWriter>,
2166 : }
2167 40 : let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
2168 :
2169 : /// Returns None if there is no ancestor branch. Throw an error when the key is not found.
2170 : ///
2171 : /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
2172 : /// is needed for reconstruction. This should be fixed in the future.
2173 : ///
2174 : /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
2175 : /// images.
2176 530 : async fn get_ancestor_image(
2177 530 : tline: &Arc<Timeline>,
2178 530 : key: Key,
2179 530 : ctx: &RequestContext,
2180 530 : ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
2181 530 : if tline.ancestor_timeline.is_none() {
2182 516 : return Ok(None);
2183 14 : };
2184 : // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
2185 : // as much existing code as possible.
2186 14 : let img = tline.get(key, tline.ancestor_lsn, ctx).await?;
2187 14 : Ok(Some((key, tline.ancestor_lsn, img)))
2188 530 : }
2189 :
2190 : // Actually, we can decide not to write to the image layer at all at this point because
2191 : // the key and LSN range are determined. However, to keep things simple here, we still
2192 : // create this writer, and discard the writer in the end.
2193 :
2194 822 : while let Some(((key, lsn, val), desc)) = merge_iter.next_with_trace().await? {
2195 782 : if cancel.is_cancelled() {
2196 0 : return Err(anyhow!("cancelled")); // TODO: refactor to CompactionError and pass cancel error
2197 782 : }
2198 782 : if self.shard_identity.is_key_disposable(&key) {
2199 : // If this shard does not need to store this key, simply skip it.
2200 : //
2201 : // This is not handled in the filter iterator because shard is determined by hash.
2202 : // Therefore, it does not give us any performance benefit to do things like skip
2203 : // a whole layer file as handling key spaces (ranges).
2204 0 : if cfg!(debug_assertions) {
2205 0 : let shard = self.shard_identity.shard_index();
2206 0 : let owner = self.shard_identity.get_shard_number(&key);
2207 0 : panic!("key {key} does not belong on shard {shard}, owned by {owner}");
2208 0 : }
2209 0 : continue;
2210 782 : }
2211 782 : if !job_desc.compaction_key_range.contains(&key) {
2212 64 : if !desc.is_delta {
2213 60 : continue;
2214 4 : }
2215 4 : let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
2216 4 : let rewriter = if key < job_desc.compaction_key_range.start {
2217 0 : if rewriter.before.is_none() {
2218 0 : rewriter.before = Some(
2219 0 : DeltaLayerWriter::new(
2220 0 : self.conf,
2221 0 : self.timeline_id,
2222 0 : self.tenant_shard_id,
2223 0 : desc.key_range.start,
2224 0 : desc.lsn_range.clone(),
2225 0 : ctx,
2226 0 : )
2227 0 : .await?,
2228 : );
2229 0 : }
2230 0 : rewriter.before.as_mut().unwrap()
2231 4 : } else if key >= job_desc.compaction_key_range.end {
2232 4 : if rewriter.after.is_none() {
2233 2 : rewriter.after = Some(
2234 2 : DeltaLayerWriter::new(
2235 2 : self.conf,
2236 2 : self.timeline_id,
2237 2 : self.tenant_shard_id,
2238 2 : job_desc.compaction_key_range.end,
2239 2 : desc.lsn_range.clone(),
2240 2 : ctx,
2241 2 : )
2242 2 : .await?,
2243 : );
2244 2 : }
2245 4 : rewriter.after.as_mut().unwrap()
2246 : } else {
2247 0 : unreachable!()
2248 : };
2249 4 : rewriter.put_value(key, lsn, val, ctx).await?;
2250 4 : continue;
2251 718 : }
2252 718 : match val {
2253 542 : Value::Image(_) => stat.visit_image_key(&val),
2254 176 : Value::WalRecord(_) => stat.visit_wal_key(&val),
2255 : }
2256 718 : if last_key.is_none() || last_key.as_ref() == Some(&key) {
2257 228 : if last_key.is_none() {
2258 40 : last_key = Some(key);
2259 188 : }
2260 228 : accumulated_values.push((key, lsn, val));
2261 : } else {
2262 490 : let last_key: &mut Key = last_key.as_mut().unwrap();
2263 490 : stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
2264 490 : let retention = self
2265 490 : .generate_key_retention(
2266 490 : *last_key,
2267 490 : &accumulated_values,
2268 490 : job_desc.gc_cutoff,
2269 490 : &job_desc.retain_lsns_below_horizon,
2270 490 : COMPACTION_DELTA_THRESHOLD,
2271 490 : get_ancestor_image(self, *last_key, ctx).await?,
2272 : )
2273 490 : .await?;
2274 490 : retention
2275 490 : .pipe_to(
2276 490 : *last_key,
2277 490 : &mut delta_layer_writer,
2278 490 : image_layer_writer.as_mut(),
2279 490 : &mut stat,
2280 490 : ctx,
2281 490 : )
2282 490 : .await?;
2283 490 : accumulated_values.clear();
2284 490 : *last_key = key;
2285 490 : accumulated_values.push((key, lsn, val));
2286 : }
2287 : }
2288 :
2289 : // TODO: move the below part to the loop body
2290 40 : let last_key = last_key.expect("no keys produced during compaction");
2291 40 : stat.on_unique_key_visited();
2292 :
2293 40 : let retention = self
2294 40 : .generate_key_retention(
2295 40 : last_key,
2296 40 : &accumulated_values,
2297 40 : job_desc.gc_cutoff,
2298 40 : &job_desc.retain_lsns_below_horizon,
2299 40 : COMPACTION_DELTA_THRESHOLD,
2300 40 : get_ancestor_image(self, last_key, ctx).await?,
2301 : )
2302 40 : .await?;
2303 40 : retention
2304 40 : .pipe_to(
2305 40 : last_key,
2306 40 : &mut delta_layer_writer,
2307 40 : image_layer_writer.as_mut(),
2308 40 : &mut stat,
2309 40 : ctx,
2310 40 : )
2311 40 : .await?;
2312 : // end: move the above part to the loop body
2313 :
2314 40 : let mut rewrote_delta_layers = Vec::new();
2315 42 : for (key, writers) in delta_layer_rewriters {
2316 2 : if let Some(delta_writer_before) = writers.before {
2317 0 : let (desc, path) = delta_writer_before
2318 0 : .finish(job_desc.compaction_key_range.start, ctx)
2319 0 : .await?;
2320 0 : let layer = Layer::finish_creating(self.conf, self, desc, &path)?;
2321 0 : rewrote_delta_layers.push(layer);
2322 2 : }
2323 2 : if let Some(delta_writer_after) = writers.after {
2324 2 : let (desc, path) = delta_writer_after.finish(key.key_range.end, ctx).await?;
2325 2 : let layer = Layer::finish_creating(self.conf, self, desc, &path)?;
2326 2 : rewrote_delta_layers.push(layer);
2327 0 : }
2328 : }
2329 :
2330 58 : let discard = |key: &PersistentLayerKey| {
2331 58 : let key = key.clone();
2332 58 : async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
2333 58 : };
2334 :
2335 40 : let produced_image_layers = if let Some(writer) = image_layer_writer {
2336 38 : if !dry_run {
2337 34 : let end_key = job_desc.compaction_key_range.end;
2338 34 : writer
2339 34 : .finish_with_discard_fn(self, ctx, end_key, discard)
2340 34 : .await?
2341 : } else {
2342 4 : drop(writer);
2343 4 : Vec::new()
2344 : }
2345 : } else {
2346 2 : Vec::new()
2347 : };
2348 :
2349 40 : let produced_delta_layers = if !dry_run {
2350 36 : delta_layer_writer
2351 36 : .finish_with_discard_fn(self, ctx, discard)
2352 36 : .await?
2353 : } else {
2354 4 : drop(delta_layer_writer);
2355 4 : Vec::new()
2356 : };
2357 :
2358 : // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
2359 : // compaction is cancelled at this point, we might have some layers that are not cleaned up.
2360 40 : let mut compact_to = Vec::new();
2361 40 : let mut keep_layers = HashSet::new();
2362 40 : let produced_delta_layers_len = produced_delta_layers.len();
2363 40 : let produced_image_layers_len = produced_image_layers.len();
2364 64 : for action in produced_delta_layers {
2365 24 : match action {
2366 12 : BatchWriterResult::Produced(layer) => {
2367 12 : if cfg!(debug_assertions) {
2368 12 : info!("produced delta layer: {}", layer.layer_desc().key());
2369 0 : }
2370 12 : stat.produce_delta_layer(layer.layer_desc().file_size());
2371 12 : compact_to.push(layer);
2372 : }
2373 12 : BatchWriterResult::Discarded(l) => {
2374 12 : if cfg!(debug_assertions) {
2375 12 : info!("discarded delta layer: {}", l);
2376 0 : }
2377 12 : keep_layers.insert(l);
2378 12 : stat.discard_delta_layer();
2379 : }
2380 : }
2381 : }
2382 42 : for layer in &rewrote_delta_layers {
2383 2 : debug!(
2384 0 : "produced rewritten delta layer: {}",
2385 0 : layer.layer_desc().key()
2386 : );
2387 : }
2388 40 : compact_to.extend(rewrote_delta_layers);
2389 74 : for action in produced_image_layers {
2390 34 : match action {
2391 26 : BatchWriterResult::Produced(layer) => {
2392 26 : debug!("produced image layer: {}", layer.layer_desc().key());
2393 26 : stat.produce_image_layer(layer.layer_desc().file_size());
2394 26 : compact_to.push(layer);
2395 : }
2396 8 : BatchWriterResult::Discarded(l) => {
2397 8 : debug!("discarded image layer: {}", l);
2398 8 : keep_layers.insert(l);
2399 8 : stat.discard_image_layer();
2400 : }
2401 : }
2402 : }
2403 :
2404 40 : let mut layer_selection = job_desc.selected_layers;
2405 :
2406 : // Partial compaction might select more data than it processes, e.g., if
2407 : // the compaction_key_range only partially overlaps:
2408 : //
2409 : // [---compaction_key_range---]
2410 : // [---A----][----B----][----C----][----D----]
2411 : //
2412 : // For delta layers, we will rewrite the layers so that it is cut exactly at
2413 : // the compaction key range, so we can always discard them. However, for image
2414 : // layers, as we do not rewrite them for now, we need to handle them differently.
2415 : // Assume image layers A, B, C, D are all in the `layer_selection`.
2416 : //
2417 : // The created image layers contain whatever is needed from B, C, and from
2418 : // `----]` of A, and from `[---` of D.
2419 : //
2420 : // In contrast, `[---A` and `D----]` have not been processed, so, we must
2421 : // keep that data.
2422 : //
2423 : // The solution for now is to keep A and D completely if they are image layers.
2424 : // (layer_selection is what we'll remove from the layer map, so, retain what
2425 : // is _not_ fully covered by compaction_key_range).
2426 160 : for layer in &layer_selection {
2427 120 : if !layer.layer_desc().is_delta() {
2428 58 : if !overlaps_with(
2429 58 : &layer.layer_desc().key_range,
2430 58 : &job_desc.compaction_key_range,
2431 58 : ) {
2432 0 : bail!("violated constraint: image layer outside of compaction key range");
2433 58 : }
2434 58 : if !fully_contains(
2435 58 : &job_desc.compaction_key_range,
2436 58 : &layer.layer_desc().key_range,
2437 58 : ) {
2438 8 : keep_layers.insert(layer.layer_desc().key());
2439 50 : }
2440 62 : }
2441 : }
2442 :
2443 120 : layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
2444 40 :
2445 40 : info!(
2446 0 : "gc-compaction statistics: {}",
2447 0 : serde_json::to_string(&stat)?
2448 : );
2449 :
2450 40 : if dry_run {
2451 4 : return Ok(());
2452 36 : }
2453 36 :
2454 36 : info!(
2455 0 : "produced {} delta layers and {} image layers, {} layers are kept",
2456 0 : produced_delta_layers_len,
2457 0 : produced_image_layers_len,
2458 0 : layer_selection.len()
2459 : );
2460 :
2461 : // Step 3: Place back to the layer map.
2462 : {
2463 : // TODO: sanity check if the layer map is valid (i.e., should not have overlaps)
2464 36 : let mut guard = self.layers.write().await;
2465 36 : guard
2466 36 : .open_mut()?
2467 36 : .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics)
2468 36 : };
2469 36 : self.remote_client
2470 36 : .schedule_compaction_update(&layer_selection, &compact_to)?;
2471 :
2472 36 : drop(gc_lock);
2473 36 :
2474 36 : Ok(())
2475 40 : }
2476 : }
2477 :
2478 : struct TimelineAdaptor {
2479 : timeline: Arc<Timeline>,
2480 :
2481 : keyspace: (Lsn, KeySpace),
2482 :
2483 : new_deltas: Vec<ResidentLayer>,
2484 : new_images: Vec<ResidentLayer>,
2485 : layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
2486 : }
2487 :
2488 : impl TimelineAdaptor {
2489 0 : pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
2490 0 : Self {
2491 0 : timeline: timeline.clone(),
2492 0 : keyspace,
2493 0 : new_images: Vec::new(),
2494 0 : new_deltas: Vec::new(),
2495 0 : layers_to_delete: Vec::new(),
2496 0 : }
2497 0 : }
2498 :
2499 0 : pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
2500 0 : let layers_to_delete = {
2501 0 : let guard = self.timeline.layers.read().await;
2502 0 : self.layers_to_delete
2503 0 : .iter()
2504 0 : .map(|x| guard.get_from_desc(x))
2505 0 : .collect::<Vec<Layer>>()
2506 0 : };
2507 0 : self.timeline
2508 0 : .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
2509 0 : .await?;
2510 :
2511 0 : self.timeline
2512 0 : .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
2513 :
2514 0 : self.new_deltas.clear();
2515 0 : self.layers_to_delete.clear();
2516 0 : Ok(())
2517 0 : }
2518 : }
2519 :
2520 : #[derive(Clone)]
2521 : struct ResidentDeltaLayer(ResidentLayer);
2522 : #[derive(Clone)]
2523 : struct ResidentImageLayer(ResidentLayer);
2524 :
2525 : impl CompactionJobExecutor for TimelineAdaptor {
2526 : type Key = pageserver_api::key::Key;
2527 :
2528 : type Layer = OwnArc<PersistentLayerDesc>;
2529 : type DeltaLayer = ResidentDeltaLayer;
2530 : type ImageLayer = ResidentImageLayer;
2531 :
2532 : type RequestContext = crate::context::RequestContext;
2533 :
2534 0 : fn get_shard_identity(&self) -> &ShardIdentity {
2535 0 : self.timeline.get_shard_identity()
2536 0 : }
2537 :
2538 0 : async fn get_layers(
2539 0 : &mut self,
2540 0 : key_range: &Range<Key>,
2541 0 : lsn_range: &Range<Lsn>,
2542 0 : _ctx: &RequestContext,
2543 0 : ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
2544 0 : self.flush_updates().await?;
2545 :
2546 0 : let guard = self.timeline.layers.read().await;
2547 0 : let layer_map = guard.layer_map()?;
2548 :
2549 0 : let result = layer_map
2550 0 : .iter_historic_layers()
2551 0 : .filter(|l| {
2552 0 : overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
2553 0 : })
2554 0 : .map(OwnArc)
2555 0 : .collect();
2556 0 : Ok(result)
2557 0 : }
2558 :
2559 0 : async fn get_keyspace(
2560 0 : &mut self,
2561 0 : key_range: &Range<Key>,
2562 0 : lsn: Lsn,
2563 0 : _ctx: &RequestContext,
2564 0 : ) -> anyhow::Result<Vec<Range<Key>>> {
2565 0 : if lsn == self.keyspace.0 {
2566 0 : Ok(pageserver_compaction::helpers::intersect_keyspace(
2567 0 : &self.keyspace.1.ranges,
2568 0 : key_range,
2569 0 : ))
2570 : } else {
2571 : // The current compaction implementation only ever requests the key space
2572 : // at the compaction end LSN.
2573 0 : anyhow::bail!("keyspace not available for requested lsn");
2574 : }
2575 0 : }
2576 :
2577 0 : async fn downcast_delta_layer(
2578 0 : &self,
2579 0 : layer: &OwnArc<PersistentLayerDesc>,
2580 0 : ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
2581 0 : // this is a lot more complex than a simple downcast...
2582 0 : if layer.is_delta() {
2583 0 : let l = {
2584 0 : let guard = self.timeline.layers.read().await;
2585 0 : guard.get_from_desc(layer)
2586 : };
2587 0 : let result = l.download_and_keep_resident().await?;
2588 :
2589 0 : Ok(Some(ResidentDeltaLayer(result)))
2590 : } else {
2591 0 : Ok(None)
2592 : }
2593 0 : }
2594 :
2595 0 : async fn create_image(
2596 0 : &mut self,
2597 0 : lsn: Lsn,
2598 0 : key_range: &Range<Key>,
2599 0 : ctx: &RequestContext,
2600 0 : ) -> anyhow::Result<()> {
2601 0 : Ok(self.create_image_impl(lsn, key_range, ctx).await?)
2602 0 : }
2603 :
2604 0 : async fn create_delta(
2605 0 : &mut self,
2606 0 : lsn_range: &Range<Lsn>,
2607 0 : key_range: &Range<Key>,
2608 0 : input_layers: &[ResidentDeltaLayer],
2609 0 : ctx: &RequestContext,
2610 0 : ) -> anyhow::Result<()> {
2611 0 : debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
2612 :
2613 0 : let mut all_entries = Vec::new();
2614 0 : for dl in input_layers.iter() {
2615 0 : all_entries.extend(dl.load_keys(ctx).await?);
2616 : }
2617 :
2618 : // The current stdlib sorting implementation is designed in a way where it is
2619 : // particularly fast where the slice is made up of sorted sub-ranges.
2620 0 : all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
2621 :
2622 0 : let mut writer = DeltaLayerWriter::new(
2623 0 : self.timeline.conf,
2624 0 : self.timeline.timeline_id,
2625 0 : self.timeline.tenant_shard_id,
2626 0 : key_range.start,
2627 0 : lsn_range.clone(),
2628 0 : ctx,
2629 0 : )
2630 0 : .await?;
2631 :
2632 0 : let mut dup_values = 0;
2633 0 :
2634 0 : // This iterator walks through all key-value pairs from all the layers
2635 0 : // we're compacting, in key, LSN order.
2636 0 : let mut prev: Option<(Key, Lsn)> = None;
2637 : for &DeltaEntry {
2638 0 : key, lsn, ref val, ..
2639 0 : } in all_entries.iter()
2640 : {
2641 0 : if prev == Some((key, lsn)) {
2642 : // This is a duplicate. Skip it.
2643 : //
2644 : // It can happen if compaction is interrupted after writing some
2645 : // layers but not all, and we are compacting the range again.
2646 : // The calculations in the algorithm assume that there are no
2647 : // duplicates, so the math on targeted file size is likely off,
2648 : // and we will create smaller files than expected.
2649 0 : dup_values += 1;
2650 0 : continue;
2651 0 : }
2652 :
2653 0 : let value = val.load(ctx).await?;
2654 :
2655 0 : writer.put_value(key, lsn, value, ctx).await?;
2656 :
2657 0 : prev = Some((key, lsn));
2658 : }
2659 :
2660 0 : if dup_values > 0 {
2661 0 : warn!("delta layer created with {} duplicate values", dup_values);
2662 0 : }
2663 :
2664 0 : fail_point!("delta-layer-writer-fail-before-finish", |_| {
2665 0 : Err(anyhow::anyhow!(
2666 0 : "failpoint delta-layer-writer-fail-before-finish"
2667 0 : ))
2668 0 : });
2669 :
2670 0 : let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
2671 0 : let new_delta_layer =
2672 0 : Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
2673 :
2674 0 : self.new_deltas.push(new_delta_layer);
2675 0 : Ok(())
2676 0 : }
2677 :
2678 0 : async fn delete_layer(
2679 0 : &mut self,
2680 0 : layer: &OwnArc<PersistentLayerDesc>,
2681 0 : _ctx: &RequestContext,
2682 0 : ) -> anyhow::Result<()> {
2683 0 : self.layers_to_delete.push(layer.clone().0);
2684 0 : Ok(())
2685 0 : }
2686 : }
2687 :
2688 : impl TimelineAdaptor {
2689 0 : async fn create_image_impl(
2690 0 : &mut self,
2691 0 : lsn: Lsn,
2692 0 : key_range: &Range<Key>,
2693 0 : ctx: &RequestContext,
2694 0 : ) -> Result<(), CreateImageLayersError> {
2695 0 : let timer = self.timeline.metrics.create_images_time_histo.start_timer();
2696 :
2697 0 : let image_layer_writer = ImageLayerWriter::new(
2698 0 : self.timeline.conf,
2699 0 : self.timeline.timeline_id,
2700 0 : self.timeline.tenant_shard_id,
2701 0 : key_range,
2702 0 : lsn,
2703 0 : ctx,
2704 0 : )
2705 0 : .await?;
2706 :
2707 0 : fail_point!("image-layer-writer-fail-before-finish", |_| {
2708 0 : Err(CreateImageLayersError::Other(anyhow::anyhow!(
2709 0 : "failpoint image-layer-writer-fail-before-finish"
2710 0 : )))
2711 0 : });
2712 :
2713 0 : let keyspace = KeySpace {
2714 0 : ranges: self.get_keyspace(key_range, lsn, ctx).await?,
2715 : };
2716 : // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
2717 0 : let start = Key::MIN;
2718 : let ImageLayerCreationOutcome {
2719 0 : image,
2720 : next_start_key: _,
2721 0 : } = self
2722 0 : .timeline
2723 0 : .create_image_layer_for_rel_blocks(
2724 0 : &keyspace,
2725 0 : image_layer_writer,
2726 0 : lsn,
2727 0 : ctx,
2728 0 : key_range.clone(),
2729 0 : start,
2730 0 : )
2731 0 : .await?;
2732 :
2733 0 : if let Some(image_layer) = image {
2734 0 : self.new_images.push(image_layer);
2735 0 : }
2736 :
2737 0 : timer.stop_and_record();
2738 0 :
2739 0 : Ok(())
2740 0 : }
2741 : }
2742 :
2743 : impl CompactionRequestContext for crate::context::RequestContext {}
2744 :
2745 : #[derive(Debug, Clone)]
2746 : pub struct OwnArc<T>(pub Arc<T>);
2747 :
2748 : impl<T> Deref for OwnArc<T> {
2749 : type Target = <Arc<T> as Deref>::Target;
2750 0 : fn deref(&self) -> &Self::Target {
2751 0 : &self.0
2752 0 : }
2753 : }
2754 :
2755 : impl<T> AsRef<T> for OwnArc<T> {
2756 0 : fn as_ref(&self) -> &T {
2757 0 : self.0.as_ref()
2758 0 : }
2759 : }
2760 :
2761 : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
2762 0 : fn key_range(&self) -> &Range<Key> {
2763 0 : &self.key_range
2764 0 : }
2765 0 : fn lsn_range(&self) -> &Range<Lsn> {
2766 0 : &self.lsn_range
2767 0 : }
2768 0 : fn file_size(&self) -> u64 {
2769 0 : self.file_size
2770 0 : }
2771 0 : fn short_id(&self) -> std::string::String {
2772 0 : self.as_ref().short_id().to_string()
2773 0 : }
2774 0 : fn is_delta(&self) -> bool {
2775 0 : self.as_ref().is_delta()
2776 0 : }
2777 : }
2778 :
2779 : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
2780 0 : fn key_range(&self) -> &Range<Key> {
2781 0 : &self.layer_desc().key_range
2782 0 : }
2783 0 : fn lsn_range(&self) -> &Range<Lsn> {
2784 0 : &self.layer_desc().lsn_range
2785 0 : }
2786 0 : fn file_size(&self) -> u64 {
2787 0 : self.layer_desc().file_size
2788 0 : }
2789 0 : fn short_id(&self) -> std::string::String {
2790 0 : self.layer_desc().short_id().to_string()
2791 0 : }
2792 0 : fn is_delta(&self) -> bool {
2793 0 : true
2794 0 : }
2795 : }
2796 :
2797 : use crate::tenant::timeline::DeltaEntry;
2798 :
2799 : impl CompactionLayer<Key> for ResidentDeltaLayer {
2800 0 : fn key_range(&self) -> &Range<Key> {
2801 0 : &self.0.layer_desc().key_range
2802 0 : }
2803 0 : fn lsn_range(&self) -> &Range<Lsn> {
2804 0 : &self.0.layer_desc().lsn_range
2805 0 : }
2806 0 : fn file_size(&self) -> u64 {
2807 0 : self.0.layer_desc().file_size
2808 0 : }
2809 0 : fn short_id(&self) -> std::string::String {
2810 0 : self.0.layer_desc().short_id().to_string()
2811 0 : }
2812 0 : fn is_delta(&self) -> bool {
2813 0 : true
2814 0 : }
2815 : }
2816 :
2817 : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
2818 : type DeltaEntry<'a> = DeltaEntry<'a>;
2819 :
2820 0 : async fn load_keys<'a>(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
2821 0 : self.0.get_as_delta(ctx).await?.index_entries(ctx).await
2822 0 : }
2823 : }
2824 :
2825 : impl CompactionLayer<Key> for ResidentImageLayer {
2826 0 : fn key_range(&self) -> &Range<Key> {
2827 0 : &self.0.layer_desc().key_range
2828 0 : }
2829 0 : fn lsn_range(&self) -> &Range<Lsn> {
2830 0 : &self.0.layer_desc().lsn_range
2831 0 : }
2832 0 : fn file_size(&self) -> u64 {
2833 0 : self.0.layer_desc().file_size
2834 0 : }
2835 0 : fn short_id(&self) -> std::string::String {
2836 0 : self.0.layer_desc().short_id().to_string()
2837 0 : }
2838 0 : fn is_delta(&self) -> bool {
2839 0 : false
2840 0 : }
2841 : }
2842 : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
|