LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: b9d67f908f91f00e353a27440ba89f642a869959.info Lines: 62.5 % 1847 1155
Test Date: 2024-11-19 21:44:13 Functions: 43.4 % 136 59

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashMap, HashSet};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : 
      11              : use super::layer_manager::LayerManager;
      12              : use super::{
      13              :     CompactFlags, CompactOptions, CreateImageLayersError, DurationRecorder, ImageLayerCreationMode,
      14              :     RecordedDuration, Timeline,
      15              : };
      16              : 
      17              : use anyhow::{anyhow, bail, Context};
      18              : use bytes::Bytes;
      19              : use enumset::EnumSet;
      20              : use fail::fail_point;
      21              : use itertools::Itertools;
      22              : use pageserver_api::key::KEY_SIZE;
      23              : use pageserver_api::keyspace::ShardedRange;
      24              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      25              : use serde::Serialize;
      26              : use tokio_util::sync::CancellationToken;
      27              : use tracing::{debug, info, info_span, trace, warn, Instrument};
      28              : use utils::id::TimelineId;
      29              : 
      30              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      31              : use crate::page_cache;
      32              : use crate::statvfs::Statvfs;
      33              : use crate::tenant::checks::check_valid_layermap;
      34              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      35              : use crate::tenant::storage_layer::batch_split_writer::{
      36              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      37              : };
      38              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      39              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      40              : use crate::tenant::storage_layer::{
      41              :     AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
      42              : };
      43              : use crate::tenant::timeline::ImageLayerCreationOutcome;
      44              : use crate::tenant::timeline::{drop_rlock, DeltaLayerWriter, ImageLayerWriter};
      45              : use crate::tenant::timeline::{Layer, ResidentLayer};
      46              : use crate::tenant::{DeltaLayer, MaybeOffloaded};
      47              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      48              : use pageserver_api::config::tenant_conf_defaults::{
      49              :     DEFAULT_CHECKPOINT_DISTANCE, DEFAULT_COMPACTION_THRESHOLD,
      50              : };
      51              : 
      52              : use pageserver_api::key::Key;
      53              : use pageserver_api::keyspace::KeySpace;
      54              : use pageserver_api::record::NeonWalRecord;
      55              : use pageserver_api::value::Value;
      56              : 
      57              : use utils::lsn::Lsn;
      58              : 
      59              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      60              : use pageserver_compaction::interface::*;
      61              : 
      62              : use super::CompactionError;
      63              : 
      64              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      65              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      66              : 
      67              : pub struct GcCompactionJobDescription {
      68              :     /// All layers to read in the compaction job
      69              :     selected_layers: Vec<Layer>,
      70              :     /// GC cutoff of the job
      71              :     gc_cutoff: Lsn,
      72              :     /// LSNs to retain for the job
      73              :     retain_lsns_below_horizon: Vec<Lsn>,
      74              :     /// Maximum layer LSN processed in this compaction
      75              :     max_layer_lsn: Lsn,
      76              :     /// Only compact layers overlapping with this range
      77              :     compaction_key_range: Range<Key>,
      78              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
      79              :     /// This field is here solely for debugging. The field will not be read once the compaction
      80              :     /// description is generated.
      81              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
      82              : }
      83              : 
      84              : /// The result of bottom-most compaction for a single key at each LSN.
      85              : #[derive(Debug)]
      86              : #[cfg_attr(test, derive(PartialEq))]
      87              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
      88              : 
      89              : /// The result of bottom-most compaction.
      90              : #[derive(Debug)]
      91              : #[cfg_attr(test, derive(PartialEq))]
      92              : pub(crate) struct KeyHistoryRetention {
      93              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
      94              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
      95              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
      96              :     pub(crate) above_horizon: KeyLogAtLsn,
      97              : }
      98              : 
      99              : impl KeyHistoryRetention {
     100              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     101              :     ///
     102              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     103              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     104              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     105              :     /// Then we delete branch @ 0x20.
     106              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     107              :     /// And that wouldnt' change the shape of the layer.
     108              :     ///
     109              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     110              :     ///
     111              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     112           58 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     113           58 :         if dry_run {
     114            0 :             return true;
     115           58 :         }
     116           58 :         let guard = tline.layers.read().await;
     117           58 :         if !guard.contains_key(key) {
     118           38 :             return false;
     119           20 :         }
     120           20 :         let layer_generation = guard.get_from_key(key).metadata().generation;
     121           20 :         drop(guard);
     122           20 :         if layer_generation == tline.generation {
     123           20 :             info!(
     124              :                 key=%key,
     125              :                 ?layer_generation,
     126            0 :                 "discard layer due to duplicated layer key in the same generation",
     127              :             );
     128           20 :             true
     129              :         } else {
     130            0 :             false
     131              :         }
     132           58 :     }
     133              : 
     134              :     /// Pipe a history of a single key to the writers.
     135              :     ///
     136              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     137              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     138              :     #[allow(clippy::too_many_arguments)]
     139          530 :     async fn pipe_to(
     140          530 :         self,
     141          530 :         key: Key,
     142          530 :         delta_writer: &mut SplitDeltaLayerWriter,
     143          530 :         mut image_writer: Option<&mut SplitImageLayerWriter>,
     144          530 :         stat: &mut CompactionStatistics,
     145          530 :         ctx: &RequestContext,
     146          530 :     ) -> anyhow::Result<()> {
     147          530 :         let mut first_batch = true;
     148         1658 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     149         1128 :             if first_batch {
     150          530 :                 if logs.len() == 1 && logs[0].1.is_image() {
     151          516 :                     let Value::Image(img) = &logs[0].1 else {
     152            0 :                         unreachable!()
     153              :                     };
     154          516 :                     stat.produce_image_key(img);
     155          516 :                     if let Some(image_writer) = image_writer.as_mut() {
     156          517 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     157              :                     } else {
     158            0 :                         delta_writer
     159            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     160            0 :                             .await?;
     161              :                     }
     162              :                 } else {
     163           28 :                     for (lsn, val) in logs {
     164           14 :                         stat.produce_key(&val);
     165           14 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     166              :                     }
     167              :                 }
     168          530 :                 first_batch = false;
     169              :             } else {
     170          684 :                 for (lsn, val) in logs {
     171           86 :                     stat.produce_key(&val);
     172           86 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     173              :                 }
     174              :             }
     175              :         }
     176          530 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     177          568 :         for (lsn, val) in above_horizon_logs {
     178           38 :             stat.produce_key(&val);
     179           38 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     180              :         }
     181          530 :         Ok(())
     182          530 :     }
     183              : }
     184              : 
     185              : #[derive(Debug, Serialize, Default)]
     186              : struct CompactionStatisticsNumSize {
     187              :     num: u64,
     188              :     size: u64,
     189              : }
     190              : 
     191              : #[derive(Debug, Serialize, Default)]
     192              : pub struct CompactionStatistics {
     193              :     delta_layer_visited: CompactionStatisticsNumSize,
     194              :     image_layer_visited: CompactionStatisticsNumSize,
     195              :     delta_layer_produced: CompactionStatisticsNumSize,
     196              :     image_layer_produced: CompactionStatisticsNumSize,
     197              :     num_delta_layer_discarded: usize,
     198              :     num_image_layer_discarded: usize,
     199              :     num_unique_keys_visited: usize,
     200              :     wal_keys_visited: CompactionStatisticsNumSize,
     201              :     image_keys_visited: CompactionStatisticsNumSize,
     202              :     wal_produced: CompactionStatisticsNumSize,
     203              :     image_produced: CompactionStatisticsNumSize,
     204              : }
     205              : 
     206              : impl CompactionStatistics {
     207          846 :     fn estimated_size_of_value(val: &Value) -> usize {
     208          304 :         match val {
     209          542 :             Value::Image(img) => img.len(),
     210            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
     211          304 :             _ => std::mem::size_of::<NeonWalRecord>(),
     212              :         }
     213          846 :     }
     214         1372 :     fn estimated_size_of_key() -> usize {
     215         1372 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
     216         1372 :     }
     217           62 :     fn visit_delta_layer(&mut self, size: u64) {
     218           62 :         self.delta_layer_visited.num += 1;
     219           62 :         self.delta_layer_visited.size += size;
     220           62 :     }
     221           58 :     fn visit_image_layer(&mut self, size: u64) {
     222           58 :         self.image_layer_visited.num += 1;
     223           58 :         self.image_layer_visited.size += size;
     224           58 :     }
     225          530 :     fn on_unique_key_visited(&mut self) {
     226          530 :         self.num_unique_keys_visited += 1;
     227          530 :     }
     228          176 :     fn visit_wal_key(&mut self, val: &Value) {
     229          176 :         self.wal_keys_visited.num += 1;
     230          176 :         self.wal_keys_visited.size +=
     231          176 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     232          176 :     }
     233          542 :     fn visit_image_key(&mut self, val: &Value) {
     234          542 :         self.image_keys_visited.num += 1;
     235          542 :         self.image_keys_visited.size +=
     236          542 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     237          542 :     }
     238          138 :     fn produce_key(&mut self, val: &Value) {
     239          138 :         match val {
     240           10 :             Value::Image(img) => self.produce_image_key(img),
     241          128 :             Value::WalRecord(_) => self.produce_wal_key(val),
     242              :         }
     243          138 :     }
     244          128 :     fn produce_wal_key(&mut self, val: &Value) {
     245          128 :         self.wal_produced.num += 1;
     246          128 :         self.wal_produced.size +=
     247          128 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     248          128 :     }
     249          526 :     fn produce_image_key(&mut self, val: &Bytes) {
     250          526 :         self.image_produced.num += 1;
     251          526 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
     252          526 :     }
     253           12 :     fn discard_delta_layer(&mut self) {
     254           12 :         self.num_delta_layer_discarded += 1;
     255           12 :     }
     256            8 :     fn discard_image_layer(&mut self) {
     257            8 :         self.num_image_layer_discarded += 1;
     258            8 :     }
     259           12 :     fn produce_delta_layer(&mut self, size: u64) {
     260           12 :         self.delta_layer_produced.num += 1;
     261           12 :         self.delta_layer_produced.size += size;
     262           12 :     }
     263           26 :     fn produce_image_layer(&mut self, size: u64) {
     264           26 :         self.image_layer_produced.num += 1;
     265           26 :         self.image_layer_produced.size += size;
     266           26 :     }
     267              : }
     268              : 
     269              : impl Timeline {
     270              :     /// TODO: cancellation
     271              :     ///
     272              :     /// Returns whether the compaction has pending tasks.
     273          364 :     pub(crate) async fn compact_legacy(
     274          364 :         self: &Arc<Self>,
     275          364 :         cancel: &CancellationToken,
     276          364 :         options: CompactOptions,
     277          364 :         ctx: &RequestContext,
     278          364 :     ) -> Result<bool, CompactionError> {
     279          364 :         if options
     280          364 :             .flags
     281          364 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     282              :         {
     283            0 :             self.compact_with_gc(cancel, options, ctx)
     284            0 :                 .await
     285            0 :                 .map_err(CompactionError::Other)?;
     286            0 :             return Ok(false);
     287          364 :         }
     288          364 : 
     289          364 :         if options.flags.contains(CompactFlags::DryRun) {
     290            0 :             return Err(CompactionError::Other(anyhow!(
     291            0 :                 "dry-run mode is not supported for legacy compaction for now"
     292            0 :             )));
     293          364 :         }
     294          364 : 
     295          364 :         if options.compact_range.is_some() {
     296              :             // maybe useful in the future? could implement this at some point
     297            0 :             return Err(CompactionError::Other(anyhow!(
     298            0 :                 "compaction range is not supported for legacy compaction for now"
     299            0 :             )));
     300          364 :         }
     301          364 : 
     302          364 :         // High level strategy for compaction / image creation:
     303          364 :         //
     304          364 :         // 1. First, calculate the desired "partitioning" of the
     305          364 :         // currently in-use key space. The goal is to partition the
     306          364 :         // key space into roughly fixed-size chunks, but also take into
     307          364 :         // account any existing image layers, and try to align the
     308          364 :         // chunk boundaries with the existing image layers to avoid
     309          364 :         // too much churn. Also try to align chunk boundaries with
     310          364 :         // relation boundaries.  In principle, we don't know about
     311          364 :         // relation boundaries here, we just deal with key-value
     312          364 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
     313          364 :         // map relations into key-value pairs. But in practice we know
     314          364 :         // that 'field6' is the block number, and the fields 1-5
     315          364 :         // identify a relation. This is just an optimization,
     316          364 :         // though.
     317          364 :         //
     318          364 :         // 2. Once we know the partitioning, for each partition,
     319          364 :         // decide if it's time to create a new image layer. The
     320          364 :         // criteria is: there has been too much "churn" since the last
     321          364 :         // image layer? The "churn" is fuzzy concept, it's a
     322          364 :         // combination of too many delta files, or too much WAL in
     323          364 :         // total in the delta file. Or perhaps: if creating an image
     324          364 :         // file would allow to delete some older files.
     325          364 :         //
     326          364 :         // 3. After that, we compact all level0 delta files if there
     327          364 :         // are too many of them.  While compacting, we also garbage
     328          364 :         // collect any page versions that are no longer needed because
     329          364 :         // of the new image layers we created in step 2.
     330          364 :         //
     331          364 :         // TODO: This high level strategy hasn't been implemented yet.
     332          364 :         // Below are functions compact_level0() and create_image_layers()
     333          364 :         // but they are a bit ad hoc and don't quite work like it's explained
     334          364 :         // above. Rewrite it.
     335          364 : 
     336          364 :         // Is the timeline being deleted?
     337          364 :         if self.is_stopping() {
     338            0 :             trace!("Dropping out of compaction on timeline shutdown");
     339            0 :             return Err(CompactionError::ShuttingDown);
     340          364 :         }
     341          364 : 
     342          364 :         let target_file_size = self.get_checkpoint_distance();
     343              : 
     344              :         // Define partitioning schema if needed
     345              : 
     346              :         // FIXME: the match should only cover repartitioning, not the next steps
     347          364 :         let (partition_count, has_pending_tasks) = match self
     348          364 :             .repartition(
     349          364 :                 self.get_last_record_lsn(),
     350          364 :                 self.get_compaction_target_size(),
     351          364 :                 options.flags,
     352          364 :                 ctx,
     353          364 :             )
     354        15725 :             .await
     355              :         {
     356          364 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
     357          364 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
     358          364 :                 let image_ctx = RequestContextBuilder::extend(ctx)
     359          364 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
     360          364 :                     .build();
     361          364 : 
     362          364 :                 // 2. Compact
     363          364 :                 let timer = self.metrics.compact_time_histo.start_timer();
     364          364 :                 let fully_compacted = self
     365          364 :                     .compact_level0(
     366          364 :                         target_file_size,
     367          364 :                         options.flags.contains(CompactFlags::ForceL0Compaction),
     368          364 :                         ctx,
     369          364 :                     )
     370         9899 :                     .await?;
     371          364 :                 timer.stop_and_record();
     372          364 : 
     373          364 :                 let mut partitioning = dense_partitioning;
     374          364 :                 partitioning
     375          364 :                     .parts
     376          364 :                     .extend(sparse_partitioning.into_dense().parts);
     377          364 : 
     378          364 :                 // 3. Create new image layers for partitions that have been modified
     379          364 :                 // "enough". Skip image layer creation if L0 compaction cannot keep up.
     380          364 :                 if fully_compacted {
     381          364 :                     let image_layers = self
     382          364 :                         .create_image_layers(
     383          364 :                             &partitioning,
     384          364 :                             lsn,
     385          364 :                             if options
     386          364 :                                 .flags
     387          364 :                                 .contains(CompactFlags::ForceImageLayerCreation)
     388              :                             {
     389           14 :                                 ImageLayerCreationMode::Force
     390              :                             } else {
     391          350 :                                 ImageLayerCreationMode::Try
     392              :                             },
     393          364 :                             &image_ctx,
     394              :                         )
     395        11460 :                         .await?;
     396              : 
     397          364 :                     self.upload_new_image_layers(image_layers)?;
     398              :                 } else {
     399            0 :                     info!("skipping image layer generation due to L0 compaction did not include all layers.");
     400              :                 }
     401          364 :                 (partitioning.parts.len(), !fully_compacted)
     402              :             }
     403            0 :             Err(err) => {
     404            0 :                 // no partitioning? This is normal, if the timeline was just created
     405            0 :                 // as an empty timeline. Also in unit tests, when we use the timeline
     406            0 :                 // as a simple key-value store, ignoring the datadir layout. Log the
     407            0 :                 // error but continue.
     408            0 :                 //
     409            0 :                 // Suppress error when it's due to cancellation
     410            0 :                 if !self.cancel.is_cancelled() && !err.is_cancelled() {
     411            0 :                     tracing::error!("could not compact, repartitioning keyspace failed: {err:?}");
     412            0 :                 }
     413            0 :                 (1, false)
     414              :             }
     415              :         };
     416              : 
     417          364 :         if self.shard_identity.count >= ShardCount::new(2) {
     418              :             // Limit the number of layer rewrites to the number of partitions: this means its
     419              :             // runtime should be comparable to a full round of image layer creations, rather than
     420              :             // being potentially much longer.
     421            0 :             let rewrite_max = partition_count;
     422            0 : 
     423            0 :             self.compact_shard_ancestors(rewrite_max, ctx).await?;
     424          364 :         }
     425              : 
     426          364 :         Ok(has_pending_tasks)
     427          364 :     }
     428              : 
     429              :     /// Check for layers that are elegible to be rewritten:
     430              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
     431              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
     432              :     /// - For future use: layers beyond pitr_interval that are in formats we would
     433              :     ///   rather not maintain compatibility with indefinitely.
     434              :     ///
     435              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
     436              :     /// how much work it will try to do in each compaction pass.
     437            0 :     async fn compact_shard_ancestors(
     438            0 :         self: &Arc<Self>,
     439            0 :         rewrite_max: usize,
     440            0 :         ctx: &RequestContext,
     441            0 :     ) -> Result<(), CompactionError> {
     442            0 :         let mut drop_layers = Vec::new();
     443            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
     444            0 : 
     445            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
     446            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
     447            0 :         // pitr_interval, for example because a branchpoint references it.
     448            0 :         //
     449            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
     450            0 :         // are rewriting layers.
     451            0 :         let latest_gc_cutoff = self.get_latest_gc_cutoff_lsn();
     452            0 : 
     453            0 :         tracing::info!(
     454            0 :             "latest_gc_cutoff: {}, pitr cutoff {}",
     455            0 :             *latest_gc_cutoff,
     456            0 :             self.gc_info.read().unwrap().cutoffs.time
     457              :         );
     458              : 
     459            0 :         let layers = self.layers.read().await;
     460            0 :         for layer_desc in layers.layer_map()?.iter_historic_layers() {
     461            0 :             let layer = layers.get_from_desc(&layer_desc);
     462            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
     463              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
     464            0 :                 continue;
     465            0 :             }
     466            0 : 
     467            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
     468            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
     469            0 :             let layer_local_page_count = sharded_range.page_count();
     470            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
     471            0 :             if layer_local_page_count == 0 {
     472              :                 // This ancestral layer only covers keys that belong to other shards.
     473              :                 // We include the full metadata in the log: if we had some critical bug that caused
     474              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
     475            0 :                 info!(%layer, old_metadata=?layer.metadata(),
     476            0 :                     "dropping layer after shard split, contains no keys for this shard.",
     477              :                 );
     478              : 
     479            0 :                 if cfg!(debug_assertions) {
     480              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
     481              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
     482              :                     // should be !is_key_disposable()
     483            0 :                     let range = layer_desc.get_key_range();
     484            0 :                     let mut key = range.start;
     485            0 :                     while key < range.end {
     486            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
     487            0 :                         key = key.next();
     488              :                     }
     489            0 :                 }
     490              : 
     491            0 :                 drop_layers.push(layer);
     492            0 :                 continue;
     493            0 :             } else if layer_local_page_count != u32::MAX
     494            0 :                 && layer_local_page_count == layer_raw_page_count
     495              :             {
     496            0 :                 debug!(%layer,
     497            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
     498              :                     layer_local_page_count
     499              :                 );
     500            0 :                 continue;
     501            0 :             }
     502            0 : 
     503            0 :             // Don't bother re-writing a layer unless it will at least halve its size
     504            0 :             if layer_local_page_count != u32::MAX
     505            0 :                 && layer_local_page_count > layer_raw_page_count / 2
     506              :             {
     507            0 :                 debug!(%layer,
     508            0 :                     "layer is already mostly local ({}/{}), not rewriting",
     509              :                     layer_local_page_count,
     510              :                     layer_raw_page_count
     511              :                 );
     512            0 :             }
     513              : 
     514              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
     515              :             // without incurring the I/O cost of a rewrite.
     516            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
     517            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
     518            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
     519            0 :                 continue;
     520            0 :             }
     521            0 : 
     522            0 :             if layer_desc.is_delta() {
     523              :                 // We do not yet implement rewrite of delta layers
     524            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
     525            0 :                 continue;
     526            0 :             }
     527            0 : 
     528            0 :             // Only rewrite layers if their generations differ.  This guarantees:
     529            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
     530            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
     531            0 :             if layer.metadata().generation == self.generation {
     532            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
     533            0 :                 continue;
     534            0 :             }
     535            0 : 
     536            0 :             if layers_to_rewrite.len() >= rewrite_max {
     537            0 :                 tracing::info!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
     538            0 :                     layers_to_rewrite.len()
     539              :                 );
     540            0 :                 continue;
     541            0 :             }
     542            0 : 
     543            0 :             // Fall through: all our conditions for doing a rewrite passed.
     544            0 :             layers_to_rewrite.push(layer);
     545              :         }
     546              : 
     547              :         // Drop read lock on layer map before we start doing time-consuming I/O
     548            0 :         drop(layers);
     549            0 : 
     550            0 :         let mut replace_image_layers = Vec::new();
     551              : 
     552            0 :         for layer in layers_to_rewrite {
     553            0 :             tracing::info!(layer=%layer, "Rewriting layer after shard split...");
     554            0 :             let mut image_layer_writer = ImageLayerWriter::new(
     555            0 :                 self.conf,
     556            0 :                 self.timeline_id,
     557            0 :                 self.tenant_shard_id,
     558            0 :                 &layer.layer_desc().key_range,
     559            0 :                 layer.layer_desc().image_layer_lsn(),
     560            0 :                 ctx,
     561            0 :             )
     562            0 :             .await
     563            0 :             .map_err(CompactionError::Other)?;
     564              : 
     565              :             // Safety of layer rewrites:
     566              :             // - We are writing to a different local file path than we are reading from, so the old Layer
     567              :             //   cannot interfere with the new one.
     568              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
     569              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
     570              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
     571              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
     572              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
     573              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
     574              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
     575              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
     576              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
     577              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
     578            0 :             let resident = layer.download_and_keep_resident().await?;
     579              : 
     580            0 :             let keys_written = resident
     581            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
     582            0 :                 .await?;
     583              : 
     584            0 :             if keys_written > 0 {
     585            0 :                 let (desc, path) = image_layer_writer
     586            0 :                     .finish(ctx)
     587            0 :                     .await
     588            0 :                     .map_err(CompactionError::Other)?;
     589            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
     590            0 :                     .map_err(CompactionError::Other)?;
     591            0 :                 tracing::info!(layer=%new_layer, "Rewrote layer, {} -> {} bytes",
     592            0 :                     layer.metadata().file_size,
     593            0 :                     new_layer.metadata().file_size);
     594              : 
     595            0 :                 replace_image_layers.push((layer, new_layer));
     596            0 :             } else {
     597            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
     598            0 :                 // the layer has no data for us with the ShardedRange check above, but
     599            0 :                 drop_layers.push(layer);
     600            0 :             }
     601              :         }
     602              : 
     603              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
     604              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
     605              :         // to remote index) and be removed. This is inefficient but safe.
     606            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
     607            0 : 
     608            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
     609            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
     610            0 :             .await?;
     611              : 
     612            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
     613            0 : 
     614            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
     615            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
     616            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
     617            0 :         // load.
     618            0 :         match self.remote_client.wait_completion().await {
     619            0 :             Ok(()) => (),
     620            0 :             Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
     621              :             Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
     622            0 :                 return Err(CompactionError::ShuttingDown)
     623              :             }
     624              :         }
     625              : 
     626            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
     627            0 : 
     628            0 :         Ok(())
     629            0 :     }
     630              : 
     631              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
     632              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
     633              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
     634              :     ///
     635              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
     636              :     /// that we know won't be needed for reads.
     637          198 :     pub(super) async fn update_layer_visibility(
     638          198 :         &self,
     639          198 :     ) -> Result<(), super::layer_manager::Shutdown> {
     640          198 :         let head_lsn = self.get_last_record_lsn();
     641              : 
     642              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
     643              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
     644              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
     645              :         // they will be subject to L0->L1 compaction in the near future.
     646          198 :         let layer_manager = self.layers.read().await;
     647          198 :         let layer_map = layer_manager.layer_map()?;
     648              : 
     649          198 :         let readable_points = {
     650          198 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
     651          198 : 
     652          198 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
     653          198 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
     654            0 :                 if *is_offloaded == MaybeOffloaded::Yes {
     655            0 :                     continue;
     656            0 :                 }
     657            0 :                 readable_points.push(*child_lsn);
     658              :             }
     659          198 :             readable_points.push(head_lsn);
     660          198 :             readable_points
     661          198 :         };
     662          198 : 
     663          198 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
     664          516 :         for (layer_desc, visibility) in layer_visibility {
     665          318 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
     666          318 :             let layer = layer_manager.get_from_desc(&layer_desc);
     667          318 :             layer.set_visibility(visibility);
     668          318 :         }
     669              : 
     670              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
     671              :         // avoid assuming that everything at a branch point is visible.
     672          198 :         drop(covered);
     673          198 :         Ok(())
     674          198 :     }
     675              : 
     676              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
     677              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
     678          364 :     async fn compact_level0(
     679          364 :         self: &Arc<Self>,
     680          364 :         target_file_size: u64,
     681          364 :         force_compaction_ignore_threshold: bool,
     682          364 :         ctx: &RequestContext,
     683          364 :     ) -> Result<bool, CompactionError> {
     684              :         let CompactLevel0Phase1Result {
     685          364 :             new_layers,
     686          364 :             deltas_to_compact,
     687          364 :             fully_compacted,
     688              :         } = {
     689          364 :             let phase1_span = info_span!("compact_level0_phase1");
     690          364 :             let ctx = ctx.attached_child();
     691          364 :             let mut stats = CompactLevel0Phase1StatsBuilder {
     692          364 :                 version: Some(2),
     693          364 :                 tenant_id: Some(self.tenant_shard_id),
     694          364 :                 timeline_id: Some(self.timeline_id),
     695          364 :                 ..Default::default()
     696          364 :             };
     697          364 : 
     698          364 :             let begin = tokio::time::Instant::now();
     699          364 :             let phase1_layers_locked = self.layers.read().await;
     700          364 :             let now = tokio::time::Instant::now();
     701          364 :             stats.read_lock_acquisition_micros =
     702          364 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
     703          364 :             self.compact_level0_phase1(
     704          364 :                 phase1_layers_locked,
     705          364 :                 stats,
     706          364 :                 target_file_size,
     707          364 :                 force_compaction_ignore_threshold,
     708          364 :                 &ctx,
     709          364 :             )
     710          364 :             .instrument(phase1_span)
     711         9897 :             .await?
     712              :         };
     713              : 
     714          364 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
     715              :             // nothing to do
     716          336 :             return Ok(true);
     717           28 :         }
     718           28 : 
     719           28 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
     720            2 :             .await?;
     721           28 :         Ok(fully_compacted)
     722          364 :     }
     723              : 
     724              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
     725          364 :     async fn compact_level0_phase1<'a>(
     726          364 :         self: &'a Arc<Self>,
     727          364 :         guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
     728          364 :         mut stats: CompactLevel0Phase1StatsBuilder,
     729          364 :         target_file_size: u64,
     730          364 :         force_compaction_ignore_threshold: bool,
     731          364 :         ctx: &RequestContext,
     732          364 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
     733          364 :         stats.read_lock_held_spawn_blocking_startup_micros =
     734          364 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
     735          364 :         let layers = guard.layer_map()?;
     736          364 :         let level0_deltas = layers.level0_deltas();
     737          364 :         stats.level0_deltas_count = Some(level0_deltas.len());
     738          364 : 
     739          364 :         // Only compact if enough layers have accumulated.
     740          364 :         let threshold = self.get_compaction_threshold();
     741          364 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
     742          336 :             if force_compaction_ignore_threshold {
     743            0 :                 if !level0_deltas.is_empty() {
     744            0 :                     info!(
     745            0 :                         level0_deltas = level0_deltas.len(),
     746            0 :                         threshold, "too few deltas to compact, but forcing compaction"
     747              :                     );
     748              :                 } else {
     749            0 :                     info!(
     750            0 :                         level0_deltas = level0_deltas.len(),
     751            0 :                         threshold, "too few deltas to compact, cannot force compaction"
     752              :                     );
     753            0 :                     return Ok(CompactLevel0Phase1Result::default());
     754              :                 }
     755              :             } else {
     756          336 :                 debug!(
     757            0 :                     level0_deltas = level0_deltas.len(),
     758            0 :                     threshold, "too few deltas to compact"
     759              :                 );
     760          336 :                 return Ok(CompactLevel0Phase1Result::default());
     761              :             }
     762           28 :         }
     763              : 
     764           28 :         let mut level0_deltas = level0_deltas
     765           28 :             .iter()
     766          402 :             .map(|x| guard.get_from_desc(x))
     767           28 :             .collect::<Vec<_>>();
     768           28 : 
     769           28 :         // Gather the files to compact in this iteration.
     770           28 :         //
     771           28 :         // Start with the oldest Level 0 delta file, and collect any other
     772           28 :         // level 0 files that form a contiguous sequence, such that the end
     773           28 :         // LSN of previous file matches the start LSN of the next file.
     774           28 :         //
     775           28 :         // Note that if the files don't form such a sequence, we might
     776           28 :         // "compact" just a single file. That's a bit pointless, but it allows
     777           28 :         // us to get rid of the level 0 file, and compact the other files on
     778           28 :         // the next iteration. This could probably made smarter, but such
     779           28 :         // "gaps" in the sequence of level 0 files should only happen in case
     780           28 :         // of a crash, partial download from cloud storage, or something like
     781           28 :         // that, so it's not a big deal in practice.
     782          748 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
     783           28 :         let mut level0_deltas_iter = level0_deltas.iter();
     784           28 : 
     785           28 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
     786           28 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
     787           28 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
     788           28 : 
     789           28 :         // Accumulate the size of layers in `deltas_to_compact`
     790           28 :         let mut deltas_to_compact_bytes = 0;
     791           28 : 
     792           28 :         // Under normal circumstances, we will accumulate up to compaction_interval L0s of size
     793           28 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
     794           28 :         // work in this function to only operate on this much delta data at once.
     795           28 :         //
     796           28 :         // Take the max of the configured value & the default, so that tests that configure tiny values
     797           28 :         // can still use a sensible amount of memory, but if a deployed system configures bigger values we
     798           28 :         // still let them compact a full stack of L0s in one go.
     799           28 :         let delta_size_limit = std::cmp::max(
     800           28 :             self.get_compaction_threshold(),
     801           28 :             DEFAULT_COMPACTION_THRESHOLD,
     802           28 :         ) as u64
     803           28 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
     804           28 : 
     805           28 :         let mut fully_compacted = true;
     806           28 : 
     807           28 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident().await?);
     808          402 :         for l in level0_deltas_iter {
     809          374 :             let lsn_range = &l.layer_desc().lsn_range;
     810          374 : 
     811          374 :             if lsn_range.start != prev_lsn_end {
     812            0 :                 break;
     813          374 :             }
     814          374 :             deltas_to_compact.push(l.download_and_keep_resident().await?);
     815          374 :             deltas_to_compact_bytes += l.metadata().file_size;
     816          374 :             prev_lsn_end = lsn_range.end;
     817          374 : 
     818          374 :             if deltas_to_compact_bytes >= delta_size_limit {
     819            0 :                 info!(
     820            0 :                     l0_deltas_selected = deltas_to_compact.len(),
     821            0 :                     l0_deltas_total = level0_deltas.len(),
     822            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
     823              :                     delta_size_limit
     824              :                 );
     825            0 :                 fully_compacted = false;
     826            0 : 
     827            0 :                 // Proceed with compaction, but only a subset of L0s
     828            0 :                 break;
     829          374 :             }
     830              :         }
     831           28 :         let lsn_range = Range {
     832           28 :             start: deltas_to_compact
     833           28 :                 .first()
     834           28 :                 .unwrap()
     835           28 :                 .layer_desc()
     836           28 :                 .lsn_range
     837           28 :                 .start,
     838           28 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
     839           28 :         };
     840           28 : 
     841           28 :         info!(
     842            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
     843            0 :             lsn_range.start,
     844            0 :             lsn_range.end,
     845            0 :             deltas_to_compact.len(),
     846            0 :             level0_deltas.len()
     847              :         );
     848              : 
     849          402 :         for l in deltas_to_compact.iter() {
     850          402 :             info!("compact includes {l}");
     851              :         }
     852              : 
     853              :         // We don't need the original list of layers anymore. Drop it so that
     854              :         // we don't accidentally use it later in the function.
     855           28 :         drop(level0_deltas);
     856           28 : 
     857           28 :         stats.read_lock_held_prerequisites_micros = stats
     858           28 :             .read_lock_held_spawn_blocking_startup_micros
     859           28 :             .till_now();
     860              : 
     861              :         // TODO: replace with streaming k-merge
     862           28 :         let all_keys = {
     863           28 :             let mut all_keys = Vec::new();
     864          402 :             for l in deltas_to_compact.iter() {
     865          402 :                 if self.cancel.is_cancelled() {
     866            0 :                     return Err(CompactionError::ShuttingDown);
     867          402 :                 }
     868          402 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
     869          402 :                 let keys = delta
     870          402 :                     .index_entries(ctx)
     871         2124 :                     .await
     872          402 :                     .map_err(CompactionError::Other)?;
     873          402 :                 all_keys.extend(keys);
     874              :             }
     875              :             // The current stdlib sorting implementation is designed in a way where it is
     876              :             // particularly fast where the slice is made up of sorted sub-ranges.
     877      4423802 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
     878           28 :             all_keys
     879           28 :         };
     880           28 : 
     881           28 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
     882              : 
     883              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
     884              :         //
     885              :         // A hole is a key range for which this compaction doesn't have any WAL records.
     886              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
     887              :         // cover the hole, but actually don't contain any WAL records for that key range.
     888              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
     889              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
     890              :         //
     891              :         // The algorithm chooses holes as follows.
     892              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
     893              :         // - Filter: min threshold on range length
     894              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
     895              :         //
     896              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
     897              :         #[derive(PartialEq, Eq)]
     898              :         struct Hole {
     899              :             key_range: Range<Key>,
     900              :             coverage_size: usize,
     901              :         }
     902           28 :         let holes: Vec<Hole> = {
     903              :             use std::cmp::Ordering;
     904              :             impl Ord for Hole {
     905            0 :                 fn cmp(&self, other: &Self) -> Ordering {
     906            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
     907            0 :                 }
     908              :             }
     909              :             impl PartialOrd for Hole {
     910            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
     911            0 :                     Some(self.cmp(other))
     912            0 :                 }
     913              :             }
     914           28 :             let max_holes = deltas_to_compact.len();
     915           28 :             let last_record_lsn = self.get_last_record_lsn();
     916           28 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
     917           28 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
     918           28 :                                             // min-heap (reserve space for one more element added before eviction)
     919           28 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
     920           28 :             let mut prev: Option<Key> = None;
     921              : 
     922      2064038 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
     923      2064038 :                 if let Some(prev_key) = prev {
     924              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
     925              :                     // compaction is the gap between data key and metadata keys.
     926      2064010 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
     927            0 :                         && !Key::is_metadata_key(&prev_key)
     928              :                     {
     929            0 :                         let key_range = prev_key..next_key;
     930            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
     931            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
     932            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
     933            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
     934            0 :                         let coverage_size =
     935            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
     936            0 :                         if coverage_size >= min_hole_coverage_size {
     937            0 :                             heap.push(Hole {
     938            0 :                                 key_range,
     939            0 :                                 coverage_size,
     940            0 :                             });
     941            0 :                             if heap.len() > max_holes {
     942            0 :                                 heap.pop(); // remove smallest hole
     943            0 :                             }
     944            0 :                         }
     945      2064010 :                     }
     946           28 :                 }
     947      2064038 :                 prev = Some(next_key.next());
     948              :             }
     949           28 :             let mut holes = heap.into_vec();
     950           28 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
     951           28 :             holes
     952           28 :         };
     953           28 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
     954           28 :         drop_rlock(guard);
     955           28 : 
     956           28 :         if self.cancel.is_cancelled() {
     957            0 :             return Err(CompactionError::ShuttingDown);
     958           28 :         }
     959           28 : 
     960           28 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
     961              : 
     962              :         // This iterator walks through all key-value pairs from all the layers
     963              :         // we're compacting, in key, LSN order.
     964              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
     965              :         // then the Value::Image is ordered before Value::WalRecord.
     966           28 :         let mut all_values_iter = {
     967           28 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
     968          402 :             for l in deltas_to_compact.iter() {
     969          402 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
     970          402 :                 deltas.push(l);
     971              :             }
     972           28 :             MergeIterator::create(&deltas, &[], ctx)
     973           28 :         };
     974           28 : 
     975           28 :         // This iterator walks through all keys and is needed to calculate size used by each key
     976           28 :         let mut all_keys_iter = all_keys
     977           28 :             .iter()
     978      2064038 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
     979      2064010 :             .coalesce(|mut prev, cur| {
     980      2064010 :                 // Coalesce keys that belong to the same key pair.
     981      2064010 :                 // This ensures that compaction doesn't put them
     982      2064010 :                 // into different layer files.
     983      2064010 :                 // Still limit this by the target file size,
     984      2064010 :                 // so that we keep the size of the files in
     985      2064010 :                 // check.
     986      2064010 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
     987        40038 :                     prev.2 += cur.2;
     988        40038 :                     Ok(prev)
     989              :                 } else {
     990      2023972 :                     Err((prev, cur))
     991              :                 }
     992      2064010 :             });
     993           28 : 
     994           28 :         // Merge the contents of all the input delta layers into a new set
     995           28 :         // of delta layers, based on the current partitioning.
     996           28 :         //
     997           28 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
     998           28 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
     999           28 :         // would be too large. In that case, we also split on the LSN dimension.
    1000           28 :         //
    1001           28 :         // LSN
    1002           28 :         //  ^
    1003           28 :         //  |
    1004           28 :         //  | +-----------+            +--+--+--+--+
    1005           28 :         //  | |           |            |  |  |  |  |
    1006           28 :         //  | +-----------+            |  |  |  |  |
    1007           28 :         //  | |           |            |  |  |  |  |
    1008           28 :         //  | +-----------+     ==>    |  |  |  |  |
    1009           28 :         //  | |           |            |  |  |  |  |
    1010           28 :         //  | +-----------+            |  |  |  |  |
    1011           28 :         //  | |           |            |  |  |  |  |
    1012           28 :         //  | +-----------+            +--+--+--+--+
    1013           28 :         //  |
    1014           28 :         //  +--------------> key
    1015           28 :         //
    1016           28 :         //
    1017           28 :         // If one key (X) has a lot of page versions:
    1018           28 :         //
    1019           28 :         // LSN
    1020           28 :         //  ^
    1021           28 :         //  |                                 (X)
    1022           28 :         //  | +-----------+            +--+--+--+--+
    1023           28 :         //  | |           |            |  |  |  |  |
    1024           28 :         //  | +-----------+            |  |  +--+  |
    1025           28 :         //  | |           |            |  |  |  |  |
    1026           28 :         //  | +-----------+     ==>    |  |  |  |  |
    1027           28 :         //  | |           |            |  |  +--+  |
    1028           28 :         //  | +-----------+            |  |  |  |  |
    1029           28 :         //  | |           |            |  |  |  |  |
    1030           28 :         //  | +-----------+            +--+--+--+--+
    1031           28 :         //  |
    1032           28 :         //  +--------------> key
    1033           28 :         // TODO: this actually divides the layers into fixed-size chunks, not
    1034           28 :         // based on the partitioning.
    1035           28 :         //
    1036           28 :         // TODO: we should also opportunistically materialize and
    1037           28 :         // garbage collect what we can.
    1038           28 :         let mut new_layers = Vec::new();
    1039           28 :         let mut prev_key: Option<Key> = None;
    1040           28 :         let mut writer: Option<DeltaLayerWriter> = None;
    1041           28 :         let mut key_values_total_size = 0u64;
    1042           28 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    1043           28 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    1044           28 :         let mut next_hole = 0; // index of next hole in holes vector
    1045           28 : 
    1046           28 :         let mut keys = 0;
    1047              : 
    1048      2064066 :         while let Some((key, lsn, value)) = all_values_iter
    1049      2064066 :             .next()
    1050         3425 :             .await
    1051      2064066 :             .map_err(CompactionError::Other)?
    1052              :         {
    1053      2064038 :             keys += 1;
    1054      2064038 : 
    1055      2064038 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    1056              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    1057              :                 // shuffling an order of million keys per layer, this means we'll check it
    1058              :                 // around tens of times per layer.
    1059            0 :                 return Err(CompactionError::ShuttingDown);
    1060      2064038 :             }
    1061      2064038 : 
    1062      2064038 :             let same_key = prev_key.map_or(false, |prev_key| prev_key == key);
    1063      2064038 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    1064      2064038 :             if !same_key || lsn == dup_end_lsn {
    1065      2024000 :                 let mut next_key_size = 0u64;
    1066      2024000 :                 let is_dup_layer = dup_end_lsn.is_valid();
    1067      2024000 :                 dup_start_lsn = Lsn::INVALID;
    1068      2024000 :                 if !same_key {
    1069      2024000 :                     dup_end_lsn = Lsn::INVALID;
    1070      2024000 :                 }
    1071              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    1072      2024000 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    1073      2024000 :                     next_key_size = next_size;
    1074      2024000 :                     if key != next_key {
    1075      2023972 :                         if dup_end_lsn.is_valid() {
    1076            0 :                             // We are writting segment with duplicates:
    1077            0 :                             // place all remaining values of this key in separate segment
    1078            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    1079            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    1080      2023972 :                         }
    1081      2023972 :                         break;
    1082           28 :                     }
    1083           28 :                     key_values_total_size += next_size;
    1084           28 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    1085           28 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    1086           28 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    1087              :                         // Split key between multiple layers: such layer can contain only single key
    1088            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    1089            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    1090              :                         } else {
    1091            0 :                             lsn // start with the first LSN for this key
    1092              :                         };
    1093            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    1094            0 :                         break;
    1095           28 :                     }
    1096              :                 }
    1097              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    1098      2024000 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    1099            0 :                     dup_start_lsn = dup_end_lsn;
    1100            0 :                     dup_end_lsn = lsn_range.end;
    1101      2024000 :                 }
    1102      2024000 :                 if writer.is_some() {
    1103      2023972 :                     let written_size = writer.as_mut().unwrap().size();
    1104      2023972 :                     let contains_hole =
    1105      2023972 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    1106              :                     // check if key cause layer overflow or contains hole...
    1107      2023972 :                     if is_dup_layer
    1108      2023972 :                         || dup_end_lsn.is_valid()
    1109      2023972 :                         || written_size + key_values_total_size > target_file_size
    1110      2023692 :                         || contains_hole
    1111              :                     {
    1112              :                         // ... if so, flush previous layer and prepare to write new one
    1113          280 :                         let (desc, path) = writer
    1114          280 :                             .take()
    1115          280 :                             .unwrap()
    1116          280 :                             .finish(prev_key.unwrap().next(), ctx)
    1117          711 :                             .await
    1118          280 :                             .map_err(CompactionError::Other)?;
    1119          280 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1120          280 :                             .map_err(CompactionError::Other)?;
    1121              : 
    1122          280 :                         new_layers.push(new_delta);
    1123          280 :                         writer = None;
    1124          280 : 
    1125          280 :                         if contains_hole {
    1126            0 :                             // skip hole
    1127            0 :                             next_hole += 1;
    1128          280 :                         }
    1129      2023692 :                     }
    1130           28 :                 }
    1131              :                 // Remember size of key value because at next iteration we will access next item
    1132      2024000 :                 key_values_total_size = next_key_size;
    1133        40038 :             }
    1134      2064038 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    1135            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    1136            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    1137            0 :                 )))
    1138      2064038 :             });
    1139              : 
    1140      2064038 :             if !self.shard_identity.is_key_disposable(&key) {
    1141      2064038 :                 if writer.is_none() {
    1142          308 :                     if self.cancel.is_cancelled() {
    1143              :                         // to be somewhat responsive to cancellation, check for each new layer
    1144            0 :                         return Err(CompactionError::ShuttingDown);
    1145          308 :                     }
    1146              :                     // Create writer if not initiaized yet
    1147          308 :                     writer = Some(
    1148              :                         DeltaLayerWriter::new(
    1149          308 :                             self.conf,
    1150          308 :                             self.timeline_id,
    1151          308 :                             self.tenant_shard_id,
    1152          308 :                             key,
    1153          308 :                             if dup_end_lsn.is_valid() {
    1154              :                                 // this is a layer containing slice of values of the same key
    1155            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    1156            0 :                                 dup_start_lsn..dup_end_lsn
    1157              :                             } else {
    1158          308 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    1159          308 :                                 lsn_range.clone()
    1160              :                             },
    1161          308 :                             ctx,
    1162              :                         )
    1163          154 :                         .await
    1164          308 :                         .map_err(CompactionError::Other)?,
    1165              :                     );
    1166              : 
    1167          308 :                     keys = 0;
    1168      2063730 :                 }
    1169              : 
    1170      2064038 :                 writer
    1171      2064038 :                     .as_mut()
    1172      2064038 :                     .unwrap()
    1173      2064038 :                     .put_value(key, lsn, value, ctx)
    1174         1225 :                     .await
    1175      2064038 :                     .map_err(CompactionError::Other)?;
    1176              :             } else {
    1177            0 :                 debug!(
    1178            0 :                     "Dropping key {} during compaction (it belongs on shard {:?})",
    1179            0 :                     key,
    1180            0 :                     self.shard_identity.get_shard_number(&key)
    1181              :                 );
    1182              :             }
    1183              : 
    1184      2064038 :             if !new_layers.is_empty() {
    1185        19786 :                 fail_point!("after-timeline-compacted-first-L1");
    1186      2044252 :             }
    1187              : 
    1188      2064038 :             prev_key = Some(key);
    1189              :         }
    1190           28 :         if let Some(writer) = writer {
    1191           28 :             let (desc, path) = writer
    1192           28 :                 .finish(prev_key.unwrap().next(), ctx)
    1193         1988 :                 .await
    1194           28 :                 .map_err(CompactionError::Other)?;
    1195           28 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1196           28 :                 .map_err(CompactionError::Other)?;
    1197           28 :             new_layers.push(new_delta);
    1198            0 :         }
    1199              : 
    1200              :         // Sync layers
    1201           28 :         if !new_layers.is_empty() {
    1202              :             // Print a warning if the created layer is larger than double the target size
    1203              :             // Add two pages for potential overhead. This should in theory be already
    1204              :             // accounted for in the target calculation, but for very small targets,
    1205              :             // we still might easily hit the limit otherwise.
    1206           28 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    1207          308 :             for layer in new_layers.iter() {
    1208          308 :                 if layer.layer_desc().file_size > warn_limit {
    1209            0 :                     warn!(
    1210              :                         %layer,
    1211            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    1212              :                     );
    1213          308 :                 }
    1214              :             }
    1215              : 
    1216              :             // The writer.finish() above already did the fsync of the inodes.
    1217              :             // We just need to fsync the directory in which these inodes are linked,
    1218              :             // which we know to be the timeline directory.
    1219              :             //
    1220              :             // We use fatal_err() below because the after writer.finish() returns with success,
    1221              :             // the in-memory state of the filesystem already has the layer file in its final place,
    1222              :             // and subsequent pageserver code could think it's durable while it really isn't.
    1223           28 :             let timeline_dir = VirtualFile::open(
    1224           28 :                 &self
    1225           28 :                     .conf
    1226           28 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    1227           28 :                 ctx,
    1228           28 :             )
    1229           14 :             .await
    1230           28 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    1231           28 :             timeline_dir
    1232           28 :                 .sync_all()
    1233           14 :                 .await
    1234           28 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    1235            0 :         }
    1236              : 
    1237           28 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    1238           28 :         stats.new_deltas_count = Some(new_layers.len());
    1239          308 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    1240           28 : 
    1241           28 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    1242           28 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    1243              :         {
    1244           28 :             Ok(stats_json) => {
    1245           28 :                 info!(
    1246            0 :                     stats_json = stats_json.as_str(),
    1247            0 :                     "compact_level0_phase1 stats available"
    1248              :                 )
    1249              :             }
    1250            0 :             Err(e) => {
    1251            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    1252              :             }
    1253              :         }
    1254              : 
    1255              :         // Without this, rustc complains about deltas_to_compact still
    1256              :         // being borrowed when we `.into_iter()` below.
    1257           28 :         drop(all_values_iter);
    1258           28 : 
    1259           28 :         Ok(CompactLevel0Phase1Result {
    1260           28 :             new_layers,
    1261           28 :             deltas_to_compact: deltas_to_compact
    1262           28 :                 .into_iter()
    1263          402 :                 .map(|x| x.drop_eviction_guard())
    1264           28 :                 .collect::<Vec<_>>(),
    1265           28 :             fully_compacted,
    1266           28 :         })
    1267          364 :     }
    1268              : }
    1269              : 
    1270              : #[derive(Default)]
    1271              : struct CompactLevel0Phase1Result {
    1272              :     new_layers: Vec<ResidentLayer>,
    1273              :     deltas_to_compact: Vec<Layer>,
    1274              :     // Whether we have included all L0 layers, or selected only part of them due to the
    1275              :     // L0 compaction size limit.
    1276              :     fully_compacted: bool,
    1277              : }
    1278              : 
    1279              : #[derive(Default)]
    1280              : struct CompactLevel0Phase1StatsBuilder {
    1281              :     version: Option<u64>,
    1282              :     tenant_id: Option<TenantShardId>,
    1283              :     timeline_id: Option<TimelineId>,
    1284              :     read_lock_acquisition_micros: DurationRecorder,
    1285              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    1286              :     read_lock_held_key_sort_micros: DurationRecorder,
    1287              :     read_lock_held_prerequisites_micros: DurationRecorder,
    1288              :     read_lock_held_compute_holes_micros: DurationRecorder,
    1289              :     read_lock_drop_micros: DurationRecorder,
    1290              :     write_layer_files_micros: DurationRecorder,
    1291              :     level0_deltas_count: Option<usize>,
    1292              :     new_deltas_count: Option<usize>,
    1293              :     new_deltas_size: Option<u64>,
    1294              : }
    1295              : 
    1296              : #[derive(serde::Serialize)]
    1297              : struct CompactLevel0Phase1Stats {
    1298              :     version: u64,
    1299              :     tenant_id: TenantShardId,
    1300              :     timeline_id: TimelineId,
    1301              :     read_lock_acquisition_micros: RecordedDuration,
    1302              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    1303              :     read_lock_held_key_sort_micros: RecordedDuration,
    1304              :     read_lock_held_prerequisites_micros: RecordedDuration,
    1305              :     read_lock_held_compute_holes_micros: RecordedDuration,
    1306              :     read_lock_drop_micros: RecordedDuration,
    1307              :     write_layer_files_micros: RecordedDuration,
    1308              :     level0_deltas_count: usize,
    1309              :     new_deltas_count: usize,
    1310              :     new_deltas_size: u64,
    1311              : }
    1312              : 
    1313              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    1314              :     type Error = anyhow::Error;
    1315              : 
    1316           28 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    1317           28 :         Ok(Self {
    1318           28 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    1319           28 :             tenant_id: value
    1320           28 :                 .tenant_id
    1321           28 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    1322           28 :             timeline_id: value
    1323           28 :                 .timeline_id
    1324           28 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    1325           28 :             read_lock_acquisition_micros: value
    1326           28 :                 .read_lock_acquisition_micros
    1327           28 :                 .into_recorded()
    1328           28 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    1329           28 :             read_lock_held_spawn_blocking_startup_micros: value
    1330           28 :                 .read_lock_held_spawn_blocking_startup_micros
    1331           28 :                 .into_recorded()
    1332           28 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    1333           28 :             read_lock_held_key_sort_micros: value
    1334           28 :                 .read_lock_held_key_sort_micros
    1335           28 :                 .into_recorded()
    1336           28 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    1337           28 :             read_lock_held_prerequisites_micros: value
    1338           28 :                 .read_lock_held_prerequisites_micros
    1339           28 :                 .into_recorded()
    1340           28 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    1341           28 :             read_lock_held_compute_holes_micros: value
    1342           28 :                 .read_lock_held_compute_holes_micros
    1343           28 :                 .into_recorded()
    1344           28 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    1345           28 :             read_lock_drop_micros: value
    1346           28 :                 .read_lock_drop_micros
    1347           28 :                 .into_recorded()
    1348           28 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    1349           28 :             write_layer_files_micros: value
    1350           28 :                 .write_layer_files_micros
    1351           28 :                 .into_recorded()
    1352           28 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    1353           28 :             level0_deltas_count: value
    1354           28 :                 .level0_deltas_count
    1355           28 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    1356           28 :             new_deltas_count: value
    1357           28 :                 .new_deltas_count
    1358           28 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    1359           28 :             new_deltas_size: value
    1360           28 :                 .new_deltas_size
    1361           28 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    1362              :         })
    1363           28 :     }
    1364              : }
    1365              : 
    1366              : impl Timeline {
    1367              :     /// Entry point for new tiered compaction algorithm.
    1368              :     ///
    1369              :     /// All the real work is in the implementation in the pageserver_compaction
    1370              :     /// crate. The code here would apply to any algorithm implemented by the
    1371              :     /// same interface, but tiered is the only one at the moment.
    1372              :     ///
    1373              :     /// TODO: cancellation
    1374            0 :     pub(crate) async fn compact_tiered(
    1375            0 :         self: &Arc<Self>,
    1376            0 :         _cancel: &CancellationToken,
    1377            0 :         ctx: &RequestContext,
    1378            0 :     ) -> Result<(), CompactionError> {
    1379            0 :         let fanout = self.get_compaction_threshold() as u64;
    1380            0 :         let target_file_size = self.get_checkpoint_distance();
    1381              : 
    1382              :         // Find the top of the historical layers
    1383            0 :         let end_lsn = {
    1384            0 :             let guard = self.layers.read().await;
    1385            0 :             let layers = guard.layer_map()?;
    1386              : 
    1387            0 :             let l0_deltas = layers.level0_deltas();
    1388            0 : 
    1389            0 :             // As an optimization, if we find that there are too few L0 layers,
    1390            0 :             // bail out early. We know that the compaction algorithm would do
    1391            0 :             // nothing in that case.
    1392            0 :             if l0_deltas.len() < fanout as usize {
    1393              :                 // doesn't need compacting
    1394            0 :                 return Ok(());
    1395            0 :             }
    1396            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    1397            0 :         };
    1398            0 : 
    1399            0 :         // Is the timeline being deleted?
    1400            0 :         if self.is_stopping() {
    1401            0 :             trace!("Dropping out of compaction on timeline shutdown");
    1402            0 :             return Err(CompactionError::ShuttingDown);
    1403            0 :         }
    1404              : 
    1405            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    1406              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    1407            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    1408            0 : 
    1409            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    1410            0 :             &mut adaptor,
    1411            0 :             end_lsn,
    1412            0 :             target_file_size,
    1413            0 :             fanout,
    1414            0 :             ctx,
    1415            0 :         )
    1416            0 :         .await
    1417              :         // TODO: compact_tiered needs to return CompactionError
    1418            0 :         .map_err(CompactionError::Other)?;
    1419              : 
    1420            0 :         adaptor.flush_updates().await?;
    1421            0 :         Ok(())
    1422            0 :     }
    1423              : 
    1424              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    1425              :     ///
    1426              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    1427              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    1428              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    1429              :     ///
    1430              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    1431              :     ///
    1432              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    1433              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    1434              :     ///
    1435              :     /// The function will produce:
    1436              :     ///
    1437              :     /// ```plain
    1438              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    1439              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    1440              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    1441              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    1442              :     /// ```
    1443              :     ///
    1444              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    1445          538 :     pub(crate) async fn generate_key_retention(
    1446          538 :         self: &Arc<Timeline>,
    1447          538 :         key: Key,
    1448          538 :         full_history: &[(Key, Lsn, Value)],
    1449          538 :         horizon: Lsn,
    1450          538 :         retain_lsn_below_horizon: &[Lsn],
    1451          538 :         delta_threshold_cnt: usize,
    1452          538 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    1453          538 :     ) -> anyhow::Result<KeyHistoryRetention> {
    1454          538 :         // Pre-checks for the invariants
    1455          538 :         if cfg!(debug_assertions) {
    1456         1306 :             for (log_key, _, _) in full_history {
    1457          768 :                 assert_eq!(log_key, &key, "mismatched key");
    1458              :             }
    1459          538 :             for i in 1..full_history.len() {
    1460          230 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    1461          230 :                 if full_history[i - 1].1 == full_history[i].1 {
    1462            0 :                     assert!(
    1463            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    1464            0 :                         "unordered delta/image, or duplicated delta"
    1465              :                     );
    1466          230 :                 }
    1467              :             }
    1468              :             // There was an assertion for no base image that checks if the first
    1469              :             // record in the history is `will_init` before, but it was removed.
    1470              :             // This is explained in the test cases for generate_key_retention.
    1471              :             // Search "incomplete history" for more information.
    1472         1148 :             for lsn in retain_lsn_below_horizon {
    1473          610 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    1474              :             }
    1475          538 :             for i in 1..retain_lsn_below_horizon.len() {
    1476          278 :                 assert!(
    1477          278 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    1478            0 :                     "unordered LSN"
    1479              :                 );
    1480              :             }
    1481            0 :         }
    1482          538 :         let has_ancestor = base_img_from_ancestor.is_some();
    1483              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    1484              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    1485          538 :         let (mut split_history, lsn_split_points) = {
    1486          538 :             let mut split_history = Vec::new();
    1487          538 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    1488          538 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    1489         1148 :             for lsn in retain_lsn_below_horizon {
    1490          610 :                 lsn_split_points.push(*lsn);
    1491          610 :             }
    1492          538 :             lsn_split_points.push(horizon);
    1493          538 :             let mut current_idx = 0;
    1494         1306 :             for item @ (_, lsn, _) in full_history {
    1495          944 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    1496          176 :                     current_idx += 1;
    1497          176 :                 }
    1498          768 :                 split_history[current_idx].push(item);
    1499              :             }
    1500          538 :             (split_history, lsn_split_points)
    1501              :         };
    1502              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    1503         2224 :         for split_for_lsn in &mut split_history {
    1504         1686 :             let mut prev_lsn = None;
    1505         1686 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    1506         1686 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    1507          768 :                 if let Some(prev_lsn) = &prev_lsn {
    1508          106 :                     if *prev_lsn == lsn {
    1509              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    1510              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    1511              :                         // drop this delta and keep the image.
    1512              :                         //
    1513              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    1514              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    1515              :                         // dropped.
    1516              :                         //
    1517              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    1518              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    1519            0 :                         continue;
    1520          106 :                     }
    1521          662 :                 }
    1522          768 :                 prev_lsn = Some(lsn);
    1523          768 :                 new_split_for_lsn.push(record);
    1524              :             }
    1525         1686 :             *split_for_lsn = new_split_for_lsn;
    1526              :         }
    1527              :         // Step 3: generate images when necessary
    1528          538 :         let mut retention = Vec::with_capacity(split_history.len());
    1529          538 :         let mut records_since_last_image = 0;
    1530          538 :         let batch_cnt = split_history.len();
    1531          538 :         assert!(
    1532          538 :             batch_cnt >= 2,
    1533            0 :             "should have at least below + above horizon batches"
    1534              :         );
    1535          538 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    1536          538 :         if let Some((key, lsn, img)) = base_img_from_ancestor {
    1537           18 :             replay_history.push((key, lsn, Value::Image(img)));
    1538          520 :         }
    1539              : 
    1540              :         /// Generate debug information for the replay history
    1541            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    1542              :             use std::fmt::Write;
    1543            0 :             let mut output = String::new();
    1544            0 :             if let Some((key, _, _)) = replay_history.first() {
    1545            0 :                 write!(output, "key={} ", key).unwrap();
    1546            0 :                 let mut cnt = 0;
    1547            0 :                 for (_, lsn, val) in replay_history {
    1548            0 :                     if val.is_image() {
    1549            0 :                         write!(output, "i@{} ", lsn).unwrap();
    1550            0 :                     } else if val.will_init() {
    1551            0 :                         write!(output, "di@{} ", lsn).unwrap();
    1552            0 :                     } else {
    1553            0 :                         write!(output, "d@{} ", lsn).unwrap();
    1554            0 :                     }
    1555            0 :                     cnt += 1;
    1556            0 :                     if cnt >= 128 {
    1557            0 :                         write!(output, "... and more").unwrap();
    1558            0 :                         break;
    1559            0 :                     }
    1560              :                 }
    1561            0 :             } else {
    1562            0 :                 write!(output, "<no history>").unwrap();
    1563            0 :             }
    1564            0 :             output
    1565            0 :         }
    1566              : 
    1567            0 :         fn generate_debug_trace(
    1568            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    1569            0 :             full_history: &[(Key, Lsn, Value)],
    1570            0 :             lsns: &[Lsn],
    1571            0 :             horizon: Lsn,
    1572            0 :         ) -> String {
    1573              :             use std::fmt::Write;
    1574            0 :             let mut output = String::new();
    1575            0 :             if let Some(replay_history) = replay_history {
    1576            0 :                 writeln!(
    1577            0 :                     output,
    1578            0 :                     "replay_history: {}",
    1579            0 :                     generate_history_trace(replay_history)
    1580            0 :                 )
    1581            0 :                 .unwrap();
    1582            0 :             } else {
    1583            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    1584            0 :             }
    1585            0 :             writeln!(
    1586            0 :                 output,
    1587            0 :                 "full_history: {}",
    1588            0 :                 generate_history_trace(full_history)
    1589            0 :             )
    1590            0 :             .unwrap();
    1591            0 :             writeln!(
    1592            0 :                 output,
    1593            0 :                 "when processing: [{}] horizon={}",
    1594            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    1595            0 :                 horizon
    1596            0 :             )
    1597            0 :             .unwrap();
    1598            0 :             output
    1599            0 :         }
    1600              : 
    1601         1686 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    1602              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    1603         1686 :             records_since_last_image += split_for_lsn.len();
    1604         1686 :             let generate_image = if i == 0 && !has_ancestor {
    1605              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    1606          520 :                 true
    1607         1166 :             } else if i == batch_cnt - 1 {
    1608              :                 // Do not generate images for the last batch (above horizon)
    1609          538 :                 false
    1610          628 :             } else if records_since_last_image >= delta_threshold_cnt {
    1611              :                 // Generate images when there are too many records
    1612            6 :                 true
    1613              :             } else {
    1614          622 :                 false
    1615              :             };
    1616         1686 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    1617              :             // Only retain the items after the last image record
    1618         2030 :             for idx in (0..replay_history.len()).rev() {
    1619         2030 :                 if replay_history[idx].2.will_init() {
    1620         1686 :                     replay_history = replay_history[idx..].to_vec();
    1621         1686 :                     break;
    1622          344 :                 }
    1623              :             }
    1624         1686 :             if let Some((_, _, val)) = replay_history.first() {
    1625         1686 :                 if !val.will_init() {
    1626            0 :                     return Err(anyhow::anyhow!("invalid history, no base image")).with_context(
    1627            0 :                         || {
    1628            0 :                             generate_debug_trace(
    1629            0 :                                 Some(&replay_history),
    1630            0 :                                 full_history,
    1631            0 :                                 retain_lsn_below_horizon,
    1632            0 :                                 horizon,
    1633            0 :                             )
    1634            0 :                         },
    1635            0 :                     );
    1636         1686 :                 }
    1637            0 :             }
    1638         1686 :             if generate_image && records_since_last_image > 0 {
    1639          526 :                 records_since_last_image = 0;
    1640          526 :                 let replay_history_for_debug = if cfg!(debug_assertions) {
    1641          526 :                     Some(replay_history.clone())
    1642              :                 } else {
    1643            0 :                     None
    1644              :                 };
    1645          526 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    1646          526 :                 let history = std::mem::take(&mut replay_history);
    1647          526 :                 let mut img = None;
    1648          526 :                 let mut records = Vec::with_capacity(history.len());
    1649          526 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    1650          504 :                     img = Some((*lsn, val.clone()));
    1651          504 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    1652           34 :                         let Value::WalRecord(rec) = val else {
    1653            0 :                             return Err(anyhow::anyhow!(
    1654            0 :                                 "invalid record, first record is image, expect walrecords"
    1655            0 :                             ))
    1656            0 :                             .with_context(|| {
    1657            0 :                                 generate_debug_trace(
    1658            0 :                                     replay_history_for_debug_ref,
    1659            0 :                                     full_history,
    1660            0 :                                     retain_lsn_below_horizon,
    1661            0 :                                     horizon,
    1662            0 :                                 )
    1663            0 :                             });
    1664              :                         };
    1665           34 :                         records.push((lsn, rec));
    1666              :                     }
    1667              :                 } else {
    1668           36 :                     for (_, lsn, val) in history.into_iter() {
    1669           36 :                         let Value::WalRecord(rec) = val else {
    1670            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    1671            0 :                                 .with_context(|| generate_debug_trace(
    1672            0 :                                     replay_history_for_debug_ref,
    1673            0 :                                     full_history,
    1674            0 :                                     retain_lsn_below_horizon,
    1675            0 :                                     horizon,
    1676            0 :                                 ));
    1677              :                         };
    1678           36 :                         records.push((lsn, rec));
    1679              :                     }
    1680              :                 }
    1681          526 :                 records.reverse();
    1682          526 :                 let state = ValueReconstructState { img, records };
    1683          526 :                 let request_lsn = lsn_split_points[i]; // last batch does not generate image so i is always in range
    1684          526 :                 let img = self.reconstruct_value(key, request_lsn, state).await?;
    1685          526 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    1686          526 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    1687         1160 :             } else {
    1688         1160 :                 let deltas = split_for_lsn
    1689         1160 :                     .iter()
    1690         1160 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    1691         1160 :                     .collect_vec();
    1692         1160 :                 retention.push(deltas);
    1693         1160 :             }
    1694              :         }
    1695          538 :         let mut result = Vec::with_capacity(retention.len());
    1696          538 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    1697         1686 :         for (idx, logs) in retention.into_iter().enumerate() {
    1698         1686 :             if idx == lsn_split_points.len() {
    1699          538 :                 return Ok(KeyHistoryRetention {
    1700          538 :                     below_horizon: result,
    1701          538 :                     above_horizon: KeyLogAtLsn(logs),
    1702          538 :                 });
    1703         1148 :             } else {
    1704         1148 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    1705         1148 :             }
    1706              :         }
    1707            0 :         unreachable!("key retention is empty")
    1708          538 :     }
    1709              : 
    1710              :     /// Check how much space is left on the disk
    1711           40 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    1712           40 :         let tenants_dir = self.conf.tenants_path();
    1713              : 
    1714           40 :         let stat = Statvfs::get(&tenants_dir, None)
    1715           40 :             .context("statvfs failed, presumably directory got unlinked")?;
    1716              : 
    1717           40 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    1718           40 : 
    1719           40 :         Ok(avail_bytes)
    1720           40 :     }
    1721              : 
    1722              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    1723              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    1724              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    1725              :     /// compaction.
    1726           40 :     async fn check_compaction_space(
    1727           40 :         self: &Arc<Self>,
    1728           40 :         layer_selection: &[Layer],
    1729           40 :     ) -> anyhow::Result<()> {
    1730           40 :         let available_space = self.check_available_space().await?;
    1731           40 :         let mut remote_layer_size = 0;
    1732           40 :         let mut all_layer_size = 0;
    1733          160 :         for layer in layer_selection {
    1734          120 :             let needs_download = layer.needs_download().await?;
    1735          120 :             if needs_download.is_some() {
    1736            0 :                 remote_layer_size += layer.layer_desc().file_size;
    1737          120 :             }
    1738          120 :             all_layer_size += layer.layer_desc().file_size;
    1739              :         }
    1740           40 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    1741           40 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    1742              :         {
    1743            0 :             return Err(anyhow!("not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    1744            0 :                 available_space, allocated_space, all_layer_size, remote_layer_size, all_layer_size + remote_layer_size));
    1745           40 :         }
    1746           40 :         Ok(())
    1747           40 :     }
    1748              : 
    1749           30 :     pub(crate) async fn compact_with_gc(
    1750           30 :         self: &Arc<Self>,
    1751           30 :         cancel: &CancellationToken,
    1752           30 :         options: CompactOptions,
    1753           30 :         ctx: &RequestContext,
    1754           30 :     ) -> anyhow::Result<()> {
    1755           30 :         self.partial_compact_with_gc(
    1756           30 :             options
    1757           30 :                 .compact_range
    1758           30 :                 .map(|range| range.start..range.end)
    1759           30 :                 .unwrap_or_else(|| Key::MIN..Key::MAX),
    1760           30 :             cancel,
    1761           30 :             options.flags,
    1762           30 :             ctx,
    1763           30 :         )
    1764          699 :         .await
    1765           30 :     }
    1766              : 
    1767              :     /// An experimental compaction building block that combines compaction with garbage collection.
    1768              :     ///
    1769              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    1770              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    1771              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    1772              :     /// and create delta layers with all deltas >= gc horizon.
    1773              :     ///
    1774              :     /// If `key_range` is provided, it will only compact the keys within the range, aka partial compaction.
    1775              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    1776              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    1777              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    1778              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    1779              :     /// part of the range.
    1780           40 :     pub(crate) async fn partial_compact_with_gc(
    1781           40 :         self: &Arc<Self>,
    1782           40 :         compaction_key_range: Range<Key>,
    1783           40 :         cancel: &CancellationToken,
    1784           40 :         flags: EnumSet<CompactFlags>,
    1785           40 :         ctx: &RequestContext,
    1786           40 :     ) -> anyhow::Result<()> {
    1787           40 :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    1788           40 :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    1789           40 :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    1790           40 : 
    1791           40 :         let gc_lock = async {
    1792           40 :             tokio::select! {
    1793           40 :                 guard = self.gc_lock.lock() => Ok(guard),
    1794              :                 // TODO: refactor to CompactionError to correctly pass cancelled error
    1795           40 :                 _ = cancel.cancelled() => Err(anyhow!("cancelled")),
    1796              :             }
    1797           40 :         };
    1798              : 
    1799           40 :         let gc_lock = crate::timed(
    1800           40 :             gc_lock,
    1801           40 :             "acquires gc lock",
    1802           40 :             std::time::Duration::from_secs(5),
    1803           40 :         )
    1804            1 :         .await?;
    1805              : 
    1806           40 :         let dry_run = flags.contains(CompactFlags::DryRun);
    1807           40 : 
    1808           40 :         if compaction_key_range == (Key::MIN..Key::MAX) {
    1809           30 :             info!("running enhanced gc bottom-most compaction, dry_run={dry_run}, compaction_key_range={}..{}", compaction_key_range.start, compaction_key_range.end);
    1810              :         } else {
    1811           10 :             info!("running enhanced gc bottom-most compaction, dry_run={dry_run}");
    1812              :         }
    1813              : 
    1814           40 :         scopeguard::defer! {
    1815           40 :             info!("done enhanced gc bottom-most compaction");
    1816           40 :         };
    1817           40 : 
    1818           40 :         let mut stat = CompactionStatistics::default();
    1819              : 
    1820              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    1821              :         // The layer selection has the following properties:
    1822              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    1823              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    1824           40 :         let job_desc = {
    1825           40 :             let guard = self.layers.read().await;
    1826           40 :             let layers = guard.layer_map()?;
    1827           40 :             let gc_info = self.gc_info.read().unwrap();
    1828           40 :             let mut retain_lsns_below_horizon = Vec::new();
    1829           40 :             let gc_cutoff = gc_info.cutoffs.select_min();
    1830           44 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    1831           44 :                 if lsn < &gc_cutoff {
    1832           44 :                     retain_lsns_below_horizon.push(*lsn);
    1833           44 :                 }
    1834              :             }
    1835           40 :             for lsn in gc_info.leases.keys() {
    1836            0 :                 if lsn < &gc_cutoff {
    1837            0 :                     retain_lsns_below_horizon.push(*lsn);
    1838            0 :                 }
    1839              :             }
    1840           40 :             let mut selected_layers: Vec<Layer> = Vec::new();
    1841           40 :             drop(gc_info);
    1842              :             // Pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    1843           40 :             let Some(max_layer_lsn) = layers
    1844           40 :                 .iter_historic_layers()
    1845          182 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    1846          150 :                 .map(|desc| desc.get_lsn_range().end)
    1847           40 :                 .max()
    1848              :             else {
    1849            0 :                 info!("no layers to compact with gc");
    1850            0 :                 return Ok(());
    1851              :             };
    1852              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    1853              :             // layers to compact.
    1854           40 :             let mut rewrite_layers = Vec::new();
    1855          182 :             for desc in layers.iter_historic_layers() {
    1856          182 :                 if desc.get_lsn_range().end <= max_layer_lsn
    1857          150 :                     && overlaps_with(&desc.get_key_range(), &compaction_key_range)
    1858              :                 {
    1859              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    1860              :                     // even if it might contain extra keys
    1861          120 :                     selected_layers.push(guard.get_from_desc(&desc));
    1862          120 :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    1863          120 :                     // to overlap image layers)
    1864          120 :                     if desc.is_delta()
    1865           62 :                         && !fully_contains(&compaction_key_range, &desc.get_key_range())
    1866            2 :                     {
    1867            2 :                         rewrite_layers.push(desc);
    1868          118 :                     }
    1869           62 :                 }
    1870              :             }
    1871           40 :             if selected_layers.is_empty() {
    1872            0 :                 info!("no layers to compact with gc");
    1873            0 :                 return Ok(());
    1874           40 :             }
    1875           40 :             retain_lsns_below_horizon.sort();
    1876           40 :             GcCompactionJobDescription {
    1877           40 :                 selected_layers,
    1878           40 :                 gc_cutoff,
    1879           40 :                 retain_lsns_below_horizon,
    1880           40 :                 max_layer_lsn,
    1881           40 :                 compaction_key_range,
    1882           40 :                 rewrite_layers,
    1883           40 :             }
    1884              :         };
    1885           40 :         let lowest_retain_lsn = if self.ancestor_timeline.is_some() {
    1886            2 :             Lsn(self.ancestor_lsn.0 + 1)
    1887              :         } else {
    1888           38 :             let res = job_desc
    1889           38 :                 .retain_lsns_below_horizon
    1890           38 :                 .first()
    1891           38 :                 .copied()
    1892           38 :                 .unwrap_or(job_desc.gc_cutoff);
    1893           38 :             if cfg!(debug_assertions) {
    1894           38 :                 assert_eq!(
    1895           38 :                     res,
    1896           38 :                     job_desc
    1897           38 :                         .retain_lsns_below_horizon
    1898           38 :                         .iter()
    1899           38 :                         .min()
    1900           38 :                         .copied()
    1901           38 :                         .unwrap_or(job_desc.gc_cutoff)
    1902           38 :                 );
    1903            0 :             }
    1904           38 :             res
    1905              :         };
    1906           40 :         info!(
    1907            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}",
    1908            0 :             job_desc.selected_layers.len(),
    1909            0 :             job_desc.rewrite_layers.len(),
    1910              :             job_desc.max_layer_lsn,
    1911              :             job_desc.gc_cutoff,
    1912              :             lowest_retain_lsn,
    1913              :             job_desc.compaction_key_range.start,
    1914              :             job_desc.compaction_key_range.end
    1915              :         );
    1916              : 
    1917          160 :         for layer in &job_desc.selected_layers {
    1918          120 :             debug!("read layer: {}", layer.layer_desc().key());
    1919              :         }
    1920           42 :         for layer in &job_desc.rewrite_layers {
    1921            2 :             debug!("rewrite layer: {}", layer.key());
    1922              :         }
    1923              : 
    1924           40 :         self.check_compaction_space(&job_desc.selected_layers)
    1925           88 :             .await?;
    1926              : 
    1927              :         // Generate statistics for the compaction
    1928          160 :         for layer in &job_desc.selected_layers {
    1929          120 :             let desc = layer.layer_desc();
    1930          120 :             if desc.is_delta() {
    1931           62 :                 stat.visit_delta_layer(desc.file_size());
    1932           62 :             } else {
    1933           58 :                 stat.visit_image_layer(desc.file_size());
    1934           58 :             }
    1935              :         }
    1936              : 
    1937              :         // Step 1: construct a k-merge iterator over all layers.
    1938              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    1939           40 :         let layer_names = job_desc
    1940           40 :             .selected_layers
    1941           40 :             .iter()
    1942          120 :             .map(|layer| layer.layer_desc().layer_name())
    1943           40 :             .collect_vec();
    1944           40 :         if let Some(err) = check_valid_layermap(&layer_names) {
    1945            0 :             warn!("gc-compaction layer map check failed because {}, this is normal if partial compaction is not finished yet", err);
    1946           40 :         }
    1947              :         // The maximum LSN we are processing in this compaction loop
    1948           40 :         let end_lsn = job_desc
    1949           40 :             .selected_layers
    1950           40 :             .iter()
    1951          120 :             .map(|l| l.layer_desc().lsn_range.end)
    1952           40 :             .max()
    1953           40 :             .unwrap();
    1954           40 :         let mut delta_layers = Vec::new();
    1955           40 :         let mut image_layers = Vec::new();
    1956           40 :         let mut downloaded_layers = Vec::new();
    1957          160 :         for layer in &job_desc.selected_layers {
    1958          120 :             let resident_layer = layer.download_and_keep_resident().await?;
    1959          120 :             downloaded_layers.push(resident_layer);
    1960              :         }
    1961          160 :         for resident_layer in &downloaded_layers {
    1962          120 :             if resident_layer.layer_desc().is_delta() {
    1963           62 :                 let layer = resident_layer.get_as_delta(ctx).await?;
    1964           62 :                 delta_layers.push(layer);
    1965              :             } else {
    1966           58 :                 let layer = resident_layer.get_as_image(ctx).await?;
    1967           58 :                 image_layers.push(layer);
    1968              :             }
    1969              :         }
    1970           40 :         let (dense_ks, sparse_ks) = self.collect_gc_compaction_keyspace().await?;
    1971           40 :         let mut merge_iter = FilterIterator::create(
    1972           40 :             MergeIterator::create(&delta_layers, &image_layers, ctx),
    1973           40 :             dense_ks,
    1974           40 :             sparse_ks,
    1975           40 :         )?;
    1976              : 
    1977              :         // Step 2: Produce images+deltas.
    1978           40 :         let mut accumulated_values = Vec::new();
    1979           40 :         let mut last_key: Option<Key> = None;
    1980              : 
    1981              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    1982              :         // when some condition meet.
    1983           40 :         let mut image_layer_writer = if self.ancestor_timeline.is_none() {
    1984              :             Some(
    1985           38 :                 SplitImageLayerWriter::new(
    1986           38 :                     self.conf,
    1987           38 :                     self.timeline_id,
    1988           38 :                     self.tenant_shard_id,
    1989           38 :                     job_desc.compaction_key_range.start,
    1990           38 :                     lowest_retain_lsn,
    1991           38 :                     self.get_compaction_target_size(),
    1992           38 :                     ctx,
    1993           38 :                 )
    1994           19 :                 .await?,
    1995              :             )
    1996              :         } else {
    1997            2 :             None
    1998              :         };
    1999              : 
    2000           40 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    2001           40 :             self.conf,
    2002           40 :             self.timeline_id,
    2003           40 :             self.tenant_shard_id,
    2004           40 :             lowest_retain_lsn..end_lsn,
    2005           40 :             self.get_compaction_target_size(),
    2006           40 :         )
    2007            0 :         .await?;
    2008              : 
    2009              :         #[derive(Default)]
    2010              :         struct RewritingLayers {
    2011              :             before: Option<DeltaLayerWriter>,
    2012              :             after: Option<DeltaLayerWriter>,
    2013              :         }
    2014           40 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    2015              : 
    2016              :         /// Returns None if there is no ancestor branch. Throw an error when the key is not found.
    2017              :         ///
    2018              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    2019              :         /// is needed for reconstruction. This should be fixed in the future.
    2020              :         ///
    2021              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    2022              :         /// images.
    2023          530 :         async fn get_ancestor_image(
    2024          530 :             tline: &Arc<Timeline>,
    2025          530 :             key: Key,
    2026          530 :             ctx: &RequestContext,
    2027          530 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    2028          530 :             if tline.ancestor_timeline.is_none() {
    2029          516 :                 return Ok(None);
    2030           14 :             };
    2031              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    2032              :             // as much existing code as possible.
    2033           14 :             let img = tline.get(key, tline.ancestor_lsn, ctx).await?;
    2034           14 :             Ok(Some((key, tline.ancestor_lsn, img)))
    2035          530 :         }
    2036              : 
    2037              :         // Actually, we can decide not to write to the image layer at all at this point because
    2038              :         // the key and LSN range are determined. However, to keep things simple here, we still
    2039              :         // create this writer, and discard the writer in the end.
    2040              : 
    2041          822 :         while let Some(((key, lsn, val), desc)) = merge_iter.next_with_trace().await? {
    2042          782 :             if cancel.is_cancelled() {
    2043            0 :                 return Err(anyhow!("cancelled")); // TODO: refactor to CompactionError and pass cancel error
    2044          782 :             }
    2045          782 :             if self.shard_identity.is_key_disposable(&key) {
    2046              :                 // If this shard does not need to store this key, simply skip it.
    2047              :                 //
    2048              :                 // This is not handled in the filter iterator because shard is determined by hash.
    2049              :                 // Therefore, it does not give us any performance benefit to do things like skip
    2050              :                 // a whole layer file as handling key spaces (ranges).
    2051            0 :                 continue;
    2052          782 :             }
    2053          782 :             if !job_desc.compaction_key_range.contains(&key) {
    2054           64 :                 if !desc.is_delta {
    2055           60 :                     continue;
    2056            4 :                 }
    2057            4 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    2058            4 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    2059            0 :                     if rewriter.before.is_none() {
    2060            0 :                         rewriter.before = Some(
    2061            0 :                             DeltaLayerWriter::new(
    2062            0 :                                 self.conf,
    2063            0 :                                 self.timeline_id,
    2064            0 :                                 self.tenant_shard_id,
    2065            0 :                                 desc.key_range.start,
    2066            0 :                                 desc.lsn_range.clone(),
    2067            0 :                                 ctx,
    2068            0 :                             )
    2069            0 :                             .await?,
    2070              :                         );
    2071            0 :                     }
    2072            0 :                     rewriter.before.as_mut().unwrap()
    2073            4 :                 } else if key >= job_desc.compaction_key_range.end {
    2074            4 :                     if rewriter.after.is_none() {
    2075            2 :                         rewriter.after = Some(
    2076            2 :                             DeltaLayerWriter::new(
    2077            2 :                                 self.conf,
    2078            2 :                                 self.timeline_id,
    2079            2 :                                 self.tenant_shard_id,
    2080            2 :                                 job_desc.compaction_key_range.end,
    2081            2 :                                 desc.lsn_range.clone(),
    2082            2 :                                 ctx,
    2083            2 :                             )
    2084            1 :                             .await?,
    2085              :                         );
    2086            2 :                     }
    2087            4 :                     rewriter.after.as_mut().unwrap()
    2088              :                 } else {
    2089            0 :                     unreachable!()
    2090              :                 };
    2091            4 :                 rewriter.put_value(key, lsn, val, ctx).await?;
    2092            4 :                 continue;
    2093          718 :             }
    2094          718 :             match val {
    2095          542 :                 Value::Image(_) => stat.visit_image_key(&val),
    2096          176 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    2097              :             }
    2098          718 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    2099          228 :                 if last_key.is_none() {
    2100           40 :                     last_key = Some(key);
    2101          188 :                 }
    2102          228 :                 accumulated_values.push((key, lsn, val));
    2103              :             } else {
    2104          490 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    2105          490 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    2106          490 :                 let retention = self
    2107          490 :                     .generate_key_retention(
    2108          490 :                         *last_key,
    2109          490 :                         &accumulated_values,
    2110          490 :                         job_desc.gc_cutoff,
    2111          490 :                         &job_desc.retain_lsns_below_horizon,
    2112          490 :                         COMPACTION_DELTA_THRESHOLD,
    2113          490 :                         get_ancestor_image(self, *last_key, ctx).await?,
    2114              :                     )
    2115            0 :                     .await?;
    2116          490 :                 retention
    2117          490 :                     .pipe_to(
    2118          490 :                         *last_key,
    2119          490 :                         &mut delta_layer_writer,
    2120          490 :                         image_layer_writer.as_mut(),
    2121          490 :                         &mut stat,
    2122          490 :                         ctx,
    2123          490 :                     )
    2124          493 :                     .await?;
    2125          490 :                 accumulated_values.clear();
    2126          490 :                 *last_key = key;
    2127          490 :                 accumulated_values.push((key, lsn, val));
    2128              :             }
    2129              :         }
    2130              : 
    2131              :         // TODO: move the below part to the loop body
    2132           40 :         let last_key = last_key.expect("no keys produced during compaction");
    2133           40 :         stat.on_unique_key_visited();
    2134              : 
    2135           40 :         let retention = self
    2136           40 :             .generate_key_retention(
    2137           40 :                 last_key,
    2138           40 :                 &accumulated_values,
    2139           40 :                 job_desc.gc_cutoff,
    2140           40 :                 &job_desc.retain_lsns_below_horizon,
    2141           40 :                 COMPACTION_DELTA_THRESHOLD,
    2142           40 :                 get_ancestor_image(self, last_key, ctx).await?,
    2143              :             )
    2144            0 :             .await?;
    2145           40 :         retention
    2146           40 :             .pipe_to(
    2147           40 :                 last_key,
    2148           40 :                 &mut delta_layer_writer,
    2149           40 :                 image_layer_writer.as_mut(),
    2150           40 :                 &mut stat,
    2151           40 :                 ctx,
    2152           40 :             )
    2153           38 :             .await?;
    2154              :         // end: move the above part to the loop body
    2155              : 
    2156           40 :         let mut rewrote_delta_layers = Vec::new();
    2157           42 :         for (key, writers) in delta_layer_rewriters {
    2158            2 :             if let Some(delta_writer_before) = writers.before {
    2159            0 :                 let (desc, path) = delta_writer_before
    2160            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    2161            0 :                     .await?;
    2162            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    2163            0 :                 rewrote_delta_layers.push(layer);
    2164            2 :             }
    2165            2 :             if let Some(delta_writer_after) = writers.after {
    2166            5 :                 let (desc, path) = delta_writer_after.finish(key.key_range.end, ctx).await?;
    2167            2 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    2168            2 :                 rewrote_delta_layers.push(layer);
    2169            0 :             }
    2170              :         }
    2171              : 
    2172           58 :         let discard = |key: &PersistentLayerKey| {
    2173           58 :             let key = key.clone();
    2174           58 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    2175           58 :         };
    2176              : 
    2177           40 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    2178           38 :             if !dry_run {
    2179           34 :                 let end_key = job_desc.compaction_key_range.end;
    2180           34 :                 writer
    2181           34 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    2182           52 :                     .await?
    2183              :             } else {
    2184            4 :                 drop(writer);
    2185            4 :                 Vec::new()
    2186              :             }
    2187              :         } else {
    2188            2 :             Vec::new()
    2189              :         };
    2190              : 
    2191           40 :         let produced_delta_layers = if !dry_run {
    2192           36 :             delta_layer_writer
    2193           36 :                 .finish_with_discard_fn(self, ctx, discard)
    2194           30 :                 .await?
    2195              :         } else {
    2196            4 :             drop(delta_layer_writer);
    2197            4 :             Vec::new()
    2198              :         };
    2199              : 
    2200              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    2201              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    2202           40 :         let mut compact_to = Vec::new();
    2203           40 :         let mut keep_layers = HashSet::new();
    2204           40 :         let produced_delta_layers_len = produced_delta_layers.len();
    2205           40 :         let produced_image_layers_len = produced_image_layers.len();
    2206           64 :         for action in produced_delta_layers {
    2207           24 :             match action {
    2208           12 :                 BatchWriterResult::Produced(layer) => {
    2209           12 :                     if cfg!(debug_assertions) {
    2210           12 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    2211            0 :                     }
    2212           12 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    2213           12 :                     compact_to.push(layer);
    2214              :                 }
    2215           12 :                 BatchWriterResult::Discarded(l) => {
    2216           12 :                     if cfg!(debug_assertions) {
    2217           12 :                         info!("discarded delta layer: {}", l);
    2218            0 :                     }
    2219           12 :                     keep_layers.insert(l);
    2220           12 :                     stat.discard_delta_layer();
    2221              :                 }
    2222              :             }
    2223              :         }
    2224           42 :         for layer in &rewrote_delta_layers {
    2225            2 :             debug!(
    2226            0 :                 "produced rewritten delta layer: {}",
    2227            0 :                 layer.layer_desc().key()
    2228              :             );
    2229              :         }
    2230           40 :         compact_to.extend(rewrote_delta_layers);
    2231           74 :         for action in produced_image_layers {
    2232           34 :             match action {
    2233           26 :                 BatchWriterResult::Produced(layer) => {
    2234           26 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    2235           26 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    2236           26 :                     compact_to.push(layer);
    2237              :                 }
    2238            8 :                 BatchWriterResult::Discarded(l) => {
    2239            8 :                     debug!("discarded image layer: {}", l);
    2240            8 :                     keep_layers.insert(l);
    2241            8 :                     stat.discard_image_layer();
    2242              :                 }
    2243              :             }
    2244              :         }
    2245              : 
    2246           40 :         let mut layer_selection = job_desc.selected_layers;
    2247              : 
    2248              :         // Partial compaction might select more data than it processes, e.g., if
    2249              :         // the compaction_key_range only partially overlaps:
    2250              :         //
    2251              :         //         [---compaction_key_range---]
    2252              :         //   [---A----][----B----][----C----][----D----]
    2253              :         //
    2254              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    2255              :         // the compaction key range, so we can always discard them. However, for image
    2256              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    2257              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    2258              :         //
    2259              :         // The created image layers contain whatever is needed from B, C, and from
    2260              :         // `----]` of A, and from  `[---` of D.
    2261              :         //
    2262              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    2263              :         // keep that data.
    2264              :         //
    2265              :         // The solution for now is to keep A and D completely if they are image layers.
    2266              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    2267              :         // is _not_ fully covered by compaction_key_range).
    2268          160 :         for layer in &layer_selection {
    2269          120 :             if !layer.layer_desc().is_delta() {
    2270           58 :                 if !overlaps_with(
    2271           58 :                     &layer.layer_desc().key_range,
    2272           58 :                     &job_desc.compaction_key_range,
    2273           58 :                 ) {
    2274            0 :                     bail!("violated constraint: image layer outside of compaction key range");
    2275           58 :                 }
    2276           58 :                 if !fully_contains(
    2277           58 :                     &job_desc.compaction_key_range,
    2278           58 :                     &layer.layer_desc().key_range,
    2279           58 :                 ) {
    2280            8 :                     keep_layers.insert(layer.layer_desc().key());
    2281           50 :                 }
    2282           62 :             }
    2283              :         }
    2284              : 
    2285          120 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    2286           40 : 
    2287           40 :         info!(
    2288            0 :             "gc-compaction statistics: {}",
    2289            0 :             serde_json::to_string(&stat)?
    2290              :         );
    2291              : 
    2292           40 :         if dry_run {
    2293            4 :             return Ok(());
    2294           36 :         }
    2295           36 : 
    2296           36 :         info!(
    2297            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    2298            0 :             produced_delta_layers_len,
    2299            0 :             produced_image_layers_len,
    2300            0 :             layer_selection.len()
    2301              :         );
    2302              : 
    2303              :         // Step 3: Place back to the layer map.
    2304              :         {
    2305              :             // TODO: sanity check if the layer map is valid (i.e., should not have overlaps)
    2306           36 :             let mut guard = self.layers.write().await;
    2307           36 :             guard
    2308           36 :                 .open_mut()?
    2309           36 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics)
    2310           36 :         };
    2311           36 :         self.remote_client
    2312           36 :             .schedule_compaction_update(&layer_selection, &compact_to)?;
    2313              : 
    2314           36 :         drop(gc_lock);
    2315           36 : 
    2316           36 :         Ok(())
    2317           40 :     }
    2318              : }
    2319              : 
    2320              : struct TimelineAdaptor {
    2321              :     timeline: Arc<Timeline>,
    2322              : 
    2323              :     keyspace: (Lsn, KeySpace),
    2324              : 
    2325              :     new_deltas: Vec<ResidentLayer>,
    2326              :     new_images: Vec<ResidentLayer>,
    2327              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    2328              : }
    2329              : 
    2330              : impl TimelineAdaptor {
    2331            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    2332            0 :         Self {
    2333            0 :             timeline: timeline.clone(),
    2334            0 :             keyspace,
    2335            0 :             new_images: Vec::new(),
    2336            0 :             new_deltas: Vec::new(),
    2337            0 :             layers_to_delete: Vec::new(),
    2338            0 :         }
    2339            0 :     }
    2340              : 
    2341            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    2342            0 :         let layers_to_delete = {
    2343            0 :             let guard = self.timeline.layers.read().await;
    2344            0 :             self.layers_to_delete
    2345            0 :                 .iter()
    2346            0 :                 .map(|x| guard.get_from_desc(x))
    2347            0 :                 .collect::<Vec<Layer>>()
    2348            0 :         };
    2349            0 :         self.timeline
    2350            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    2351            0 :             .await?;
    2352              : 
    2353            0 :         self.timeline
    2354            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    2355              : 
    2356            0 :         self.new_deltas.clear();
    2357            0 :         self.layers_to_delete.clear();
    2358            0 :         Ok(())
    2359            0 :     }
    2360              : }
    2361              : 
    2362              : #[derive(Clone)]
    2363              : struct ResidentDeltaLayer(ResidentLayer);
    2364              : #[derive(Clone)]
    2365              : struct ResidentImageLayer(ResidentLayer);
    2366              : 
    2367              : impl CompactionJobExecutor for TimelineAdaptor {
    2368              :     type Key = pageserver_api::key::Key;
    2369              : 
    2370              :     type Layer = OwnArc<PersistentLayerDesc>;
    2371              :     type DeltaLayer = ResidentDeltaLayer;
    2372              :     type ImageLayer = ResidentImageLayer;
    2373              : 
    2374              :     type RequestContext = crate::context::RequestContext;
    2375              : 
    2376            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    2377            0 :         self.timeline.get_shard_identity()
    2378            0 :     }
    2379              : 
    2380            0 :     async fn get_layers(
    2381            0 :         &mut self,
    2382            0 :         key_range: &Range<Key>,
    2383            0 :         lsn_range: &Range<Lsn>,
    2384            0 :         _ctx: &RequestContext,
    2385            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    2386            0 :         self.flush_updates().await?;
    2387              : 
    2388            0 :         let guard = self.timeline.layers.read().await;
    2389            0 :         let layer_map = guard.layer_map()?;
    2390              : 
    2391            0 :         let result = layer_map
    2392            0 :             .iter_historic_layers()
    2393            0 :             .filter(|l| {
    2394            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    2395            0 :             })
    2396            0 :             .map(OwnArc)
    2397            0 :             .collect();
    2398            0 :         Ok(result)
    2399            0 :     }
    2400              : 
    2401            0 :     async fn get_keyspace(
    2402            0 :         &mut self,
    2403            0 :         key_range: &Range<Key>,
    2404            0 :         lsn: Lsn,
    2405            0 :         _ctx: &RequestContext,
    2406            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    2407            0 :         if lsn == self.keyspace.0 {
    2408            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    2409            0 :                 &self.keyspace.1.ranges,
    2410            0 :                 key_range,
    2411            0 :             ))
    2412              :         } else {
    2413              :             // The current compaction implementation only ever requests the key space
    2414              :             // at the compaction end LSN.
    2415            0 :             anyhow::bail!("keyspace not available for requested lsn");
    2416              :         }
    2417            0 :     }
    2418              : 
    2419            0 :     async fn downcast_delta_layer(
    2420            0 :         &self,
    2421            0 :         layer: &OwnArc<PersistentLayerDesc>,
    2422            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    2423            0 :         // this is a lot more complex than a simple downcast...
    2424            0 :         if layer.is_delta() {
    2425            0 :             let l = {
    2426            0 :                 let guard = self.timeline.layers.read().await;
    2427            0 :                 guard.get_from_desc(layer)
    2428              :             };
    2429            0 :             let result = l.download_and_keep_resident().await?;
    2430              : 
    2431            0 :             Ok(Some(ResidentDeltaLayer(result)))
    2432              :         } else {
    2433            0 :             Ok(None)
    2434              :         }
    2435            0 :     }
    2436              : 
    2437            0 :     async fn create_image(
    2438            0 :         &mut self,
    2439            0 :         lsn: Lsn,
    2440            0 :         key_range: &Range<Key>,
    2441            0 :         ctx: &RequestContext,
    2442            0 :     ) -> anyhow::Result<()> {
    2443            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    2444            0 :     }
    2445              : 
    2446            0 :     async fn create_delta(
    2447            0 :         &mut self,
    2448            0 :         lsn_range: &Range<Lsn>,
    2449            0 :         key_range: &Range<Key>,
    2450            0 :         input_layers: &[ResidentDeltaLayer],
    2451            0 :         ctx: &RequestContext,
    2452            0 :     ) -> anyhow::Result<()> {
    2453            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    2454              : 
    2455            0 :         let mut all_entries = Vec::new();
    2456            0 :         for dl in input_layers.iter() {
    2457            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    2458              :         }
    2459              : 
    2460              :         // The current stdlib sorting implementation is designed in a way where it is
    2461              :         // particularly fast where the slice is made up of sorted sub-ranges.
    2462            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    2463              : 
    2464            0 :         let mut writer = DeltaLayerWriter::new(
    2465            0 :             self.timeline.conf,
    2466            0 :             self.timeline.timeline_id,
    2467            0 :             self.timeline.tenant_shard_id,
    2468            0 :             key_range.start,
    2469            0 :             lsn_range.clone(),
    2470            0 :             ctx,
    2471            0 :         )
    2472            0 :         .await?;
    2473              : 
    2474            0 :         let mut dup_values = 0;
    2475            0 : 
    2476            0 :         // This iterator walks through all key-value pairs from all the layers
    2477            0 :         // we're compacting, in key, LSN order.
    2478            0 :         let mut prev: Option<(Key, Lsn)> = None;
    2479              :         for &DeltaEntry {
    2480            0 :             key, lsn, ref val, ..
    2481            0 :         } in all_entries.iter()
    2482              :         {
    2483            0 :             if prev == Some((key, lsn)) {
    2484              :                 // This is a duplicate. Skip it.
    2485              :                 //
    2486              :                 // It can happen if compaction is interrupted after writing some
    2487              :                 // layers but not all, and we are compacting the range again.
    2488              :                 // The calculations in the algorithm assume that there are no
    2489              :                 // duplicates, so the math on targeted file size is likely off,
    2490              :                 // and we will create smaller files than expected.
    2491            0 :                 dup_values += 1;
    2492            0 :                 continue;
    2493            0 :             }
    2494              : 
    2495            0 :             let value = val.load(ctx).await?;
    2496              : 
    2497            0 :             writer.put_value(key, lsn, value, ctx).await?;
    2498              : 
    2499            0 :             prev = Some((key, lsn));
    2500              :         }
    2501              : 
    2502            0 :         if dup_values > 0 {
    2503            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    2504            0 :         }
    2505              : 
    2506            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    2507            0 :             Err(anyhow::anyhow!(
    2508            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    2509            0 :             ))
    2510            0 :         });
    2511              : 
    2512            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    2513            0 :         let new_delta_layer =
    2514            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    2515              : 
    2516            0 :         self.new_deltas.push(new_delta_layer);
    2517            0 :         Ok(())
    2518            0 :     }
    2519              : 
    2520            0 :     async fn delete_layer(
    2521            0 :         &mut self,
    2522            0 :         layer: &OwnArc<PersistentLayerDesc>,
    2523            0 :         _ctx: &RequestContext,
    2524            0 :     ) -> anyhow::Result<()> {
    2525            0 :         self.layers_to_delete.push(layer.clone().0);
    2526            0 :         Ok(())
    2527            0 :     }
    2528              : }
    2529              : 
    2530              : impl TimelineAdaptor {
    2531            0 :     async fn create_image_impl(
    2532            0 :         &mut self,
    2533            0 :         lsn: Lsn,
    2534            0 :         key_range: &Range<Key>,
    2535            0 :         ctx: &RequestContext,
    2536            0 :     ) -> Result<(), CreateImageLayersError> {
    2537            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    2538              : 
    2539            0 :         let image_layer_writer = ImageLayerWriter::new(
    2540            0 :             self.timeline.conf,
    2541            0 :             self.timeline.timeline_id,
    2542            0 :             self.timeline.tenant_shard_id,
    2543            0 :             key_range,
    2544            0 :             lsn,
    2545            0 :             ctx,
    2546            0 :         )
    2547            0 :         .await?;
    2548              : 
    2549            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    2550            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    2551            0 :                 "failpoint image-layer-writer-fail-before-finish"
    2552            0 :             )))
    2553            0 :         });
    2554              : 
    2555            0 :         let keyspace = KeySpace {
    2556            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    2557              :         };
    2558              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    2559            0 :         let start = Key::MIN;
    2560              :         let ImageLayerCreationOutcome {
    2561            0 :             image,
    2562              :             next_start_key: _,
    2563            0 :         } = self
    2564            0 :             .timeline
    2565            0 :             .create_image_layer_for_rel_blocks(
    2566            0 :                 &keyspace,
    2567            0 :                 image_layer_writer,
    2568            0 :                 lsn,
    2569            0 :                 ctx,
    2570            0 :                 key_range.clone(),
    2571            0 :                 start,
    2572            0 :             )
    2573            0 :             .await?;
    2574              : 
    2575            0 :         if let Some(image_layer) = image {
    2576            0 :             self.new_images.push(image_layer);
    2577            0 :         }
    2578              : 
    2579            0 :         timer.stop_and_record();
    2580            0 : 
    2581            0 :         Ok(())
    2582            0 :     }
    2583              : }
    2584              : 
    2585              : impl CompactionRequestContext for crate::context::RequestContext {}
    2586              : 
    2587              : #[derive(Debug, Clone)]
    2588              : pub struct OwnArc<T>(pub Arc<T>);
    2589              : 
    2590              : impl<T> Deref for OwnArc<T> {
    2591              :     type Target = <Arc<T> as Deref>::Target;
    2592            0 :     fn deref(&self) -> &Self::Target {
    2593            0 :         &self.0
    2594            0 :     }
    2595              : }
    2596              : 
    2597              : impl<T> AsRef<T> for OwnArc<T> {
    2598            0 :     fn as_ref(&self) -> &T {
    2599            0 :         self.0.as_ref()
    2600            0 :     }
    2601              : }
    2602              : 
    2603              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    2604            0 :     fn key_range(&self) -> &Range<Key> {
    2605            0 :         &self.key_range
    2606            0 :     }
    2607            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2608            0 :         &self.lsn_range
    2609            0 :     }
    2610            0 :     fn file_size(&self) -> u64 {
    2611            0 :         self.file_size
    2612            0 :     }
    2613            0 :     fn short_id(&self) -> std::string::String {
    2614            0 :         self.as_ref().short_id().to_string()
    2615            0 :     }
    2616            0 :     fn is_delta(&self) -> bool {
    2617            0 :         self.as_ref().is_delta()
    2618            0 :     }
    2619              : }
    2620              : 
    2621              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    2622            0 :     fn key_range(&self) -> &Range<Key> {
    2623            0 :         &self.layer_desc().key_range
    2624            0 :     }
    2625            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2626            0 :         &self.layer_desc().lsn_range
    2627            0 :     }
    2628            0 :     fn file_size(&self) -> u64 {
    2629            0 :         self.layer_desc().file_size
    2630            0 :     }
    2631            0 :     fn short_id(&self) -> std::string::String {
    2632            0 :         self.layer_desc().short_id().to_string()
    2633            0 :     }
    2634            0 :     fn is_delta(&self) -> bool {
    2635            0 :         true
    2636            0 :     }
    2637              : }
    2638              : 
    2639              : use crate::tenant::timeline::DeltaEntry;
    2640              : 
    2641              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    2642            0 :     fn key_range(&self) -> &Range<Key> {
    2643            0 :         &self.0.layer_desc().key_range
    2644            0 :     }
    2645            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2646            0 :         &self.0.layer_desc().lsn_range
    2647            0 :     }
    2648            0 :     fn file_size(&self) -> u64 {
    2649            0 :         self.0.layer_desc().file_size
    2650            0 :     }
    2651            0 :     fn short_id(&self) -> std::string::String {
    2652            0 :         self.0.layer_desc().short_id().to_string()
    2653            0 :     }
    2654            0 :     fn is_delta(&self) -> bool {
    2655            0 :         true
    2656            0 :     }
    2657              : }
    2658              : 
    2659              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    2660              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    2661              : 
    2662            0 :     async fn load_keys<'a>(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    2663            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    2664            0 :     }
    2665              : }
    2666              : 
    2667              : impl CompactionLayer<Key> for ResidentImageLayer {
    2668            0 :     fn key_range(&self) -> &Range<Key> {
    2669            0 :         &self.0.layer_desc().key_range
    2670            0 :     }
    2671            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    2672            0 :         &self.0.layer_desc().lsn_range
    2673            0 :     }
    2674            0 :     fn file_size(&self) -> u64 {
    2675            0 :         self.0.layer_desc().file_size
    2676            0 :     }
    2677            0 :     fn short_id(&self) -> std::string::String {
    2678            0 :         self.0.layer_desc().short_id().to_string()
    2679            0 :     }
    2680            0 :     fn is_delta(&self) -> bool {
    2681            0 :         false
    2682            0 :     }
    2683              : }
    2684              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta