LCOV - code coverage report
Current view: top level - pageserver/src/virtual_file/owned_buffers_io - write.rs (source / functions) Coverage Total Hit
Test: b4ae4c4857f9ef3e144e982a35ee23bc84c71983.info Lines: 95.6 % 204 195
Test Date: 2024-10-22 22:13:45 Functions: 95.3 % 43 41

            Line data    Source code
       1              : use bytes::BytesMut;
       2              : use tokio_epoll_uring::IoBuf;
       3              : 
       4              : use crate::context::RequestContext;
       5              : 
       6              : use super::io_buf_ext::{FullSlice, IoBufExt};
       7              : 
       8              : /// A trait for doing owned-buffer write IO.
       9              : /// Think [`tokio::io::AsyncWrite`] but with owned buffers.
      10              : pub trait OwnedAsyncWriter {
      11              :     async fn write_all<Buf: IoBuf + Send>(
      12              :         &mut self,
      13              :         buf: FullSlice<Buf>,
      14              :         ctx: &RequestContext,
      15              :     ) -> std::io::Result<(usize, FullSlice<Buf>)>;
      16              : }
      17              : 
      18              : /// A wrapper aorund an [`OwnedAsyncWriter`] that uses a [`Buffer`] to batch
      19              : /// small writes into larger writes of size [`Buffer::cap`].
      20              : ///
      21              : /// # Passthrough Of Large Writers
      22              : ///
      23              : /// Calls to [`BufferedWriter::write_buffered`] that are larger than [`Buffer::cap`]
      24              : /// cause the internal buffer to be flushed prematurely so that the large
      25              : /// buffered write is passed through to the underlying [`OwnedAsyncWriter`].
      26              : ///
      27              : /// This pass-through is generally beneficial for throughput, but if
      28              : /// the storage backend of the [`OwnedAsyncWriter`] is a shared resource,
      29              : /// unlimited large writes may cause latency or fairness issues.
      30              : ///
      31              : /// In such cases, a different implementation that always buffers in memory
      32              : /// may be preferable.
      33              : pub struct BufferedWriter<B, W> {
      34              :     writer: W,
      35              :     /// invariant: always remains Some(buf) except
      36              :     /// - while IO is ongoing => goes back to Some() once the IO completed successfully
      37              :     /// - after an IO error => stays `None` forever
      38              :     ///
      39              :     /// In these exceptional cases, it's `None`.
      40              :     buf: Option<B>,
      41              : }
      42              : 
      43              : impl<B, Buf, W> BufferedWriter<B, W>
      44              : where
      45              :     B: Buffer<IoBuf = Buf> + Send,
      46              :     Buf: IoBuf + Send,
      47              :     W: OwnedAsyncWriter,
      48              : {
      49         1281 :     pub fn new(writer: W, buf: B) -> Self {
      50         1281 :         Self {
      51         1281 :             writer,
      52         1281 :             buf: Some(buf),
      53         1281 :         }
      54         1281 :     }
      55              : 
      56       695481 :     pub fn as_inner(&self) -> &W {
      57       695481 :         &self.writer
      58       695481 :     }
      59              : 
      60              :     /// Panics if used after any of the write paths returned an error
      61       694339 :     pub fn inspect_buffer(&self) -> &B {
      62       694339 :         self.buf()
      63       694339 :     }
      64              : 
      65              :     #[cfg_attr(target_os = "macos", allow(dead_code))]
      66           11 :     pub async fn flush_and_into_inner(mut self, ctx: &RequestContext) -> std::io::Result<W> {
      67           11 :         self.flush(ctx).await?;
      68              : 
      69           11 :         let Self { buf, writer } = self;
      70           11 :         assert!(buf.is_some());
      71           11 :         Ok(writer)
      72           11 :     }
      73              : 
      74              :     #[inline(always)]
      75       694419 :     fn buf(&self) -> &B {
      76       694419 :         self.buf
      77       694419 :             .as_ref()
      78       694419 :             .expect("must not use after we returned an error")
      79       694419 :     }
      80              : 
      81              :     /// Guarantees that if Ok() is returned, all bytes in `chunk` have been accepted.
      82              :     #[cfg_attr(target_os = "macos", allow(dead_code))]
      83           44 :     pub async fn write_buffered<S: IoBuf + Send>(
      84           44 :         &mut self,
      85           44 :         chunk: FullSlice<S>,
      86           44 :         ctx: &RequestContext,
      87           44 :     ) -> std::io::Result<(usize, FullSlice<S>)> {
      88           44 :         let chunk = chunk.into_raw_slice();
      89           44 : 
      90           44 :         let chunk_len = chunk.len();
      91           44 :         // avoid memcpy for the middle of the chunk
      92           44 :         if chunk.len() >= self.buf().cap() {
      93            8 :             self.flush(ctx).await?;
      94              :             // do a big write, bypassing `buf`
      95            8 :             assert_eq!(
      96            8 :                 self.buf
      97            8 :                     .as_ref()
      98            8 :                     .expect("must not use after an error")
      99            8 :                     .pending(),
     100            8 :                 0
     101            8 :             );
     102            8 :             let (nwritten, chunk) = self
     103            8 :                 .writer
     104            8 :                 .write_all(FullSlice::must_new(chunk), ctx)
     105            0 :                 .await?;
     106            8 :             assert_eq!(nwritten, chunk_len);
     107            8 :             return Ok((nwritten, chunk));
     108           36 :         }
     109           36 :         // in-memory copy the < BUFFER_SIZED tail of the chunk
     110           36 :         assert!(chunk.len() < self.buf().cap());
     111           36 :         let mut slice = &chunk[..];
     112           70 :         while !slice.is_empty() {
     113           34 :             let buf = self.buf.as_mut().expect("must not use after an error");
     114           34 :             let need = buf.cap() - buf.pending();
     115           34 :             let have = slice.len();
     116           34 :             let n = std::cmp::min(need, have);
     117           34 :             buf.extend_from_slice(&slice[..n]);
     118           34 :             slice = &slice[n..];
     119           34 :             if buf.pending() >= buf.cap() {
     120            6 :                 assert_eq!(buf.pending(), buf.cap());
     121            6 :                 self.flush(ctx).await?;
     122           28 :             }
     123              :         }
     124           36 :         assert!(slice.is_empty(), "by now we should have drained the chunk");
     125           36 :         Ok((chunk_len, FullSlice::must_new(chunk)))
     126           44 :     }
     127              : 
     128              :     /// Strictly less performant variant of [`Self::write_buffered`] that allows writing borrowed data.
     129              :     ///
     130              :     /// It is less performant because we always have to copy the borrowed data into the internal buffer
     131              :     /// before we can do the IO. The [`Self::write_buffered`] can avoid this, which is more performant
     132              :     /// for large writes.
     133      5000822 :     pub async fn write_buffered_borrowed(
     134      5000822 :         &mut self,
     135      5000822 :         mut chunk: &[u8],
     136      5000822 :         ctx: &RequestContext,
     137      5000822 :     ) -> std::io::Result<usize> {
     138      5000822 :         let chunk_len = chunk.len();
     139     10008242 :         while !chunk.is_empty() {
     140      5007420 :             let buf = self.buf.as_mut().expect("must not use after an error");
     141      5007420 :             let need = buf.cap() - buf.pending();
     142      5007420 :             let have = chunk.len();
     143      5007420 :             let n = std::cmp::min(need, have);
     144      5007420 :             buf.extend_from_slice(&chunk[..n]);
     145      5007420 :             chunk = &chunk[n..];
     146      5007420 :             if buf.pending() >= buf.cap() {
     147         6608 :                 assert_eq!(buf.pending(), buf.cap());
     148         6608 :                 self.flush(ctx).await?;
     149      5000812 :             }
     150              :         }
     151      5000822 :         Ok(chunk_len)
     152      5000822 :     }
     153              : 
     154         6633 :     async fn flush(&mut self, ctx: &RequestContext) -> std::io::Result<()> {
     155         6633 :         let buf = self.buf.take().expect("must not use after an error");
     156         6633 :         let buf_len = buf.pending();
     157         6633 :         if buf_len == 0 {
     158           10 :             self.buf = Some(buf);
     159           10 :             return Ok(());
     160         6623 :         }
     161         6623 :         let slice = buf.flush();
     162         6623 :         let (nwritten, slice) = self.writer.write_all(slice, ctx).await?;
     163         6623 :         assert_eq!(nwritten, buf_len);
     164         6623 :         self.buf = Some(Buffer::reuse_after_flush(
     165         6623 :             slice.into_raw_slice().into_inner(),
     166         6623 :         ));
     167         6623 :         Ok(())
     168         6633 :     }
     169              : }
     170              : 
     171              : /// A [`Buffer`] is used by [`BufferedWriter`] to batch smaller writes into larger ones.
     172              : pub trait Buffer {
     173              :     type IoBuf: IoBuf;
     174              : 
     175              :     /// Capacity of the buffer. Must not change over the lifetime `self`.`
     176              :     fn cap(&self) -> usize;
     177              : 
     178              :     /// Add data to the buffer.
     179              :     /// Panics if there is not enough room to accomodate `other`'s content, i.e.,
     180              :     /// panics if `other.len() > self.cap() - self.pending()`.
     181              :     fn extend_from_slice(&mut self, other: &[u8]);
     182              : 
     183              :     /// Number of bytes in the buffer.
     184              :     fn pending(&self) -> usize;
     185              : 
     186              :     /// Turns `self` into a [`FullSlice`] of the pending data
     187              :     /// so we can use [`tokio_epoll_uring`] to write it to disk.
     188              :     fn flush(self) -> FullSlice<Self::IoBuf>;
     189              : 
     190              :     /// After the write to disk is done and we have gotten back the slice,
     191              :     /// [`BufferedWriter`] uses this method to re-use the io buffer.
     192              :     fn reuse_after_flush(iobuf: Self::IoBuf) -> Self;
     193              : }
     194              : 
     195              : impl Buffer for BytesMut {
     196              :     type IoBuf = BytesMut;
     197              : 
     198              :     #[inline(always)]
     199     10021602 :     fn cap(&self) -> usize {
     200     10021602 :         self.capacity()
     201     10021602 :     }
     202              : 
     203      5007454 :     fn extend_from_slice(&mut self, other: &[u8]) {
     204      5007454 :         BytesMut::extend_from_slice(self, other)
     205      5007454 :     }
     206              : 
     207              :     #[inline(always)]
     208     10722492 :     fn pending(&self) -> usize {
     209     10722492 :         self.len()
     210     10722492 :     }
     211              : 
     212         6623 :     fn flush(self) -> FullSlice<BytesMut> {
     213         6623 :         self.slice_len()
     214         6623 :     }
     215              : 
     216         6623 :     fn reuse_after_flush(mut iobuf: BytesMut) -> Self {
     217         6623 :         iobuf.clear();
     218         6623 :         iobuf
     219         6623 :     }
     220              : }
     221              : 
     222              : impl OwnedAsyncWriter for Vec<u8> {
     223            0 :     async fn write_all<Buf: IoBuf + Send>(
     224            0 :         &mut self,
     225            0 :         buf: FullSlice<Buf>,
     226            0 :         _: &RequestContext,
     227            0 :     ) -> std::io::Result<(usize, FullSlice<Buf>)> {
     228            0 :         self.extend_from_slice(&buf[..]);
     229            0 :         Ok((buf.len(), buf))
     230            0 :     }
     231              : }
     232              : 
     233              : #[cfg(test)]
     234              : mod tests {
     235              :     use bytes::BytesMut;
     236              : 
     237              :     use super::*;
     238              :     use crate::context::{DownloadBehavior, RequestContext};
     239              :     use crate::task_mgr::TaskKind;
     240              : 
     241              :     #[derive(Default)]
     242              :     struct RecorderWriter {
     243              :         writes: Vec<Vec<u8>>,
     244              :     }
     245              :     impl OwnedAsyncWriter for RecorderWriter {
     246           34 :         async fn write_all<Buf: IoBuf + Send>(
     247           34 :             &mut self,
     248           34 :             buf: FullSlice<Buf>,
     249           34 :             _: &RequestContext,
     250           34 :         ) -> std::io::Result<(usize, FullSlice<Buf>)> {
     251           34 :             self.writes.push(Vec::from(&buf[..]));
     252           34 :             Ok((buf.len(), buf))
     253           34 :         }
     254              :     }
     255              : 
     256           34 :     fn test_ctx() -> RequestContext {
     257           34 :         RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error)
     258           34 :     }
     259              : 
     260              :     macro_rules! write {
     261              :         ($writer:ident, $data:literal) => {{
     262              :             $writer
     263              :                 .write_buffered(::bytes::Bytes::from_static($data).slice_len(), &test_ctx())
     264              :                 .await?;
     265              :         }};
     266              :     }
     267              : 
     268              :     #[tokio::test]
     269            2 :     async fn test_buffered_writes_only() -> std::io::Result<()> {
     270            2 :         let recorder = RecorderWriter::default();
     271            2 :         let mut writer = BufferedWriter::new(recorder, BytesMut::with_capacity(2));
     272            2 :         write!(writer, b"a");
     273            2 :         write!(writer, b"b");
     274            2 :         write!(writer, b"c");
     275            2 :         write!(writer, b"d");
     276            2 :         write!(writer, b"e");
     277            2 :         let recorder = writer.flush_and_into_inner(&test_ctx()).await?;
     278            2 :         assert_eq!(
     279            2 :             recorder.writes,
     280            2 :             vec![Vec::from(b"ab"), Vec::from(b"cd"), Vec::from(b"e")]
     281            2 :         );
     282            2 :         Ok(())
     283            2 :     }
     284              : 
     285              :     #[tokio::test]
     286            2 :     async fn test_passthrough_writes_only() -> std::io::Result<()> {
     287            2 :         let recorder = RecorderWriter::default();
     288            2 :         let mut writer = BufferedWriter::new(recorder, BytesMut::with_capacity(2));
     289            2 :         write!(writer, b"abc");
     290            2 :         write!(writer, b"de");
     291            2 :         write!(writer, b"");
     292            2 :         write!(writer, b"fghijk");
     293            2 :         let recorder = writer.flush_and_into_inner(&test_ctx()).await?;
     294            2 :         assert_eq!(
     295            2 :             recorder.writes,
     296            2 :             vec![Vec::from(b"abc"), Vec::from(b"de"), Vec::from(b"fghijk")]
     297            2 :         );
     298            2 :         Ok(())
     299            2 :     }
     300              : 
     301              :     #[tokio::test]
     302            2 :     async fn test_passthrough_write_with_nonempty_buffer() -> std::io::Result<()> {
     303            2 :         let recorder = RecorderWriter::default();
     304            2 :         let mut writer = BufferedWriter::new(recorder, BytesMut::with_capacity(2));
     305            2 :         write!(writer, b"a");
     306            2 :         write!(writer, b"bc");
     307            2 :         write!(writer, b"d");
     308            2 :         write!(writer, b"e");
     309            2 :         let recorder = writer.flush_and_into_inner(&test_ctx()).await?;
     310            2 :         assert_eq!(
     311            2 :             recorder.writes,
     312            2 :             vec![Vec::from(b"a"), Vec::from(b"bc"), Vec::from(b"de")]
     313            2 :         );
     314            2 :         Ok(())
     315            2 :     }
     316              : 
     317              :     #[tokio::test]
     318            2 :     async fn test_write_all_borrowed_always_goes_through_buffer() -> std::io::Result<()> {
     319            2 :         let ctx = test_ctx();
     320            2 :         let ctx = &ctx;
     321            2 :         let recorder = RecorderWriter::default();
     322            2 :         let mut writer = BufferedWriter::new(recorder, BytesMut::with_capacity(2));
     323            2 : 
     324            2 :         writer.write_buffered_borrowed(b"abc", ctx).await?;
     325            2 :         writer.write_buffered_borrowed(b"d", ctx).await?;
     326            2 :         writer.write_buffered_borrowed(b"e", ctx).await?;
     327            2 :         writer.write_buffered_borrowed(b"fg", ctx).await?;
     328            2 :         writer.write_buffered_borrowed(b"hi", ctx).await?;
     329            2 :         writer.write_buffered_borrowed(b"j", ctx).await?;
     330            2 :         writer.write_buffered_borrowed(b"klmno", ctx).await?;
     331            2 : 
     332            2 :         let recorder = writer.flush_and_into_inner(ctx).await?;
     333            2 :         assert_eq!(
     334            2 :             recorder.writes,
     335            2 :             {
     336            2 :                 let expect: &[&[u8]] = &[b"ab", b"cd", b"ef", b"gh", b"ij", b"kl", b"mn", b"o"];
     337            2 :                 expect
     338            2 :             }
     339            2 :             .iter()
     340           16 :             .map(|v| v[..].to_vec())
     341            2 :             .collect::<Vec<_>>()
     342            2 :         );
     343            2 :         Ok(())
     344            2 :     }
     345              : }
        

Generated by: LCOV version 2.1-beta