Line data Source code
1 : //!
2 : //! Functions for reading and writing variable-sized "blobs".
3 : //!
4 : //! Each blob begins with a 1- or 4-byte length field, followed by the
5 : //! actual data. If the length is smaller than 128 bytes, the length
6 : //! is written as a one byte. If it's larger than that, the length
7 : //! is written as a four-byte integer, in big-endian, with the high
8 : //! bit set. This way, we can detect whether it's 1- or 4-byte header
9 : //! by peeking at the first byte. For blobs larger than 128 bits,
10 : //! we also specify three reserved bits, only one of the three bit
11 : //! patterns is currently in use (0b011) and signifies compression
12 : //! with zstd.
13 : //!
14 : //! len < 128: 0XXXXXXX
15 : //! len >= 128: 1CCCXXXX XXXXXXXX XXXXXXXX XXXXXXXX
16 : //!
17 : use async_compression::Level;
18 : use bytes::{BufMut, BytesMut};
19 : use pageserver_api::models::ImageCompressionAlgorithm;
20 : use tokio::io::AsyncWriteExt;
21 : use tokio_epoll_uring::{BoundedBuf, IoBuf, Slice};
22 : use tracing::warn;
23 :
24 : use crate::context::RequestContext;
25 : use crate::page_cache::PAGE_SZ;
26 : use crate::tenant::block_io::BlockCursor;
27 : use crate::virtual_file::owned_buffers_io::io_buf_ext::{FullSlice, IoBufExt};
28 : use crate::virtual_file::VirtualFile;
29 : use std::cmp::min;
30 : use std::io::{Error, ErrorKind};
31 :
32 : #[derive(Copy, Clone, Debug)]
33 : pub struct CompressionInfo {
34 : pub written_compressed: bool,
35 : pub compressed_size: Option<usize>,
36 : }
37 :
38 : impl<'a> BlockCursor<'a> {
39 : /// Read a blob into a new buffer.
40 8296 : pub async fn read_blob(
41 8296 : &self,
42 8296 : offset: u64,
43 8296 : ctx: &RequestContext,
44 8296 : ) -> Result<Vec<u8>, std::io::Error> {
45 8296 : let mut buf = Vec::new();
46 10621 : self.read_blob_into_buf(offset, &mut buf, ctx).await?;
47 8296 : Ok(buf)
48 8296 : }
49 : /// Read blob into the given buffer. Any previous contents in the buffer
50 : /// are overwritten.
51 8360 : pub async fn read_blob_into_buf(
52 8360 : &self,
53 8360 : offset: u64,
54 8360 : dstbuf: &mut Vec<u8>,
55 8360 : ctx: &RequestContext,
56 8360 : ) -> Result<(), std::io::Error> {
57 8360 : let mut blknum = (offset / PAGE_SZ as u64) as u32;
58 8360 : let mut off = (offset % PAGE_SZ as u64) as usize;
59 :
60 8360 : let mut buf = self.read_blk(blknum, ctx).await?;
61 :
62 : // peek at the first byte, to determine if it's a 1- or 4-byte length
63 8360 : let first_len_byte = buf[off];
64 8360 : let len: usize = if first_len_byte < 0x80 {
65 : // 1-byte length header
66 2224 : off += 1;
67 2224 : first_len_byte as usize
68 : } else {
69 : // 4-byte length header
70 6136 : let mut len_buf = [0u8; 4];
71 6136 : let thislen = PAGE_SZ - off;
72 6136 : if thislen < 4 {
73 : // it is split across two pages
74 0 : len_buf[..thislen].copy_from_slice(&buf[off..PAGE_SZ]);
75 0 : blknum += 1;
76 0 : buf = self.read_blk(blknum, ctx).await?;
77 0 : len_buf[thislen..].copy_from_slice(&buf[0..4 - thislen]);
78 0 : off = 4 - thislen;
79 6136 : } else {
80 6136 : len_buf.copy_from_slice(&buf[off..off + 4]);
81 6136 : off += 4;
82 6136 : }
83 6136 : let bit_mask = if self.read_compressed {
84 20 : !LEN_COMPRESSION_BIT_MASK
85 : } else {
86 6116 : 0x7f
87 : };
88 6136 : len_buf[0] &= bit_mask;
89 6136 : u32::from_be_bytes(len_buf) as usize
90 : };
91 8360 : let compression_bits = first_len_byte & LEN_COMPRESSION_BIT_MASK;
92 8360 :
93 8360 : let mut tmp_buf = Vec::new();
94 : let buf_to_write;
95 8360 : let compression = if compression_bits <= BYTE_UNCOMPRESSED || !self.read_compressed {
96 8356 : if compression_bits > BYTE_UNCOMPRESSED {
97 0 : warn!("reading key above future limit ({len} bytes)");
98 8356 : }
99 8356 : buf_to_write = dstbuf;
100 8356 : None
101 4 : } else if compression_bits == BYTE_ZSTD {
102 4 : buf_to_write = &mut tmp_buf;
103 4 : Some(dstbuf)
104 : } else {
105 0 : let error = std::io::Error::new(
106 0 : std::io::ErrorKind::InvalidData,
107 0 : format!("invalid compression byte {compression_bits:x}"),
108 0 : );
109 0 : return Err(error);
110 : };
111 :
112 8360 : buf_to_write.clear();
113 8360 : buf_to_write.reserve(len);
114 8360 :
115 8360 : // Read the payload
116 8360 : let mut remain = len;
117 29436 : while remain > 0 {
118 21076 : let mut page_remain = PAGE_SZ - off;
119 21076 : if page_remain == 0 {
120 : // continue on next page
121 12756 : blknum += 1;
122 12756 : buf = self.read_blk(blknum, ctx).await?;
123 12756 : off = 0;
124 12756 : page_remain = PAGE_SZ;
125 8320 : }
126 21076 : let this_blk_len = min(remain, page_remain);
127 21076 : buf_to_write.extend_from_slice(&buf[off..off + this_blk_len]);
128 21076 : remain -= this_blk_len;
129 21076 : off += this_blk_len;
130 : }
131 :
132 8360 : if let Some(dstbuf) = compression {
133 4 : if compression_bits == BYTE_ZSTD {
134 4 : let mut decoder = async_compression::tokio::write::ZstdDecoder::new(dstbuf);
135 4 : decoder.write_all(buf_to_write).await?;
136 4 : decoder.flush().await?;
137 : } else {
138 0 : unreachable!("already checked above")
139 : }
140 8356 : }
141 :
142 8360 : Ok(())
143 8360 : }
144 : }
145 :
146 : /// Reserved bits for length and compression
147 : pub(super) const LEN_COMPRESSION_BIT_MASK: u8 = 0xf0;
148 :
149 : /// The maximum size of blobs we support. The highest few bits
150 : /// are reserved for compression and other further uses.
151 : pub(crate) const MAX_SUPPORTED_BLOB_LEN: usize = 0x0fff_ffff;
152 :
153 : pub(super) const BYTE_UNCOMPRESSED: u8 = 0x80;
154 : pub(super) const BYTE_ZSTD: u8 = BYTE_UNCOMPRESSED | 0x10;
155 :
156 : /// A wrapper of `VirtualFile` that allows users to write blobs.
157 : ///
158 : /// If a `BlobWriter` is dropped, the internal buffer will be
159 : /// discarded. You need to call [`flush_buffer`](Self::flush_buffer)
160 : /// manually before dropping.
161 : pub struct BlobWriter<const BUFFERED: bool> {
162 : inner: VirtualFile,
163 : offset: u64,
164 : /// A buffer to save on write calls, only used if BUFFERED=true
165 : buf: Vec<u8>,
166 : /// We do tiny writes for the length headers; they need to be in an owned buffer;
167 : io_buf: Option<BytesMut>,
168 : }
169 :
170 : impl<const BUFFERED: bool> BlobWriter<BUFFERED> {
171 1946 : pub fn new(inner: VirtualFile, start_offset: u64) -> Self {
172 1946 : Self {
173 1946 : inner,
174 1946 : offset: start_offset,
175 1946 : buf: Vec::with_capacity(Self::CAPACITY),
176 1946 : io_buf: Some(BytesMut::new()),
177 1946 : }
178 1946 : }
179 :
180 2049422 : pub fn size(&self) -> u64 {
181 2049422 : self.offset
182 2049422 : }
183 :
184 : const CAPACITY: usize = if BUFFERED { 64 * 1024 } else { 0 };
185 :
186 : /// Writes the given buffer directly to the underlying `VirtualFile`.
187 : /// You need to make sure that the internal buffer is empty, otherwise
188 : /// data will be written in wrong order.
189 : #[inline(always)]
190 1100854 : async fn write_all_unbuffered<Buf: IoBuf + Send>(
191 1100854 : &mut self,
192 1100854 : src_buf: FullSlice<Buf>,
193 1100854 : ctx: &RequestContext,
194 1100854 : ) -> (FullSlice<Buf>, Result<(), Error>) {
195 1100854 : let (src_buf, res) = self.inner.write_all(src_buf, ctx).await;
196 1100854 : let nbytes = match res {
197 1100854 : Ok(nbytes) => nbytes,
198 0 : Err(e) => return (src_buf, Err(e)),
199 : };
200 1100854 : self.offset += nbytes as u64;
201 1100854 : (src_buf, Ok(()))
202 1100854 : }
203 :
204 : #[inline(always)]
205 : /// Flushes the internal buffer to the underlying `VirtualFile`.
206 12250 : pub async fn flush_buffer(&mut self, ctx: &RequestContext) -> Result<(), Error> {
207 12250 : let buf = std::mem::take(&mut self.buf);
208 12250 : let (slice, res) = self.inner.write_all(buf.slice_len(), ctx).await;
209 12250 : res?;
210 12250 : let mut buf = slice.into_raw_slice().into_inner();
211 12250 : buf.clear();
212 12250 : self.buf = buf;
213 12250 : Ok(())
214 12250 : }
215 :
216 : #[inline(always)]
217 : /// Writes as much of `src_buf` into the internal buffer as it fits
218 12969532 : fn write_into_buffer(&mut self, src_buf: &[u8]) -> usize {
219 12969532 : let remaining = Self::CAPACITY - self.buf.len();
220 12969532 : let to_copy = src_buf.len().min(remaining);
221 12969532 : self.buf.extend_from_slice(&src_buf[..to_copy]);
222 12969532 : self.offset += to_copy as u64;
223 12969532 : to_copy
224 12969532 : }
225 :
226 : /// Internal, possibly buffered, write function
227 14059636 : async fn write_all<Buf: IoBuf + Send>(
228 14059636 : &mut self,
229 14059636 : src_buf: FullSlice<Buf>,
230 14059636 : ctx: &RequestContext,
231 14059636 : ) -> (FullSlice<Buf>, Result<(), Error>) {
232 14059636 : let src_buf = src_buf.into_raw_slice();
233 14059636 : let src_buf_bounds = src_buf.bounds();
234 14059636 : let restore = move |src_buf_slice: Slice<_>| {
235 12958782 : FullSlice::must_new(Slice::from_buf_bounds(
236 12958782 : src_buf_slice.into_inner(),
237 12958782 : src_buf_bounds,
238 12958782 : ))
239 12958782 : };
240 :
241 14059636 : if !BUFFERED {
242 1100624 : assert!(self.buf.is_empty());
243 1100624 : return self
244 1100624 : .write_all_unbuffered(FullSlice::must_new(src_buf), ctx)
245 559023 : .await;
246 12959012 : }
247 12959012 : let remaining = Self::CAPACITY - self.buf.len();
248 12959012 : let src_buf_len = src_buf.bytes_init();
249 12959012 : if src_buf_len == 0 {
250 24 : return (restore(src_buf), Ok(()));
251 12958988 : }
252 12958988 : let mut src_buf = src_buf.slice(0..src_buf_len);
253 12958988 : // First try to copy as much as we can into the buffer
254 12958988 : if remaining > 0 {
255 12958988 : let copied = self.write_into_buffer(&src_buf);
256 12958988 : src_buf = src_buf.slice(copied..);
257 12958988 : }
258 : // Then, if the buffer is full, flush it out
259 12958988 : if self.buf.len() == Self::CAPACITY {
260 10814 : if let Err(e) = self.flush_buffer(ctx).await {
261 0 : return (restore(src_buf), Err(e));
262 10814 : }
263 12948174 : }
264 : // Finally, write the tail of src_buf:
265 : // If it wholly fits into the buffer without
266 : // completely filling it, then put it there.
267 : // If not, write it out directly.
268 12958988 : let src_buf = if !src_buf.is_empty() {
269 10774 : assert_eq!(self.buf.len(), 0);
270 10774 : if src_buf.len() < Self::CAPACITY {
271 10544 : let copied = self.write_into_buffer(&src_buf);
272 10544 : // We just verified above that src_buf fits into our internal buffer.
273 10544 : assert_eq!(copied, src_buf.len());
274 10544 : restore(src_buf)
275 : } else {
276 230 : let (src_buf, res) = self
277 230 : .write_all_unbuffered(FullSlice::must_new(src_buf), ctx)
278 115 : .await;
279 230 : if let Err(e) = res {
280 0 : return (src_buf, Err(e));
281 230 : }
282 230 : src_buf
283 : }
284 : } else {
285 12948214 : restore(src_buf)
286 : };
287 12958988 : (src_buf, Ok(()))
288 14059636 : }
289 :
290 : /// Write a blob of data. Returns the offset that it was written to,
291 : /// which can be used to retrieve the data later.
292 10348 : pub async fn write_blob<Buf: IoBuf + Send>(
293 10348 : &mut self,
294 10348 : srcbuf: FullSlice<Buf>,
295 10348 : ctx: &RequestContext,
296 10348 : ) -> (FullSlice<Buf>, Result<u64, Error>) {
297 10348 : let (buf, res) = self
298 10348 : .write_blob_maybe_compressed(srcbuf, ctx, ImageCompressionAlgorithm::Disabled)
299 4712 : .await;
300 10348 : (buf, res.map(|(off, _compression_info)| off))
301 10348 : }
302 :
303 : /// Write a blob of data. Returns the offset that it was written to,
304 : /// which can be used to retrieve the data later.
305 7029818 : pub(crate) async fn write_blob_maybe_compressed<Buf: IoBuf + Send>(
306 7029818 : &mut self,
307 7029818 : srcbuf: FullSlice<Buf>,
308 7029818 : ctx: &RequestContext,
309 7029818 : algorithm: ImageCompressionAlgorithm,
310 7029818 : ) -> (FullSlice<Buf>, Result<(u64, CompressionInfo), Error>) {
311 7029818 : let offset = self.offset;
312 7029818 : let mut compression_info = CompressionInfo {
313 7029818 : written_compressed: false,
314 7029818 : compressed_size: None,
315 7029818 : };
316 7029818 :
317 7029818 : let len = srcbuf.len();
318 7029818 :
319 7029818 : let mut io_buf = self.io_buf.take().expect("we always put it back below");
320 7029818 : io_buf.clear();
321 7029818 : let mut compressed_buf = None;
322 7029818 : let ((io_buf_slice, hdr_res), srcbuf) = async {
323 7029818 : if len < 128 {
324 : // Short blob. Write a 1-byte length header
325 6993450 : io_buf.put_u8(len as u8);
326 6993450 : (self.write_all(io_buf.slice_len(), ctx).await, srcbuf)
327 : } else {
328 : // Write a 4-byte length header
329 36368 : if len > MAX_SUPPORTED_BLOB_LEN {
330 0 : return (
331 0 : (
332 0 : io_buf.slice_len(),
333 0 : Err(Error::new(
334 0 : ErrorKind::Other,
335 0 : format!("blob too large ({len} bytes)"),
336 0 : )),
337 0 : ),
338 0 : srcbuf,
339 0 : );
340 36368 : }
341 36368 : let (high_bit_mask, len_written, srcbuf) = match algorithm {
342 10052 : ImageCompressionAlgorithm::Zstd { level } => {
343 10052 : let mut encoder = if let Some(level) = level {
344 10052 : async_compression::tokio::write::ZstdEncoder::with_quality(
345 10052 : Vec::new(),
346 10052 : Level::Precise(level.into()),
347 10052 : )
348 : } else {
349 0 : async_compression::tokio::write::ZstdEncoder::new(Vec::new())
350 : };
351 10052 : encoder.write_all(&srcbuf[..]).await.unwrap();
352 10052 : encoder.shutdown().await.unwrap();
353 10052 : let compressed = encoder.into_inner();
354 10052 : compression_info.compressed_size = Some(compressed.len());
355 10052 : if compressed.len() < len {
356 6 : compression_info.written_compressed = true;
357 6 : let compressed_len = compressed.len();
358 6 : compressed_buf = Some(compressed);
359 6 : (BYTE_ZSTD, compressed_len, srcbuf)
360 : } else {
361 10046 : (BYTE_UNCOMPRESSED, len, srcbuf)
362 : }
363 : }
364 26316 : ImageCompressionAlgorithm::Disabled => (BYTE_UNCOMPRESSED, len, srcbuf),
365 : };
366 36368 : let mut len_buf = (len_written as u32).to_be_bytes();
367 36368 : assert_eq!(len_buf[0] & 0xf0, 0);
368 36368 : len_buf[0] |= high_bit_mask;
369 36368 : io_buf.extend_from_slice(&len_buf[..]);
370 36368 : (self.write_all(io_buf.slice_len(), ctx).await, srcbuf)
371 : }
372 7029818 : }
373 280331 : .await;
374 7029818 : self.io_buf = Some(io_buf_slice.into_raw_slice().into_inner());
375 7029818 : match hdr_res {
376 7029818 : Ok(_) => (),
377 0 : Err(e) => return (srcbuf, Err(e)),
378 : }
379 7029818 : let (srcbuf, res) = if let Some(compressed_buf) = compressed_buf {
380 6 : let (_buf, res) = self.write_all(compressed_buf.slice_len(), ctx).await;
381 6 : (srcbuf, res)
382 : } else {
383 7029812 : self.write_all(srcbuf, ctx).await
384 : };
385 7029818 : (srcbuf, res.map(|_| (offset, compression_info)))
386 7029818 : }
387 : }
388 :
389 : impl BlobWriter<true> {
390 : /// Access the underlying `VirtualFile`.
391 : ///
392 : /// This function flushes the internal buffer before giving access
393 : /// to the underlying `VirtualFile`.
394 1396 : pub async fn into_inner(mut self, ctx: &RequestContext) -> Result<VirtualFile, Error> {
395 1396 : self.flush_buffer(ctx).await?;
396 1396 : Ok(self.inner)
397 1396 : }
398 :
399 : /// Access the underlying `VirtualFile`.
400 : ///
401 : /// Unlike [`into_inner`](Self::into_inner), this doesn't flush
402 : /// the internal buffer before giving access.
403 20 : pub fn into_inner_no_flush(self) -> VirtualFile {
404 20 : self.inner
405 20 : }
406 : }
407 :
408 : impl BlobWriter<false> {
409 : /// Access the underlying `VirtualFile`.
410 490 : pub fn into_inner(self) -> VirtualFile {
411 490 : self.inner
412 490 : }
413 : }
414 :
415 : #[cfg(test)]
416 : pub(crate) mod tests {
417 : use super::*;
418 : use crate::{context::DownloadBehavior, task_mgr::TaskKind, tenant::block_io::BlockReaderRef};
419 : use camino::Utf8PathBuf;
420 : use camino_tempfile::Utf8TempDir;
421 : use rand::{Rng, SeedableRng};
422 :
423 24 : async fn round_trip_test<const BUFFERED: bool>(blobs: &[Vec<u8>]) -> Result<(), Error> {
424 15054 : round_trip_test_compressed::<BUFFERED>(blobs, false).await
425 24 : }
426 :
427 40 : pub(crate) async fn write_maybe_compressed<const BUFFERED: bool>(
428 40 : blobs: &[Vec<u8>],
429 40 : compression: bool,
430 40 : ctx: &RequestContext,
431 40 : ) -> Result<(Utf8TempDir, Utf8PathBuf, Vec<u64>), Error> {
432 40 : let temp_dir = camino_tempfile::tempdir()?;
433 40 : let pathbuf = temp_dir.path().join("file");
434 40 :
435 40 : // Write part (in block to drop the file)
436 40 : let mut offsets = Vec::new();
437 : {
438 40 : let file = VirtualFile::create(pathbuf.as_path(), ctx).await?;
439 40 : let mut wtr = BlobWriter::<BUFFERED>::new(file, 0);
440 12408 : for blob in blobs.iter() {
441 12408 : let (_, res) = if compression {
442 2100 : let res = wtr
443 2100 : .write_blob_maybe_compressed(
444 2100 : blob.clone().slice_len(),
445 2100 : ctx,
446 2100 : ImageCompressionAlgorithm::Zstd { level: Some(1) },
447 2100 : )
448 154 : .await;
449 2100 : (res.0, res.1.map(|(off, _)| off))
450 : } else {
451 10308 : wtr.write_blob(blob.clone().slice_len(), ctx).await
452 : };
453 12408 : let offs = res?;
454 12408 : offsets.push(offs);
455 : }
456 : // Write out one page worth of zeros so that we can
457 : // read again with read_blk
458 40 : let (_, res) = wtr.write_blob(vec![0; PAGE_SZ].slice_len(), ctx).await;
459 40 : let offs = res?;
460 40 : println!("Writing final blob at offs={offs}");
461 40 : wtr.flush_buffer(ctx).await?;
462 : }
463 40 : Ok((temp_dir, pathbuf, offsets))
464 40 : }
465 :
466 32 : async fn round_trip_test_compressed<const BUFFERED: bool>(
467 32 : blobs: &[Vec<u8>],
468 32 : compression: bool,
469 32 : ) -> Result<(), Error> {
470 32 : let ctx = RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error);
471 32 : let (_temp_dir, pathbuf, offsets) =
472 4630 : write_maybe_compressed::<BUFFERED>(blobs, compression, &ctx).await?;
473 :
474 32 : let file = VirtualFile::open(pathbuf, &ctx).await?;
475 32 : let rdr = BlockReaderRef::VirtualFile(&file);
476 32 : let rdr = BlockCursor::new_with_compression(rdr, compression);
477 8288 : for (idx, (blob, offset)) in blobs.iter().zip(offsets.iter()).enumerate() {
478 10619 : let blob_read = rdr.read_blob(*offset, &ctx).await?;
479 8288 : assert_eq!(
480 8288 : blob, &blob_read,
481 0 : "mismatch for idx={idx} at offset={offset}"
482 : );
483 : }
484 32 : Ok(())
485 32 : }
486 :
487 6158 : pub(crate) fn random_array(len: usize) -> Vec<u8> {
488 6158 : let mut rng = rand::thread_rng();
489 68151904 : (0..len).map(|_| rng.gen()).collect::<_>()
490 6158 : }
491 :
492 : #[tokio::test]
493 2 : async fn test_one() -> Result<(), Error> {
494 2 : let blobs = &[vec![12, 21, 22]];
495 8 : round_trip_test::<false>(blobs).await?;
496 4 : round_trip_test::<true>(blobs).await?;
497 2 : Ok(())
498 2 : }
499 :
500 : #[tokio::test]
501 2 : async fn test_hello_simple() -> Result<(), Error> {
502 2 : let blobs = &[
503 2 : vec![0, 1, 2, 3],
504 2 : b"Hello, World!".to_vec(),
505 2 : Vec::new(),
506 2 : b"foobar".to_vec(),
507 2 : ];
508 16 : round_trip_test::<false>(blobs).await?;
509 7 : round_trip_test::<true>(blobs).await?;
510 15 : round_trip_test_compressed::<false>(blobs, true).await?;
511 7 : round_trip_test_compressed::<true>(blobs, true).await?;
512 2 : Ok(())
513 2 : }
514 :
515 : #[tokio::test]
516 2 : async fn test_really_big_array() -> Result<(), Error> {
517 2 : let blobs = &[
518 2 : b"test".to_vec(),
519 2 : random_array(10 * PAGE_SZ),
520 2 : b"hello".to_vec(),
521 2 : random_array(66 * PAGE_SZ),
522 2 : vec![0xf3; 24 * PAGE_SZ],
523 2 : b"foobar".to_vec(),
524 2 : ];
525 124 : round_trip_test::<false>(blobs).await?;
526 116 : round_trip_test::<true>(blobs).await?;
527 100 : round_trip_test_compressed::<false>(blobs, true).await?;
528 89 : round_trip_test_compressed::<true>(blobs, true).await?;
529 2 : Ok(())
530 2 : }
531 :
532 : #[tokio::test]
533 2 : async fn test_arrays_inc() -> Result<(), Error> {
534 2 : let blobs = (0..PAGE_SZ / 8)
535 2048 : .map(|v| random_array(v * 16))
536 2 : .collect::<Vec<_>>();
537 4162 : round_trip_test::<false>(&blobs).await?;
538 2212 : round_trip_test::<true>(&blobs).await?;
539 2 : Ok(())
540 2 : }
541 :
542 : #[tokio::test]
543 2 : async fn test_arrays_random_size() -> Result<(), Error> {
544 2 : let mut rng = rand::rngs::StdRng::seed_from_u64(42);
545 2 : let blobs = (0..1024)
546 2048 : .map(|_| {
547 2048 : let mut sz: u16 = rng.gen();
548 2048 : // Make 50% of the arrays small
549 2048 : if rng.gen() {
550 1032 : sz &= 63;
551 1032 : }
552 2048 : random_array(sz.into())
553 2048 : })
554 2 : .collect::<Vec<_>>();
555 5106 : round_trip_test::<false>(&blobs).await?;
556 3279 : round_trip_test::<true>(&blobs).await?;
557 2 : Ok(())
558 2 : }
559 :
560 : #[tokio::test]
561 2 : async fn test_arrays_page_boundary() -> Result<(), Error> {
562 2 : let blobs = &[
563 2 : random_array(PAGE_SZ - 4),
564 2 : random_array(PAGE_SZ - 4),
565 2 : random_array(PAGE_SZ - 4),
566 2 : ];
567 14 : round_trip_test::<false>(blobs).await?;
568 6 : round_trip_test::<true>(blobs).await?;
569 2 : Ok(())
570 2 : }
571 : }
|