LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: ae4948feae6a1d420c855050eb8c189119446a71.info Lines: 53.3 % 2687 1431
Test Date: 2025-03-18 18:33:46 Functions: 38.2 % 173 66

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : use std::time::Instant;
      11              : 
      12              : use super::layer_manager::LayerManager;
      13              : use super::{
      14              :     CompactFlags, CompactOptions, CompactionError, CreateImageLayersError, DurationRecorder,
      15              :     GetVectoredError, ImageLayerCreationMode, LastImageLayerCreationStatus, RecordedDuration,
      16              :     Timeline,
      17              : };
      18              : 
      19              : use anyhow::{Context, anyhow};
      20              : use bytes::Bytes;
      21              : use enumset::EnumSet;
      22              : use fail::fail_point;
      23              : use futures::FutureExt;
      24              : use itertools::Itertools;
      25              : use once_cell::sync::Lazy;
      26              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
      27              : use pageserver_api::key::{KEY_SIZE, Key};
      28              : use pageserver_api::keyspace::{KeySpace, ShardedRange};
      29              : use pageserver_api::models::CompactInfoResponse;
      30              : use pageserver_api::record::NeonWalRecord;
      31              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      32              : use pageserver_api::value::Value;
      33              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      34              : use pageserver_compaction::interface::*;
      35              : use serde::Serialize;
      36              : use tokio::sync::{OwnedSemaphorePermit, Semaphore};
      37              : use tokio_util::sync::CancellationToken;
      38              : use tracing::{Instrument, debug, error, info, info_span, trace, warn};
      39              : use utils::critical;
      40              : use utils::id::TimelineId;
      41              : use utils::lsn::Lsn;
      42              : 
      43              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      44              : use crate::page_cache;
      45              : use crate::statvfs::Statvfs;
      46              : use crate::tenant::checks::check_valid_layermap;
      47              : use crate::tenant::gc_block::GcBlock;
      48              : use crate::tenant::layer_map::LayerMap;
      49              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      50              : use crate::tenant::remote_timeline_client::index::GcCompactionState;
      51              : use crate::tenant::storage_layer::batch_split_writer::{
      52              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      53              : };
      54              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      55              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      56              : use crate::tenant::storage_layer::{
      57              :     AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
      58              : };
      59              : use crate::tenant::tasks::log_compaction_error;
      60              : use crate::tenant::timeline::{
      61              :     DeltaLayerWriter, ImageLayerCreationOutcome, ImageLayerWriter, IoConcurrency, Layer,
      62              :     ResidentLayer, drop_rlock,
      63              : };
      64              : use crate::tenant::{DeltaLayer, MaybeOffloaded, gc_block};
      65              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      66              : 
      67              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      68              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      69              : 
      70              : #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
      71              : pub struct GcCompactionJobId(pub usize);
      72              : 
      73              : impl std::fmt::Display for GcCompactionJobId {
      74            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      75            0 :         write!(f, "{}", self.0)
      76            0 :     }
      77              : }
      78              : 
      79              : pub struct GcCompactionCombinedSettings {
      80              :     pub gc_compaction_enabled: bool,
      81              :     pub gc_compaction_initial_threshold_kb: u64,
      82              :     pub gc_compaction_ratio_percent: u64,
      83              : }
      84              : 
      85              : #[derive(Debug, Clone)]
      86              : pub enum GcCompactionQueueItem {
      87              :     MetaJob {
      88              :         /// Compaction options
      89              :         options: CompactOptions,
      90              :         /// Whether the compaction is triggered automatically (determines whether we need to update L2 LSN)
      91              :         auto: bool,
      92              :     },
      93              :     SubCompactionJob(CompactOptions),
      94              :     Notify(GcCompactionJobId, Option<Lsn>),
      95              : }
      96              : 
      97              : impl GcCompactionQueueItem {
      98            0 :     pub fn into_compact_info_resp(
      99            0 :         self,
     100            0 :         id: GcCompactionJobId,
     101            0 :         running: bool,
     102            0 :     ) -> Option<CompactInfoResponse> {
     103            0 :         match self {
     104            0 :             GcCompactionQueueItem::MetaJob { options, .. } => Some(CompactInfoResponse {
     105            0 :                 compact_key_range: options.compact_key_range,
     106            0 :                 compact_lsn_range: options.compact_lsn_range,
     107            0 :                 sub_compaction: options.sub_compaction,
     108            0 :                 running,
     109            0 :                 job_id: id.0,
     110            0 :             }),
     111            0 :             GcCompactionQueueItem::SubCompactionJob(options) => Some(CompactInfoResponse {
     112            0 :                 compact_key_range: options.compact_key_range,
     113            0 :                 compact_lsn_range: options.compact_lsn_range,
     114            0 :                 sub_compaction: options.sub_compaction,
     115            0 :                 running,
     116            0 :                 job_id: id.0,
     117            0 :             }),
     118            0 :             GcCompactionQueueItem::Notify(_, _) => None,
     119              :         }
     120            0 :     }
     121              : }
     122              : 
     123              : #[derive(Default)]
     124              : struct GcCompactionGuardItems {
     125              :     notify: Option<tokio::sync::oneshot::Sender<()>>,
     126              :     gc_guard: Option<gc_block::Guard>,
     127              :     permit: Option<OwnedSemaphorePermit>,
     128              : }
     129              : 
     130              : struct GcCompactionQueueInner {
     131              :     running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     132              :     queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     133              :     guards: HashMap<GcCompactionJobId, GcCompactionGuardItems>,
     134              :     last_id: GcCompactionJobId,
     135              : }
     136              : 
     137              : impl GcCompactionQueueInner {
     138            0 :     fn next_id(&mut self) -> GcCompactionJobId {
     139            0 :         let id = self.last_id;
     140            0 :         self.last_id = GcCompactionJobId(id.0 + 1);
     141            0 :         id
     142            0 :     }
     143              : }
     144              : 
     145              : /// A structure to store gc_compaction jobs.
     146              : pub struct GcCompactionQueue {
     147              :     /// All items in the queue, and the currently-running job.
     148              :     inner: std::sync::Mutex<GcCompactionQueueInner>,
     149              :     /// Ensure only one thread is consuming the queue.
     150              :     consumer_lock: tokio::sync::Mutex<()>,
     151              : }
     152              : 
     153            0 : static CONCURRENT_GC_COMPACTION_TASKS: Lazy<Arc<Semaphore>> = Lazy::new(|| {
     154            0 :     // Only allow two timelines on one pageserver to run gc compaction at a time.
     155            0 :     Arc::new(Semaphore::new(2))
     156            0 : });
     157              : 
     158              : impl GcCompactionQueue {
     159            0 :     pub fn new() -> Self {
     160            0 :         GcCompactionQueue {
     161            0 :             inner: std::sync::Mutex::new(GcCompactionQueueInner {
     162            0 :                 running: None,
     163            0 :                 queued: VecDeque::new(),
     164            0 :                 guards: HashMap::new(),
     165            0 :                 last_id: GcCompactionJobId(0),
     166            0 :             }),
     167            0 :             consumer_lock: tokio::sync::Mutex::new(()),
     168            0 :         }
     169            0 :     }
     170              : 
     171            0 :     pub fn cancel_scheduled(&self) {
     172            0 :         let mut guard = self.inner.lock().unwrap();
     173            0 :         guard.queued.clear();
     174            0 :         // TODO: if there is a running job, we should keep the gc guard. However, currently, the cancel
     175            0 :         // API is only used for testing purposes, so we can drop everything here.
     176            0 :         guard.guards.clear();
     177            0 :     }
     178              : 
     179              :     /// Schedule a manual compaction job.
     180            0 :     pub fn schedule_manual_compaction(
     181            0 :         &self,
     182            0 :         options: CompactOptions,
     183            0 :         notify: Option<tokio::sync::oneshot::Sender<()>>,
     184            0 :     ) -> GcCompactionJobId {
     185            0 :         let mut guard = self.inner.lock().unwrap();
     186            0 :         let id = guard.next_id();
     187            0 :         guard.queued.push_back((
     188            0 :             id,
     189            0 :             GcCompactionQueueItem::MetaJob {
     190            0 :                 options,
     191            0 :                 auto: false,
     192            0 :             },
     193            0 :         ));
     194            0 :         guard.guards.entry(id).or_default().notify = notify;
     195            0 :         info!("scheduled compaction job id={}", id);
     196            0 :         id
     197            0 :     }
     198              : 
     199              :     /// Schedule an auto compaction job.
     200            0 :     fn schedule_auto_compaction(
     201            0 :         &self,
     202            0 :         options: CompactOptions,
     203            0 :         permit: OwnedSemaphorePermit,
     204            0 :     ) -> GcCompactionJobId {
     205            0 :         let mut guard = self.inner.lock().unwrap();
     206            0 :         let id = guard.next_id();
     207            0 :         guard.queued.push_back((
     208            0 :             id,
     209            0 :             GcCompactionQueueItem::MetaJob {
     210            0 :                 options,
     211            0 :                 auto: true,
     212            0 :             },
     213            0 :         ));
     214            0 :         guard.guards.entry(id).or_default().permit = Some(permit);
     215            0 :         id
     216            0 :     }
     217              : 
     218              :     /// Trigger an auto compaction.
     219            0 :     pub async fn trigger_auto_compaction(
     220            0 :         &self,
     221            0 :         timeline: &Arc<Timeline>,
     222            0 :     ) -> Result<(), CompactionError> {
     223            0 :         let GcCompactionCombinedSettings {
     224            0 :             gc_compaction_enabled,
     225            0 :             gc_compaction_initial_threshold_kb,
     226            0 :             gc_compaction_ratio_percent,
     227            0 :         } = timeline.get_gc_compaction_settings();
     228            0 :         if !gc_compaction_enabled {
     229            0 :             return Ok(());
     230            0 :         }
     231            0 :         if self.remaining_jobs_num() > 0 {
     232              :             // Only schedule auto compaction when the queue is empty
     233            0 :             return Ok(());
     234            0 :         }
     235            0 :         if timeline.ancestor_timeline().is_some() {
     236              :             // Do not trigger auto compaction for child timelines. We haven't tested
     237              :             // it enough in staging yet.
     238            0 :             return Ok(());
     239            0 :         }
     240            0 :         if timeline.get_gc_compaction_watermark() == Lsn::INVALID {
     241              :             // If the gc watermark is not set, we don't need to trigger auto compaction.
     242              :             // This check is the same as in `gc_compaction_split_jobs` but we don't log
     243              :             // here and we can also skip the computation of the trigger condition earlier.
     244            0 :             return Ok(());
     245            0 :         }
     246              : 
     247            0 :         let Ok(permit) = CONCURRENT_GC_COMPACTION_TASKS.clone().try_acquire_owned() else {
     248              :             // Only allow one compaction run at a time. TODO: As we do `try_acquire_owned`, we cannot ensure
     249              :             // the fairness of the lock across timelines. We should listen for both `acquire` and `l0_compaction_trigger`
     250              :             // to ensure the fairness while avoid starving other tasks.
     251            0 :             return Ok(());
     252              :         };
     253              : 
     254            0 :         let gc_compaction_state = timeline.get_gc_compaction_state();
     255            0 :         let l2_lsn = gc_compaction_state
     256            0 :             .map(|x| x.last_completed_lsn)
     257            0 :             .unwrap_or(Lsn::INVALID);
     258              : 
     259            0 :         let layers = {
     260            0 :             let guard = timeline.layers.read().await;
     261            0 :             let layer_map = guard.layer_map()?;
     262            0 :             layer_map.iter_historic_layers().collect_vec()
     263            0 :         };
     264            0 :         let mut l2_size: u64 = 0;
     265            0 :         let mut l1_size = 0;
     266            0 :         let gc_cutoff = *timeline.get_applied_gc_cutoff_lsn();
     267            0 :         for layer in layers {
     268            0 :             if layer.lsn_range.start <= l2_lsn {
     269            0 :                 l2_size += layer.file_size();
     270            0 :             } else if layer.lsn_range.start <= gc_cutoff {
     271            0 :                 l1_size += layer.file_size();
     272            0 :             }
     273              :         }
     274              : 
     275            0 :         fn trigger_compaction(
     276            0 :             l1_size: u64,
     277            0 :             l2_size: u64,
     278            0 :             gc_compaction_initial_threshold_kb: u64,
     279            0 :             gc_compaction_ratio_percent: u64,
     280            0 :         ) -> bool {
     281              :             const AUTO_TRIGGER_LIMIT: u64 = 150 * 1024 * 1024 * 1024; // 150GB
     282            0 :             if l1_size >= AUTO_TRIGGER_LIMIT || l2_size >= AUTO_TRIGGER_LIMIT {
     283              :                 // Do not auto-trigger when physical size >= 150GB
     284            0 :                 return false;
     285            0 :             }
     286            0 :             // initial trigger
     287            0 :             if l2_size == 0 && l1_size >= gc_compaction_initial_threshold_kb * 1024 {
     288            0 :                 info!(
     289            0 :                     "trigger auto-compaction because l1_size={} >= gc_compaction_initial_threshold_kb={}",
     290              :                     l1_size, gc_compaction_initial_threshold_kb
     291              :                 );
     292            0 :                 return true;
     293            0 :             }
     294            0 :             // size ratio trigger
     295            0 :             if l2_size == 0 {
     296            0 :                 return false;
     297            0 :             }
     298            0 :             if l1_size as f64 / l2_size as f64 >= (gc_compaction_ratio_percent as f64 / 100.0) {
     299            0 :                 info!(
     300            0 :                     "trigger auto-compaction because l1_size={} / l2_size={} > gc_compaction_ratio_percent={}",
     301              :                     l1_size, l2_size, gc_compaction_ratio_percent
     302              :                 );
     303            0 :                 return true;
     304            0 :             }
     305            0 :             false
     306            0 :         }
     307              : 
     308            0 :         if trigger_compaction(
     309            0 :             l1_size,
     310            0 :             l2_size,
     311            0 :             gc_compaction_initial_threshold_kb,
     312            0 :             gc_compaction_ratio_percent,
     313            0 :         ) {
     314            0 :             self.schedule_auto_compaction(
     315            0 :                 CompactOptions {
     316            0 :                     flags: {
     317            0 :                         let mut flags = EnumSet::new();
     318            0 :                         flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     319            0 :                         flags
     320            0 :                     },
     321            0 :                     sub_compaction: true,
     322            0 :                     compact_key_range: None,
     323            0 :                     compact_lsn_range: None,
     324            0 :                     sub_compaction_max_job_size_mb: None,
     325            0 :                 },
     326            0 :                 permit,
     327            0 :             );
     328            0 :             info!(
     329            0 :                 "scheduled auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     330              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     331              :             );
     332              :         } else {
     333            0 :             debug!(
     334            0 :                 "did not trigger auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     335              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     336              :             );
     337              :         }
     338            0 :         Ok(())
     339            0 :     }
     340              : 
     341              :     /// Notify the caller the job has finished and unblock GC.
     342            0 :     fn notify_and_unblock(&self, id: GcCompactionJobId) {
     343            0 :         info!("compaction job id={} finished", id);
     344            0 :         let mut guard = self.inner.lock().unwrap();
     345            0 :         if let Some(items) = guard.guards.remove(&id) {
     346            0 :             drop(items.gc_guard);
     347            0 :             if let Some(tx) = items.notify {
     348            0 :                 let _ = tx.send(());
     349            0 :             }
     350            0 :         }
     351            0 :     }
     352              : 
     353            0 :     async fn handle_sub_compaction(
     354            0 :         &self,
     355            0 :         id: GcCompactionJobId,
     356            0 :         options: CompactOptions,
     357            0 :         timeline: &Arc<Timeline>,
     358            0 :         gc_block: &GcBlock,
     359            0 :         auto: bool,
     360            0 :     ) -> Result<(), CompactionError> {
     361            0 :         info!(
     362            0 :             "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     363              :         );
     364            0 :         let jobs = timeline
     365            0 :             .gc_compaction_split_jobs(
     366            0 :                 GcCompactJob::from_compact_options(options.clone()),
     367            0 :                 options.sub_compaction_max_job_size_mb,
     368            0 :             )
     369            0 :             .await?;
     370            0 :         if jobs.is_empty() {
     371            0 :             info!("no jobs to run, skipping scheduled compaction task");
     372            0 :             self.notify_and_unblock(id);
     373              :         } else {
     374            0 :             let gc_guard = match gc_block.start().await {
     375            0 :                 Ok(guard) => guard,
     376            0 :                 Err(e) => {
     377            0 :                     return Err(CompactionError::Other(anyhow!(
     378            0 :                         "cannot run gc-compaction because gc is blocked: {}",
     379            0 :                         e
     380            0 :                     )));
     381              :                 }
     382              :             };
     383              : 
     384            0 :             let jobs_len = jobs.len();
     385            0 :             let mut pending_tasks = Vec::new();
     386            0 :             // gc-compaction might pick more layers or fewer layers to compact. The L2 LSN does not need to be accurate.
     387            0 :             // And therefore, we simply assume the maximum LSN of all jobs is the expected L2 LSN.
     388            0 :             let expected_l2_lsn = jobs.iter().map(|job| job.compact_lsn_range.end).max();
     389            0 :             for job in jobs {
     390              :                 // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
     391              :                 // until we do further refactors to allow directly call `compact_with_gc`.
     392            0 :                 let mut flags: EnumSet<CompactFlags> = EnumSet::default();
     393            0 :                 flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     394            0 :                 if job.dry_run {
     395            0 :                     flags |= CompactFlags::DryRun;
     396            0 :                 }
     397            0 :                 if options.flags.contains(CompactFlags::NoYield) {
     398            0 :                     flags |= CompactFlags::NoYield;
     399            0 :                 }
     400            0 :                 let options = CompactOptions {
     401            0 :                     flags,
     402            0 :                     sub_compaction: false,
     403            0 :                     compact_key_range: Some(job.compact_key_range.into()),
     404            0 :                     compact_lsn_range: Some(job.compact_lsn_range.into()),
     405            0 :                     sub_compaction_max_job_size_mb: None,
     406            0 :                 };
     407            0 :                 pending_tasks.push(GcCompactionQueueItem::SubCompactionJob(options));
     408              :             }
     409              : 
     410            0 :             if !auto {
     411            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, None));
     412            0 :             } else {
     413            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, expected_l2_lsn));
     414            0 :             }
     415              : 
     416              :             {
     417            0 :                 let mut guard = self.inner.lock().unwrap();
     418            0 :                 guard.guards.entry(id).or_default().gc_guard = Some(gc_guard);
     419            0 :                 let mut tasks = Vec::new();
     420            0 :                 for task in pending_tasks {
     421            0 :                     let id = guard.next_id();
     422            0 :                     tasks.push((id, task));
     423            0 :                 }
     424            0 :                 tasks.reverse();
     425            0 :                 for item in tasks {
     426            0 :                     guard.queued.push_front(item);
     427            0 :                 }
     428              :             }
     429            0 :             info!(
     430            0 :                 "scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs",
     431              :                 jobs_len
     432              :             );
     433              :         }
     434            0 :         Ok(())
     435            0 :     }
     436              : 
     437              :     /// Take a job from the queue and process it. Returns if there are still pending tasks.
     438            0 :     pub async fn iteration(
     439            0 :         &self,
     440            0 :         cancel: &CancellationToken,
     441            0 :         ctx: &RequestContext,
     442            0 :         gc_block: &GcBlock,
     443            0 :         timeline: &Arc<Timeline>,
     444            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     445            0 :         let res = self.iteration_inner(cancel, ctx, gc_block, timeline).await;
     446            0 :         if let Err(err) = &res {
     447            0 :             log_compaction_error(err, None, cancel.is_cancelled());
     448            0 :         }
     449            0 :         res
     450            0 :     }
     451              : 
     452            0 :     async fn iteration_inner(
     453            0 :         &self,
     454            0 :         cancel: &CancellationToken,
     455            0 :         ctx: &RequestContext,
     456            0 :         gc_block: &GcBlock,
     457            0 :         timeline: &Arc<Timeline>,
     458            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     459            0 :         let Ok(_one_op_at_a_time_guard) = self.consumer_lock.try_lock() else {
     460            0 :             return Err(CompactionError::AlreadyRunning(
     461            0 :                 "cannot run gc-compaction because another gc-compaction is running. This should not happen because we only call this function from the gc-compaction queue.",
     462            0 :             ));
     463              :         };
     464              :         let has_pending_tasks;
     465            0 :         let mut yield_for_l0 = false;
     466            0 :         let Some((id, item)) = ({
     467            0 :             let mut guard = self.inner.lock().unwrap();
     468            0 :             if let Some((id, item)) = guard.queued.pop_front() {
     469            0 :                 guard.running = Some((id, item.clone()));
     470            0 :                 has_pending_tasks = !guard.queued.is_empty();
     471            0 :                 Some((id, item))
     472              :             } else {
     473            0 :                 has_pending_tasks = false;
     474            0 :                 None
     475              :             }
     476              :         }) else {
     477            0 :             self.trigger_auto_compaction(timeline).await?;
     478              :             // Always yield after triggering auto-compaction. Gc-compaction is a low-priority task and we
     479              :             // have not implemented preemption mechanism yet. We always want to yield it to more important
     480              :             // tasks if there is one.
     481            0 :             return Ok(CompactionOutcome::Done);
     482              :         };
     483            0 :         match item {
     484            0 :             GcCompactionQueueItem::MetaJob { options, auto } => {
     485            0 :                 if !options
     486            0 :                     .flags
     487            0 :                     .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     488              :                 {
     489            0 :                     warn!(
     490            0 :                         "ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}",
     491              :                         options
     492              :                     );
     493            0 :                 } else if options.sub_compaction {
     494            0 :                     info!(
     495            0 :                         "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     496              :                     );
     497            0 :                     self.handle_sub_compaction(id, options, timeline, gc_block, auto)
     498            0 :                         .await?;
     499              :                 } else {
     500              :                     // Auto compaction always enables sub-compaction so we don't need to handle update_l2_lsn
     501              :                     // in this branch.
     502            0 :                     let gc_guard = match gc_block.start().await {
     503            0 :                         Ok(guard) => guard,
     504            0 :                         Err(e) => {
     505            0 :                             return Err(CompactionError::Other(anyhow!(
     506            0 :                                 "cannot run gc-compaction because gc is blocked: {}",
     507            0 :                                 e
     508            0 :                             )));
     509              :                         }
     510              :                     };
     511            0 :                     {
     512            0 :                         let mut guard = self.inner.lock().unwrap();
     513            0 :                         guard.guards.entry(id).or_default().gc_guard = Some(gc_guard);
     514            0 :                     }
     515            0 :                     let compaction_result =
     516            0 :                         timeline.compact_with_options(cancel, options, ctx).await?;
     517            0 :                     self.notify_and_unblock(id);
     518            0 :                     if compaction_result == CompactionOutcome::YieldForL0 {
     519            0 :                         yield_for_l0 = true;
     520            0 :                     }
     521              :                 }
     522              :             }
     523            0 :             GcCompactionQueueItem::SubCompactionJob(options) => {
     524              :                 // TODO: error handling, clear the queue if any task fails?
     525            0 :                 let compaction_result = timeline.compact_with_options(cancel, options, ctx).await?;
     526            0 :                 if compaction_result == CompactionOutcome::YieldForL0 {
     527            0 :                     // We will permenantly give up a task if we yield for L0 compaction: the preempted subcompaction job won't be running
     528            0 :                     // again. This ensures that we don't keep doing duplicated work within gc-compaction. Not directly returning here because
     529            0 :                     // we need to clean things up before returning from the function.
     530            0 :                     yield_for_l0 = true;
     531            0 :                 }
     532              :             }
     533            0 :             GcCompactionQueueItem::Notify(id, l2_lsn) => {
     534            0 :                 self.notify_and_unblock(id);
     535            0 :                 if let Some(l2_lsn) = l2_lsn {
     536            0 :                     let current_l2_lsn = timeline
     537            0 :                         .get_gc_compaction_state()
     538            0 :                         .map(|x| x.last_completed_lsn)
     539            0 :                         .unwrap_or(Lsn::INVALID);
     540            0 :                     if l2_lsn >= current_l2_lsn {
     541            0 :                         info!("l2_lsn updated to {}", l2_lsn);
     542            0 :                         timeline
     543            0 :                             .update_gc_compaction_state(GcCompactionState {
     544            0 :                                 last_completed_lsn: l2_lsn,
     545            0 :                             })
     546            0 :                             .map_err(CompactionError::Other)?;
     547              :                     } else {
     548            0 :                         warn!(
     549            0 :                             "l2_lsn updated to {} but it is less than the current l2_lsn {}",
     550              :                             l2_lsn, current_l2_lsn
     551              :                         );
     552              :                     }
     553            0 :                 }
     554              :             }
     555              :         }
     556            0 :         {
     557            0 :             let mut guard = self.inner.lock().unwrap();
     558            0 :             guard.running = None;
     559            0 :         }
     560            0 :         Ok(if yield_for_l0 {
     561            0 :             tracing::info!("give up gc-compaction: yield for L0 compaction");
     562            0 :             CompactionOutcome::YieldForL0
     563            0 :         } else if has_pending_tasks {
     564            0 :             CompactionOutcome::Pending
     565              :         } else {
     566            0 :             CompactionOutcome::Done
     567              :         })
     568            0 :     }
     569              : 
     570              :     #[allow(clippy::type_complexity)]
     571            0 :     pub fn remaining_jobs(
     572            0 :         &self,
     573            0 :     ) -> (
     574            0 :         Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     575            0 :         VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     576            0 :     ) {
     577            0 :         let guard = self.inner.lock().unwrap();
     578            0 :         (guard.running.clone(), guard.queued.clone())
     579            0 :     }
     580              : 
     581            0 :     pub fn remaining_jobs_num(&self) -> usize {
     582            0 :         let guard = self.inner.lock().unwrap();
     583            0 :         guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
     584            0 :     }
     585              : }
     586              : 
     587              : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
     588              : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
     589              : /// called.
     590              : #[derive(Debug, Clone)]
     591              : pub(crate) struct GcCompactJob {
     592              :     pub dry_run: bool,
     593              :     /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
     594              :     /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
     595              :     pub compact_key_range: Range<Key>,
     596              :     /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
     597              :     /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
     598              :     /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
     599              :     /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
     600              :     pub compact_lsn_range: Range<Lsn>,
     601              : }
     602              : 
     603              : impl GcCompactJob {
     604          108 :     pub fn from_compact_options(options: CompactOptions) -> Self {
     605          108 :         GcCompactJob {
     606          108 :             dry_run: options.flags.contains(CompactFlags::DryRun),
     607          108 :             compact_key_range: options
     608          108 :                 .compact_key_range
     609          108 :                 .map(|x| x.into())
     610          108 :                 .unwrap_or(Key::MIN..Key::MAX),
     611          108 :             compact_lsn_range: options
     612          108 :                 .compact_lsn_range
     613          108 :                 .map(|x| x.into())
     614          108 :                 .unwrap_or(Lsn::INVALID..Lsn::MAX),
     615          108 :         }
     616          108 :     }
     617              : }
     618              : 
     619              : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
     620              : /// and contains the exact layers we want to compact.
     621              : pub struct GcCompactionJobDescription {
     622              :     /// All layers to read in the compaction job
     623              :     selected_layers: Vec<Layer>,
     624              :     /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
     625              :     /// keep all deltas <= this LSN or generate an image == this LSN.
     626              :     gc_cutoff: Lsn,
     627              :     /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
     628              :     /// generate an image == this LSN.
     629              :     retain_lsns_below_horizon: Vec<Lsn>,
     630              :     /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
     631              :     /// \>= this LSN will be kept and will not be rewritten.
     632              :     max_layer_lsn: Lsn,
     633              :     /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
     634              :     /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
     635              :     /// k-merge within gc-compaction.
     636              :     min_layer_lsn: Lsn,
     637              :     /// Only compact layers overlapping with this range.
     638              :     compaction_key_range: Range<Key>,
     639              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
     640              :     /// This field is here solely for debugging. The field will not be read once the compaction
     641              :     /// description is generated.
     642              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
     643              : }
     644              : 
     645              : /// The result of bottom-most compaction for a single key at each LSN.
     646              : #[derive(Debug)]
     647              : #[cfg_attr(test, derive(PartialEq))]
     648              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
     649              : 
     650              : /// The result of bottom-most compaction.
     651              : #[derive(Debug)]
     652              : #[cfg_attr(test, derive(PartialEq))]
     653              : pub(crate) struct KeyHistoryRetention {
     654              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
     655              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
     656              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
     657              :     pub(crate) above_horizon: KeyLogAtLsn,
     658              : }
     659              : 
     660              : impl KeyHistoryRetention {
     661              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     662              :     ///
     663              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     664              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     665              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     666              :     /// Then we delete branch @ 0x20.
     667              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     668              :     /// And that wouldnt' change the shape of the layer.
     669              :     ///
     670              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     671              :     ///
     672              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     673          148 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     674          148 :         if dry_run {
     675            0 :             return true;
     676          148 :         }
     677          148 :         if LayerMap::is_l0(&key.key_range, key.is_delta) {
     678              :             // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
     679              :             // We should ignore such layers.
     680            0 :             return true;
     681          148 :         }
     682              :         let layer_generation;
     683              :         {
     684          148 :             let guard = tline.layers.read().await;
     685          148 :             if !guard.contains_key(key) {
     686          104 :                 return false;
     687           44 :             }
     688           44 :             layer_generation = guard.get_from_key(key).metadata().generation;
     689           44 :         }
     690           44 :         if layer_generation == tline.generation {
     691           44 :             info!(
     692              :                 key=%key,
     693              :                 ?layer_generation,
     694            0 :                 "discard layer due to duplicated layer key in the same generation",
     695              :             );
     696           44 :             true
     697              :         } else {
     698            0 :             false
     699              :         }
     700          148 :     }
     701              : 
     702              :     /// Pipe a history of a single key to the writers.
     703              :     ///
     704              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     705              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     706              :     #[allow(clippy::too_many_arguments)]
     707         1244 :     async fn pipe_to(
     708         1244 :         self,
     709         1244 :         key: Key,
     710         1244 :         delta_writer: &mut SplitDeltaLayerWriter,
     711         1244 :         mut image_writer: Option<&mut SplitImageLayerWriter>,
     712         1244 :         stat: &mut CompactionStatistics,
     713         1244 :         ctx: &RequestContext,
     714         1244 :     ) -> anyhow::Result<()> {
     715         1244 :         let mut first_batch = true;
     716         4024 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     717         2780 :             if first_batch {
     718         1244 :                 if logs.len() == 1 && logs[0].1.is_image() {
     719         1168 :                     let Value::Image(img) = &logs[0].1 else {
     720            0 :                         unreachable!()
     721              :                     };
     722         1168 :                     stat.produce_image_key(img);
     723         1168 :                     if let Some(image_writer) = image_writer.as_mut() {
     724         1168 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     725              :                     } else {
     726            0 :                         delta_writer
     727            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     728            0 :                             .await?;
     729              :                     }
     730              :                 } else {
     731          132 :                     for (lsn, val) in logs {
     732           56 :                         stat.produce_key(&val);
     733           56 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     734              :                     }
     735              :                 }
     736         1244 :                 first_batch = false;
     737              :             } else {
     738         1768 :                 for (lsn, val) in logs {
     739          232 :                     stat.produce_key(&val);
     740          232 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     741              :                 }
     742              :             }
     743              :         }
     744         1244 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     745         1360 :         for (lsn, val) in above_horizon_logs {
     746          116 :             stat.produce_key(&val);
     747          116 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     748              :         }
     749         1244 :         Ok(())
     750         1244 :     }
     751              : }
     752              : 
     753              : #[derive(Debug, Serialize, Default)]
     754              : struct CompactionStatisticsNumSize {
     755              :     num: u64,
     756              :     size: u64,
     757              : }
     758              : 
     759              : #[derive(Debug, Serialize, Default)]
     760              : pub struct CompactionStatistics {
     761              :     /// Delta layer visited (maybe compressed, physical size)
     762              :     delta_layer_visited: CompactionStatisticsNumSize,
     763              :     /// Image layer visited (maybe compressed, physical size)
     764              :     image_layer_visited: CompactionStatisticsNumSize,
     765              :     /// Delta layer produced (maybe compressed, physical size)
     766              :     delta_layer_produced: CompactionStatisticsNumSize,
     767              :     /// Image layer produced (maybe compressed, physical size)
     768              :     image_layer_produced: CompactionStatisticsNumSize,
     769              :     /// Delta layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
     770              :     delta_layer_discarded: CompactionStatisticsNumSize,
     771              :     /// Image layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
     772              :     image_layer_discarded: CompactionStatisticsNumSize,
     773              :     num_unique_keys_visited: usize,
     774              :     /// Delta visited (uncompressed, original size)
     775              :     wal_keys_visited: CompactionStatisticsNumSize,
     776              :     /// Image visited (uncompressed, original size)
     777              :     image_keys_visited: CompactionStatisticsNumSize,
     778              :     /// Delta produced (uncompressed, original size)
     779              :     wal_produced: CompactionStatisticsNumSize,
     780              :     /// Image produced (uncompressed, original size)
     781              :     image_produced: CompactionStatisticsNumSize,
     782              : 
     783              :     // Time spent in each phase
     784              :     time_acquire_lock_secs: f64,
     785              :     time_analyze_secs: f64,
     786              :     time_download_layer_secs: f64,
     787              :     time_main_loop_secs: f64,
     788              :     time_final_phase_secs: f64,
     789              :     time_total_secs: f64,
     790              : 
     791              :     // Summary
     792              :     /// Ratio of the key-value size before/after gc-compaction.
     793              :     uncompressed_size_ratio: f64,
     794              :     /// Ratio of the physical size before/after gc-compaction.
     795              :     physical_size_ratio: f64,
     796              : }
     797              : 
     798              : impl CompactionStatistics {
     799         2084 :     fn estimated_size_of_value(val: &Value) -> usize {
     800          864 :         match val {
     801         1220 :             Value::Image(img) => img.len(),
     802            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
     803          864 :             _ => std::mem::size_of::<NeonWalRecord>(),
     804              :         }
     805         2084 :     }
     806         3272 :     fn estimated_size_of_key() -> usize {
     807         3272 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
     808         3272 :     }
     809          172 :     fn visit_delta_layer(&mut self, size: u64) {
     810          172 :         self.delta_layer_visited.num += 1;
     811          172 :         self.delta_layer_visited.size += size;
     812          172 :     }
     813          132 :     fn visit_image_layer(&mut self, size: u64) {
     814          132 :         self.image_layer_visited.num += 1;
     815          132 :         self.image_layer_visited.size += size;
     816          132 :     }
     817         1244 :     fn on_unique_key_visited(&mut self) {
     818         1244 :         self.num_unique_keys_visited += 1;
     819         1244 :     }
     820          480 :     fn visit_wal_key(&mut self, val: &Value) {
     821          480 :         self.wal_keys_visited.num += 1;
     822          480 :         self.wal_keys_visited.size +=
     823          480 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     824          480 :     }
     825         1220 :     fn visit_image_key(&mut self, val: &Value) {
     826         1220 :         self.image_keys_visited.num += 1;
     827         1220 :         self.image_keys_visited.size +=
     828         1220 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     829         1220 :     }
     830          404 :     fn produce_key(&mut self, val: &Value) {
     831          404 :         match val {
     832           20 :             Value::Image(img) => self.produce_image_key(img),
     833          384 :             Value::WalRecord(_) => self.produce_wal_key(val),
     834              :         }
     835          404 :     }
     836          384 :     fn produce_wal_key(&mut self, val: &Value) {
     837          384 :         self.wal_produced.num += 1;
     838          384 :         self.wal_produced.size +=
     839          384 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     840          384 :     }
     841         1188 :     fn produce_image_key(&mut self, val: &Bytes) {
     842         1188 :         self.image_produced.num += 1;
     843         1188 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
     844         1188 :     }
     845           28 :     fn discard_delta_layer(&mut self, original_size: u64) {
     846           28 :         self.delta_layer_discarded.num += 1;
     847           28 :         self.delta_layer_discarded.size += original_size;
     848           28 :     }
     849           16 :     fn discard_image_layer(&mut self, original_size: u64) {
     850           16 :         self.image_layer_discarded.num += 1;
     851           16 :         self.image_layer_discarded.size += original_size;
     852           16 :     }
     853           48 :     fn produce_delta_layer(&mut self, size: u64) {
     854           48 :         self.delta_layer_produced.num += 1;
     855           48 :         self.delta_layer_produced.size += size;
     856           48 :     }
     857           60 :     fn produce_image_layer(&mut self, size: u64) {
     858           60 :         self.image_layer_produced.num += 1;
     859           60 :         self.image_layer_produced.size += size;
     860           60 :     }
     861          104 :     fn finalize(&mut self) {
     862          104 :         let original_key_value_size = self.image_keys_visited.size + self.wal_keys_visited.size;
     863          104 :         let produced_key_value_size = self.image_produced.size + self.wal_produced.size;
     864          104 :         self.uncompressed_size_ratio =
     865          104 :             original_key_value_size as f64 / (produced_key_value_size as f64 + 1.0); // avoid div by 0
     866          104 :         let original_physical_size = self.image_layer_visited.size + self.delta_layer_visited.size;
     867          104 :         let produced_physical_size = self.image_layer_produced.size
     868          104 :             + self.delta_layer_produced.size
     869          104 :             + self.image_layer_discarded.size
     870          104 :             + self.delta_layer_discarded.size; // Also include the discarded layers to make the ratio accurate
     871          104 :         self.physical_size_ratio =
     872          104 :             original_physical_size as f64 / (produced_physical_size as f64 + 1.0); // avoid div by 0
     873          104 :     }
     874              : }
     875              : 
     876              : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
     877              : pub enum CompactionOutcome {
     878              :     #[default]
     879              :     /// No layers need to be compacted after this round. Compaction doesn't need
     880              :     /// to be immediately scheduled.
     881              :     Done,
     882              :     /// Still has pending layers to be compacted after this round. Ideally, the scheduler
     883              :     /// should immediately schedule another compaction.
     884              :     Pending,
     885              :     /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
     886              :     /// guaranteed when `compaction_l0_first` is enabled).
     887              :     YieldForL0,
     888              :     /// Compaction was skipped, because the timeline is ineligible for compaction.
     889              :     Skipped,
     890              : }
     891              : 
     892              : impl Timeline {
     893              :     /// TODO: cancellation
     894              :     ///
     895              :     /// Returns whether the compaction has pending tasks.
     896          725 :     pub(crate) async fn compact_legacy(
     897          725 :         self: &Arc<Self>,
     898          725 :         cancel: &CancellationToken,
     899          725 :         options: CompactOptions,
     900          725 :         ctx: &RequestContext,
     901          725 :     ) -> Result<CompactionOutcome, CompactionError> {
     902          725 :         if options
     903          725 :             .flags
     904          725 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     905              :         {
     906            0 :             self.compact_with_gc(cancel, options, ctx).await?;
     907            0 :             return Ok(CompactionOutcome::Done);
     908          725 :         }
     909          725 : 
     910          725 :         if options.flags.contains(CompactFlags::DryRun) {
     911            0 :             return Err(CompactionError::Other(anyhow!(
     912            0 :                 "dry-run mode is not supported for legacy compaction for now"
     913            0 :             )));
     914          725 :         }
     915          725 : 
     916          725 :         if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
     917              :             // maybe useful in the future? could implement this at some point
     918            0 :             return Err(CompactionError::Other(anyhow!(
     919            0 :                 "compaction range is not supported for legacy compaction for now"
     920            0 :             )));
     921          725 :         }
     922          725 : 
     923          725 :         // High level strategy for compaction / image creation:
     924          725 :         //
     925          725 :         // 1. First, do a L0 compaction to ensure we move the L0
     926          725 :         // layers into the historic layer map get flat levels of
     927          725 :         // layers. If we did not compact all L0 layers, we will
     928          725 :         // prioritize compacting the timeline again and not do
     929          725 :         // any of the compactions below.
     930          725 :         //
     931          725 :         // 2. Then, calculate the desired "partitioning" of the
     932          725 :         // currently in-use key space. The goal is to partition the
     933          725 :         // key space into roughly fixed-size chunks, but also take into
     934          725 :         // account any existing image layers, and try to align the
     935          725 :         // chunk boundaries with the existing image layers to avoid
     936          725 :         // too much churn. Also try to align chunk boundaries with
     937          725 :         // relation boundaries.  In principle, we don't know about
     938          725 :         // relation boundaries here, we just deal with key-value
     939          725 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
     940          725 :         // map relations into key-value pairs. But in practice we know
     941          725 :         // that 'field6' is the block number, and the fields 1-5
     942          725 :         // identify a relation. This is just an optimization,
     943          725 :         // though.
     944          725 :         //
     945          725 :         // 3. Once we know the partitioning, for each partition,
     946          725 :         // decide if it's time to create a new image layer. The
     947          725 :         // criteria is: there has been too much "churn" since the last
     948          725 :         // image layer? The "churn" is fuzzy concept, it's a
     949          725 :         // combination of too many delta files, or too much WAL in
     950          725 :         // total in the delta file. Or perhaps: if creating an image
     951          725 :         // file would allow to delete some older files.
     952          725 :         //
     953          725 :         // 4. In the end, if the tenant gets auto-sharded, we will run
     954          725 :         // a shard-ancestor compaction.
     955          725 : 
     956          725 :         // Is the timeline being deleted?
     957          725 :         if self.is_stopping() {
     958            0 :             trace!("Dropping out of compaction on timeline shutdown");
     959            0 :             return Err(CompactionError::ShuttingDown);
     960          725 :         }
     961          725 : 
     962          725 :         let target_file_size = self.get_checkpoint_distance();
     963              : 
     964              :         // Define partitioning schema if needed
     965              : 
     966              :         // 1. L0 Compact
     967          725 :         let l0_outcome = {
     968          725 :             let timer = self.metrics.compact_time_histo.start_timer();
     969          725 :             let l0_outcome = self
     970          725 :                 .compact_level0(
     971          725 :                     target_file_size,
     972          725 :                     options.flags.contains(CompactFlags::ForceL0Compaction),
     973          725 :                     ctx,
     974          725 :                 )
     975          725 :                 .await?;
     976          725 :             timer.stop_and_record();
     977          725 :             l0_outcome
     978          725 :         };
     979          725 : 
     980          725 :         if options.flags.contains(CompactFlags::OnlyL0Compaction) {
     981            0 :             return Ok(l0_outcome);
     982          725 :         }
     983          725 : 
     984          725 :         // Yield if we have pending L0 compaction. The scheduler will do another pass.
     985          725 :         if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
     986            0 :             && !options.flags.contains(CompactFlags::NoYield)
     987              :         {
     988            0 :             info!("image/ancestor compaction yielding for L0 compaction");
     989            0 :             return Ok(CompactionOutcome::YieldForL0);
     990          725 :         }
     991          725 : 
     992          725 :         // 2. Repartition and create image layers if necessary
     993          725 :         match self
     994          725 :             .repartition(
     995          725 :                 self.get_last_record_lsn(),
     996          725 :                 self.get_compaction_target_size(),
     997          725 :                 options.flags,
     998          725 :                 ctx,
     999          725 :             )
    1000          725 :             .await
    1001              :         {
    1002          725 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
    1003          725 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
    1004          725 :                 let image_ctx = RequestContextBuilder::extend(ctx)
    1005          725 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
    1006          725 :                     .build();
    1007          725 : 
    1008          725 :                 let mut partitioning = dense_partitioning;
    1009          725 :                 partitioning
    1010          725 :                     .parts
    1011          725 :                     .extend(sparse_partitioning.into_dense().parts);
    1012              : 
    1013              :                 // 3. Create new image layers for partitions that have been modified "enough".
    1014          725 :                 let (image_layers, outcome) = self
    1015          725 :                     .create_image_layers(
    1016          725 :                         &partitioning,
    1017          725 :                         lsn,
    1018          725 :                         if options
    1019          725 :                             .flags
    1020          725 :                             .contains(CompactFlags::ForceImageLayerCreation)
    1021              :                         {
    1022           28 :                             ImageLayerCreationMode::Force
    1023              :                         } else {
    1024          697 :                             ImageLayerCreationMode::Try
    1025              :                         },
    1026          725 :                         &image_ctx,
    1027          725 :                         self.last_image_layer_creation_status
    1028          725 :                             .load()
    1029          725 :                             .as_ref()
    1030          725 :                             .clone(),
    1031          725 :                         !options.flags.contains(CompactFlags::NoYield),
    1032          725 :                     )
    1033          725 :                     .await
    1034          725 :                     .inspect_err(|err| {
    1035              :                         if let CreateImageLayersError::GetVectoredError(
    1036              :                             GetVectoredError::MissingKey(_),
    1037            0 :                         ) = err
    1038              :                         {
    1039            0 :                             critical!("missing key during compaction: {err:?}");
    1040            0 :                         }
    1041          725 :                     })?;
    1042              : 
    1043          725 :                 self.last_image_layer_creation_status
    1044          725 :                     .store(Arc::new(outcome.clone()));
    1045          725 : 
    1046          725 :                 self.upload_new_image_layers(image_layers)?;
    1047          725 :                 if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
    1048              :                     // Yield and do not do any other kind of compaction.
    1049            0 :                     info!(
    1050            0 :                         "skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction)."
    1051              :                     );
    1052            0 :                     return Ok(CompactionOutcome::YieldForL0);
    1053          725 :                 }
    1054              :             }
    1055              : 
    1056              :             // Suppress errors when cancelled.
    1057            0 :             Err(_) if self.cancel.is_cancelled() => {}
    1058            0 :             Err(err) if err.is_cancel() => {}
    1059              : 
    1060              :             // Alert on critical errors that indicate data corruption.
    1061            0 :             Err(err) if err.is_critical() => {
    1062            0 :                 critical!("could not compact, repartitioning keyspace failed: {err:?}");
    1063              :             }
    1064              : 
    1065              :             // Log other errors. No partitioning? This is normal, if the timeline was just created
    1066              :             // as an empty timeline. Also in unit tests, when we use the timeline as a simple
    1067              :             // key-value store, ignoring the datadir layout. Log the error but continue.
    1068            0 :             Err(err) => error!("could not compact, repartitioning keyspace failed: {err:?}"),
    1069              :         };
    1070              : 
    1071          725 :         let partition_count = self.partitioning.read().0.0.parts.len();
    1072          725 : 
    1073          725 :         // 4. Shard ancestor compaction
    1074          725 : 
    1075          725 :         if self.shard_identity.count >= ShardCount::new(2) {
    1076              :             // Limit the number of layer rewrites to the number of partitions: this means its
    1077              :             // runtime should be comparable to a full round of image layer creations, rather than
    1078              :             // being potentially much longer.
    1079            0 :             let rewrite_max = partition_count;
    1080            0 : 
    1081            0 :             self.compact_shard_ancestors(rewrite_max, ctx).await?;
    1082          725 :         }
    1083              : 
    1084          725 :         Ok(CompactionOutcome::Done)
    1085          725 :     }
    1086              : 
    1087              :     /// Check for layers that are elegible to be rewritten:
    1088              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
    1089              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
    1090              :     /// - For future use: layers beyond pitr_interval that are in formats we would
    1091              :     ///   rather not maintain compatibility with indefinitely.
    1092              :     ///
    1093              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
    1094              :     /// how much work it will try to do in each compaction pass.
    1095            0 :     async fn compact_shard_ancestors(
    1096            0 :         self: &Arc<Self>,
    1097            0 :         rewrite_max: usize,
    1098            0 :         ctx: &RequestContext,
    1099            0 :     ) -> Result<(), CompactionError> {
    1100            0 :         let mut drop_layers = Vec::new();
    1101            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
    1102            0 : 
    1103            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
    1104            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
    1105            0 :         // pitr_interval, for example because a branchpoint references it.
    1106            0 :         //
    1107            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
    1108            0 :         // are rewriting layers.
    1109            0 :         let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
    1110            0 : 
    1111            0 :         tracing::info!(
    1112            0 :             "starting shard ancestor compaction, latest_gc_cutoff: {}, pitr cutoff {}",
    1113            0 :             *latest_gc_cutoff,
    1114            0 :             self.gc_info.read().unwrap().cutoffs.time
    1115              :         );
    1116              : 
    1117            0 :         let layers = self.layers.read().await;
    1118            0 :         for layer_desc in layers.layer_map()?.iter_historic_layers() {
    1119            0 :             let layer = layers.get_from_desc(&layer_desc);
    1120            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
    1121              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
    1122            0 :                 continue;
    1123            0 :             }
    1124            0 : 
    1125            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
    1126            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
    1127            0 :             let layer_local_page_count = sharded_range.page_count();
    1128            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
    1129            0 :             if layer_local_page_count == 0 {
    1130              :                 // This ancestral layer only covers keys that belong to other shards.
    1131              :                 // We include the full metadata in the log: if we had some critical bug that caused
    1132              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
    1133            0 :                 info!(%layer, old_metadata=?layer.metadata(),
    1134            0 :                     "dropping layer after shard split, contains no keys for this shard.",
    1135              :                 );
    1136              : 
    1137            0 :                 if cfg!(debug_assertions) {
    1138              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
    1139              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
    1140              :                     // should be !is_key_disposable()
    1141              :                     // TODO: exclude sparse keyspace from this check, otherwise it will infinitely loop.
    1142            0 :                     let range = layer_desc.get_key_range();
    1143            0 :                     let mut key = range.start;
    1144            0 :                     while key < range.end {
    1145            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
    1146            0 :                         key = key.next();
    1147              :                     }
    1148            0 :                 }
    1149              : 
    1150            0 :                 drop_layers.push(layer);
    1151            0 :                 continue;
    1152            0 :             } else if layer_local_page_count != u32::MAX
    1153            0 :                 && layer_local_page_count == layer_raw_page_count
    1154              :             {
    1155            0 :                 debug!(%layer,
    1156            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
    1157              :                     layer_local_page_count
    1158              :                 );
    1159            0 :                 continue;
    1160            0 :             }
    1161            0 : 
    1162            0 :             // Don't bother re-writing a layer unless it will at least halve its size
    1163            0 :             if layer_local_page_count != u32::MAX
    1164            0 :                 && layer_local_page_count > layer_raw_page_count / 2
    1165              :             {
    1166            0 :                 debug!(%layer,
    1167            0 :                     "layer is already mostly local ({}/{}), not rewriting",
    1168              :                     layer_local_page_count,
    1169              :                     layer_raw_page_count
    1170              :                 );
    1171            0 :             }
    1172              : 
    1173              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
    1174              :             // without incurring the I/O cost of a rewrite.
    1175            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
    1176            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
    1177            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
    1178            0 :                 continue;
    1179            0 :             }
    1180            0 : 
    1181            0 :             if layer_desc.is_delta() {
    1182              :                 // We do not yet implement rewrite of delta layers
    1183            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
    1184            0 :                 continue;
    1185            0 :             }
    1186            0 : 
    1187            0 :             // Only rewrite layers if their generations differ.  This guarantees:
    1188            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
    1189            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
    1190            0 :             if layer.metadata().generation == self.generation {
    1191            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
    1192            0 :                 continue;
    1193            0 :             }
    1194            0 : 
    1195            0 :             if layers_to_rewrite.len() >= rewrite_max {
    1196            0 :                 tracing::info!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
    1197            0 :                     layers_to_rewrite.len()
    1198              :                 );
    1199            0 :                 continue;
    1200            0 :             }
    1201            0 : 
    1202            0 :             // Fall through: all our conditions for doing a rewrite passed.
    1203            0 :             layers_to_rewrite.push(layer);
    1204              :         }
    1205              : 
    1206              :         // Drop read lock on layer map before we start doing time-consuming I/O
    1207            0 :         drop(layers);
    1208            0 : 
    1209            0 :         let mut replace_image_layers = Vec::new();
    1210              : 
    1211            0 :         for layer in layers_to_rewrite {
    1212            0 :             tracing::info!(layer=%layer, "Rewriting layer after shard split...");
    1213            0 :             let mut image_layer_writer = ImageLayerWriter::new(
    1214            0 :                 self.conf,
    1215            0 :                 self.timeline_id,
    1216            0 :                 self.tenant_shard_id,
    1217            0 :                 &layer.layer_desc().key_range,
    1218            0 :                 layer.layer_desc().image_layer_lsn(),
    1219            0 :                 ctx,
    1220            0 :             )
    1221            0 :             .await
    1222            0 :             .map_err(CompactionError::Other)?;
    1223              : 
    1224              :             // Safety of layer rewrites:
    1225              :             // - We are writing to a different local file path than we are reading from, so the old Layer
    1226              :             //   cannot interfere with the new one.
    1227              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
    1228              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
    1229              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
    1230              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
    1231              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
    1232              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
    1233              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
    1234              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
    1235              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
    1236              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
    1237            0 :             let resident = layer.download_and_keep_resident(ctx).await?;
    1238              : 
    1239            0 :             let keys_written = resident
    1240            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
    1241            0 :                 .await?;
    1242              : 
    1243            0 :             if keys_written > 0 {
    1244            0 :                 let (desc, path) = image_layer_writer
    1245            0 :                     .finish(ctx)
    1246            0 :                     .await
    1247            0 :                     .map_err(CompactionError::Other)?;
    1248            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
    1249            0 :                     .map_err(CompactionError::Other)?;
    1250            0 :                 tracing::info!(layer=%new_layer, "Rewrote layer, {} -> {} bytes",
    1251            0 :                     layer.metadata().file_size,
    1252            0 :                     new_layer.metadata().file_size);
    1253              : 
    1254            0 :                 replace_image_layers.push((layer, new_layer));
    1255            0 :             } else {
    1256            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
    1257            0 :                 // the layer has no data for us with the ShardedRange check above, but
    1258            0 :                 drop_layers.push(layer);
    1259            0 :             }
    1260              :         }
    1261              : 
    1262              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
    1263              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
    1264              :         // to remote index) and be removed. This is inefficient but safe.
    1265            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
    1266            0 : 
    1267            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
    1268            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
    1269            0 :             .await?;
    1270              : 
    1271            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
    1272            0 : 
    1273            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
    1274            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
    1275            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
    1276            0 :         // load.
    1277            0 :         match self.remote_client.wait_completion().await {
    1278            0 :             Ok(()) => (),
    1279            0 :             Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
    1280              :             Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
    1281            0 :                 return Err(CompactionError::ShuttingDown);
    1282              :             }
    1283              :         }
    1284              : 
    1285            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
    1286            0 : 
    1287            0 :         Ok(())
    1288            0 :     }
    1289              : 
    1290              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
    1291              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
    1292              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
    1293              :     ///
    1294              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
    1295              :     /// that we know won't be needed for reads.
    1296          468 :     pub(crate) async fn update_layer_visibility(
    1297          468 :         &self,
    1298          468 :     ) -> Result<(), super::layer_manager::Shutdown> {
    1299          468 :         let head_lsn = self.get_last_record_lsn();
    1300              : 
    1301              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
    1302              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
    1303              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
    1304              :         // they will be subject to L0->L1 compaction in the near future.
    1305          468 :         let layer_manager = self.layers.read().await;
    1306          468 :         let layer_map = layer_manager.layer_map()?;
    1307              : 
    1308          468 :         let readable_points = {
    1309          468 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
    1310          468 : 
    1311          468 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
    1312          468 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
    1313            0 :                 if *is_offloaded == MaybeOffloaded::Yes {
    1314            0 :                     continue;
    1315            0 :                 }
    1316            0 :                 readable_points.push(*child_lsn);
    1317              :             }
    1318          468 :             readable_points.push(head_lsn);
    1319          468 :             readable_points
    1320          468 :         };
    1321          468 : 
    1322          468 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
    1323         1184 :         for (layer_desc, visibility) in layer_visibility {
    1324          716 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
    1325          716 :             let layer = layer_manager.get_from_desc(&layer_desc);
    1326          716 :             layer.set_visibility(visibility);
    1327          716 :         }
    1328              : 
    1329              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
    1330              :         // avoid assuming that everything at a branch point is visible.
    1331          468 :         drop(covered);
    1332          468 :         Ok(())
    1333          468 :     }
    1334              : 
    1335              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
    1336              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
    1337          725 :     async fn compact_level0(
    1338          725 :         self: &Arc<Self>,
    1339          725 :         target_file_size: u64,
    1340          725 :         force_compaction_ignore_threshold: bool,
    1341          725 :         ctx: &RequestContext,
    1342          725 :     ) -> Result<CompactionOutcome, CompactionError> {
    1343              :         let CompactLevel0Phase1Result {
    1344          725 :             new_layers,
    1345          725 :             deltas_to_compact,
    1346          725 :             outcome,
    1347              :         } = {
    1348          725 :             let phase1_span = info_span!("compact_level0_phase1");
    1349          725 :             let ctx = ctx.attached_child();
    1350          725 :             let mut stats = CompactLevel0Phase1StatsBuilder {
    1351          725 :                 version: Some(2),
    1352          725 :                 tenant_id: Some(self.tenant_shard_id),
    1353          725 :                 timeline_id: Some(self.timeline_id),
    1354          725 :                 ..Default::default()
    1355          725 :             };
    1356          725 : 
    1357          725 :             let begin = tokio::time::Instant::now();
    1358          725 :             let phase1_layers_locked = self.layers.read().await;
    1359          725 :             let now = tokio::time::Instant::now();
    1360          725 :             stats.read_lock_acquisition_micros =
    1361          725 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
    1362          725 :             self.compact_level0_phase1(
    1363          725 :                 phase1_layers_locked,
    1364          725 :                 stats,
    1365          725 :                 target_file_size,
    1366          725 :                 force_compaction_ignore_threshold,
    1367          725 :                 &ctx,
    1368          725 :             )
    1369          725 :             .instrument(phase1_span)
    1370          725 :             .await?
    1371              :         };
    1372              : 
    1373          725 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
    1374              :             // nothing to do
    1375          669 :             return Ok(CompactionOutcome::Done);
    1376           56 :         }
    1377           56 : 
    1378           56 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
    1379           56 :             .await?;
    1380           56 :         Ok(outcome)
    1381          725 :     }
    1382              : 
    1383              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
    1384          725 :     async fn compact_level0_phase1<'a>(
    1385          725 :         self: &'a Arc<Self>,
    1386          725 :         guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
    1387          725 :         mut stats: CompactLevel0Phase1StatsBuilder,
    1388          725 :         target_file_size: u64,
    1389          725 :         force_compaction_ignore_threshold: bool,
    1390          725 :         ctx: &RequestContext,
    1391          725 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
    1392          725 :         stats.read_lock_held_spawn_blocking_startup_micros =
    1393          725 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
    1394          725 :         let layers = guard.layer_map()?;
    1395          725 :         let level0_deltas = layers.level0_deltas();
    1396          725 :         stats.level0_deltas_count = Some(level0_deltas.len());
    1397          725 : 
    1398          725 :         // Only compact if enough layers have accumulated.
    1399          725 :         let threshold = self.get_compaction_threshold();
    1400          725 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
    1401          669 :             if force_compaction_ignore_threshold {
    1402            0 :                 if !level0_deltas.is_empty() {
    1403            0 :                     info!(
    1404            0 :                         level0_deltas = level0_deltas.len(),
    1405            0 :                         threshold, "too few deltas to compact, but forcing compaction"
    1406              :                     );
    1407              :                 } else {
    1408            0 :                     info!(
    1409            0 :                         level0_deltas = level0_deltas.len(),
    1410            0 :                         threshold, "too few deltas to compact, cannot force compaction"
    1411              :                     );
    1412            0 :                     return Ok(CompactLevel0Phase1Result::default());
    1413              :                 }
    1414              :             } else {
    1415          669 :                 debug!(
    1416            0 :                     level0_deltas = level0_deltas.len(),
    1417            0 :                     threshold, "too few deltas to compact"
    1418              :                 );
    1419          669 :                 return Ok(CompactLevel0Phase1Result::default());
    1420              :             }
    1421           56 :         }
    1422              : 
    1423           56 :         let mut level0_deltas = level0_deltas
    1424           56 :             .iter()
    1425          804 :             .map(|x| guard.get_from_desc(x))
    1426           56 :             .collect::<Vec<_>>();
    1427           56 : 
    1428           56 :         // Gather the files to compact in this iteration.
    1429           56 :         //
    1430           56 :         // Start with the oldest Level 0 delta file, and collect any other
    1431           56 :         // level 0 files that form a contiguous sequence, such that the end
    1432           56 :         // LSN of previous file matches the start LSN of the next file.
    1433           56 :         //
    1434           56 :         // Note that if the files don't form such a sequence, we might
    1435           56 :         // "compact" just a single file. That's a bit pointless, but it allows
    1436           56 :         // us to get rid of the level 0 file, and compact the other files on
    1437           56 :         // the next iteration. This could probably made smarter, but such
    1438           56 :         // "gaps" in the sequence of level 0 files should only happen in case
    1439           56 :         // of a crash, partial download from cloud storage, or something like
    1440           56 :         // that, so it's not a big deal in practice.
    1441         1496 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
    1442           56 :         let mut level0_deltas_iter = level0_deltas.iter();
    1443           56 : 
    1444           56 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
    1445           56 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
    1446           56 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
    1447           56 : 
    1448           56 :         // Accumulate the size of layers in `deltas_to_compact`
    1449           56 :         let mut deltas_to_compact_bytes = 0;
    1450           56 : 
    1451           56 :         // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
    1452           56 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
    1453           56 :         // work in this function to only operate on this much delta data at once.
    1454           56 :         //
    1455           56 :         // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
    1456           56 :         // the constraint is not respected, we use the larger of the two.
    1457           56 :         let delta_size_limit = std::cmp::max(
    1458           56 :             self.get_compaction_upper_limit(),
    1459           56 :             self.get_compaction_threshold(),
    1460           56 :         ) as u64
    1461           56 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
    1462           56 : 
    1463           56 :         let mut fully_compacted = true;
    1464           56 : 
    1465           56 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident(ctx).await?);
    1466          804 :         for l in level0_deltas_iter {
    1467          748 :             let lsn_range = &l.layer_desc().lsn_range;
    1468          748 : 
    1469          748 :             if lsn_range.start != prev_lsn_end {
    1470            0 :                 break;
    1471          748 :             }
    1472          748 :             deltas_to_compact.push(l.download_and_keep_resident(ctx).await?);
    1473          748 :             deltas_to_compact_bytes += l.metadata().file_size;
    1474          748 :             prev_lsn_end = lsn_range.end;
    1475          748 : 
    1476          748 :             if deltas_to_compact_bytes >= delta_size_limit {
    1477            0 :                 info!(
    1478            0 :                     l0_deltas_selected = deltas_to_compact.len(),
    1479            0 :                     l0_deltas_total = level0_deltas.len(),
    1480            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
    1481              :                     delta_size_limit
    1482              :                 );
    1483            0 :                 fully_compacted = false;
    1484            0 : 
    1485            0 :                 // Proceed with compaction, but only a subset of L0s
    1486            0 :                 break;
    1487          748 :             }
    1488              :         }
    1489           56 :         let lsn_range = Range {
    1490           56 :             start: deltas_to_compact
    1491           56 :                 .first()
    1492           56 :                 .unwrap()
    1493           56 :                 .layer_desc()
    1494           56 :                 .lsn_range
    1495           56 :                 .start,
    1496           56 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
    1497           56 :         };
    1498           56 : 
    1499           56 :         info!(
    1500            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
    1501            0 :             lsn_range.start,
    1502            0 :             lsn_range.end,
    1503            0 :             deltas_to_compact.len(),
    1504            0 :             level0_deltas.len()
    1505              :         );
    1506              : 
    1507          804 :         for l in deltas_to_compact.iter() {
    1508          804 :             info!("compact includes {l}");
    1509              :         }
    1510              : 
    1511              :         // We don't need the original list of layers anymore. Drop it so that
    1512              :         // we don't accidentally use it later in the function.
    1513           56 :         drop(level0_deltas);
    1514           56 : 
    1515           56 :         stats.read_lock_held_prerequisites_micros = stats
    1516           56 :             .read_lock_held_spawn_blocking_startup_micros
    1517           56 :             .till_now();
    1518              : 
    1519              :         // TODO: replace with streaming k-merge
    1520           56 :         let all_keys = {
    1521           56 :             let mut all_keys = Vec::new();
    1522          804 :             for l in deltas_to_compact.iter() {
    1523          804 :                 if self.cancel.is_cancelled() {
    1524            0 :                     return Err(CompactionError::ShuttingDown);
    1525          804 :                 }
    1526          804 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1527          804 :                 let keys = delta
    1528          804 :                     .index_entries(ctx)
    1529          804 :                     .await
    1530          804 :                     .map_err(CompactionError::Other)?;
    1531          804 :                 all_keys.extend(keys);
    1532              :             }
    1533              :             // The current stdlib sorting implementation is designed in a way where it is
    1534              :             // particularly fast where the slice is made up of sorted sub-ranges.
    1535      8847562 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    1536           56 :             all_keys
    1537           56 :         };
    1538           56 : 
    1539           56 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
    1540              : 
    1541              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
    1542              :         //
    1543              :         // A hole is a key range for which this compaction doesn't have any WAL records.
    1544              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
    1545              :         // cover the hole, but actually don't contain any WAL records for that key range.
    1546              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
    1547              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
    1548              :         //
    1549              :         // The algorithm chooses holes as follows.
    1550              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
    1551              :         // - Filter: min threshold on range length
    1552              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
    1553              :         //
    1554              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
    1555              :         #[derive(PartialEq, Eq)]
    1556              :         struct Hole {
    1557              :             key_range: Range<Key>,
    1558              :             coverage_size: usize,
    1559              :         }
    1560           56 :         let holes: Vec<Hole> = {
    1561              :             use std::cmp::Ordering;
    1562              :             impl Ord for Hole {
    1563            0 :                 fn cmp(&self, other: &Self) -> Ordering {
    1564            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
    1565            0 :                 }
    1566              :             }
    1567              :             impl PartialOrd for Hole {
    1568            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    1569            0 :                     Some(self.cmp(other))
    1570            0 :                 }
    1571              :             }
    1572           56 :             let max_holes = deltas_to_compact.len();
    1573           56 :             let last_record_lsn = self.get_last_record_lsn();
    1574           56 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
    1575           56 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
    1576           56 :             // min-heap (reserve space for one more element added before eviction)
    1577           56 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
    1578           56 :             let mut prev: Option<Key> = None;
    1579              : 
    1580      4128076 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
    1581      4128076 :                 if let Some(prev_key) = prev {
    1582              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
    1583              :                     // compaction is the gap between data key and metadata keys.
    1584      4128020 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
    1585            0 :                         && !Key::is_metadata_key(&prev_key)
    1586              :                     {
    1587            0 :                         let key_range = prev_key..next_key;
    1588            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
    1589            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
    1590            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
    1591            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
    1592            0 :                         let coverage_size =
    1593            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
    1594            0 :                         if coverage_size >= min_hole_coverage_size {
    1595            0 :                             heap.push(Hole {
    1596            0 :                                 key_range,
    1597            0 :                                 coverage_size,
    1598            0 :                             });
    1599            0 :                             if heap.len() > max_holes {
    1600            0 :                                 heap.pop(); // remove smallest hole
    1601            0 :                             }
    1602            0 :                         }
    1603      4128020 :                     }
    1604           56 :                 }
    1605      4128076 :                 prev = Some(next_key.next());
    1606              :             }
    1607           56 :             let mut holes = heap.into_vec();
    1608           56 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
    1609           56 :             holes
    1610           56 :         };
    1611           56 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
    1612           56 :         drop_rlock(guard);
    1613           56 : 
    1614           56 :         if self.cancel.is_cancelled() {
    1615            0 :             return Err(CompactionError::ShuttingDown);
    1616           56 :         }
    1617           56 : 
    1618           56 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
    1619              : 
    1620              :         // This iterator walks through all key-value pairs from all the layers
    1621              :         // we're compacting, in key, LSN order.
    1622              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
    1623              :         // then the Value::Image is ordered before Value::WalRecord.
    1624           56 :         let mut all_values_iter = {
    1625           56 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
    1626          804 :             for l in deltas_to_compact.iter() {
    1627          804 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1628          804 :                 deltas.push(l);
    1629              :             }
    1630           56 :             MergeIterator::create(&deltas, &[], ctx)
    1631           56 :         };
    1632           56 : 
    1633           56 :         // This iterator walks through all keys and is needed to calculate size used by each key
    1634           56 :         let mut all_keys_iter = all_keys
    1635           56 :             .iter()
    1636      4128076 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
    1637      4128020 :             .coalesce(|mut prev, cur| {
    1638      4128020 :                 // Coalesce keys that belong to the same key pair.
    1639      4128020 :                 // This ensures that compaction doesn't put them
    1640      4128020 :                 // into different layer files.
    1641      4128020 :                 // Still limit this by the target file size,
    1642      4128020 :                 // so that we keep the size of the files in
    1643      4128020 :                 // check.
    1644      4128020 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
    1645        80076 :                     prev.2 += cur.2;
    1646        80076 :                     Ok(prev)
    1647              :                 } else {
    1648      4047944 :                     Err((prev, cur))
    1649              :                 }
    1650      4128020 :             });
    1651           56 : 
    1652           56 :         // Merge the contents of all the input delta layers into a new set
    1653           56 :         // of delta layers, based on the current partitioning.
    1654           56 :         //
    1655           56 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
    1656           56 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
    1657           56 :         // would be too large. In that case, we also split on the LSN dimension.
    1658           56 :         //
    1659           56 :         // LSN
    1660           56 :         //  ^
    1661           56 :         //  |
    1662           56 :         //  | +-----------+            +--+--+--+--+
    1663           56 :         //  | |           |            |  |  |  |  |
    1664           56 :         //  | +-----------+            |  |  |  |  |
    1665           56 :         //  | |           |            |  |  |  |  |
    1666           56 :         //  | +-----------+     ==>    |  |  |  |  |
    1667           56 :         //  | |           |            |  |  |  |  |
    1668           56 :         //  | +-----------+            |  |  |  |  |
    1669           56 :         //  | |           |            |  |  |  |  |
    1670           56 :         //  | +-----------+            +--+--+--+--+
    1671           56 :         //  |
    1672           56 :         //  +--------------> key
    1673           56 :         //
    1674           56 :         //
    1675           56 :         // If one key (X) has a lot of page versions:
    1676           56 :         //
    1677           56 :         // LSN
    1678           56 :         //  ^
    1679           56 :         //  |                                 (X)
    1680           56 :         //  | +-----------+            +--+--+--+--+
    1681           56 :         //  | |           |            |  |  |  |  |
    1682           56 :         //  | +-----------+            |  |  +--+  |
    1683           56 :         //  | |           |            |  |  |  |  |
    1684           56 :         //  | +-----------+     ==>    |  |  |  |  |
    1685           56 :         //  | |           |            |  |  +--+  |
    1686           56 :         //  | +-----------+            |  |  |  |  |
    1687           56 :         //  | |           |            |  |  |  |  |
    1688           56 :         //  | +-----------+            +--+--+--+--+
    1689           56 :         //  |
    1690           56 :         //  +--------------> key
    1691           56 :         // TODO: this actually divides the layers into fixed-size chunks, not
    1692           56 :         // based on the partitioning.
    1693           56 :         //
    1694           56 :         // TODO: we should also opportunistically materialize and
    1695           56 :         // garbage collect what we can.
    1696           56 :         let mut new_layers = Vec::new();
    1697           56 :         let mut prev_key: Option<Key> = None;
    1698           56 :         let mut writer: Option<DeltaLayerWriter> = None;
    1699           56 :         let mut key_values_total_size = 0u64;
    1700           56 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    1701           56 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    1702           56 :         let mut next_hole = 0; // index of next hole in holes vector
    1703           56 : 
    1704           56 :         let mut keys = 0;
    1705              : 
    1706      4128132 :         while let Some((key, lsn, value)) = all_values_iter
    1707      4128132 :             .next()
    1708      4128132 :             .await
    1709      4128132 :             .map_err(CompactionError::Other)?
    1710              :         {
    1711      4128076 :             keys += 1;
    1712      4128076 : 
    1713      4128076 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    1714              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    1715              :                 // shuffling an order of million keys per layer, this means we'll check it
    1716              :                 // around tens of times per layer.
    1717            0 :                 return Err(CompactionError::ShuttingDown);
    1718      4128076 :             }
    1719      4128076 : 
    1720      4128076 :             let same_key = prev_key == Some(key);
    1721      4128076 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    1722      4128076 :             if !same_key || lsn == dup_end_lsn {
    1723      4048000 :                 let mut next_key_size = 0u64;
    1724      4048000 :                 let is_dup_layer = dup_end_lsn.is_valid();
    1725      4048000 :                 dup_start_lsn = Lsn::INVALID;
    1726      4048000 :                 if !same_key {
    1727      4048000 :                     dup_end_lsn = Lsn::INVALID;
    1728      4048000 :                 }
    1729              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    1730      4048000 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    1731      4048000 :                     next_key_size = next_size;
    1732      4048000 :                     if key != next_key {
    1733      4047944 :                         if dup_end_lsn.is_valid() {
    1734            0 :                             // We are writting segment with duplicates:
    1735            0 :                             // place all remaining values of this key in separate segment
    1736            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    1737            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    1738      4047944 :                         }
    1739      4047944 :                         break;
    1740           56 :                     }
    1741           56 :                     key_values_total_size += next_size;
    1742           56 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    1743           56 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    1744           56 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    1745              :                         // Split key between multiple layers: such layer can contain only single key
    1746            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    1747            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    1748              :                         } else {
    1749            0 :                             lsn // start with the first LSN for this key
    1750              :                         };
    1751            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    1752            0 :                         break;
    1753           56 :                     }
    1754              :                 }
    1755              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    1756      4048000 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    1757            0 :                     dup_start_lsn = dup_end_lsn;
    1758            0 :                     dup_end_lsn = lsn_range.end;
    1759      4048000 :                 }
    1760      4048000 :                 if writer.is_some() {
    1761      4047944 :                     let written_size = writer.as_mut().unwrap().size();
    1762      4047944 :                     let contains_hole =
    1763      4047944 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    1764              :                     // check if key cause layer overflow or contains hole...
    1765      4047944 :                     if is_dup_layer
    1766      4047944 :                         || dup_end_lsn.is_valid()
    1767      4047944 :                         || written_size + key_values_total_size > target_file_size
    1768      4047384 :                         || contains_hole
    1769              :                     {
    1770              :                         // ... if so, flush previous layer and prepare to write new one
    1771          560 :                         let (desc, path) = writer
    1772          560 :                             .take()
    1773          560 :                             .unwrap()
    1774          560 :                             .finish(prev_key.unwrap().next(), ctx)
    1775          560 :                             .await
    1776          560 :                             .map_err(CompactionError::Other)?;
    1777          560 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1778          560 :                             .map_err(CompactionError::Other)?;
    1779              : 
    1780          560 :                         new_layers.push(new_delta);
    1781          560 :                         writer = None;
    1782          560 : 
    1783          560 :                         if contains_hole {
    1784            0 :                             // skip hole
    1785            0 :                             next_hole += 1;
    1786          560 :                         }
    1787      4047384 :                     }
    1788           56 :                 }
    1789              :                 // Remember size of key value because at next iteration we will access next item
    1790      4048000 :                 key_values_total_size = next_key_size;
    1791        80076 :             }
    1792      4128076 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    1793            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    1794            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    1795            0 :                 )))
    1796      4128076 :             });
    1797              : 
    1798      4128076 :             if !self.shard_identity.is_key_disposable(&key) {
    1799      4128076 :                 if writer.is_none() {
    1800          616 :                     if self.cancel.is_cancelled() {
    1801              :                         // to be somewhat responsive to cancellation, check for each new layer
    1802            0 :                         return Err(CompactionError::ShuttingDown);
    1803          616 :                     }
    1804              :                     // Create writer if not initiaized yet
    1805          616 :                     writer = Some(
    1806              :                         DeltaLayerWriter::new(
    1807          616 :                             self.conf,
    1808          616 :                             self.timeline_id,
    1809          616 :                             self.tenant_shard_id,
    1810          616 :                             key,
    1811          616 :                             if dup_end_lsn.is_valid() {
    1812              :                                 // this is a layer containing slice of values of the same key
    1813            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    1814            0 :                                 dup_start_lsn..dup_end_lsn
    1815              :                             } else {
    1816          616 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    1817          616 :                                 lsn_range.clone()
    1818              :                             },
    1819          616 :                             ctx,
    1820          616 :                         )
    1821          616 :                         .await
    1822          616 :                         .map_err(CompactionError::Other)?,
    1823              :                     );
    1824              : 
    1825          616 :                     keys = 0;
    1826      4127460 :                 }
    1827              : 
    1828      4128076 :                 writer
    1829      4128076 :                     .as_mut()
    1830      4128076 :                     .unwrap()
    1831      4128076 :                     .put_value(key, lsn, value, ctx)
    1832      4128076 :                     .await
    1833      4128076 :                     .map_err(CompactionError::Other)?;
    1834              :             } else {
    1835            0 :                 let owner = self.shard_identity.get_shard_number(&key);
    1836            0 : 
    1837            0 :                 // This happens after a shard split, when we're compacting an L0 created by our parent shard
    1838            0 :                 debug!("dropping key {key} during compaction (it belongs on shard {owner})");
    1839              :             }
    1840              : 
    1841      4128076 :             if !new_layers.is_empty() {
    1842        39572 :                 fail_point!("after-timeline-compacted-first-L1");
    1843      4088504 :             }
    1844              : 
    1845      4128076 :             prev_key = Some(key);
    1846              :         }
    1847           56 :         if let Some(writer) = writer {
    1848           56 :             let (desc, path) = writer
    1849           56 :                 .finish(prev_key.unwrap().next(), ctx)
    1850           56 :                 .await
    1851           56 :                 .map_err(CompactionError::Other)?;
    1852           56 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1853           56 :                 .map_err(CompactionError::Other)?;
    1854           56 :             new_layers.push(new_delta);
    1855            0 :         }
    1856              : 
    1857              :         // Sync layers
    1858           56 :         if !new_layers.is_empty() {
    1859              :             // Print a warning if the created layer is larger than double the target size
    1860              :             // Add two pages for potential overhead. This should in theory be already
    1861              :             // accounted for in the target calculation, but for very small targets,
    1862              :             // we still might easily hit the limit otherwise.
    1863           56 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    1864          616 :             for layer in new_layers.iter() {
    1865          616 :                 if layer.layer_desc().file_size > warn_limit {
    1866            0 :                     warn!(
    1867              :                         %layer,
    1868            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    1869              :                     );
    1870          616 :                 }
    1871              :             }
    1872              : 
    1873              :             // The writer.finish() above already did the fsync of the inodes.
    1874              :             // We just need to fsync the directory in which these inodes are linked,
    1875              :             // which we know to be the timeline directory.
    1876              :             //
    1877              :             // We use fatal_err() below because the after writer.finish() returns with success,
    1878              :             // the in-memory state of the filesystem already has the layer file in its final place,
    1879              :             // and subsequent pageserver code could think it's durable while it really isn't.
    1880           56 :             let timeline_dir = VirtualFile::open(
    1881           56 :                 &self
    1882           56 :                     .conf
    1883           56 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    1884           56 :                 ctx,
    1885           56 :             )
    1886           56 :             .await
    1887           56 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    1888           56 :             timeline_dir
    1889           56 :                 .sync_all()
    1890           56 :                 .await
    1891           56 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    1892            0 :         }
    1893              : 
    1894           56 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    1895           56 :         stats.new_deltas_count = Some(new_layers.len());
    1896          616 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    1897           56 : 
    1898           56 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    1899           56 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    1900              :         {
    1901           56 :             Ok(stats_json) => {
    1902           56 :                 info!(
    1903            0 :                     stats_json = stats_json.as_str(),
    1904            0 :                     "compact_level0_phase1 stats available"
    1905              :                 )
    1906              :             }
    1907            0 :             Err(e) => {
    1908            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    1909              :             }
    1910              :         }
    1911              : 
    1912              :         // Without this, rustc complains about deltas_to_compact still
    1913              :         // being borrowed when we `.into_iter()` below.
    1914           56 :         drop(all_values_iter);
    1915           56 : 
    1916           56 :         Ok(CompactLevel0Phase1Result {
    1917           56 :             new_layers,
    1918           56 :             deltas_to_compact: deltas_to_compact
    1919           56 :                 .into_iter()
    1920          804 :                 .map(|x| x.drop_eviction_guard())
    1921           56 :                 .collect::<Vec<_>>(),
    1922           56 :             outcome: if fully_compacted {
    1923           56 :                 CompactionOutcome::Done
    1924              :             } else {
    1925            0 :                 CompactionOutcome::Pending
    1926              :             },
    1927              :         })
    1928          725 :     }
    1929              : }
    1930              : 
    1931              : #[derive(Default)]
    1932              : struct CompactLevel0Phase1Result {
    1933              :     new_layers: Vec<ResidentLayer>,
    1934              :     deltas_to_compact: Vec<Layer>,
    1935              :     // Whether we have included all L0 layers, or selected only part of them due to the
    1936              :     // L0 compaction size limit.
    1937              :     outcome: CompactionOutcome,
    1938              : }
    1939              : 
    1940              : #[derive(Default)]
    1941              : struct CompactLevel0Phase1StatsBuilder {
    1942              :     version: Option<u64>,
    1943              :     tenant_id: Option<TenantShardId>,
    1944              :     timeline_id: Option<TimelineId>,
    1945              :     read_lock_acquisition_micros: DurationRecorder,
    1946              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    1947              :     read_lock_held_key_sort_micros: DurationRecorder,
    1948              :     read_lock_held_prerequisites_micros: DurationRecorder,
    1949              :     read_lock_held_compute_holes_micros: DurationRecorder,
    1950              :     read_lock_drop_micros: DurationRecorder,
    1951              :     write_layer_files_micros: DurationRecorder,
    1952              :     level0_deltas_count: Option<usize>,
    1953              :     new_deltas_count: Option<usize>,
    1954              :     new_deltas_size: Option<u64>,
    1955              : }
    1956              : 
    1957              : #[derive(serde::Serialize)]
    1958              : struct CompactLevel0Phase1Stats {
    1959              :     version: u64,
    1960              :     tenant_id: TenantShardId,
    1961              :     timeline_id: TimelineId,
    1962              :     read_lock_acquisition_micros: RecordedDuration,
    1963              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    1964              :     read_lock_held_key_sort_micros: RecordedDuration,
    1965              :     read_lock_held_prerequisites_micros: RecordedDuration,
    1966              :     read_lock_held_compute_holes_micros: RecordedDuration,
    1967              :     read_lock_drop_micros: RecordedDuration,
    1968              :     write_layer_files_micros: RecordedDuration,
    1969              :     level0_deltas_count: usize,
    1970              :     new_deltas_count: usize,
    1971              :     new_deltas_size: u64,
    1972              : }
    1973              : 
    1974              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    1975              :     type Error = anyhow::Error;
    1976              : 
    1977           56 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    1978           56 :         Ok(Self {
    1979           56 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    1980           56 :             tenant_id: value
    1981           56 :                 .tenant_id
    1982           56 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    1983           56 :             timeline_id: value
    1984           56 :                 .timeline_id
    1985           56 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    1986           56 :             read_lock_acquisition_micros: value
    1987           56 :                 .read_lock_acquisition_micros
    1988           56 :                 .into_recorded()
    1989           56 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    1990           56 :             read_lock_held_spawn_blocking_startup_micros: value
    1991           56 :                 .read_lock_held_spawn_blocking_startup_micros
    1992           56 :                 .into_recorded()
    1993           56 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    1994           56 :             read_lock_held_key_sort_micros: value
    1995           56 :                 .read_lock_held_key_sort_micros
    1996           56 :                 .into_recorded()
    1997           56 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    1998           56 :             read_lock_held_prerequisites_micros: value
    1999           56 :                 .read_lock_held_prerequisites_micros
    2000           56 :                 .into_recorded()
    2001           56 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    2002           56 :             read_lock_held_compute_holes_micros: value
    2003           56 :                 .read_lock_held_compute_holes_micros
    2004           56 :                 .into_recorded()
    2005           56 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    2006           56 :             read_lock_drop_micros: value
    2007           56 :                 .read_lock_drop_micros
    2008           56 :                 .into_recorded()
    2009           56 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    2010           56 :             write_layer_files_micros: value
    2011           56 :                 .write_layer_files_micros
    2012           56 :                 .into_recorded()
    2013           56 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    2014           56 :             level0_deltas_count: value
    2015           56 :                 .level0_deltas_count
    2016           56 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    2017           56 :             new_deltas_count: value
    2018           56 :                 .new_deltas_count
    2019           56 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    2020           56 :             new_deltas_size: value
    2021           56 :                 .new_deltas_size
    2022           56 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    2023              :         })
    2024           56 :     }
    2025              : }
    2026              : 
    2027              : impl Timeline {
    2028              :     /// Entry point for new tiered compaction algorithm.
    2029              :     ///
    2030              :     /// All the real work is in the implementation in the pageserver_compaction
    2031              :     /// crate. The code here would apply to any algorithm implemented by the
    2032              :     /// same interface, but tiered is the only one at the moment.
    2033              :     ///
    2034              :     /// TODO: cancellation
    2035            0 :     pub(crate) async fn compact_tiered(
    2036            0 :         self: &Arc<Self>,
    2037            0 :         _cancel: &CancellationToken,
    2038            0 :         ctx: &RequestContext,
    2039            0 :     ) -> Result<(), CompactionError> {
    2040            0 :         let fanout = self.get_compaction_threshold() as u64;
    2041            0 :         let target_file_size = self.get_checkpoint_distance();
    2042              : 
    2043              :         // Find the top of the historical layers
    2044            0 :         let end_lsn = {
    2045            0 :             let guard = self.layers.read().await;
    2046            0 :             let layers = guard.layer_map()?;
    2047              : 
    2048            0 :             let l0_deltas = layers.level0_deltas();
    2049            0 : 
    2050            0 :             // As an optimization, if we find that there are too few L0 layers,
    2051            0 :             // bail out early. We know that the compaction algorithm would do
    2052            0 :             // nothing in that case.
    2053            0 :             if l0_deltas.len() < fanout as usize {
    2054              :                 // doesn't need compacting
    2055            0 :                 return Ok(());
    2056            0 :             }
    2057            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    2058            0 :         };
    2059            0 : 
    2060            0 :         // Is the timeline being deleted?
    2061            0 :         if self.is_stopping() {
    2062            0 :             trace!("Dropping out of compaction on timeline shutdown");
    2063            0 :             return Err(CompactionError::ShuttingDown);
    2064            0 :         }
    2065              : 
    2066            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    2067              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    2068            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    2069            0 : 
    2070            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    2071            0 :             &mut adaptor,
    2072            0 :             end_lsn,
    2073            0 :             target_file_size,
    2074            0 :             fanout,
    2075            0 :             ctx,
    2076            0 :         )
    2077            0 :         .await
    2078              :         // TODO: compact_tiered needs to return CompactionError
    2079            0 :         .map_err(CompactionError::Other)?;
    2080              : 
    2081            0 :         adaptor.flush_updates().await?;
    2082            0 :         Ok(())
    2083            0 :     }
    2084              : 
    2085              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    2086              :     ///
    2087              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    2088              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    2089              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    2090              :     ///
    2091              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    2092              :     ///
    2093              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    2094              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    2095              :     ///
    2096              :     /// The function will produce:
    2097              :     ///
    2098              :     /// ```plain
    2099              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    2100              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    2101              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    2102              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    2103              :     /// ```
    2104              :     ///
    2105              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    2106         1260 :     pub(crate) async fn generate_key_retention(
    2107         1260 :         self: &Arc<Timeline>,
    2108         1260 :         key: Key,
    2109         1260 :         full_history: &[(Key, Lsn, Value)],
    2110         1260 :         horizon: Lsn,
    2111         1260 :         retain_lsn_below_horizon: &[Lsn],
    2112         1260 :         delta_threshold_cnt: usize,
    2113         1260 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    2114         1260 :     ) -> anyhow::Result<KeyHistoryRetention> {
    2115              :         // Pre-checks for the invariants
    2116              : 
    2117         1260 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2118              : 
    2119         1260 :         if debug_mode {
    2120         3060 :             for (log_key, _, _) in full_history {
    2121         1800 :                 assert_eq!(log_key, &key, "mismatched key");
    2122              :             }
    2123         1260 :             for i in 1..full_history.len() {
    2124          540 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    2125          540 :                 if full_history[i - 1].1 == full_history[i].1 {
    2126            0 :                     assert!(
    2127            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    2128            0 :                         "unordered delta/image, or duplicated delta"
    2129              :                     );
    2130          540 :                 }
    2131              :             }
    2132              :             // There was an assertion for no base image that checks if the first
    2133              :             // record in the history is `will_init` before, but it was removed.
    2134              :             // This is explained in the test cases for generate_key_retention.
    2135              :             // Search "incomplete history" for more information.
    2136         2820 :             for lsn in retain_lsn_below_horizon {
    2137         1560 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    2138              :             }
    2139         1260 :             for i in 1..retain_lsn_below_horizon.len() {
    2140          712 :                 assert!(
    2141          712 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    2142            0 :                     "unordered LSN"
    2143              :                 );
    2144              :             }
    2145            0 :         }
    2146         1260 :         let has_ancestor = base_img_from_ancestor.is_some();
    2147              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    2148              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    2149         1260 :         let (mut split_history, lsn_split_points) = {
    2150         1260 :             let mut split_history = Vec::new();
    2151         1260 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    2152         1260 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    2153         2820 :             for lsn in retain_lsn_below_horizon {
    2154         1560 :                 lsn_split_points.push(*lsn);
    2155         1560 :             }
    2156         1260 :             lsn_split_points.push(horizon);
    2157         1260 :             let mut current_idx = 0;
    2158         3060 :             for item @ (_, lsn, _) in full_history {
    2159         2288 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    2160          488 :                     current_idx += 1;
    2161          488 :                 }
    2162         1800 :                 split_history[current_idx].push(item);
    2163              :             }
    2164         1260 :             (split_history, lsn_split_points)
    2165              :         };
    2166              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    2167         5340 :         for split_for_lsn in &mut split_history {
    2168         4080 :             let mut prev_lsn = None;
    2169         4080 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    2170         4080 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    2171         1800 :                 if let Some(prev_lsn) = &prev_lsn {
    2172          236 :                     if *prev_lsn == lsn {
    2173              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    2174              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    2175              :                         // drop this delta and keep the image.
    2176              :                         //
    2177              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    2178              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    2179              :                         // dropped.
    2180              :                         //
    2181              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    2182              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    2183            0 :                         continue;
    2184          236 :                     }
    2185         1564 :                 }
    2186         1800 :                 prev_lsn = Some(lsn);
    2187         1800 :                 new_split_for_lsn.push(record);
    2188              :             }
    2189         4080 :             *split_for_lsn = new_split_for_lsn;
    2190              :         }
    2191              :         // Step 3: generate images when necessary
    2192         1260 :         let mut retention = Vec::with_capacity(split_history.len());
    2193         1260 :         let mut records_since_last_image = 0;
    2194         1260 :         let batch_cnt = split_history.len();
    2195         1260 :         assert!(
    2196         1260 :             batch_cnt >= 2,
    2197            0 :             "should have at least below + above horizon batches"
    2198              :         );
    2199         1260 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    2200         1260 :         if let Some((key, lsn, img)) = base_img_from_ancestor {
    2201           84 :             replay_history.push((key, lsn, Value::Image(img)));
    2202         1176 :         }
    2203              : 
    2204              :         /// Generate debug information for the replay history
    2205            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    2206              :             use std::fmt::Write;
    2207            0 :             let mut output = String::new();
    2208            0 :             if let Some((key, _, _)) = replay_history.first() {
    2209            0 :                 write!(output, "key={} ", key).unwrap();
    2210            0 :                 let mut cnt = 0;
    2211            0 :                 for (_, lsn, val) in replay_history {
    2212            0 :                     if val.is_image() {
    2213            0 :                         write!(output, "i@{} ", lsn).unwrap();
    2214            0 :                     } else if val.will_init() {
    2215            0 :                         write!(output, "di@{} ", lsn).unwrap();
    2216            0 :                     } else {
    2217            0 :                         write!(output, "d@{} ", lsn).unwrap();
    2218            0 :                     }
    2219            0 :                     cnt += 1;
    2220            0 :                     if cnt >= 128 {
    2221            0 :                         write!(output, "... and more").unwrap();
    2222            0 :                         break;
    2223            0 :                     }
    2224              :                 }
    2225            0 :             } else {
    2226            0 :                 write!(output, "<no history>").unwrap();
    2227            0 :             }
    2228            0 :             output
    2229            0 :         }
    2230              : 
    2231            0 :         fn generate_debug_trace(
    2232            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    2233            0 :             full_history: &[(Key, Lsn, Value)],
    2234            0 :             lsns: &[Lsn],
    2235            0 :             horizon: Lsn,
    2236            0 :         ) -> String {
    2237              :             use std::fmt::Write;
    2238            0 :             let mut output = String::new();
    2239            0 :             if let Some(replay_history) = replay_history {
    2240            0 :                 writeln!(
    2241            0 :                     output,
    2242            0 :                     "replay_history: {}",
    2243            0 :                     generate_history_trace(replay_history)
    2244            0 :                 )
    2245            0 :                 .unwrap();
    2246            0 :             } else {
    2247            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    2248            0 :             }
    2249            0 :             writeln!(
    2250            0 :                 output,
    2251            0 :                 "full_history: {}",
    2252            0 :                 generate_history_trace(full_history)
    2253            0 :             )
    2254            0 :             .unwrap();
    2255            0 :             writeln!(
    2256            0 :                 output,
    2257            0 :                 "when processing: [{}] horizon={}",
    2258            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    2259            0 :                 horizon
    2260            0 :             )
    2261            0 :             .unwrap();
    2262            0 :             output
    2263            0 :         }
    2264              : 
    2265         1260 :         let mut key_exists = false;
    2266         4080 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    2267              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    2268         4080 :             records_since_last_image += split_for_lsn.len();
    2269              :             // Whether to produce an image into the final layer files
    2270         4080 :             let produce_image = if i == 0 && !has_ancestor {
    2271              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    2272         1176 :                 true
    2273         2904 :             } else if i == batch_cnt - 1 {
    2274              :                 // Do not generate images for the last batch (above horizon)
    2275         1260 :                 false
    2276         1644 :             } else if records_since_last_image == 0 {
    2277         1288 :                 false
    2278          356 :             } else if records_since_last_image >= delta_threshold_cnt {
    2279              :                 // Generate images when there are too many records
    2280           12 :                 true
    2281              :             } else {
    2282          344 :                 false
    2283              :             };
    2284         4080 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    2285              :             // Only retain the items after the last image record
    2286         5028 :             for idx in (0..replay_history.len()).rev() {
    2287         5028 :                 if replay_history[idx].2.will_init() {
    2288         4080 :                     replay_history = replay_history[idx..].to_vec();
    2289         4080 :                     break;
    2290          948 :                 }
    2291              :             }
    2292         4080 :             if replay_history.is_empty() && !key_exists {
    2293              :                 // The key does not exist at earlier LSN, we can skip this iteration.
    2294            0 :                 retention.push(Vec::new());
    2295            0 :                 continue;
    2296         4080 :             } else {
    2297         4080 :                 key_exists = true;
    2298         4080 :             }
    2299         4080 :             let Some((_, _, val)) = replay_history.first() else {
    2300            0 :                 unreachable!("replay history should not be empty once it exists")
    2301              :             };
    2302         4080 :             if !val.will_init() {
    2303            0 :                 return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
    2304            0 :                     generate_debug_trace(
    2305            0 :                         Some(&replay_history),
    2306            0 :                         full_history,
    2307            0 :                         retain_lsn_below_horizon,
    2308            0 :                         horizon,
    2309            0 :                     )
    2310            0 :                 });
    2311         4080 :             }
    2312              :             // Whether to reconstruct the image. In debug mode, we will generate an image
    2313              :             // at every retain_lsn to ensure data is not corrupted, but we won't put the
    2314              :             // image into the final layer.
    2315         4080 :             let generate_image = produce_image || debug_mode;
    2316         4080 :             if produce_image {
    2317         1188 :                 records_since_last_image = 0;
    2318         2892 :             }
    2319         4080 :             let img_and_lsn = if generate_image {
    2320         4080 :                 let replay_history_for_debug = if debug_mode {
    2321         4080 :                     Some(replay_history.clone())
    2322              :                 } else {
    2323            0 :                     None
    2324              :                 };
    2325         4080 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    2326         4080 :                 let history = if produce_image {
    2327         1188 :                     std::mem::take(&mut replay_history)
    2328              :                 } else {
    2329         2892 :                     replay_history.clone()
    2330              :                 };
    2331         4080 :                 let mut img = None;
    2332         4080 :                 let mut records = Vec::with_capacity(history.len());
    2333         4080 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    2334         4036 :                     img = Some((*lsn, val.clone()));
    2335         4036 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    2336          920 :                         let Value::WalRecord(rec) = val else {
    2337            0 :                             return Err(anyhow::anyhow!(
    2338            0 :                                 "invalid record, first record is image, expect walrecords"
    2339            0 :                             ))
    2340            0 :                             .with_context(|| {
    2341            0 :                                 generate_debug_trace(
    2342            0 :                                     replay_history_for_debug_ref,
    2343            0 :                                     full_history,
    2344            0 :                                     retain_lsn_below_horizon,
    2345            0 :                                     horizon,
    2346            0 :                                 )
    2347            0 :                             });
    2348              :                         };
    2349          920 :                         records.push((lsn, rec));
    2350              :                     }
    2351              :                 } else {
    2352           72 :                     for (_, lsn, val) in history.into_iter() {
    2353           72 :                         let Value::WalRecord(rec) = val else {
    2354            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    2355            0 :                                 .with_context(|| generate_debug_trace(
    2356            0 :                                     replay_history_for_debug_ref,
    2357            0 :                                     full_history,
    2358            0 :                                     retain_lsn_below_horizon,
    2359            0 :                                     horizon,
    2360            0 :                                 ));
    2361              :                         };
    2362           72 :                         records.push((lsn, rec));
    2363              :                     }
    2364              :                 }
    2365         4080 :                 records.reverse();
    2366         4080 :                 let state = ValueReconstructState { img, records };
    2367              :                 // last batch does not generate image so i is always in range, unless we force generate
    2368              :                 // an image during testing
    2369         4080 :                 let request_lsn = if i >= lsn_split_points.len() {
    2370         1260 :                     Lsn::MAX
    2371              :                 } else {
    2372         2820 :                     lsn_split_points[i]
    2373              :                 };
    2374         4080 :                 let img = self.reconstruct_value(key, request_lsn, state).await?;
    2375         4080 :                 Some((request_lsn, img))
    2376              :             } else {
    2377            0 :                 None
    2378              :             };
    2379         4080 :             if produce_image {
    2380         1188 :                 let (request_lsn, img) = img_and_lsn.unwrap();
    2381         1188 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    2382         1188 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    2383         2892 :             } else {
    2384         2892 :                 let deltas = split_for_lsn
    2385         2892 :                     .iter()
    2386         2892 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    2387         2892 :                     .collect_vec();
    2388         2892 :                 retention.push(deltas);
    2389         2892 :             }
    2390              :         }
    2391         1260 :         let mut result = Vec::with_capacity(retention.len());
    2392         1260 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    2393         4080 :         for (idx, logs) in retention.into_iter().enumerate() {
    2394         4080 :             if idx == lsn_split_points.len() {
    2395         1260 :                 return Ok(KeyHistoryRetention {
    2396         1260 :                     below_horizon: result,
    2397         1260 :                     above_horizon: KeyLogAtLsn(logs),
    2398         1260 :                 });
    2399         2820 :             } else {
    2400         2820 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    2401         2820 :             }
    2402              :         }
    2403            0 :         unreachable!("key retention is empty")
    2404         1260 :     }
    2405              : 
    2406              :     /// Check how much space is left on the disk
    2407          104 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    2408          104 :         let tenants_dir = self.conf.tenants_path();
    2409              : 
    2410          104 :         let stat = Statvfs::get(&tenants_dir, None)
    2411          104 :             .context("statvfs failed, presumably directory got unlinked")?;
    2412              : 
    2413          104 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    2414          104 : 
    2415          104 :         Ok(avail_bytes)
    2416          104 :     }
    2417              : 
    2418              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    2419              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    2420              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    2421              :     /// compaction.
    2422          104 :     async fn check_compaction_space(
    2423          104 :         self: &Arc<Self>,
    2424          104 :         layer_selection: &[Layer],
    2425          104 :     ) -> Result<(), CompactionError> {
    2426          104 :         let available_space = self
    2427          104 :             .check_available_space()
    2428          104 :             .await
    2429          104 :             .map_err(CompactionError::Other)?;
    2430          104 :         let mut remote_layer_size = 0;
    2431          104 :         let mut all_layer_size = 0;
    2432          408 :         for layer in layer_selection {
    2433          304 :             let needs_download = layer
    2434          304 :                 .needs_download()
    2435          304 :                 .await
    2436          304 :                 .context("failed to check if layer needs download")
    2437          304 :                 .map_err(CompactionError::Other)?;
    2438          304 :             if needs_download.is_some() {
    2439            0 :                 remote_layer_size += layer.layer_desc().file_size;
    2440          304 :             }
    2441          304 :             all_layer_size += layer.layer_desc().file_size;
    2442              :         }
    2443          104 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    2444          104 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    2445              :         {
    2446            0 :             return Err(CompactionError::Other(anyhow!(
    2447            0 :                 "not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    2448            0 :                 available_space,
    2449            0 :                 allocated_space,
    2450            0 :                 all_layer_size,
    2451            0 :                 remote_layer_size,
    2452            0 :                 all_layer_size + remote_layer_size
    2453            0 :             )));
    2454          104 :         }
    2455          104 :         Ok(())
    2456          104 :     }
    2457              : 
    2458              :     /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
    2459              :     /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
    2460              :     /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
    2461              :     /// here.
    2462          108 :     pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
    2463          108 :         let gc_cutoff_lsn = {
    2464          108 :             let gc_info = self.gc_info.read().unwrap();
    2465          108 :             gc_info.min_cutoff()
    2466          108 :         };
    2467          108 : 
    2468          108 :         // TODO: standby horizon should use leases so we don't really need to consider it here.
    2469          108 :         // let watermark = watermark.min(self.standby_horizon.load());
    2470          108 : 
    2471          108 :         // TODO: ensure the child branches will not use anything below the watermark, or consider
    2472          108 :         // them when computing the watermark.
    2473          108 :         gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
    2474          108 :     }
    2475              : 
    2476              :     /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
    2477              :     /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
    2478              :     /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
    2479              :     /// like a full compaction of the specified keyspace.
    2480            0 :     pub(crate) async fn gc_compaction_split_jobs(
    2481            0 :         self: &Arc<Self>,
    2482            0 :         job: GcCompactJob,
    2483            0 :         sub_compaction_max_job_size_mb: Option<u64>,
    2484            0 :     ) -> Result<Vec<GcCompactJob>, CompactionError> {
    2485            0 :         let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
    2486            0 :             job.compact_lsn_range.end
    2487              :         } else {
    2488            0 :             self.get_gc_compaction_watermark()
    2489              :         };
    2490              : 
    2491            0 :         if compact_below_lsn == Lsn::INVALID {
    2492            0 :             tracing::warn!(
    2493            0 :                 "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    2494              :             );
    2495            0 :             return Ok(vec![]);
    2496            0 :         }
    2497              : 
    2498              :         // Split compaction job to about 4GB each
    2499              :         const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
    2500            0 :         let sub_compaction_max_job_size_mb =
    2501            0 :             sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
    2502            0 : 
    2503            0 :         let mut compact_jobs = Vec::<GcCompactJob>::new();
    2504            0 :         // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
    2505            0 :         // by estimating the amount of files read for a compaction job. We should also partition on LSN.
    2506            0 :         let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
    2507              :         // Truncate the key range to be within user specified compaction range.
    2508            0 :         fn truncate_to(
    2509            0 :             source_start: &Key,
    2510            0 :             source_end: &Key,
    2511            0 :             target_start: &Key,
    2512            0 :             target_end: &Key,
    2513            0 :         ) -> Option<(Key, Key)> {
    2514            0 :             let start = source_start.max(target_start);
    2515            0 :             let end = source_end.min(target_end);
    2516            0 :             if start < end {
    2517            0 :                 Some((*start, *end))
    2518              :             } else {
    2519            0 :                 None
    2520              :             }
    2521            0 :         }
    2522            0 :         let mut split_key_ranges = Vec::new();
    2523            0 :         let ranges = dense_ks
    2524            0 :             .parts
    2525            0 :             .iter()
    2526            0 :             .map(|partition| partition.ranges.iter())
    2527            0 :             .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
    2528            0 :             .flatten()
    2529            0 :             .cloned()
    2530            0 :             .collect_vec();
    2531            0 :         for range in ranges.iter() {
    2532            0 :             let Some((start, end)) = truncate_to(
    2533            0 :                 &range.start,
    2534            0 :                 &range.end,
    2535            0 :                 &job.compact_key_range.start,
    2536            0 :                 &job.compact_key_range.end,
    2537            0 :             ) else {
    2538            0 :                 continue;
    2539              :             };
    2540            0 :             split_key_ranges.push((start, end));
    2541              :         }
    2542            0 :         split_key_ranges.sort();
    2543            0 :         let all_layers = {
    2544            0 :             let guard = self.layers.read().await;
    2545            0 :             let layer_map = guard.layer_map()?;
    2546            0 :             layer_map.iter_historic_layers().collect_vec()
    2547            0 :         };
    2548            0 :         let mut current_start = None;
    2549            0 :         let ranges_num = split_key_ranges.len();
    2550            0 :         for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
    2551            0 :             if current_start.is_none() {
    2552            0 :                 current_start = Some(start);
    2553            0 :             }
    2554            0 :             let start = current_start.unwrap();
    2555            0 :             if start >= end {
    2556              :                 // We have already processed this partition.
    2557            0 :                 continue;
    2558            0 :             }
    2559            0 :             let overlapping_layers = {
    2560            0 :                 let mut desc = Vec::new();
    2561            0 :                 for layer in all_layers.iter() {
    2562            0 :                     if overlaps_with(&layer.get_key_range(), &(start..end))
    2563            0 :                         && layer.get_lsn_range().start <= compact_below_lsn
    2564            0 :                     {
    2565            0 :                         desc.push(layer.clone());
    2566            0 :                     }
    2567              :                 }
    2568            0 :                 desc
    2569            0 :             };
    2570            0 :             let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
    2571            0 :             if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
    2572              :                 // Try to extend the compaction range so that we include at least one full layer file.
    2573            0 :                 let extended_end = overlapping_layers
    2574            0 :                     .iter()
    2575            0 :                     .map(|layer| layer.key_range.end)
    2576            0 :                     .min();
    2577              :                 // It is possible that the search range does not contain any layer files when we reach the end of the loop.
    2578              :                 // In this case, we simply use the specified key range end.
    2579            0 :                 let end = if let Some(extended_end) = extended_end {
    2580            0 :                     extended_end.max(end)
    2581              :                 } else {
    2582            0 :                     end
    2583              :                 };
    2584            0 :                 let end = if ranges_num == idx + 1 {
    2585              :                     // extend the compaction range to the end of the key range if it's the last partition
    2586            0 :                     end.max(job.compact_key_range.end)
    2587              :                 } else {
    2588            0 :                     end
    2589              :                 };
    2590            0 :                 if total_size == 0 && !compact_jobs.is_empty() {
    2591            0 :                     info!(
    2592            0 :                         "splitting compaction job: {}..{}, estimated_size={}, extending the previous job",
    2593              :                         start, end, total_size
    2594              :                     );
    2595            0 :                     compact_jobs.last_mut().unwrap().compact_key_range.end = end;
    2596            0 :                     current_start = Some(end);
    2597              :                 } else {
    2598            0 :                     info!(
    2599            0 :                         "splitting compaction job: {}..{}, estimated_size={}",
    2600              :                         start, end, total_size
    2601              :                     );
    2602            0 :                     compact_jobs.push(GcCompactJob {
    2603            0 :                         dry_run: job.dry_run,
    2604            0 :                         compact_key_range: start..end,
    2605            0 :                         compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
    2606            0 :                     });
    2607            0 :                     current_start = Some(end);
    2608              :                 }
    2609            0 :             }
    2610              :         }
    2611            0 :         Ok(compact_jobs)
    2612            0 :     }
    2613              : 
    2614              :     /// An experimental compaction building block that combines compaction with garbage collection.
    2615              :     ///
    2616              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    2617              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    2618              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    2619              :     /// and create delta layers with all deltas >= gc horizon.
    2620              :     ///
    2621              :     /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
    2622              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    2623              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    2624              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    2625              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    2626              :     /// part of the range.
    2627              :     ///
    2628              :     /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
    2629              :     /// the LSN. Otherwise, it will use the gc cutoff by default.
    2630          108 :     pub(crate) async fn compact_with_gc(
    2631          108 :         self: &Arc<Self>,
    2632          108 :         cancel: &CancellationToken,
    2633          108 :         options: CompactOptions,
    2634          108 :         ctx: &RequestContext,
    2635          108 :     ) -> Result<CompactionOutcome, CompactionError> {
    2636          108 :         let sub_compaction = options.sub_compaction;
    2637          108 :         let job = GcCompactJob::from_compact_options(options.clone());
    2638          108 :         let no_yield = options.flags.contains(CompactFlags::NoYield);
    2639          108 :         if sub_compaction {
    2640            0 :             info!(
    2641            0 :                 "running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
    2642              :             );
    2643            0 :             let jobs = self
    2644            0 :                 .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
    2645            0 :                 .await?;
    2646            0 :             let jobs_len = jobs.len();
    2647            0 :             for (idx, job) in jobs.into_iter().enumerate() {
    2648            0 :                 info!(
    2649            0 :                     "running enhanced gc bottom-most compaction, sub-compaction {}/{}",
    2650            0 :                     idx + 1,
    2651              :                     jobs_len
    2652              :                 );
    2653            0 :                 self.compact_with_gc_inner(cancel, job, ctx, no_yield)
    2654            0 :                     .await?;
    2655              :             }
    2656            0 :             if jobs_len == 0 {
    2657            0 :                 info!("no jobs to run, skipping gc bottom-most compaction");
    2658            0 :             }
    2659            0 :             return Ok(CompactionOutcome::Done);
    2660          108 :         }
    2661          108 :         self.compact_with_gc_inner(cancel, job, ctx, no_yield).await
    2662          108 :     }
    2663              : 
    2664          108 :     async fn compact_with_gc_inner(
    2665          108 :         self: &Arc<Self>,
    2666          108 :         cancel: &CancellationToken,
    2667          108 :         job: GcCompactJob,
    2668          108 :         ctx: &RequestContext,
    2669          108 :         no_yield: bool,
    2670          108 :     ) -> Result<CompactionOutcome, CompactionError> {
    2671          108 :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    2672          108 :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    2673          108 :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    2674          108 : 
    2675          108 :         let timer = Instant::now();
    2676          108 :         let begin_timer = timer;
    2677          108 : 
    2678          108 :         let gc_lock = async {
    2679          108 :             tokio::select! {
    2680          108 :                 guard = self.gc_lock.lock() => Ok(guard),
    2681          108 :                 _ = cancel.cancelled() => Err(CompactionError::ShuttingDown),
    2682              :             }
    2683          108 :         };
    2684              : 
    2685          108 :         let time_acquire_lock = timer.elapsed();
    2686          108 :         let timer = Instant::now();
    2687              : 
    2688          108 :         let gc_lock = crate::timed(
    2689          108 :             gc_lock,
    2690          108 :             "acquires gc lock",
    2691          108 :             std::time::Duration::from_secs(5),
    2692          108 :         )
    2693          108 :         .await?;
    2694              : 
    2695          108 :         let dry_run = job.dry_run;
    2696          108 :         let compact_key_range = job.compact_key_range;
    2697          108 :         let compact_lsn_range = job.compact_lsn_range;
    2698              : 
    2699          108 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2700              : 
    2701          108 :         info!(
    2702            0 :             "running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}",
    2703              :             compact_key_range.start,
    2704              :             compact_key_range.end,
    2705              :             compact_lsn_range.start,
    2706              :             compact_lsn_range.end
    2707              :         );
    2708              : 
    2709          108 :         scopeguard::defer! {
    2710          108 :             info!("done enhanced gc bottom-most compaction");
    2711          108 :         };
    2712          108 : 
    2713          108 :         let mut stat = CompactionStatistics::default();
    2714              : 
    2715              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    2716              :         // The layer selection has the following properties:
    2717              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    2718              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    2719          104 :         let job_desc = {
    2720          108 :             let guard = self.layers.read().await;
    2721          108 :             let layers = guard.layer_map()?;
    2722          108 :             let gc_info = self.gc_info.read().unwrap();
    2723          108 :             let mut retain_lsns_below_horizon = Vec::new();
    2724          108 :             let gc_cutoff = {
    2725              :                 // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
    2726              :                 // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
    2727              :                 // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
    2728              :                 // to get the truth data.
    2729          108 :                 let real_gc_cutoff = self.get_gc_compaction_watermark();
    2730              :                 // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
    2731              :                 // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
    2732              :                 // the real cutoff.
    2733          108 :                 let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
    2734           96 :                     if real_gc_cutoff == Lsn::INVALID {
    2735              :                         // If the gc_cutoff is not generated yet, we should not compact anything.
    2736            0 :                         tracing::warn!(
    2737            0 :                             "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    2738              :                         );
    2739            0 :                         return Ok(CompactionOutcome::Skipped);
    2740           96 :                     }
    2741           96 :                     real_gc_cutoff
    2742              :                 } else {
    2743           12 :                     compact_lsn_range.end
    2744              :                 };
    2745          108 :                 if gc_cutoff > real_gc_cutoff {
    2746            8 :                     warn!(
    2747            0 :                         "provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff",
    2748              :                         gc_cutoff, real_gc_cutoff
    2749              :                     );
    2750            8 :                     gc_cutoff = real_gc_cutoff;
    2751          100 :                 }
    2752          108 :                 gc_cutoff
    2753              :             };
    2754          140 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    2755          140 :                 if lsn < &gc_cutoff {
    2756          140 :                     retain_lsns_below_horizon.push(*lsn);
    2757          140 :                 }
    2758              :             }
    2759          108 :             for lsn in gc_info.leases.keys() {
    2760            0 :                 if lsn < &gc_cutoff {
    2761            0 :                     retain_lsns_below_horizon.push(*lsn);
    2762            0 :                 }
    2763              :             }
    2764          108 :             let mut selected_layers: Vec<Layer> = Vec::new();
    2765          108 :             drop(gc_info);
    2766              :             // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    2767          108 :             let Some(max_layer_lsn) = layers
    2768          108 :                 .iter_historic_layers()
    2769          488 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    2770          416 :                 .map(|desc| desc.get_lsn_range().end)
    2771          108 :                 .max()
    2772              :             else {
    2773            0 :                 info!(
    2774            0 :                     "no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}",
    2775              :                     gc_cutoff
    2776              :                 );
    2777            0 :                 return Ok(CompactionOutcome::Done);
    2778              :             };
    2779              :             // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
    2780              :             // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
    2781              :             // it is a branch.
    2782          108 :             let Some(min_layer_lsn) = layers
    2783          108 :                 .iter_historic_layers()
    2784          488 :                 .filter(|desc| {
    2785          488 :                     if compact_lsn_range.start == Lsn::INVALID {
    2786          396 :                         true // select all layers below if start == Lsn(0)
    2787              :                     } else {
    2788           92 :                         desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
    2789              :                     }
    2790          488 :                 })
    2791          452 :                 .map(|desc| desc.get_lsn_range().start)
    2792          108 :                 .min()
    2793              :             else {
    2794            0 :                 info!(
    2795            0 :                     "no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}",
    2796              :                     compact_lsn_range.end
    2797              :                 );
    2798            0 :                 return Ok(CompactionOutcome::Done);
    2799              :             };
    2800              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    2801              :             // layers to compact.
    2802          108 :             let mut rewrite_layers = Vec::new();
    2803          488 :             for desc in layers.iter_historic_layers() {
    2804          488 :                 if desc.get_lsn_range().end <= max_layer_lsn
    2805          416 :                     && desc.get_lsn_range().start >= min_layer_lsn
    2806          380 :                     && overlaps_with(&desc.get_key_range(), &compact_key_range)
    2807              :                 {
    2808              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    2809              :                     // even if it might contain extra keys
    2810          304 :                     selected_layers.push(guard.get_from_desc(&desc));
    2811          304 :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    2812          304 :                     // to overlap image layers)
    2813          304 :                     if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
    2814            4 :                     {
    2815            4 :                         rewrite_layers.push(desc);
    2816          300 :                     }
    2817          184 :                 }
    2818              :             }
    2819          108 :             if selected_layers.is_empty() {
    2820            4 :                 info!(
    2821            0 :                     "no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}",
    2822              :                     gc_cutoff, compact_key_range.start, compact_key_range.end
    2823              :                 );
    2824            4 :                 return Ok(CompactionOutcome::Done);
    2825          104 :             }
    2826          104 :             retain_lsns_below_horizon.sort();
    2827          104 :             GcCompactionJobDescription {
    2828          104 :                 selected_layers,
    2829          104 :                 gc_cutoff,
    2830          104 :                 retain_lsns_below_horizon,
    2831          104 :                 min_layer_lsn,
    2832          104 :                 max_layer_lsn,
    2833          104 :                 compaction_key_range: compact_key_range,
    2834          104 :                 rewrite_layers,
    2835          104 :             }
    2836              :         };
    2837          104 :         let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
    2838              :             // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
    2839              :             // We use job_desc.min_layer_lsn as if it's the lowest branch point.
    2840           16 :             (true, job_desc.min_layer_lsn)
    2841           88 :         } else if self.ancestor_timeline.is_some() {
    2842              :             // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
    2843              :             // LSN ranges all the way to the ancestor timeline.
    2844            4 :             (true, self.ancestor_lsn)
    2845              :         } else {
    2846           84 :             let res = job_desc
    2847           84 :                 .retain_lsns_below_horizon
    2848           84 :                 .first()
    2849           84 :                 .copied()
    2850           84 :                 .unwrap_or(job_desc.gc_cutoff);
    2851           84 :             if debug_mode {
    2852           84 :                 assert_eq!(
    2853           84 :                     res,
    2854           84 :                     job_desc
    2855           84 :                         .retain_lsns_below_horizon
    2856           84 :                         .iter()
    2857           84 :                         .min()
    2858           84 :                         .copied()
    2859           84 :                         .unwrap_or(job_desc.gc_cutoff)
    2860           84 :                 );
    2861            0 :             }
    2862           84 :             (false, res)
    2863              :         };
    2864          104 :         info!(
    2865            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
    2866            0 :             job_desc.selected_layers.len(),
    2867            0 :             job_desc.rewrite_layers.len(),
    2868              :             job_desc.max_layer_lsn,
    2869              :             job_desc.min_layer_lsn,
    2870              :             job_desc.gc_cutoff,
    2871              :             lowest_retain_lsn,
    2872              :             job_desc.compaction_key_range.start,
    2873              :             job_desc.compaction_key_range.end,
    2874              :             has_data_below,
    2875              :         );
    2876              : 
    2877          104 :         let time_analyze = timer.elapsed();
    2878          104 :         let timer = Instant::now();
    2879              : 
    2880          408 :         for layer in &job_desc.selected_layers {
    2881          304 :             debug!("read layer: {}", layer.layer_desc().key());
    2882              :         }
    2883          108 :         for layer in &job_desc.rewrite_layers {
    2884            4 :             debug!("rewrite layer: {}", layer.key());
    2885              :         }
    2886              : 
    2887          104 :         self.check_compaction_space(&job_desc.selected_layers)
    2888          104 :             .await?;
    2889              : 
    2890              :         // Generate statistics for the compaction
    2891          408 :         for layer in &job_desc.selected_layers {
    2892          304 :             let desc = layer.layer_desc();
    2893          304 :             if desc.is_delta() {
    2894          172 :                 stat.visit_delta_layer(desc.file_size());
    2895          172 :             } else {
    2896          132 :                 stat.visit_image_layer(desc.file_size());
    2897          132 :             }
    2898              :         }
    2899              : 
    2900              :         // Step 1: construct a k-merge iterator over all layers.
    2901              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    2902          104 :         let layer_names = job_desc
    2903          104 :             .selected_layers
    2904          104 :             .iter()
    2905          304 :             .map(|layer| layer.layer_desc().layer_name())
    2906          104 :             .collect_vec();
    2907          104 :         if let Some(err) = check_valid_layermap(&layer_names) {
    2908            0 :             return Err(CompactionError::Other(anyhow!(
    2909            0 :                 "gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss",
    2910            0 :                 err
    2911            0 :             )));
    2912          104 :         }
    2913          104 :         // The maximum LSN we are processing in this compaction loop
    2914          104 :         let end_lsn = job_desc
    2915          104 :             .selected_layers
    2916          104 :             .iter()
    2917          304 :             .map(|l| l.layer_desc().lsn_range.end)
    2918          104 :             .max()
    2919          104 :             .unwrap();
    2920          104 :         let mut delta_layers = Vec::new();
    2921          104 :         let mut image_layers = Vec::new();
    2922          104 :         let mut downloaded_layers = Vec::new();
    2923          104 :         let mut total_downloaded_size = 0;
    2924          104 :         let mut total_layer_size = 0;
    2925          408 :         for layer in &job_desc.selected_layers {
    2926          304 :             if layer
    2927          304 :                 .needs_download()
    2928          304 :                 .await
    2929          304 :                 .context("failed to check if layer needs download")
    2930          304 :                 .map_err(CompactionError::Other)?
    2931          304 :                 .is_some()
    2932            0 :             {
    2933            0 :                 total_downloaded_size += layer.layer_desc().file_size;
    2934          304 :             }
    2935          304 :             total_layer_size += layer.layer_desc().file_size;
    2936          304 :             if cancel.is_cancelled() {
    2937            0 :                 return Err(CompactionError::ShuttingDown);
    2938          304 :             }
    2939          304 :             if !no_yield {
    2940          304 :                 let should_yield = self
    2941          304 :                     .l0_compaction_trigger
    2942          304 :                     .notified()
    2943          304 :                     .now_or_never()
    2944          304 :                     .is_some();
    2945          304 :                 if should_yield {
    2946            0 :                     tracing::info!(
    2947            0 :                         "preempt gc-compaction when downloading layers: too many L0 layers"
    2948              :                     );
    2949            0 :                     return Ok(CompactionOutcome::YieldForL0);
    2950          304 :                 }
    2951            0 :             }
    2952          304 :             let resident_layer = layer
    2953          304 :                 .download_and_keep_resident(ctx)
    2954          304 :                 .await
    2955          304 :                 .context("failed to download and keep resident layer")
    2956          304 :                 .map_err(CompactionError::Other)?;
    2957          304 :             downloaded_layers.push(resident_layer);
    2958              :         }
    2959          104 :         info!(
    2960            0 :             "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
    2961            0 :             total_downloaded_size,
    2962            0 :             total_layer_size,
    2963            0 :             total_downloaded_size as f64 / total_layer_size as f64
    2964              :         );
    2965          408 :         for resident_layer in &downloaded_layers {
    2966          304 :             if resident_layer.layer_desc().is_delta() {
    2967          172 :                 let layer = resident_layer
    2968          172 :                     .get_as_delta(ctx)
    2969          172 :                     .await
    2970          172 :                     .context("failed to get delta layer")
    2971          172 :                     .map_err(CompactionError::Other)?;
    2972          172 :                 delta_layers.push(layer);
    2973              :             } else {
    2974          132 :                 let layer = resident_layer
    2975          132 :                     .get_as_image(ctx)
    2976          132 :                     .await
    2977          132 :                     .context("failed to get image layer")
    2978          132 :                     .map_err(CompactionError::Other)?;
    2979          132 :                 image_layers.push(layer);
    2980              :             }
    2981              :         }
    2982          104 :         let (dense_ks, sparse_ks) = self
    2983          104 :             .collect_gc_compaction_keyspace()
    2984          104 :             .await
    2985          104 :             .context("failed to collect gc compaction keyspace")
    2986          104 :             .map_err(CompactionError::Other)?;
    2987          104 :         let mut merge_iter = FilterIterator::create(
    2988          104 :             MergeIterator::create(&delta_layers, &image_layers, ctx),
    2989          104 :             dense_ks,
    2990          104 :             sparse_ks,
    2991          104 :         )
    2992          104 :         .context("failed to create filter iterator")
    2993          104 :         .map_err(CompactionError::Other)?;
    2994              : 
    2995          104 :         let time_download_layer = timer.elapsed();
    2996          104 :         let timer = Instant::now();
    2997          104 : 
    2998          104 :         // Step 2: Produce images+deltas.
    2999          104 :         let mut accumulated_values = Vec::new();
    3000          104 :         let mut last_key: Option<Key> = None;
    3001              : 
    3002              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    3003              :         // when some condition meet.
    3004          104 :         let mut image_layer_writer = if !has_data_below {
    3005              :             Some(
    3006           84 :                 SplitImageLayerWriter::new(
    3007           84 :                     self.conf,
    3008           84 :                     self.timeline_id,
    3009           84 :                     self.tenant_shard_id,
    3010           84 :                     job_desc.compaction_key_range.start,
    3011           84 :                     lowest_retain_lsn,
    3012           84 :                     self.get_compaction_target_size(),
    3013           84 :                     ctx,
    3014           84 :                 )
    3015           84 :                 .await
    3016           84 :                 .context("failed to create image layer writer")
    3017           84 :                 .map_err(CompactionError::Other)?,
    3018              :             )
    3019              :         } else {
    3020           20 :             None
    3021              :         };
    3022              : 
    3023          104 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    3024          104 :             self.conf,
    3025          104 :             self.timeline_id,
    3026          104 :             self.tenant_shard_id,
    3027          104 :             lowest_retain_lsn..end_lsn,
    3028          104 :             self.get_compaction_target_size(),
    3029          104 :         )
    3030          104 :         .await
    3031          104 :         .context("failed to create delta layer writer")
    3032          104 :         .map_err(CompactionError::Other)?;
    3033              : 
    3034              :         #[derive(Default)]
    3035              :         struct RewritingLayers {
    3036              :             before: Option<DeltaLayerWriter>,
    3037              :             after: Option<DeltaLayerWriter>,
    3038              :         }
    3039          104 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    3040              : 
    3041              :         /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
    3042              :         /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
    3043              :         /// In those cases, we need to pull up data from below the LSN range we're compaction.
    3044              :         ///
    3045              :         /// This function unifies the cases so that later code doesn't have to think about it.
    3046              :         ///
    3047              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    3048              :         /// is needed for reconstruction. This should be fixed in the future.
    3049              :         ///
    3050              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    3051              :         /// images.
    3052         1244 :         async fn get_ancestor_image(
    3053         1244 :             this_tline: &Arc<Timeline>,
    3054         1244 :             key: Key,
    3055         1244 :             ctx: &RequestContext,
    3056         1244 :             has_data_below: bool,
    3057         1244 :             history_lsn_point: Lsn,
    3058         1244 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    3059         1244 :             if !has_data_below {
    3060         1168 :                 return Ok(None);
    3061           76 :             };
    3062              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    3063              :             // as much existing code as possible.
    3064           76 :             let img = this_tline.get(key, history_lsn_point, ctx).await?;
    3065           76 :             Ok(Some((key, history_lsn_point, img)))
    3066         1244 :         }
    3067              : 
    3068              :         // Actually, we can decide not to write to the image layer at all at this point because
    3069              :         // the key and LSN range are determined. However, to keep things simple here, we still
    3070              :         // create this writer, and discard the writer in the end.
    3071              : 
    3072          104 :         let mut keys_processed = 0;
    3073              : 
    3074         1932 :         while let Some(((key, lsn, val), desc)) = merge_iter
    3075         1932 :             .next_with_trace()
    3076         1932 :             .await
    3077         1932 :             .context("failed to get next key-value pair")
    3078         1932 :             .map_err(CompactionError::Other)?
    3079              :         {
    3080         1828 :             if cancel.is_cancelled() {
    3081            0 :                 return Err(CompactionError::ShuttingDown);
    3082         1828 :             }
    3083         1828 : 
    3084         1828 :             if !no_yield {
    3085         1828 :                 keys_processed += 1;
    3086         1828 :                 if keys_processed % 1000 == 0 {
    3087            0 :                     let should_yield = self
    3088            0 :                         .l0_compaction_trigger
    3089            0 :                         .notified()
    3090            0 :                         .now_or_never()
    3091            0 :                         .is_some();
    3092            0 :                     if should_yield {
    3093            0 :                         tracing::info!(
    3094            0 :                             "preempt gc-compaction in the main loop: too many L0 layers"
    3095              :                         );
    3096            0 :                         return Ok(CompactionOutcome::YieldForL0);
    3097            0 :                     }
    3098         1828 :                 }
    3099            0 :             }
    3100         1828 :             if self.shard_identity.is_key_disposable(&key) {
    3101              :                 // If this shard does not need to store this key, simply skip it.
    3102              :                 //
    3103              :                 // This is not handled in the filter iterator because shard is determined by hash.
    3104              :                 // Therefore, it does not give us any performance benefit to do things like skip
    3105              :                 // a whole layer file as handling key spaces (ranges).
    3106            0 :                 if cfg!(debug_assertions) {
    3107            0 :                     let shard = self.shard_identity.shard_index();
    3108            0 :                     let owner = self.shard_identity.get_shard_number(&key);
    3109            0 :                     panic!("key {key} does not belong on shard {shard}, owned by {owner}");
    3110            0 :                 }
    3111            0 :                 continue;
    3112         1828 :             }
    3113         1828 :             if !job_desc.compaction_key_range.contains(&key) {
    3114          128 :                 if !desc.is_delta {
    3115          120 :                     continue;
    3116            8 :                 }
    3117            8 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    3118            8 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    3119            0 :                     if rewriter.before.is_none() {
    3120            0 :                         rewriter.before = Some(
    3121            0 :                             DeltaLayerWriter::new(
    3122            0 :                                 self.conf,
    3123            0 :                                 self.timeline_id,
    3124            0 :                                 self.tenant_shard_id,
    3125            0 :                                 desc.key_range.start,
    3126            0 :                                 desc.lsn_range.clone(),
    3127            0 :                                 ctx,
    3128            0 :                             )
    3129            0 :                             .await
    3130            0 :                             .context("failed to create delta layer writer")
    3131            0 :                             .map_err(CompactionError::Other)?,
    3132              :                         );
    3133            0 :                     }
    3134            0 :                     rewriter.before.as_mut().unwrap()
    3135            8 :                 } else if key >= job_desc.compaction_key_range.end {
    3136            8 :                     if rewriter.after.is_none() {
    3137            4 :                         rewriter.after = Some(
    3138            4 :                             DeltaLayerWriter::new(
    3139            4 :                                 self.conf,
    3140            4 :                                 self.timeline_id,
    3141            4 :                                 self.tenant_shard_id,
    3142            4 :                                 job_desc.compaction_key_range.end,
    3143            4 :                                 desc.lsn_range.clone(),
    3144            4 :                                 ctx,
    3145            4 :                             )
    3146            4 :                             .await
    3147            4 :                             .context("failed to create delta layer writer")
    3148            4 :                             .map_err(CompactionError::Other)?,
    3149              :                         );
    3150            4 :                     }
    3151            8 :                     rewriter.after.as_mut().unwrap()
    3152              :                 } else {
    3153            0 :                     unreachable!()
    3154              :                 };
    3155            8 :                 rewriter
    3156            8 :                     .put_value(key, lsn, val, ctx)
    3157            8 :                     .await
    3158            8 :                     .context("failed to put value")
    3159            8 :                     .map_err(CompactionError::Other)?;
    3160            8 :                 continue;
    3161         1700 :             }
    3162         1700 :             match val {
    3163         1220 :                 Value::Image(_) => stat.visit_image_key(&val),
    3164          480 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    3165              :             }
    3166         1700 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    3167          560 :                 if last_key.is_none() {
    3168          104 :                     last_key = Some(key);
    3169          456 :                 }
    3170          560 :                 accumulated_values.push((key, lsn, val));
    3171              :             } else {
    3172         1140 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    3173         1140 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    3174         1140 :                 let retention = self
    3175         1140 :                     .generate_key_retention(
    3176         1140 :                         *last_key,
    3177         1140 :                         &accumulated_values,
    3178         1140 :                         job_desc.gc_cutoff,
    3179         1140 :                         &job_desc.retain_lsns_below_horizon,
    3180         1140 :                         COMPACTION_DELTA_THRESHOLD,
    3181         1140 :                         get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
    3182         1140 :                             .await
    3183         1140 :                             .context("failed to get ancestor image")
    3184         1140 :                             .map_err(CompactionError::Other)?,
    3185              :                     )
    3186         1140 :                     .await
    3187         1140 :                     .context("failed to generate key retention")
    3188         1140 :                     .map_err(CompactionError::Other)?;
    3189         1140 :                 retention
    3190         1140 :                     .pipe_to(
    3191         1140 :                         *last_key,
    3192         1140 :                         &mut delta_layer_writer,
    3193         1140 :                         image_layer_writer.as_mut(),
    3194         1140 :                         &mut stat,
    3195         1140 :                         ctx,
    3196         1140 :                     )
    3197         1140 :                     .await
    3198         1140 :                     .context("failed to pipe to delta layer writer")
    3199         1140 :                     .map_err(CompactionError::Other)?;
    3200         1140 :                 accumulated_values.clear();
    3201         1140 :                 *last_key = key;
    3202         1140 :                 accumulated_values.push((key, lsn, val));
    3203              :             }
    3204              :         }
    3205              : 
    3206              :         // TODO: move the below part to the loop body
    3207          104 :         let Some(last_key) = last_key else {
    3208            0 :             return Err(CompactionError::Other(anyhow!(
    3209            0 :                 "no keys produced during compaction"
    3210            0 :             )));
    3211              :         };
    3212          104 :         stat.on_unique_key_visited();
    3213              : 
    3214          104 :         let retention = self
    3215          104 :             .generate_key_retention(
    3216          104 :                 last_key,
    3217          104 :                 &accumulated_values,
    3218          104 :                 job_desc.gc_cutoff,
    3219          104 :                 &job_desc.retain_lsns_below_horizon,
    3220          104 :                 COMPACTION_DELTA_THRESHOLD,
    3221          104 :                 get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn)
    3222          104 :                     .await
    3223          104 :                     .context("failed to get ancestor image")
    3224          104 :                     .map_err(CompactionError::Other)?,
    3225              :             )
    3226          104 :             .await
    3227          104 :             .context("failed to generate key retention")
    3228          104 :             .map_err(CompactionError::Other)?;
    3229          104 :         retention
    3230          104 :             .pipe_to(
    3231          104 :                 last_key,
    3232          104 :                 &mut delta_layer_writer,
    3233          104 :                 image_layer_writer.as_mut(),
    3234          104 :                 &mut stat,
    3235          104 :                 ctx,
    3236          104 :             )
    3237          104 :             .await
    3238          104 :             .context("failed to pipe to delta layer writer")
    3239          104 :             .map_err(CompactionError::Other)?;
    3240              :         // end: move the above part to the loop body
    3241              : 
    3242          104 :         let time_main_loop = timer.elapsed();
    3243          104 :         let timer = Instant::now();
    3244          104 : 
    3245          104 :         let mut rewrote_delta_layers = Vec::new();
    3246          108 :         for (key, writers) in delta_layer_rewriters {
    3247            4 :             if let Some(delta_writer_before) = writers.before {
    3248            0 :                 let (desc, path) = delta_writer_before
    3249            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    3250            0 :                     .await
    3251            0 :                     .context("failed to finish delta layer writer")
    3252            0 :                     .map_err(CompactionError::Other)?;
    3253            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3254            0 :                     .context("failed to finish creating delta layer")
    3255            0 :                     .map_err(CompactionError::Other)?;
    3256            0 :                 rewrote_delta_layers.push(layer);
    3257            4 :             }
    3258            4 :             if let Some(delta_writer_after) = writers.after {
    3259            4 :                 let (desc, path) = delta_writer_after
    3260            4 :                     .finish(key.key_range.end, ctx)
    3261            4 :                     .await
    3262            4 :                     .context("failed to finish delta layer writer")
    3263            4 :                     .map_err(CompactionError::Other)?;
    3264            4 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3265            4 :                     .context("failed to finish creating delta layer")
    3266            4 :                     .map_err(CompactionError::Other)?;
    3267            4 :                 rewrote_delta_layers.push(layer);
    3268            0 :             }
    3269              :         }
    3270              : 
    3271          148 :         let discard = |key: &PersistentLayerKey| {
    3272          148 :             let key = key.clone();
    3273          148 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    3274          148 :         };
    3275              : 
    3276          104 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    3277           84 :             if !dry_run {
    3278           76 :                 let end_key = job_desc.compaction_key_range.end;
    3279           76 :                 writer
    3280           76 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    3281           76 :                     .await
    3282           76 :                     .context("failed to finish image layer writer")
    3283           76 :                     .map_err(CompactionError::Other)?
    3284              :             } else {
    3285            8 :                 drop(writer);
    3286            8 :                 Vec::new()
    3287              :             }
    3288              :         } else {
    3289           20 :             Vec::new()
    3290              :         };
    3291              : 
    3292          104 :         let produced_delta_layers = if !dry_run {
    3293           96 :             delta_layer_writer
    3294           96 :                 .finish_with_discard_fn(self, ctx, discard)
    3295           96 :                 .await
    3296           96 :                 .context("failed to finish delta layer writer")
    3297           96 :                 .map_err(CompactionError::Other)?
    3298              :         } else {
    3299            8 :             drop(delta_layer_writer);
    3300            8 :             Vec::new()
    3301              :         };
    3302              : 
    3303              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    3304              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    3305          104 :         let mut compact_to = Vec::new();
    3306          104 :         let mut keep_layers = HashSet::new();
    3307          104 :         let produced_delta_layers_len = produced_delta_layers.len();
    3308          104 :         let produced_image_layers_len = produced_image_layers.len();
    3309          104 : 
    3310          104 :         let layer_selection_by_key = job_desc
    3311          104 :             .selected_layers
    3312          104 :             .iter()
    3313          304 :             .map(|l| (l.layer_desc().key(), l.layer_desc().clone()))
    3314          104 :             .collect::<HashMap<_, _>>();
    3315              : 
    3316          176 :         for action in produced_delta_layers {
    3317           72 :             match action {
    3318           44 :                 BatchWriterResult::Produced(layer) => {
    3319           44 :                     if cfg!(debug_assertions) {
    3320           44 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    3321            0 :                     }
    3322           44 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    3323           44 :                     compact_to.push(layer);
    3324              :                 }
    3325           28 :                 BatchWriterResult::Discarded(l) => {
    3326           28 :                     if cfg!(debug_assertions) {
    3327           28 :                         info!("discarded delta layer: {}", l);
    3328            0 :                     }
    3329           28 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3330           28 :                         stat.discard_delta_layer(layer_desc.file_size());
    3331           28 :                     } else {
    3332            0 :                         tracing::warn!(
    3333            0 :                             "discarded delta layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3334              :                             l
    3335              :                         );
    3336            0 :                         stat.discard_delta_layer(0);
    3337              :                     }
    3338           28 :                     keep_layers.insert(l);
    3339              :                 }
    3340              :             }
    3341              :         }
    3342          108 :         for layer in &rewrote_delta_layers {
    3343            4 :             debug!(
    3344            0 :                 "produced rewritten delta layer: {}",
    3345            0 :                 layer.layer_desc().key()
    3346              :             );
    3347              :             // For now, we include rewritten delta layer size in the "produce_delta_layer". We could
    3348              :             // make it a separate statistics in the future.
    3349            4 :             stat.produce_delta_layer(layer.layer_desc().file_size());
    3350              :         }
    3351          104 :         compact_to.extend(rewrote_delta_layers);
    3352          180 :         for action in produced_image_layers {
    3353           76 :             match action {
    3354           60 :                 BatchWriterResult::Produced(layer) => {
    3355           60 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    3356           60 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    3357           60 :                     compact_to.push(layer);
    3358              :                 }
    3359           16 :                 BatchWriterResult::Discarded(l) => {
    3360           16 :                     debug!("discarded image layer: {}", l);
    3361           16 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3362           16 :                         stat.discard_image_layer(layer_desc.file_size());
    3363           16 :                     } else {
    3364            0 :                         tracing::warn!(
    3365            0 :                             "discarded image layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3366              :                             l
    3367              :                         );
    3368            0 :                         stat.discard_image_layer(0);
    3369              :                     }
    3370           16 :                     keep_layers.insert(l);
    3371              :                 }
    3372              :             }
    3373              :         }
    3374              : 
    3375          104 :         let mut layer_selection = job_desc.selected_layers;
    3376              : 
    3377              :         // Partial compaction might select more data than it processes, e.g., if
    3378              :         // the compaction_key_range only partially overlaps:
    3379              :         //
    3380              :         //         [---compaction_key_range---]
    3381              :         //   [---A----][----B----][----C----][----D----]
    3382              :         //
    3383              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    3384              :         // the compaction key range, so we can always discard them. However, for image
    3385              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    3386              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    3387              :         //
    3388              :         // The created image layers contain whatever is needed from B, C, and from
    3389              :         // `----]` of A, and from  `[---` of D.
    3390              :         //
    3391              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    3392              :         // keep that data.
    3393              :         //
    3394              :         // The solution for now is to keep A and D completely if they are image layers.
    3395              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    3396              :         // is _not_ fully covered by compaction_key_range).
    3397          408 :         for layer in &layer_selection {
    3398          304 :             if !layer.layer_desc().is_delta() {
    3399          132 :                 if !overlaps_with(
    3400          132 :                     &layer.layer_desc().key_range,
    3401          132 :                     &job_desc.compaction_key_range,
    3402          132 :                 ) {
    3403            0 :                     return Err(CompactionError::Other(anyhow!(
    3404            0 :                         "violated constraint: image layer outside of compaction key range"
    3405            0 :                     )));
    3406          132 :                 }
    3407          132 :                 if !fully_contains(
    3408          132 :                     &job_desc.compaction_key_range,
    3409          132 :                     &layer.layer_desc().key_range,
    3410          132 :                 ) {
    3411           16 :                     keep_layers.insert(layer.layer_desc().key());
    3412          116 :                 }
    3413          172 :             }
    3414              :         }
    3415              : 
    3416          304 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    3417          104 : 
    3418          104 :         let time_final_phase = timer.elapsed();
    3419          104 : 
    3420          104 :         stat.time_final_phase_secs = time_final_phase.as_secs_f64();
    3421          104 :         stat.time_main_loop_secs = time_main_loop.as_secs_f64();
    3422          104 :         stat.time_acquire_lock_secs = time_acquire_lock.as_secs_f64();
    3423          104 :         stat.time_download_layer_secs = time_download_layer.as_secs_f64();
    3424          104 :         stat.time_analyze_secs = time_analyze.as_secs_f64();
    3425          104 :         stat.time_total_secs = begin_timer.elapsed().as_secs_f64();
    3426          104 :         stat.finalize();
    3427          104 : 
    3428          104 :         info!(
    3429            0 :             "gc-compaction statistics: {}",
    3430            0 :             serde_json::to_string(&stat)
    3431            0 :                 .context("failed to serialize gc-compaction statistics")
    3432            0 :                 .map_err(CompactionError::Other)?
    3433              :         );
    3434              : 
    3435          104 :         if dry_run {
    3436            8 :             return Ok(CompactionOutcome::Done);
    3437           96 :         }
    3438           96 : 
    3439           96 :         info!(
    3440            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    3441            0 :             produced_delta_layers_len,
    3442            0 :             produced_image_layers_len,
    3443            0 :             keep_layers.len()
    3444              :         );
    3445              : 
    3446              :         // Step 3: Place back to the layer map.
    3447              : 
    3448              :         // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
    3449           96 :         let all_layers = {
    3450           96 :             let guard = self.layers.read().await;
    3451           96 :             let layer_map = guard.layer_map()?;
    3452           96 :             layer_map.iter_historic_layers().collect_vec()
    3453           96 :         };
    3454           96 : 
    3455           96 :         let mut final_layers = all_layers
    3456           96 :             .iter()
    3457          428 :             .map(|layer| layer.layer_name())
    3458           96 :             .collect::<HashSet<_>>();
    3459          304 :         for layer in &layer_selection {
    3460          208 :             final_layers.remove(&layer.layer_desc().layer_name());
    3461          208 :         }
    3462          204 :         for layer in &compact_to {
    3463          108 :             final_layers.insert(layer.layer_desc().layer_name());
    3464          108 :         }
    3465           96 :         let final_layers = final_layers.into_iter().collect_vec();
    3466              : 
    3467              :         // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
    3468              :         // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
    3469              :         // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
    3470           96 :         if let Some(err) = check_valid_layermap(&final_layers) {
    3471            0 :             return Err(CompactionError::Other(anyhow!(
    3472            0 :                 "gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss",
    3473            0 :                 err
    3474            0 :             )));
    3475           96 :         }
    3476              : 
    3477              :         // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
    3478              :         // operate on L1 layers.
    3479              :         {
    3480              :             // Gc-compaction will rewrite the history of a key. This could happen in two ways:
    3481              :             //
    3482              :             // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
    3483              :             // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
    3484              :             // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
    3485              :             // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
    3486              :             // now gets stored in I at the compact LSN.
    3487              :             //
    3488              :             // ---------------                                       ---------------
    3489              :             //   delta1@LSN20                                         image1@LSN20
    3490              :             // ---------------  (read path collects delta@LSN20,  => ---------------  (read path cannot find anything
    3491              :             //   delta1@LSN10    yields)                                               below LSN 20)
    3492              :             // ---------------
    3493              :             //
    3494              :             // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
    3495              :             // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
    3496              :             // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
    3497              :             //
    3498              :             // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
    3499              :             // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
    3500              :             // layer containing 4, yields, and we update the layer map to put the delta layer.
    3501              :             //
    3502              :             // ---------------                                      ---------------
    3503              :             //   delta1@LSN4                                          image1@LSN4
    3504              :             // ---------------  (read path collects delta@LSN4,  => ---------------  (read path collects LSN4 and LSN1,
    3505              :             //  delta1@LSN1-3    yields)                              delta1@LSN1     which is an invalid history)
    3506              :             // ---------------                                      ---------------
    3507              :             //
    3508              :             // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
    3509              :             // and only allow reads to continue after the update is finished.
    3510              : 
    3511           96 :             let update_guard = self.gc_compaction_layer_update_lock.write().await;
    3512              :             // Acquiring the update guard ensures current read operations end and new read operations are blocked.
    3513              :             // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
    3514           96 :             let mut guard = self.layers.write().await;
    3515           96 :             guard
    3516           96 :                 .open_mut()?
    3517           96 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
    3518           96 :             drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
    3519           96 :         };
    3520           96 : 
    3521           96 :         // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
    3522           96 :         // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
    3523           96 :         // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
    3524           96 :         // be batched into `schedule_compaction_update`.
    3525           96 :         let disk_consistent_lsn = self.disk_consistent_lsn.load();
    3526           96 :         self.schedule_uploads(disk_consistent_lsn, None)
    3527           96 :             .context("failed to schedule uploads")
    3528           96 :             .map_err(CompactionError::Other)?;
    3529              :         // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
    3530              :         // of `compact_from`.
    3531           96 :         let compact_from = {
    3532           96 :             let mut compact_from = Vec::new();
    3533           96 :             let mut compact_to_set = HashMap::new();
    3534          204 :             for layer in &compact_to {
    3535          108 :                 compact_to_set.insert(layer.layer_desc().key(), layer);
    3536          108 :             }
    3537          304 :             for layer in &layer_selection {
    3538          208 :                 if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
    3539            0 :                     tracing::info!(
    3540            0 :                         "skipping delete {} because found same layer key at different generation {}",
    3541              :                         layer,
    3542              :                         to
    3543              :                     );
    3544          208 :                 } else {
    3545          208 :                     compact_from.push(layer.clone());
    3546          208 :                 }
    3547              :             }
    3548           96 :             compact_from
    3549           96 :         };
    3550           96 :         self.remote_client
    3551           96 :             .schedule_compaction_update(&compact_from, &compact_to)?;
    3552              : 
    3553           96 :         drop(gc_lock);
    3554           96 : 
    3555           96 :         Ok(CompactionOutcome::Done)
    3556          108 :     }
    3557              : }
    3558              : 
    3559              : struct TimelineAdaptor {
    3560              :     timeline: Arc<Timeline>,
    3561              : 
    3562              :     keyspace: (Lsn, KeySpace),
    3563              : 
    3564              :     new_deltas: Vec<ResidentLayer>,
    3565              :     new_images: Vec<ResidentLayer>,
    3566              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    3567              : }
    3568              : 
    3569              : impl TimelineAdaptor {
    3570            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    3571            0 :         Self {
    3572            0 :             timeline: timeline.clone(),
    3573            0 :             keyspace,
    3574            0 :             new_images: Vec::new(),
    3575            0 :             new_deltas: Vec::new(),
    3576            0 :             layers_to_delete: Vec::new(),
    3577            0 :         }
    3578            0 :     }
    3579              : 
    3580            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    3581            0 :         let layers_to_delete = {
    3582            0 :             let guard = self.timeline.layers.read().await;
    3583            0 :             self.layers_to_delete
    3584            0 :                 .iter()
    3585            0 :                 .map(|x| guard.get_from_desc(x))
    3586            0 :                 .collect::<Vec<Layer>>()
    3587            0 :         };
    3588            0 :         self.timeline
    3589            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    3590            0 :             .await?;
    3591              : 
    3592            0 :         self.timeline
    3593            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    3594              : 
    3595            0 :         self.new_deltas.clear();
    3596            0 :         self.layers_to_delete.clear();
    3597            0 :         Ok(())
    3598            0 :     }
    3599              : }
    3600              : 
    3601              : #[derive(Clone)]
    3602              : struct ResidentDeltaLayer(ResidentLayer);
    3603              : #[derive(Clone)]
    3604              : struct ResidentImageLayer(ResidentLayer);
    3605              : 
    3606              : impl CompactionJobExecutor for TimelineAdaptor {
    3607              :     type Key = pageserver_api::key::Key;
    3608              : 
    3609              :     type Layer = OwnArc<PersistentLayerDesc>;
    3610              :     type DeltaLayer = ResidentDeltaLayer;
    3611              :     type ImageLayer = ResidentImageLayer;
    3612              : 
    3613              :     type RequestContext = crate::context::RequestContext;
    3614              : 
    3615            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    3616            0 :         self.timeline.get_shard_identity()
    3617            0 :     }
    3618              : 
    3619            0 :     async fn get_layers(
    3620            0 :         &mut self,
    3621            0 :         key_range: &Range<Key>,
    3622            0 :         lsn_range: &Range<Lsn>,
    3623            0 :         _ctx: &RequestContext,
    3624            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    3625            0 :         self.flush_updates().await?;
    3626              : 
    3627            0 :         let guard = self.timeline.layers.read().await;
    3628            0 :         let layer_map = guard.layer_map()?;
    3629              : 
    3630            0 :         let result = layer_map
    3631            0 :             .iter_historic_layers()
    3632            0 :             .filter(|l| {
    3633            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    3634            0 :             })
    3635            0 :             .map(OwnArc)
    3636            0 :             .collect();
    3637            0 :         Ok(result)
    3638            0 :     }
    3639              : 
    3640            0 :     async fn get_keyspace(
    3641            0 :         &mut self,
    3642            0 :         key_range: &Range<Key>,
    3643            0 :         lsn: Lsn,
    3644            0 :         _ctx: &RequestContext,
    3645            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    3646            0 :         if lsn == self.keyspace.0 {
    3647            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    3648            0 :                 &self.keyspace.1.ranges,
    3649            0 :                 key_range,
    3650            0 :             ))
    3651              :         } else {
    3652              :             // The current compaction implementation only ever requests the key space
    3653              :             // at the compaction end LSN.
    3654            0 :             anyhow::bail!("keyspace not available for requested lsn");
    3655              :         }
    3656            0 :     }
    3657              : 
    3658            0 :     async fn downcast_delta_layer(
    3659            0 :         &self,
    3660            0 :         layer: &OwnArc<PersistentLayerDesc>,
    3661            0 :         ctx: &RequestContext,
    3662            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    3663            0 :         // this is a lot more complex than a simple downcast...
    3664            0 :         if layer.is_delta() {
    3665            0 :             let l = {
    3666            0 :                 let guard = self.timeline.layers.read().await;
    3667            0 :                 guard.get_from_desc(layer)
    3668              :             };
    3669            0 :             let result = l.download_and_keep_resident(ctx).await?;
    3670              : 
    3671            0 :             Ok(Some(ResidentDeltaLayer(result)))
    3672              :         } else {
    3673            0 :             Ok(None)
    3674              :         }
    3675            0 :     }
    3676              : 
    3677            0 :     async fn create_image(
    3678            0 :         &mut self,
    3679            0 :         lsn: Lsn,
    3680            0 :         key_range: &Range<Key>,
    3681            0 :         ctx: &RequestContext,
    3682            0 :     ) -> anyhow::Result<()> {
    3683            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    3684            0 :     }
    3685              : 
    3686            0 :     async fn create_delta(
    3687            0 :         &mut self,
    3688            0 :         lsn_range: &Range<Lsn>,
    3689            0 :         key_range: &Range<Key>,
    3690            0 :         input_layers: &[ResidentDeltaLayer],
    3691            0 :         ctx: &RequestContext,
    3692            0 :     ) -> anyhow::Result<()> {
    3693            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    3694              : 
    3695            0 :         let mut all_entries = Vec::new();
    3696            0 :         for dl in input_layers.iter() {
    3697            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    3698              :         }
    3699              : 
    3700              :         // The current stdlib sorting implementation is designed in a way where it is
    3701              :         // particularly fast where the slice is made up of sorted sub-ranges.
    3702            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    3703              : 
    3704            0 :         let mut writer = DeltaLayerWriter::new(
    3705            0 :             self.timeline.conf,
    3706            0 :             self.timeline.timeline_id,
    3707            0 :             self.timeline.tenant_shard_id,
    3708            0 :             key_range.start,
    3709            0 :             lsn_range.clone(),
    3710            0 :             ctx,
    3711            0 :         )
    3712            0 :         .await?;
    3713              : 
    3714            0 :         let mut dup_values = 0;
    3715            0 : 
    3716            0 :         // This iterator walks through all key-value pairs from all the layers
    3717            0 :         // we're compacting, in key, LSN order.
    3718            0 :         let mut prev: Option<(Key, Lsn)> = None;
    3719              :         for &DeltaEntry {
    3720            0 :             key, lsn, ref val, ..
    3721            0 :         } in all_entries.iter()
    3722              :         {
    3723            0 :             if prev == Some((key, lsn)) {
    3724              :                 // This is a duplicate. Skip it.
    3725              :                 //
    3726              :                 // It can happen if compaction is interrupted after writing some
    3727              :                 // layers but not all, and we are compacting the range again.
    3728              :                 // The calculations in the algorithm assume that there are no
    3729              :                 // duplicates, so the math on targeted file size is likely off,
    3730              :                 // and we will create smaller files than expected.
    3731            0 :                 dup_values += 1;
    3732            0 :                 continue;
    3733            0 :             }
    3734              : 
    3735            0 :             let value = val.load(ctx).await?;
    3736              : 
    3737            0 :             writer.put_value(key, lsn, value, ctx).await?;
    3738              : 
    3739            0 :             prev = Some((key, lsn));
    3740              :         }
    3741              : 
    3742            0 :         if dup_values > 0 {
    3743            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    3744            0 :         }
    3745              : 
    3746            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    3747            0 :             Err(anyhow::anyhow!(
    3748            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    3749            0 :             ))
    3750            0 :         });
    3751              : 
    3752            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    3753            0 :         let new_delta_layer =
    3754            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    3755              : 
    3756            0 :         self.new_deltas.push(new_delta_layer);
    3757            0 :         Ok(())
    3758            0 :     }
    3759              : 
    3760            0 :     async fn delete_layer(
    3761            0 :         &mut self,
    3762            0 :         layer: &OwnArc<PersistentLayerDesc>,
    3763            0 :         _ctx: &RequestContext,
    3764            0 :     ) -> anyhow::Result<()> {
    3765            0 :         self.layers_to_delete.push(layer.clone().0);
    3766            0 :         Ok(())
    3767            0 :     }
    3768              : }
    3769              : 
    3770              : impl TimelineAdaptor {
    3771            0 :     async fn create_image_impl(
    3772            0 :         &mut self,
    3773            0 :         lsn: Lsn,
    3774            0 :         key_range: &Range<Key>,
    3775            0 :         ctx: &RequestContext,
    3776            0 :     ) -> Result<(), CreateImageLayersError> {
    3777            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    3778              : 
    3779            0 :         let image_layer_writer = ImageLayerWriter::new(
    3780            0 :             self.timeline.conf,
    3781            0 :             self.timeline.timeline_id,
    3782            0 :             self.timeline.tenant_shard_id,
    3783            0 :             key_range,
    3784            0 :             lsn,
    3785            0 :             ctx,
    3786            0 :         )
    3787            0 :         .await?;
    3788              : 
    3789            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    3790            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    3791            0 :                 "failpoint image-layer-writer-fail-before-finish"
    3792            0 :             )))
    3793            0 :         });
    3794              : 
    3795            0 :         let keyspace = KeySpace {
    3796            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    3797              :         };
    3798              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    3799            0 :         let outcome = self
    3800            0 :             .timeline
    3801            0 :             .create_image_layer_for_rel_blocks(
    3802            0 :                 &keyspace,
    3803            0 :                 image_layer_writer,
    3804            0 :                 lsn,
    3805            0 :                 ctx,
    3806            0 :                 key_range.clone(),
    3807            0 :                 IoConcurrency::sequential(),
    3808            0 :             )
    3809            0 :             .await?;
    3810              : 
    3811              :         if let ImageLayerCreationOutcome::Generated {
    3812            0 :             unfinished_image_layer,
    3813            0 :         } = outcome
    3814              :         {
    3815            0 :             let (desc, path) = unfinished_image_layer.finish(ctx).await?;
    3816            0 :             let image_layer =
    3817            0 :                 Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    3818            0 :             self.new_images.push(image_layer);
    3819            0 :         }
    3820              : 
    3821            0 :         timer.stop_and_record();
    3822            0 : 
    3823            0 :         Ok(())
    3824            0 :     }
    3825              : }
    3826              : 
    3827              : impl CompactionRequestContext for crate::context::RequestContext {}
    3828              : 
    3829              : #[derive(Debug, Clone)]
    3830              : pub struct OwnArc<T>(pub Arc<T>);
    3831              : 
    3832              : impl<T> Deref for OwnArc<T> {
    3833              :     type Target = <Arc<T> as Deref>::Target;
    3834            0 :     fn deref(&self) -> &Self::Target {
    3835            0 :         &self.0
    3836            0 :     }
    3837              : }
    3838              : 
    3839              : impl<T> AsRef<T> for OwnArc<T> {
    3840            0 :     fn as_ref(&self) -> &T {
    3841            0 :         self.0.as_ref()
    3842            0 :     }
    3843              : }
    3844              : 
    3845              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    3846            0 :     fn key_range(&self) -> &Range<Key> {
    3847            0 :         &self.key_range
    3848            0 :     }
    3849            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3850            0 :         &self.lsn_range
    3851            0 :     }
    3852            0 :     fn file_size(&self) -> u64 {
    3853            0 :         self.file_size
    3854            0 :     }
    3855            0 :     fn short_id(&self) -> std::string::String {
    3856            0 :         self.as_ref().short_id().to_string()
    3857            0 :     }
    3858            0 :     fn is_delta(&self) -> bool {
    3859            0 :         self.as_ref().is_delta()
    3860            0 :     }
    3861              : }
    3862              : 
    3863              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    3864            0 :     fn key_range(&self) -> &Range<Key> {
    3865            0 :         &self.layer_desc().key_range
    3866            0 :     }
    3867            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3868            0 :         &self.layer_desc().lsn_range
    3869            0 :     }
    3870            0 :     fn file_size(&self) -> u64 {
    3871            0 :         self.layer_desc().file_size
    3872            0 :     }
    3873            0 :     fn short_id(&self) -> std::string::String {
    3874            0 :         self.layer_desc().short_id().to_string()
    3875            0 :     }
    3876            0 :     fn is_delta(&self) -> bool {
    3877            0 :         true
    3878            0 :     }
    3879              : }
    3880              : 
    3881              : use crate::tenant::timeline::DeltaEntry;
    3882              : 
    3883              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    3884            0 :     fn key_range(&self) -> &Range<Key> {
    3885            0 :         &self.0.layer_desc().key_range
    3886            0 :     }
    3887            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3888            0 :         &self.0.layer_desc().lsn_range
    3889            0 :     }
    3890            0 :     fn file_size(&self) -> u64 {
    3891            0 :         self.0.layer_desc().file_size
    3892            0 :     }
    3893            0 :     fn short_id(&self) -> std::string::String {
    3894            0 :         self.0.layer_desc().short_id().to_string()
    3895            0 :     }
    3896            0 :     fn is_delta(&self) -> bool {
    3897            0 :         true
    3898            0 :     }
    3899              : }
    3900              : 
    3901              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    3902              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    3903              : 
    3904            0 :     async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    3905            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    3906            0 :     }
    3907              : }
    3908              : 
    3909              : impl CompactionLayer<Key> for ResidentImageLayer {
    3910            0 :     fn key_range(&self) -> &Range<Key> {
    3911            0 :         &self.0.layer_desc().key_range
    3912            0 :     }
    3913            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3914            0 :         &self.0.layer_desc().lsn_range
    3915            0 :     }
    3916            0 :     fn file_size(&self) -> u64 {
    3917            0 :         self.0.layer_desc().file_size
    3918            0 :     }
    3919            0 :     fn short_id(&self) -> std::string::String {
    3920            0 :         self.0.layer_desc().short_id().to_string()
    3921            0 :     }
    3922            0 :     fn is_delta(&self) -> bool {
    3923            0 :         false
    3924            0 :     }
    3925              : }
    3926              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta