LCOV - code coverage report
Current view: top level - pageserver/src/tenant - timeline.rs (source / functions) Coverage Total Hit
Test: ae4948feae6a1d420c855050eb8c189119446a71.info Lines: 62.9 % 4310 2711
Test Date: 2025-03-18 18:33:46 Functions: 59.8 % 358 214

            Line data    Source code
       1              : pub(crate) mod analysis;
       2              : pub(crate) mod compaction;
       3              : pub mod delete;
       4              : pub(crate) mod detach_ancestor;
       5              : mod eviction_task;
       6              : pub(crate) mod handle;
       7              : mod heatmap_layers_downloader;
       8              : pub(crate) mod import_pgdata;
       9              : mod init;
      10              : pub mod layer_manager;
      11              : pub(crate) mod logical_size;
      12              : pub mod offload;
      13              : pub mod span;
      14              : pub mod uninit;
      15              : mod walreceiver;
      16              : 
      17              : use std::array;
      18              : use std::cmp::{max, min};
      19              : use std::collections::btree_map::Entry;
      20              : use std::collections::{BTreeMap, HashMap, HashSet};
      21              : use std::ops::{ControlFlow, Deref, Range};
      22              : use std::sync::atomic::{AtomicBool, AtomicU64, Ordering as AtomicOrdering};
      23              : use std::sync::{Arc, Mutex, OnceLock, RwLock, Weak};
      24              : use std::time::{Duration, Instant, SystemTime};
      25              : 
      26              : use anyhow::{Context, Result, anyhow, bail, ensure};
      27              : use arc_swap::{ArcSwap, ArcSwapOption};
      28              : use bytes::Bytes;
      29              : use camino::Utf8Path;
      30              : use chrono::{DateTime, Utc};
      31              : use compaction::{CompactionOutcome, GcCompactionCombinedSettings};
      32              : use enumset::EnumSet;
      33              : use fail::fail_point;
      34              : use futures::stream::FuturesUnordered;
      35              : use futures::{FutureExt, StreamExt};
      36              : use handle::ShardTimelineId;
      37              : use layer_manager::Shutdown;
      38              : use offload::OffloadError;
      39              : use once_cell::sync::Lazy;
      40              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_PITR_INTERVAL;
      41              : use pageserver_api::key::{
      42              :     KEY_SIZE, Key, METADATA_KEY_BEGIN_PREFIX, METADATA_KEY_END_PREFIX, NON_INHERITED_RANGE,
      43              :     SPARSE_RANGE,
      44              : };
      45              : use pageserver_api::keyspace::{KeySpaceAccum, KeySpaceRandomAccum, SparseKeyPartitioning};
      46              : use pageserver_api::models::{
      47              :     CompactKeyRange, CompactLsnRange, CompactionAlgorithm, CompactionAlgorithmSettings,
      48              :     DetachBehavior, DownloadRemoteLayersTaskInfo, DownloadRemoteLayersTaskSpawnRequest,
      49              :     EvictionPolicy, InMemoryLayerInfo, LayerMapInfo, LsnLease, PageTraceEvent, RelSizeMigration,
      50              :     TimelineState,
      51              : };
      52              : use pageserver_api::reltag::{BlockNumber, RelTag};
      53              : use pageserver_api::shard::{ShardIdentity, ShardIndex, ShardNumber, TenantShardId};
      54              : #[cfg(test)]
      55              : use pageserver_api::value::Value;
      56              : use postgres_connection::PgConnectionConfig;
      57              : use postgres_ffi::v14::xlog_utils;
      58              : use postgres_ffi::{WAL_SEGMENT_SIZE, to_pg_timestamp};
      59              : use rand::Rng;
      60              : use remote_storage::DownloadError;
      61              : use serde_with::serde_as;
      62              : use storage_broker::BrokerClientChannel;
      63              : use tokio::runtime::Handle;
      64              : use tokio::sync::mpsc::Sender;
      65              : use tokio::sync::{Notify, oneshot, watch};
      66              : use tokio_util::sync::CancellationToken;
      67              : use tracing::*;
      68              : use utils::generation::Generation;
      69              : use utils::guard_arc_swap::GuardArcSwap;
      70              : use utils::id::TimelineId;
      71              : use utils::logging::{MonitorSlowFutureCallback, monitor_slow_future};
      72              : use utils::lsn::{AtomicLsn, Lsn, RecordLsn};
      73              : use utils::postgres_client::PostgresClientProtocol;
      74              : use utils::rate_limit::RateLimit;
      75              : use utils::seqwait::SeqWait;
      76              : use utils::simple_rcu::{Rcu, RcuReadGuard};
      77              : use utils::sync::gate::{Gate, GateGuard};
      78              : use utils::{completion, critical, fs_ext, pausable_failpoint};
      79              : use wal_decoder::serialized_batch::{SerializedValueBatch, ValueMeta};
      80              : 
      81              : use self::delete::DeleteTimelineFlow;
      82              : pub(super) use self::eviction_task::EvictionTaskTenantState;
      83              : use self::eviction_task::EvictionTaskTimelineState;
      84              : use self::layer_manager::LayerManager;
      85              : use self::logical_size::LogicalSize;
      86              : use self::walreceiver::{WalReceiver, WalReceiverConf};
      87              : use super::config::TenantConf;
      88              : use super::remote_timeline_client::index::{GcCompactionState, IndexPart};
      89              : use super::remote_timeline_client::{RemoteTimelineClient, WaitCompletionError};
      90              : use super::secondary::heatmap::HeatMapLayer;
      91              : use super::storage_layer::{LayerFringe, LayerVisibilityHint, ReadableLayer};
      92              : use super::tasks::log_compaction_error;
      93              : use super::upload_queue::NotInitialized;
      94              : use super::{
      95              :     AttachedTenantConf, GcError, HeatMapTimeline, MaybeOffloaded,
      96              :     debug_assert_current_span_has_tenant_and_timeline_id,
      97              : };
      98              : use crate::aux_file::AuxFileSizeEstimator;
      99              : use crate::config::PageServerConf;
     100              : use crate::context::{DownloadBehavior, RequestContext};
     101              : use crate::disk_usage_eviction_task::{DiskUsageEvictionInfo, EvictionCandidate, finite_f32};
     102              : use crate::keyspace::{KeyPartitioning, KeySpace};
     103              : use crate::l0_flush::{self, L0FlushGlobalState};
     104              : use crate::metrics::{
     105              :     DELTAS_PER_READ_GLOBAL, LAYERS_PER_READ_AMORTIZED_GLOBAL, LAYERS_PER_READ_BATCH_GLOBAL,
     106              :     LAYERS_PER_READ_GLOBAL, ScanLatencyOngoingRecording, TimelineMetrics,
     107              : };
     108              : use crate::page_service::TenantManagerTypes;
     109              : use crate::pgdatadir_mapping::{
     110              :     CalculateLogicalSizeError, CollectKeySpaceError, DirectoryKind, LsnForTimestamp,
     111              :     MAX_AUX_FILE_V2_DELTAS, MetricsUpdate,
     112              : };
     113              : use crate::task_mgr::TaskKind;
     114              : use crate::tenant::config::{AttachmentMode, TenantConfOpt};
     115              : use crate::tenant::gc_result::GcResult;
     116              : use crate::tenant::layer_map::{LayerMap, SearchResult};
     117              : use crate::tenant::metadata::TimelineMetadata;
     118              : use crate::tenant::storage_layer::delta_layer::DeltaEntry;
     119              : use crate::tenant::storage_layer::inmemory_layer::IndexEntry;
     120              : use crate::tenant::storage_layer::{
     121              :     AsLayerDesc, BatchLayerWriter, DeltaLayerWriter, EvictionError, ImageLayerName,
     122              :     ImageLayerWriter, InMemoryLayer, IoConcurrency, Layer, LayerAccessStatsReset, LayerName,
     123              :     PersistentLayerDesc, PersistentLayerKey, ResidentLayer, ValueReconstructSituation,
     124              :     ValueReconstructState, ValuesReconstructState,
     125              : };
     126              : use crate::tenant::tasks::BackgroundLoopKind;
     127              : use crate::tenant::timeline::logical_size::CurrentLogicalSize;
     128              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
     129              : use crate::walingest::WalLagCooldown;
     130              : use crate::{ZERO_PAGE, task_mgr, walredo};
     131              : 
     132              : #[derive(Debug, PartialEq, Eq, Clone, Copy)]
     133              : pub(crate) enum FlushLoopState {
     134              :     NotStarted,
     135              :     Running {
     136              :         #[cfg(test)]
     137              :         expect_initdb_optimization: bool,
     138              :         #[cfg(test)]
     139              :         initdb_optimization_count: usize,
     140              :     },
     141              :     Exited,
     142              : }
     143              : 
     144              : #[derive(Debug, Copy, Clone, PartialEq, Eq)]
     145              : pub enum ImageLayerCreationMode {
     146              :     /// Try to create image layers based on `time_for_new_image_layer`. Used in compaction code path.
     147              :     Try,
     148              :     /// Force creating the image layers if possible. For now, no image layers will be created
     149              :     /// for metadata keys. Used in compaction code path with force flag enabled.
     150              :     Force,
     151              :     /// Initial ingestion of the data, and no data should be dropped in this function. This
     152              :     /// means that no metadata keys should be included in the partitions. Used in flush frozen layer
     153              :     /// code path.
     154              :     Initial,
     155              : }
     156              : 
     157              : #[derive(Clone, Debug, Default)]
     158              : pub enum LastImageLayerCreationStatus {
     159              :     Incomplete {
     160              :         /// The last key of the partition (exclusive) that was processed in the last
     161              :         /// image layer creation attempt. We will continue from this key in the next
     162              :         /// attempt.
     163              :         last_key: Key,
     164              :     },
     165              :     Complete,
     166              :     #[default]
     167              :     Initial,
     168              : }
     169              : 
     170              : impl std::fmt::Display for ImageLayerCreationMode {
     171         1145 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     172         1145 :         write!(f, "{:?}", self)
     173         1145 :     }
     174              : }
     175              : 
     176              : /// Temporary function for immutable storage state refactor, ensures we are dropping mutex guard instead of other things.
     177              : /// Can be removed after all refactors are done.
     178           56 : fn drop_rlock<T>(rlock: tokio::sync::RwLockReadGuard<T>) {
     179           56 :     drop(rlock)
     180           56 : }
     181              : 
     182              : /// Temporary function for immutable storage state refactor, ensures we are dropping mutex guard instead of other things.
     183              : /// Can be removed after all refactors are done.
     184         1201 : fn drop_wlock<T>(rlock: tokio::sync::RwLockWriteGuard<'_, T>) {
     185         1201 :     drop(rlock)
     186         1201 : }
     187              : 
     188              : /// The outward-facing resources required to build a Timeline
     189              : pub struct TimelineResources {
     190              :     pub remote_client: RemoteTimelineClient,
     191              :     pub pagestream_throttle: Arc<crate::tenant::throttle::Throttle>,
     192              :     pub pagestream_throttle_metrics: Arc<crate::metrics::tenant_throttling::Pagestream>,
     193              :     pub l0_compaction_trigger: Arc<Notify>,
     194              :     pub l0_flush_global_state: l0_flush::L0FlushGlobalState,
     195              : }
     196              : 
     197              : /// The relation size cache caches relation sizes at the end of the timeline. It speeds up WAL
     198              : /// ingestion considerably, because WAL ingestion needs to check on most records if the record
     199              : /// implicitly extends the relation.  At startup, `complete_as_of` is initialized to the current end
     200              : /// of the timeline (disk_consistent_lsn).  It's used on reads of relation sizes to check if the
     201              : /// value can be used to also update the cache, see [`Timeline::update_cached_rel_size`].
     202              : pub(crate) struct RelSizeCache {
     203              :     pub(crate) complete_as_of: Lsn,
     204              :     pub(crate) map: HashMap<RelTag, (Lsn, BlockNumber)>,
     205              : }
     206              : 
     207              : pub struct Timeline {
     208              :     pub(crate) conf: &'static PageServerConf,
     209              :     tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
     210              : 
     211              :     myself: Weak<Self>,
     212              : 
     213              :     pub(crate) tenant_shard_id: TenantShardId,
     214              :     pub timeline_id: TimelineId,
     215              : 
     216              :     /// The generation of the tenant that instantiated us: this is used for safety when writing remote objects.
     217              :     /// Never changes for the lifetime of this [`Timeline`] object.
     218              :     ///
     219              :     /// This duplicates the generation stored in LocationConf, but that structure is mutable:
     220              :     /// this copy enforces the invariant that generatio doesn't change during a Tenant's lifetime.
     221              :     pub(crate) generation: Generation,
     222              : 
     223              :     /// The detailed sharding information from our parent Tenant.  This enables us to map keys
     224              :     /// to shards, and is constant through the lifetime of this Timeline.
     225              :     shard_identity: ShardIdentity,
     226              : 
     227              :     pub pg_version: u32,
     228              : 
     229              :     /// The tuple has two elements.
     230              :     /// 1. `LayerFileManager` keeps track of the various physical representations of the layer files (inmem, local, remote).
     231              :     /// 2. `LayerMap`, the acceleration data structure for `get_reconstruct_data`.
     232              :     ///
     233              :     /// `LayerMap` maps out the `(PAGE,LSN) / (KEY,LSN)` space, which is composed of `(KeyRange, LsnRange)` rectangles.
     234              :     /// We describe these rectangles through the `PersistentLayerDesc` struct.
     235              :     ///
     236              :     /// When we want to reconstruct a page, we first find the `PersistentLayerDesc`'s that we need for page reconstruction,
     237              :     /// using `LayerMap`. Then, we use `LayerFileManager` to get the `PersistentLayer`'s that correspond to the
     238              :     /// `PersistentLayerDesc`'s.
     239              :     ///
     240              :     /// Hence, it's important to keep things coherent. The `LayerFileManager` must always have an entry for all
     241              :     /// `PersistentLayerDesc`'s in the `LayerMap`. If it doesn't, `LayerFileManager::get_from_desc` will panic at
     242              :     /// runtime, e.g., during page reconstruction.
     243              :     ///
     244              :     /// In the future, we'll be able to split up the tuple of LayerMap and `LayerFileManager`,
     245              :     /// so that e.g. on-demand-download/eviction, and layer spreading, can operate just on `LayerFileManager`.
     246              :     pub(crate) layers: tokio::sync::RwLock<LayerManager>,
     247              : 
     248              :     last_freeze_at: AtomicLsn,
     249              :     // Atomic would be more appropriate here.
     250              :     last_freeze_ts: RwLock<Instant>,
     251              : 
     252              :     pub(crate) standby_horizon: AtomicLsn,
     253              : 
     254              :     // WAL redo manager. `None` only for broken tenants.
     255              :     walredo_mgr: Option<Arc<super::WalRedoManager>>,
     256              : 
     257              :     /// Remote storage client.
     258              :     /// See [`remote_timeline_client`](super::remote_timeline_client) module comment for details.
     259              :     pub(crate) remote_client: Arc<RemoteTimelineClient>,
     260              : 
     261              :     // What page versions do we hold in the repository? If we get a
     262              :     // request > last_record_lsn, we need to wait until we receive all
     263              :     // the WAL up to the request. The SeqWait provides functions for
     264              :     // that. TODO: If we get a request for an old LSN, such that the
     265              :     // versions have already been garbage collected away, we should
     266              :     // throw an error, but we don't track that currently.
     267              :     //
     268              :     // last_record_lsn.load().last points to the end of last processed WAL record.
     269              :     //
     270              :     // We also remember the starting point of the previous record in
     271              :     // 'last_record_lsn.load().prev'. It's used to set the xl_prev pointer of the
     272              :     // first WAL record when the node is started up. But here, we just
     273              :     // keep track of it.
     274              :     last_record_lsn: SeqWait<RecordLsn, Lsn>,
     275              : 
     276              :     // All WAL records have been processed and stored durably on files on
     277              :     // local disk, up to this LSN. On crash and restart, we need to re-process
     278              :     // the WAL starting from this point.
     279              :     //
     280              :     // Some later WAL records might have been processed and also flushed to disk
     281              :     // already, so don't be surprised to see some, but there's no guarantee on
     282              :     // them yet.
     283              :     disk_consistent_lsn: AtomicLsn,
     284              : 
     285              :     // Parent timeline that this timeline was branched from, and the LSN
     286              :     // of the branch point.
     287              :     ancestor_timeline: Option<Arc<Timeline>>,
     288              :     ancestor_lsn: Lsn,
     289              : 
     290              :     // The LSN of gc-compaction that was last applied to this timeline.
     291              :     gc_compaction_state: ArcSwap<Option<GcCompactionState>>,
     292              : 
     293              :     pub(crate) metrics: Arc<TimelineMetrics>,
     294              : 
     295              :     // `Timeline` doesn't write these metrics itself, but it manages the lifetime.  Code
     296              :     // in `crate::page_service` writes these metrics.
     297              :     pub(crate) query_metrics: crate::metrics::SmgrQueryTimePerTimeline,
     298              : 
     299              :     directory_metrics_inited: [AtomicBool; DirectoryKind::KINDS_NUM],
     300              :     directory_metrics: [AtomicU64; DirectoryKind::KINDS_NUM],
     301              : 
     302              :     /// Ensures layers aren't frozen by checkpointer between
     303              :     /// [`Timeline::get_layer_for_write`] and layer reads.
     304              :     /// Locked automatically by [`TimelineWriter`] and checkpointer.
     305              :     /// Must always be acquired before the layer map/individual layer lock
     306              :     /// to avoid deadlock.
     307              :     ///
     308              :     /// The state is cleared upon freezing.
     309              :     write_lock: tokio::sync::Mutex<Option<TimelineWriterState>>,
     310              : 
     311              :     /// Used to avoid multiple `flush_loop` tasks running
     312              :     pub(super) flush_loop_state: Mutex<FlushLoopState>,
     313              : 
     314              :     /// layer_flush_start_tx can be used to wake up the layer-flushing task.
     315              :     /// - The u64 value is a counter, incremented every time a new flush cycle is requested.
     316              :     ///   The flush cycle counter is sent back on the layer_flush_done channel when
     317              :     ///   the flush finishes. You can use that to wait for the flush to finish.
     318              :     /// - The LSN is updated to max() of its current value and the latest disk_consistent_lsn
     319              :     ///   read by whoever sends an update
     320              :     layer_flush_start_tx: tokio::sync::watch::Sender<(u64, Lsn)>,
     321              :     /// to be notified when layer flushing has finished, subscribe to the layer_flush_done channel
     322              :     layer_flush_done_tx: tokio::sync::watch::Sender<(u64, Result<(), FlushLayerError>)>,
     323              : 
     324              :     // The LSN at which we have executed GC: whereas [`Self::gc_info`] records the LSN at which
     325              :     // we _intend_ to GC (i.e. the PITR cutoff), this LSN records where we actually last did it.
     326              :     // Because PITR interval is mutable, it's possible for this LSN to be earlier or later than
     327              :     // the planned GC cutoff.
     328              :     pub applied_gc_cutoff_lsn: Rcu<Lsn>,
     329              : 
     330              :     pub(crate) gc_compaction_layer_update_lock: tokio::sync::RwLock<()>,
     331              : 
     332              :     // List of child timelines and their branch points. This is needed to avoid
     333              :     // garbage collecting data that is still needed by the child timelines.
     334              :     pub(crate) gc_info: std::sync::RwLock<GcInfo>,
     335              : 
     336              :     pub(crate) last_image_layer_creation_status: ArcSwap<LastImageLayerCreationStatus>,
     337              : 
     338              :     // It may change across major versions so for simplicity
     339              :     // keep it after running initdb for a timeline.
     340              :     // It is needed in checks when we want to error on some operations
     341              :     // when they are requested for pre-initdb lsn.
     342              :     // It can be unified with latest_gc_cutoff_lsn under some "first_valid_lsn",
     343              :     // though let's keep them both for better error visibility.
     344              :     pub initdb_lsn: Lsn,
     345              : 
     346              :     /// The repartitioning result. Allows a single writer and multiple readers.
     347              :     pub(crate) partitioning: GuardArcSwap<((KeyPartitioning, SparseKeyPartitioning), Lsn)>,
     348              : 
     349              :     /// Configuration: how often should the partitioning be recalculated.
     350              :     repartition_threshold: u64,
     351              : 
     352              :     last_image_layer_creation_check_at: AtomicLsn,
     353              :     last_image_layer_creation_check_instant: std::sync::Mutex<Option<Instant>>,
     354              : 
     355              :     /// Current logical size of the "datadir", at the last LSN.
     356              :     current_logical_size: LogicalSize,
     357              : 
     358              :     /// Information about the last processed message by the WAL receiver,
     359              :     /// or None if WAL receiver has not received anything for this timeline
     360              :     /// yet.
     361              :     pub last_received_wal: Mutex<Option<WalReceiverInfo>>,
     362              :     pub walreceiver: Mutex<Option<WalReceiver>>,
     363              : 
     364              :     /// Relation size cache
     365              :     pub(crate) rel_size_cache: RwLock<RelSizeCache>,
     366              : 
     367              :     download_all_remote_layers_task_info: RwLock<Option<DownloadRemoteLayersTaskInfo>>,
     368              : 
     369              :     state: watch::Sender<TimelineState>,
     370              : 
     371              :     /// Prevent two tasks from deleting the timeline at the same time. If held, the
     372              :     /// timeline is being deleted. If 'true', the timeline has already been deleted.
     373              :     pub delete_progress: TimelineDeleteProgress,
     374              : 
     375              :     eviction_task_timeline_state: tokio::sync::Mutex<EvictionTaskTimelineState>,
     376              : 
     377              :     /// Load or creation time information about the disk_consistent_lsn and when the loading
     378              :     /// happened. Used for consumption metrics.
     379              :     pub(crate) loaded_at: (Lsn, SystemTime),
     380              : 
     381              :     /// Gate to prevent shutdown completing while I/O is still happening to this timeline's data
     382              :     pub(crate) gate: Gate,
     383              : 
     384              :     /// Cancellation token scoped to this timeline: anything doing long-running work relating
     385              :     /// to the timeline should drop out when this token fires.
     386              :     pub(crate) cancel: CancellationToken,
     387              : 
     388              :     /// Make sure we only have one running compaction at a time in tests.
     389              :     ///
     390              :     /// Must only be taken in two places:
     391              :     /// - [`Timeline::compact`] (this file)
     392              :     /// - [`delete::delete_local_timeline_directory`]
     393              :     ///
     394              :     /// Timeline deletion will acquire both compaction and gc locks in whatever order.
     395              :     compaction_lock: tokio::sync::Mutex<()>,
     396              : 
     397              :     /// If true, the last compaction failed.
     398              :     compaction_failed: AtomicBool,
     399              : 
     400              :     /// Notifies the tenant compaction loop that there is pending L0 compaction work.
     401              :     l0_compaction_trigger: Arc<Notify>,
     402              : 
     403              :     /// Make sure we only have one running gc at a time.
     404              :     ///
     405              :     /// Must only be taken in two places:
     406              :     /// - [`Timeline::gc`] (this file)
     407              :     /// - [`delete::delete_local_timeline_directory`]
     408              :     ///
     409              :     /// Timeline deletion will acquire both compaction and gc locks in whatever order.
     410              :     gc_lock: tokio::sync::Mutex<()>,
     411              : 
     412              :     /// Cloned from [`super::Tenant::pagestream_throttle`] on construction.
     413              :     pub(crate) pagestream_throttle: Arc<crate::tenant::throttle::Throttle>,
     414              : 
     415              :     /// Size estimator for aux file v2
     416              :     pub(crate) aux_file_size_estimator: AuxFileSizeEstimator,
     417              : 
     418              :     /// Some test cases directly place keys into the timeline without actually modifying the directory
     419              :     /// keys (i.e., DB_DIR). The test cases creating such keys will put the keyspaces here, so that
     420              :     /// these keys won't get garbage-collected during compaction/GC. This field only modifies the dense
     421              :     /// keyspace return value of `collect_keyspace`. For sparse keyspaces, use AUX keys for testing, and
     422              :     /// in the future, add `extra_test_sparse_keyspace` if necessary.
     423              :     #[cfg(test)]
     424              :     pub(crate) extra_test_dense_keyspace: ArcSwap<KeySpace>,
     425              : 
     426              :     pub(crate) l0_flush_global_state: L0FlushGlobalState,
     427              : 
     428              :     pub(crate) handles: handle::PerTimelineState<TenantManagerTypes>,
     429              : 
     430              :     pub(crate) attach_wal_lag_cooldown: Arc<OnceLock<WalLagCooldown>>,
     431              : 
     432              :     /// Cf. [`crate::tenant::CreateTimelineIdempotency`].
     433              :     pub(crate) create_idempotency: crate::tenant::CreateTimelineIdempotency,
     434              : 
     435              :     /// If Some, collects GetPage metadata for an ongoing PageTrace.
     436              :     pub(crate) page_trace: ArcSwapOption<Sender<PageTraceEvent>>,
     437              : 
     438              :     pub(super) previous_heatmap: ArcSwapOption<PreviousHeatmap>,
     439              : 
     440              :     /// May host a background Tokio task which downloads all the layers from the current
     441              :     /// heatmap on demand.
     442              :     heatmap_layers_downloader: Mutex<Option<heatmap_layers_downloader::HeatmapLayersDownloader>>,
     443              : 
     444              :     pub(crate) rel_size_v2_status: ArcSwapOption<RelSizeMigration>,
     445              : 
     446              :     wait_lsn_log_slow: tokio::sync::Semaphore,
     447              : }
     448              : 
     449              : pub(crate) enum PreviousHeatmap {
     450              :     Active {
     451              :         heatmap: HeatMapTimeline,
     452              :         read_at: std::time::Instant,
     453              :         // End LSN covered by the heatmap if known
     454              :         end_lsn: Option<Lsn>,
     455              :     },
     456              :     Obsolete,
     457              : }
     458              : 
     459              : pub type TimelineDeleteProgress = Arc<tokio::sync::Mutex<DeleteTimelineFlow>>;
     460              : 
     461              : pub struct WalReceiverInfo {
     462              :     pub wal_source_connconf: PgConnectionConfig,
     463              :     pub last_received_msg_lsn: Lsn,
     464              :     pub last_received_msg_ts: u128,
     465              : }
     466              : 
     467              : /// Information about how much history needs to be retained, needed by
     468              : /// Garbage Collection.
     469              : #[derive(Default)]
     470              : pub(crate) struct GcInfo {
     471              :     /// Specific LSNs that are needed.
     472              :     ///
     473              :     /// Currently, this includes all points where child branches have
     474              :     /// been forked off from. In the future, could also include
     475              :     /// explicit user-defined snapshot points.
     476              :     pub(crate) retain_lsns: Vec<(Lsn, TimelineId, MaybeOffloaded)>,
     477              : 
     478              :     /// The cutoff coordinates, which are combined by selecting the minimum.
     479              :     pub(crate) cutoffs: GcCutoffs,
     480              : 
     481              :     /// Leases granted to particular LSNs.
     482              :     pub(crate) leases: BTreeMap<Lsn, LsnLease>,
     483              : 
     484              :     /// Whether our branch point is within our ancestor's PITR interval (for cost estimation)
     485              :     pub(crate) within_ancestor_pitr: bool,
     486              : }
     487              : 
     488              : impl GcInfo {
     489          600 :     pub(crate) fn min_cutoff(&self) -> Lsn {
     490          600 :         self.cutoffs.select_min()
     491          600 :     }
     492              : 
     493          464 :     pub(super) fn insert_child(
     494          464 :         &mut self,
     495          464 :         child_id: TimelineId,
     496          464 :         child_lsn: Lsn,
     497          464 :         is_offloaded: MaybeOffloaded,
     498          464 :     ) {
     499          464 :         self.retain_lsns.push((child_lsn, child_id, is_offloaded));
     500          464 :         self.retain_lsns.sort_by_key(|i| i.0);
     501          464 :     }
     502              : 
     503            8 :     pub(super) fn remove_child_maybe_offloaded(
     504            8 :         &mut self,
     505            8 :         child_id: TimelineId,
     506            8 :         maybe_offloaded: MaybeOffloaded,
     507            8 :     ) -> bool {
     508            8 :         // Remove at most one element. Needed for correctness if there is two live `Timeline` objects referencing
     509            8 :         // the same timeline. Shouldn't but maybe can occur when Arc's live longer than intended.
     510            8 :         let mut removed = false;
     511           12 :         self.retain_lsns.retain(|i| {
     512           12 :             if removed {
     513            4 :                 return true;
     514            8 :             }
     515            8 :             let remove = i.1 == child_id && i.2 == maybe_offloaded;
     516            8 :             removed |= remove;
     517            8 :             !remove
     518           12 :         });
     519            8 :         removed
     520            8 :     }
     521              : 
     522            8 :     pub(super) fn remove_child_not_offloaded(&mut self, child_id: TimelineId) -> bool {
     523            8 :         self.remove_child_maybe_offloaded(child_id, MaybeOffloaded::No)
     524            8 :     }
     525              : 
     526            0 :     pub(super) fn remove_child_offloaded(&mut self, child_id: TimelineId) -> bool {
     527            0 :         self.remove_child_maybe_offloaded(child_id, MaybeOffloaded::Yes)
     528            0 :     }
     529          464 :     pub(crate) fn lsn_covered_by_lease(&self, lsn: Lsn) -> bool {
     530          464 :         self.leases.contains_key(&lsn)
     531          464 :     }
     532              : }
     533              : 
     534              : /// The `GcInfo` component describing which Lsns need to be retained.  Functionally, this
     535              : /// is a single number (the oldest LSN which we must retain), but it internally distinguishes
     536              : /// between time-based and space-based retention for observability and consumption metrics purposes.
     537              : #[derive(Debug, Clone)]
     538              : pub(crate) struct GcCutoffs {
     539              :     /// Calculated from the [`TenantConf::gc_horizon`], this LSN indicates how much
     540              :     /// history we must keep to retain a specified number of bytes of WAL.
     541              :     pub(crate) space: Lsn,
     542              : 
     543              :     /// Calculated from [`TenantConf::pitr_interval`], this LSN indicates how much
     544              :     /// history we must keep to enable reading back at least the PITR interval duration.
     545              :     pub(crate) time: Lsn,
     546              : }
     547              : 
     548              : impl Default for GcCutoffs {
     549          904 :     fn default() -> Self {
     550          904 :         Self {
     551          904 :             space: Lsn::INVALID,
     552          904 :             time: Lsn::INVALID,
     553          904 :         }
     554          904 :     }
     555              : }
     556              : 
     557              : impl GcCutoffs {
     558          600 :     fn select_min(&self) -> Lsn {
     559          600 :         std::cmp::min(self.space, self.time)
     560          600 :     }
     561              : }
     562              : 
     563              : pub(crate) struct TimelineVisitOutcome {
     564              :     completed_keyspace: KeySpace,
     565              :     image_covered_keyspace: KeySpace,
     566              : }
     567              : 
     568              : /// An error happened in a get() operation.
     569              : #[derive(thiserror::Error, Debug)]
     570              : pub(crate) enum PageReconstructError {
     571              :     #[error(transparent)]
     572              :     Other(anyhow::Error),
     573              : 
     574              :     #[error("Ancestor LSN wait error: {0}")]
     575              :     AncestorLsnTimeout(WaitLsnError),
     576              : 
     577              :     #[error("timeline shutting down")]
     578              :     Cancelled,
     579              : 
     580              :     /// An error happened replaying WAL records
     581              :     #[error(transparent)]
     582              :     WalRedo(anyhow::Error),
     583              : 
     584              :     #[error("{0}")]
     585              :     MissingKey(MissingKeyError),
     586              : }
     587              : 
     588              : impl From<anyhow::Error> for PageReconstructError {
     589            0 :     fn from(value: anyhow::Error) -> Self {
     590            0 :         // with walingest.rs many PageReconstructError are wrapped in as anyhow::Error
     591            0 :         match value.downcast::<PageReconstructError>() {
     592            0 :             Ok(pre) => pre,
     593            0 :             Err(other) => PageReconstructError::Other(other),
     594              :         }
     595            0 :     }
     596              : }
     597              : 
     598              : impl From<utils::bin_ser::DeserializeError> for PageReconstructError {
     599            0 :     fn from(value: utils::bin_ser::DeserializeError) -> Self {
     600            0 :         PageReconstructError::Other(anyhow::Error::new(value).context("deserialization failure"))
     601            0 :     }
     602              : }
     603              : 
     604              : impl From<layer_manager::Shutdown> for PageReconstructError {
     605            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     606            0 :         PageReconstructError::Cancelled
     607            0 :     }
     608              : }
     609              : 
     610              : impl GetVectoredError {
     611              :     #[cfg(test)]
     612           12 :     pub(crate) fn is_missing_key_error(&self) -> bool {
     613           12 :         matches!(self, Self::MissingKey(_))
     614           12 :     }
     615              : }
     616              : 
     617              : impl From<layer_manager::Shutdown> for GetVectoredError {
     618            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     619            0 :         GetVectoredError::Cancelled
     620            0 :     }
     621              : }
     622              : 
     623              : /// A layer identifier when used in the [`ReadPath`] structure. This enum is for observability purposes
     624              : /// only and not used by the "real read path".
     625              : pub enum ReadPathLayerId {
     626              :     PersistentLayer(PersistentLayerKey),
     627              :     InMemoryLayer(Range<Lsn>),
     628              : }
     629              : 
     630              : impl std::fmt::Display for ReadPathLayerId {
     631            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     632            0 :         match self {
     633            0 :             ReadPathLayerId::PersistentLayer(key) => write!(f, "{}", key),
     634            0 :             ReadPathLayerId::InMemoryLayer(range) => {
     635            0 :                 write!(f, "in-mem {}..{}", range.start, range.end)
     636              :             }
     637              :         }
     638            0 :     }
     639              : }
     640              : pub struct ReadPath {
     641              :     keyspace: KeySpace,
     642              :     lsn: Lsn,
     643              :     path: Vec<(ReadPathLayerId, KeySpace, Range<Lsn>)>,
     644              : }
     645              : 
     646              : impl ReadPath {
     647      1255396 :     pub fn new(keyspace: KeySpace, lsn: Lsn) -> Self {
     648      1255396 :         Self {
     649      1255396 :             keyspace,
     650      1255396 :             lsn,
     651      1255396 :             path: Vec::new(),
     652      1255396 :         }
     653      1255396 :     }
     654              : 
     655      1691896 :     pub fn record_layer_visit(
     656      1691896 :         &mut self,
     657      1691896 :         layer_to_read: &ReadableLayer,
     658      1691896 :         keyspace_to_read: &KeySpace,
     659      1691896 :         lsn_range: &Range<Lsn>,
     660      1691896 :     ) {
     661      1691896 :         let id = match layer_to_read {
     662       478474 :             ReadableLayer::PersistentLayer(layer) => {
     663       478474 :                 ReadPathLayerId::PersistentLayer(layer.layer_desc().key())
     664              :             }
     665      1213422 :             ReadableLayer::InMemoryLayer(layer) => {
     666      1213422 :                 ReadPathLayerId::InMemoryLayer(layer.get_lsn_range())
     667              :             }
     668              :         };
     669      1691896 :         self.path
     670      1691896 :             .push((id, keyspace_to_read.clone(), lsn_range.clone()));
     671      1691896 :     }
     672              : }
     673              : 
     674              : impl std::fmt::Display for ReadPath {
     675            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     676            0 :         writeln!(f, "Read path for {} at lsn {}:", self.keyspace, self.lsn)?;
     677            0 :         for (idx, (layer_id, keyspace, lsn_range)) in self.path.iter().enumerate() {
     678            0 :             writeln!(
     679            0 :                 f,
     680            0 :                 "{}: {} {}..{} {}",
     681            0 :                 idx, layer_id, lsn_range.start, lsn_range.end, keyspace
     682            0 :             )?;
     683              :         }
     684            0 :         Ok(())
     685            0 :     }
     686              : }
     687              : 
     688              : #[derive(thiserror::Error)]
     689              : pub struct MissingKeyError {
     690              :     key: Key,
     691              :     shard: ShardNumber,
     692              :     cont_lsn: Lsn,
     693              :     request_lsn: Lsn,
     694              :     ancestor_lsn: Option<Lsn>,
     695              :     /// Debug information about the read path if there's an error
     696              :     read_path: Option<ReadPath>,
     697              :     backtrace: Option<std::backtrace::Backtrace>,
     698              : }
     699              : 
     700              : impl std::fmt::Debug for MissingKeyError {
     701            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     702            0 :         write!(f, "{}", self)
     703            0 :     }
     704              : }
     705              : 
     706              : impl std::fmt::Display for MissingKeyError {
     707            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     708            0 :         write!(
     709            0 :             f,
     710            0 :             "could not find data for key {} (shard {:?}) at LSN {}, request LSN {}",
     711            0 :             self.key, self.shard, self.cont_lsn, self.request_lsn
     712            0 :         )?;
     713              : 
     714            0 :         if let Some(ref ancestor_lsn) = self.ancestor_lsn {
     715            0 :             write!(f, ", ancestor {}", ancestor_lsn)?;
     716            0 :         }
     717              : 
     718            0 :         if let Some(ref read_path) = self.read_path {
     719            0 :             write!(f, "\n{}", read_path)?;
     720            0 :         }
     721              : 
     722            0 :         if let Some(ref backtrace) = self.backtrace {
     723            0 :             write!(f, "\n{}", backtrace)?;
     724            0 :         }
     725              : 
     726            0 :         Ok(())
     727            0 :     }
     728              : }
     729              : 
     730              : impl PageReconstructError {
     731              :     /// Returns true if this error indicates a tenant/timeline shutdown alike situation
     732            0 :     pub(crate) fn is_stopping(&self) -> bool {
     733              :         use PageReconstructError::*;
     734            0 :         match self {
     735            0 :             Cancelled => true,
     736            0 :             Other(_) | AncestorLsnTimeout(_) | WalRedo(_) | MissingKey(_) => false,
     737              :         }
     738            0 :     }
     739              : }
     740              : 
     741              : #[derive(thiserror::Error, Debug)]
     742              : pub(crate) enum CreateImageLayersError {
     743              :     #[error("timeline shutting down")]
     744              :     Cancelled,
     745              : 
     746              :     #[error("read failed")]
     747              :     GetVectoredError(#[source] GetVectoredError),
     748              : 
     749              :     #[error("reconstruction failed")]
     750              :     PageReconstructError(#[source] PageReconstructError),
     751              : 
     752              :     #[error(transparent)]
     753              :     Other(#[from] anyhow::Error),
     754              : }
     755              : 
     756              : impl From<layer_manager::Shutdown> for CreateImageLayersError {
     757            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     758            0 :         CreateImageLayersError::Cancelled
     759            0 :     }
     760              : }
     761              : 
     762              : #[derive(thiserror::Error, Debug, Clone)]
     763              : pub(crate) enum FlushLayerError {
     764              :     /// Timeline cancellation token was cancelled
     765              :     #[error("timeline shutting down")]
     766              :     Cancelled,
     767              : 
     768              :     /// We tried to flush a layer while the Timeline is in an unexpected state
     769              :     #[error("cannot flush frozen layers when flush_loop is not running, state is {0:?}")]
     770              :     NotRunning(FlushLoopState),
     771              : 
     772              :     // Arc<> the following non-clonable error types: we must be Clone-able because the flush error is propagated from the flush
     773              :     // loop via a watch channel, where we can only borrow it.
     774              :     #[error("create image layers (shared)")]
     775              :     CreateImageLayersError(Arc<CreateImageLayersError>),
     776              : 
     777              :     #[error("other (shared)")]
     778              :     Other(#[from] Arc<anyhow::Error>),
     779              : }
     780              : 
     781              : impl FlushLayerError {
     782              :     // When crossing from generic anyhow errors to this error type, we explicitly check
     783              :     // for timeline cancellation to avoid logging inoffensive shutdown errors as warn/err.
     784            0 :     fn from_anyhow(timeline: &Timeline, err: anyhow::Error) -> Self {
     785            0 :         let cancelled = timeline.cancel.is_cancelled()
     786              :             // The upload queue might have been shut down before the official cancellation of the timeline.
     787            0 :             || err
     788            0 :                 .downcast_ref::<NotInitialized>()
     789            0 :                 .map(NotInitialized::is_stopping)
     790            0 :                 .unwrap_or_default();
     791            0 :         if cancelled {
     792            0 :             Self::Cancelled
     793              :         } else {
     794            0 :             Self::Other(Arc::new(err))
     795              :         }
     796            0 :     }
     797              : }
     798              : 
     799              : impl From<layer_manager::Shutdown> for FlushLayerError {
     800            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     801            0 :         FlushLayerError::Cancelled
     802            0 :     }
     803              : }
     804              : 
     805              : #[derive(thiserror::Error, Debug)]
     806              : pub(crate) enum GetVectoredError {
     807              :     #[error("timeline shutting down")]
     808              :     Cancelled,
     809              : 
     810              :     #[error("requested too many keys: {0} > {}", Timeline::MAX_GET_VECTORED_KEYS)]
     811              :     Oversized(u64),
     812              : 
     813              :     #[error("requested at invalid LSN: {0}")]
     814              :     InvalidLsn(Lsn),
     815              : 
     816              :     #[error("requested key not found: {0}")]
     817              :     MissingKey(MissingKeyError),
     818              : 
     819              :     #[error("ancestry walk")]
     820              :     GetReadyAncestorError(#[source] GetReadyAncestorError),
     821              : 
     822              :     #[error(transparent)]
     823              :     Other(#[from] anyhow::Error),
     824              : }
     825              : 
     826              : impl From<GetReadyAncestorError> for GetVectoredError {
     827            4 :     fn from(value: GetReadyAncestorError) -> Self {
     828              :         use GetReadyAncestorError::*;
     829            4 :         match value {
     830            0 :             Cancelled => GetVectoredError::Cancelled,
     831              :             AncestorLsnTimeout(_) | BadState { .. } => {
     832            4 :                 GetVectoredError::GetReadyAncestorError(value)
     833              :             }
     834              :         }
     835            4 :     }
     836              : }
     837              : 
     838              : #[derive(thiserror::Error, Debug)]
     839              : pub(crate) enum GetReadyAncestorError {
     840              :     #[error("ancestor LSN wait error")]
     841              :     AncestorLsnTimeout(#[from] WaitLsnError),
     842              : 
     843              :     #[error("bad state on timeline {timeline_id}: {state:?}")]
     844              :     BadState {
     845              :         timeline_id: TimelineId,
     846              :         state: TimelineState,
     847              :     },
     848              : 
     849              :     #[error("cancelled")]
     850              :     Cancelled,
     851              : }
     852              : 
     853              : #[derive(Clone, Copy)]
     854              : pub enum LogicalSizeCalculationCause {
     855              :     Initial,
     856              :     ConsumptionMetricsSyntheticSize,
     857              :     EvictionTaskImitation,
     858              :     TenantSizeHandler,
     859              : }
     860              : 
     861              : pub enum GetLogicalSizePriority {
     862              :     User,
     863              :     Background,
     864              : }
     865              : 
     866            0 : #[derive(Debug, enumset::EnumSetType)]
     867              : pub(crate) enum CompactFlags {
     868              :     ForceRepartition,
     869              :     ForceImageLayerCreation,
     870              :     ForceL0Compaction,
     871              :     OnlyL0Compaction,
     872              :     EnhancedGcBottomMostCompaction,
     873              :     DryRun,
     874              :     /// Disables compaction yielding e.g. due to high L0 count. This is set e.g. when requesting
     875              :     /// compaction via HTTP API.
     876              :     NoYield,
     877              : }
     878              : 
     879              : #[serde_with::serde_as]
     880            0 : #[derive(Debug, Clone, serde::Deserialize)]
     881              : pub(crate) struct CompactRequest {
     882              :     pub compact_key_range: Option<CompactKeyRange>,
     883              :     pub compact_lsn_range: Option<CompactLsnRange>,
     884              :     /// Whether the compaction job should be scheduled.
     885              :     #[serde(default)]
     886              :     pub scheduled: bool,
     887              :     /// Whether the compaction job should be split across key ranges.
     888              :     #[serde(default)]
     889              :     pub sub_compaction: bool,
     890              :     /// Max job size for each subcompaction job.
     891              :     pub sub_compaction_max_job_size_mb: Option<u64>,
     892              : }
     893              : 
     894              : #[derive(Debug, Clone, Default)]
     895              : pub(crate) struct CompactOptions {
     896              :     pub flags: EnumSet<CompactFlags>,
     897              :     /// If set, the compaction will only compact the key range specified by this option.
     898              :     /// This option is only used by GC compaction. For the full explanation, see [`compaction::GcCompactJob`].
     899              :     pub compact_key_range: Option<CompactKeyRange>,
     900              :     /// If set, the compaction will only compact the LSN within this value.
     901              :     /// This option is only used by GC compaction. For the full explanation, see [`compaction::GcCompactJob`].
     902              :     pub compact_lsn_range: Option<CompactLsnRange>,
     903              :     /// Enable sub-compaction (split compaction job across key ranges).
     904              :     /// This option is only used by GC compaction.
     905              :     pub sub_compaction: bool,
     906              :     /// Set job size for the GC compaction.
     907              :     /// This option is only used by GC compaction.
     908              :     pub sub_compaction_max_job_size_mb: Option<u64>,
     909              : }
     910              : 
     911              : impl std::fmt::Debug for Timeline {
     912            0 :     fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
     913            0 :         write!(f, "Timeline<{}>", self.timeline_id)
     914            0 :     }
     915              : }
     916              : 
     917              : #[derive(thiserror::Error, Debug)]
     918              : pub(crate) enum WaitLsnError {
     919              :     // Called on a timeline which is shutting down
     920              :     #[error("Shutdown")]
     921              :     Shutdown,
     922              : 
     923              :     // Called on an timeline not in active state or shutting down
     924              :     #[error("Bad timeline state: {0:?}")]
     925              :     BadState(TimelineState),
     926              : 
     927              :     // Timeout expired while waiting for LSN to catch up with goal.
     928              :     #[error("{0}")]
     929              :     Timeout(String),
     930              : }
     931              : 
     932              : // The impls below achieve cancellation mapping for errors.
     933              : // Perhaps there's a way of achieving this with less cruft.
     934              : 
     935              : impl From<CreateImageLayersError> for CompactionError {
     936            0 :     fn from(e: CreateImageLayersError) -> Self {
     937            0 :         match e {
     938            0 :             CreateImageLayersError::Cancelled => CompactionError::ShuttingDown,
     939            0 :             CreateImageLayersError::Other(e) => {
     940            0 :                 CompactionError::Other(e.context("create image layers"))
     941              :             }
     942            0 :             _ => CompactionError::Other(e.into()),
     943              :         }
     944            0 :     }
     945              : }
     946              : 
     947              : impl From<CreateImageLayersError> for FlushLayerError {
     948            0 :     fn from(e: CreateImageLayersError) -> Self {
     949            0 :         match e {
     950            0 :             CreateImageLayersError::Cancelled => FlushLayerError::Cancelled,
     951            0 :             any => FlushLayerError::CreateImageLayersError(Arc::new(any)),
     952              :         }
     953            0 :     }
     954              : }
     955              : 
     956              : impl From<PageReconstructError> for CreateImageLayersError {
     957            0 :     fn from(e: PageReconstructError) -> Self {
     958            0 :         match e {
     959            0 :             PageReconstructError::Cancelled => CreateImageLayersError::Cancelled,
     960            0 :             _ => CreateImageLayersError::PageReconstructError(e),
     961              :         }
     962            0 :     }
     963              : }
     964              : 
     965              : impl From<GetVectoredError> for CreateImageLayersError {
     966            0 :     fn from(e: GetVectoredError) -> Self {
     967            0 :         match e {
     968            0 :             GetVectoredError::Cancelled => CreateImageLayersError::Cancelled,
     969            0 :             _ => CreateImageLayersError::GetVectoredError(e),
     970              :         }
     971            0 :     }
     972              : }
     973              : 
     974              : impl From<GetVectoredError> for PageReconstructError {
     975           12 :     fn from(e: GetVectoredError) -> Self {
     976           12 :         match e {
     977            0 :             GetVectoredError::Cancelled => PageReconstructError::Cancelled,
     978            0 :             GetVectoredError::InvalidLsn(_) => PageReconstructError::Other(anyhow!("Invalid LSN")),
     979            0 :             err @ GetVectoredError::Oversized(_) => PageReconstructError::Other(err.into()),
     980            8 :             GetVectoredError::MissingKey(err) => PageReconstructError::MissingKey(err),
     981            4 :             GetVectoredError::GetReadyAncestorError(err) => PageReconstructError::from(err),
     982            0 :             GetVectoredError::Other(err) => PageReconstructError::Other(err),
     983              :         }
     984           12 :     }
     985              : }
     986              : 
     987              : impl From<GetReadyAncestorError> for PageReconstructError {
     988            4 :     fn from(e: GetReadyAncestorError) -> Self {
     989              :         use GetReadyAncestorError::*;
     990            4 :         match e {
     991            0 :             AncestorLsnTimeout(wait_err) => PageReconstructError::AncestorLsnTimeout(wait_err),
     992            4 :             bad_state @ BadState { .. } => PageReconstructError::Other(anyhow::anyhow!(bad_state)),
     993            0 :             Cancelled => PageReconstructError::Cancelled,
     994              :         }
     995            4 :     }
     996              : }
     997              : 
     998              : pub(crate) enum WaitLsnTimeout {
     999              :     Custom(Duration),
    1000              :     // Use the [`PageServerConf::wait_lsn_timeout`] default
    1001              :     Default,
    1002              : }
    1003              : 
    1004              : pub(crate) enum WaitLsnWaiter<'a> {
    1005              :     Timeline(&'a Timeline),
    1006              :     Tenant,
    1007              :     PageService,
    1008              :     HttpEndpoint,
    1009              : }
    1010              : 
    1011              : /// Argument to [`Timeline::shutdown`].
    1012              : #[derive(Debug, Clone, Copy)]
    1013              : pub(crate) enum ShutdownMode {
    1014              :     /// Graceful shutdown, may do a lot of I/O as we flush any open layers to disk and then
    1015              :     /// also to remote storage.  This method can easily take multiple seconds for a busy timeline.
    1016              :     ///
    1017              :     /// While we are flushing, we continue to accept read I/O for LSNs ingested before
    1018              :     /// the call to [`Timeline::shutdown`].
    1019              :     FreezeAndFlush,
    1020              :     /// Only flush the layers to the remote storage without freezing any open layers. Flush the deletion
    1021              :     /// queue. This is the mode used by ancestor detach and any other operations that reloads a tenant
    1022              :     /// but not increasing the generation number. Note that this mode cannot be used at tenant shutdown,
    1023              :     /// as flushing the deletion queue at that time will cause shutdown-in-progress errors.
    1024              :     Reload,
    1025              :     /// Shut down immediately, without waiting for any open layers to flush.
    1026              :     Hard,
    1027              : }
    1028              : 
    1029              : enum ImageLayerCreationOutcome {
    1030              :     /// We generated an image layer
    1031              :     Generated {
    1032              :         unfinished_image_layer: ImageLayerWriter,
    1033              :     },
    1034              :     /// The key range is empty
    1035              :     Empty,
    1036              :     /// (Only used in metadata image layer creation), after reading the metadata keys, we decide to skip
    1037              :     /// the image layer creation.
    1038              :     Skip,
    1039              : }
    1040              : 
    1041              : /// Public interface functions
    1042              : impl Timeline {
    1043              :     /// Get the LSN where this branch was created
    1044            8 :     pub(crate) fn get_ancestor_lsn(&self) -> Lsn {
    1045            8 :         self.ancestor_lsn
    1046            8 :     }
    1047              : 
    1048              :     /// Get the ancestor's timeline id
    1049           24 :     pub(crate) fn get_ancestor_timeline_id(&self) -> Option<TimelineId> {
    1050           24 :         self.ancestor_timeline
    1051           24 :             .as_ref()
    1052           24 :             .map(|ancestor| ancestor.timeline_id)
    1053           24 :     }
    1054              : 
    1055              :     /// Get the ancestor timeline
    1056            4 :     pub(crate) fn ancestor_timeline(&self) -> Option<&Arc<Timeline>> {
    1057            4 :         self.ancestor_timeline.as_ref()
    1058            4 :     }
    1059              : 
    1060              :     /// Get the bytes written since the PITR cutoff on this branch, and
    1061              :     /// whether this branch's ancestor_lsn is within its parent's PITR.
    1062            0 :     pub(crate) fn get_pitr_history_stats(&self) -> (u64, bool) {
    1063            0 :         let gc_info = self.gc_info.read().unwrap();
    1064            0 :         let history = self
    1065            0 :             .get_last_record_lsn()
    1066            0 :             .checked_sub(gc_info.cutoffs.time)
    1067            0 :             .unwrap_or(Lsn(0))
    1068            0 :             .0;
    1069            0 :         (history, gc_info.within_ancestor_pitr)
    1070            0 :     }
    1071              : 
    1072              :     /// Read timeline's GC cutoff: this is the LSN at which GC has started to happen
    1073      1706769 :     pub(crate) fn get_applied_gc_cutoff_lsn(&self) -> RcuReadGuard<Lsn> {
    1074      1706769 :         self.applied_gc_cutoff_lsn.read()
    1075      1706769 :     }
    1076              : 
    1077              :     /// Read timeline's planned GC cutoff: this is the logical end of history that users
    1078              :     /// are allowed to read (based on configured PITR), even if physically we have more history.
    1079            0 :     pub(crate) fn get_gc_cutoff_lsn(&self) -> Lsn {
    1080            0 :         self.gc_info.read().unwrap().cutoffs.time
    1081            0 :     }
    1082              : 
    1083              :     /// Look up given page version.
    1084              :     ///
    1085              :     /// If a remote layer file is needed, it is downloaded as part of this
    1086              :     /// call.
    1087              :     ///
    1088              :     /// This method enforces [`Self::pagestream_throttle`] internally.
    1089              :     ///
    1090              :     /// NOTE: It is considered an error to 'get' a key that doesn't exist. The
    1091              :     /// abstraction above this needs to store suitable metadata to track what
    1092              :     /// data exists with what keys, in separate metadata entries. If a
    1093              :     /// non-existent key is requested, we may incorrectly return a value from
    1094              :     /// an ancestor branch, for example, or waste a lot of cycles chasing the
    1095              :     /// non-existing key.
    1096              :     ///
    1097              :     /// # Cancel-Safety
    1098              :     ///
    1099              :     /// This method is cancellation-safe.
    1100              :     #[inline(always)]
    1101      1215220 :     pub(crate) async fn get(
    1102      1215220 :         &self,
    1103      1215220 :         key: Key,
    1104      1215220 :         lsn: Lsn,
    1105      1215220 :         ctx: &RequestContext,
    1106      1215220 :     ) -> Result<Bytes, PageReconstructError> {
    1107      1215220 :         if !lsn.is_valid() {
    1108            0 :             return Err(PageReconstructError::Other(anyhow::anyhow!("Invalid LSN")));
    1109      1215220 :         }
    1110      1215220 : 
    1111      1215220 :         // This check is debug-only because of the cost of hashing, and because it's a double-check: we
    1112      1215220 :         // already checked the key against the shard_identity when looking up the Timeline from
    1113      1215220 :         // page_service.
    1114      1215220 :         debug_assert!(!self.shard_identity.is_key_disposable(&key));
    1115              : 
    1116      1215220 :         let keyspace = KeySpace {
    1117      1215220 :             ranges: vec![key..key.next()],
    1118      1215220 :         };
    1119      1215220 : 
    1120      1215220 :         let mut reconstruct_state = ValuesReconstructState::new(IoConcurrency::sequential());
    1121              : 
    1122      1215220 :         let vectored_res = self
    1123      1215220 :             .get_vectored_impl(keyspace.clone(), lsn, &mut reconstruct_state, ctx)
    1124      1215220 :             .await;
    1125              : 
    1126      1215220 :         let key_value = vectored_res?.pop_first();
    1127      1215208 :         match key_value {
    1128      1215184 :             Some((got_key, value)) => {
    1129      1215184 :                 if got_key != key {
    1130            0 :                     error!(
    1131            0 :                         "Expected {}, but singular vectored get returned {}",
    1132              :                         key, got_key
    1133              :                     );
    1134            0 :                     Err(PageReconstructError::Other(anyhow!(
    1135            0 :                         "Singular vectored get returned wrong key"
    1136            0 :                     )))
    1137              :                 } else {
    1138      1215184 :                     value
    1139              :                 }
    1140              :             }
    1141           24 :             None => Err(PageReconstructError::MissingKey(MissingKeyError {
    1142           24 :                 key,
    1143           24 :                 shard: self.shard_identity.get_shard_number(&key),
    1144           24 :                 cont_lsn: Lsn(0),
    1145           24 :                 request_lsn: lsn,
    1146           24 :                 ancestor_lsn: None,
    1147           24 :                 backtrace: None,
    1148           24 :                 read_path: None,
    1149           24 :             })),
    1150              :         }
    1151      1215220 :     }
    1152              : 
    1153              :     pub(crate) const MAX_GET_VECTORED_KEYS: u64 = 32;
    1154              :     pub(crate) const LAYERS_VISITED_WARN_THRESHOLD: u32 = 100;
    1155              : 
    1156              :     /// Look up multiple page versions at a given LSN
    1157              :     ///
    1158              :     /// This naive implementation will be replaced with a more efficient one
    1159              :     /// which actually vectorizes the read path.
    1160        39432 :     pub(crate) async fn get_vectored(
    1161        39432 :         &self,
    1162        39432 :         keyspace: KeySpace,
    1163        39432 :         lsn: Lsn,
    1164        39432 :         io_concurrency: super::storage_layer::IoConcurrency,
    1165        39432 :         ctx: &RequestContext,
    1166        39432 :     ) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
    1167        39432 :         if !lsn.is_valid() {
    1168            0 :             return Err(GetVectoredError::InvalidLsn(lsn));
    1169        39432 :         }
    1170        39432 : 
    1171        39432 :         let key_count = keyspace.total_raw_size().try_into().unwrap();
    1172        39432 :         if key_count > Timeline::MAX_GET_VECTORED_KEYS {
    1173            0 :             return Err(GetVectoredError::Oversized(key_count));
    1174        39432 :         }
    1175              : 
    1176        78864 :         for range in &keyspace.ranges {
    1177        39432 :             let mut key = range.start;
    1178        79380 :             while key != range.end {
    1179        39948 :                 assert!(!self.shard_identity.is_key_disposable(&key));
    1180        39948 :                 key = key.next();
    1181              :             }
    1182              :         }
    1183              : 
    1184        39432 :         trace!(
    1185            0 :             "get vectored request for {:?}@{} from task kind {:?}",
    1186            0 :             keyspace,
    1187            0 :             lsn,
    1188            0 :             ctx.task_kind(),
    1189              :         );
    1190              : 
    1191        39432 :         let start = crate::metrics::GET_VECTORED_LATENCY
    1192        39432 :             .for_task_kind(ctx.task_kind())
    1193        39432 :             .map(|metric| (metric, Instant::now()));
    1194              : 
    1195        39432 :         let res = self
    1196        39432 :             .get_vectored_impl(
    1197        39432 :                 keyspace.clone(),
    1198        39432 :                 lsn,
    1199        39432 :                 &mut ValuesReconstructState::new(io_concurrency),
    1200        39432 :                 ctx,
    1201        39432 :             )
    1202        39432 :             .await;
    1203              : 
    1204        39432 :         if let Some((metric, start)) = start {
    1205            0 :             let elapsed = start.elapsed();
    1206            0 :             metric.observe(elapsed.as_secs_f64());
    1207        39432 :         }
    1208              : 
    1209        39432 :         res
    1210        39432 :     }
    1211              : 
    1212              :     /// Scan the keyspace and return all existing key-values in the keyspace. This currently uses vectored
    1213              :     /// get underlying. Normal vectored get would throw an error when a key in the keyspace is not found
    1214              :     /// during the search, but for the scan interface, it returns all existing key-value pairs, and does
    1215              :     /// not expect each single key in the key space will be found. The semantics is closer to the RocksDB
    1216              :     /// scan iterator interface. We could optimize this interface later to avoid some checks in the vectored
    1217              :     /// get path to maintain and split the probing and to-be-probe keyspace. We also need to ensure that
    1218              :     /// the scan operation will not cause OOM in the future.
    1219           24 :     pub(crate) async fn scan(
    1220           24 :         &self,
    1221           24 :         keyspace: KeySpace,
    1222           24 :         lsn: Lsn,
    1223           24 :         ctx: &RequestContext,
    1224           24 :         io_concurrency: super::storage_layer::IoConcurrency,
    1225           24 :     ) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
    1226           24 :         if !lsn.is_valid() {
    1227            0 :             return Err(GetVectoredError::InvalidLsn(lsn));
    1228           24 :         }
    1229           24 : 
    1230           24 :         trace!(
    1231            0 :             "key-value scan request for {:?}@{} from task kind {:?}",
    1232            0 :             keyspace,
    1233            0 :             lsn,
    1234            0 :             ctx.task_kind()
    1235              :         );
    1236              : 
    1237              :         // We should generalize this into Keyspace::contains in the future.
    1238           48 :         for range in &keyspace.ranges {
    1239           24 :             if range.start.field1 < METADATA_KEY_BEGIN_PREFIX
    1240           24 :                 || range.end.field1 > METADATA_KEY_END_PREFIX
    1241              :             {
    1242            0 :                 return Err(GetVectoredError::Other(anyhow::anyhow!(
    1243            0 :                     "only metadata keyspace can be scanned"
    1244            0 :                 )));
    1245           24 :             }
    1246              :         }
    1247              : 
    1248           24 :         let start = crate::metrics::SCAN_LATENCY
    1249           24 :             .for_task_kind(ctx.task_kind())
    1250           24 :             .map(ScanLatencyOngoingRecording::start_recording);
    1251              : 
    1252           24 :         let vectored_res = self
    1253           24 :             .get_vectored_impl(
    1254           24 :                 keyspace.clone(),
    1255           24 :                 lsn,
    1256           24 :                 &mut ValuesReconstructState::new(io_concurrency),
    1257           24 :                 ctx,
    1258           24 :             )
    1259           24 :             .await;
    1260              : 
    1261           24 :         if let Some(recording) = start {
    1262            0 :             recording.observe();
    1263           24 :         }
    1264              : 
    1265           24 :         vectored_res
    1266           24 :     }
    1267              : 
    1268      1255396 :     pub(super) async fn get_vectored_impl(
    1269      1255396 :         &self,
    1270      1255396 :         keyspace: KeySpace,
    1271      1255396 :         lsn: Lsn,
    1272      1255396 :         reconstruct_state: &mut ValuesReconstructState,
    1273      1255396 :         ctx: &RequestContext,
    1274      1255396 :     ) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
    1275      1255396 :         let read_path = if self.conf.enable_read_path_debugging || ctx.read_path_debug() {
    1276      1255396 :             Some(ReadPath::new(keyspace.clone(), lsn))
    1277              :         } else {
    1278            0 :             None
    1279              :         };
    1280      1255396 :         reconstruct_state.read_path = read_path;
    1281              : 
    1282      1255396 :         let traversal_res: Result<(), _> = self
    1283      1255396 :             .get_vectored_reconstruct_data(keyspace.clone(), lsn, reconstruct_state, ctx)
    1284      1255396 :             .await;
    1285      1255396 :         if let Err(err) = traversal_res {
    1286              :             // Wait for all the spawned IOs to complete.
    1287              :             // See comments on `spawn_io` inside `storage_layer` for more details.
    1288           32 :             let mut collect_futs = std::mem::take(&mut reconstruct_state.keys)
    1289           32 :                 .into_values()
    1290           32 :                 .map(|state| state.collect_pending_ios())
    1291           32 :                 .collect::<FuturesUnordered<_>>();
    1292           32 :             while collect_futs.next().await.is_some() {}
    1293           32 :             return Err(err);
    1294      1255364 :         };
    1295      1255364 : 
    1296      1255364 :         let layers_visited = reconstruct_state.get_layers_visited();
    1297      1255364 : 
    1298      1255364 :         let futs = FuturesUnordered::new();
    1299      1336068 :         for (key, state) in std::mem::take(&mut reconstruct_state.keys) {
    1300      1336068 :             futs.push({
    1301      1336068 :                 let walredo_self = self.myself.upgrade().expect("&self method holds the arc");
    1302      1336068 :                 async move {
    1303      1336068 :                     assert_eq!(state.situation, ValueReconstructSituation::Complete);
    1304              : 
    1305      1336068 :                     let converted = match state.collect_pending_ios().await {
    1306      1336068 :                         Ok(ok) => ok,
    1307            0 :                         Err(err) => {
    1308            0 :                             return (key, Err(err));
    1309              :                         }
    1310              :                     };
    1311      1336068 :                     DELTAS_PER_READ_GLOBAL.observe(converted.num_deltas() as f64);
    1312      1336068 : 
    1313      1336068 :                     // The walredo module expects the records to be descending in terms of Lsn.
    1314      1336068 :                     // And we submit the IOs in that order, so, there shuold be no need to sort here.
    1315      1336068 :                     debug_assert!(
    1316      1336068 :                         converted
    1317      1336068 :                             .records
    1318      1336068 :                             .is_sorted_by_key(|(lsn, _)| std::cmp::Reverse(*lsn)),
    1319            0 :                         "{converted:?}"
    1320              :                     );
    1321              : 
    1322              :                     (
    1323      1336068 :                         key,
    1324      1336068 :                         walredo_self.reconstruct_value(key, lsn, converted).await,
    1325              :                     )
    1326      1336068 :                 }
    1327      1336068 :             });
    1328      1336068 :         }
    1329              : 
    1330      1255364 :         let results = futs
    1331      1255364 :             .collect::<BTreeMap<Key, Result<Bytes, PageReconstructError>>>()
    1332      1255364 :             .await;
    1333              : 
    1334              :         // For aux file keys (v1 or v2) the vectored read path does not return an error
    1335              :         // when they're missing. Instead they are omitted from the resulting btree
    1336              :         // (this is a requirement, not a bug). Skip updating the metric in these cases
    1337              :         // to avoid infinite results.
    1338      1255364 :         if !results.is_empty() {
    1339      1254872 :             if layers_visited >= Self::LAYERS_VISITED_WARN_THRESHOLD {
    1340            0 :                 static LOG_PACER: Lazy<Mutex<RateLimit>> =
    1341            0 :                     Lazy::new(|| Mutex::new(RateLimit::new(Duration::from_secs(60))));
    1342            0 :                 LOG_PACER.lock().unwrap().call(|| {
    1343            0 :                     let num_keys = keyspace.total_raw_size();
    1344            0 :                     let num_pages = results.len();
    1345            0 :                     tracing::info!(
    1346            0 :                       shard_id = %self.tenant_shard_id.shard_slug(),
    1347            0 :                       lsn = %lsn,
    1348            0 :                       "Vectored read for {keyspace} visited {layers_visited} layers. Returned {num_pages}/{num_keys} pages.",
    1349              :                     );
    1350            0 :                 });
    1351      1254872 :             }
    1352              : 
    1353              :             // Records the number of layers visited in a few different ways:
    1354              :             //
    1355              :             // * LAYERS_PER_READ: all layers count towards every read in the batch, because each
    1356              :             //   layer directly affects its observed latency.
    1357              :             //
    1358              :             // * LAYERS_PER_READ_BATCH: all layers count towards each batch, to get the per-batch
    1359              :             //   layer visits and access cost.
    1360              :             //
    1361              :             // * LAYERS_PER_READ_AMORTIZED: the average layer count per read, to get the amortized
    1362              :             //   read amplification after batching.
    1363      1254872 :             let layers_visited = layers_visited as f64;
    1364      1254872 :             let avg_layers_visited = layers_visited / results.len() as f64;
    1365      1254872 :             LAYERS_PER_READ_BATCH_GLOBAL.observe(layers_visited);
    1366      2590940 :             for _ in &results {
    1367      1336068 :                 self.metrics.layers_per_read.observe(layers_visited);
    1368      1336068 :                 LAYERS_PER_READ_GLOBAL.observe(layers_visited);
    1369      1336068 :                 LAYERS_PER_READ_AMORTIZED_GLOBAL.observe(avg_layers_visited);
    1370      1336068 :             }
    1371          492 :         }
    1372              : 
    1373      1255364 :         Ok(results)
    1374      1255396 :     }
    1375              : 
    1376              :     /// Get last or prev record separately. Same as get_last_record_rlsn().last/prev.
    1377       548918 :     pub(crate) fn get_last_record_lsn(&self) -> Lsn {
    1378       548918 :         self.last_record_lsn.load().last
    1379       548918 :     }
    1380              : 
    1381            0 :     pub(crate) fn get_prev_record_lsn(&self) -> Lsn {
    1382            0 :         self.last_record_lsn.load().prev
    1383            0 :     }
    1384              : 
    1385              :     /// Atomically get both last and prev.
    1386          456 :     pub(crate) fn get_last_record_rlsn(&self) -> RecordLsn {
    1387          456 :         self.last_record_lsn.load()
    1388          456 :     }
    1389              : 
    1390              :     /// Subscribe to callers of wait_lsn(). The value of the channel is None if there are no
    1391              :     /// wait_lsn() calls in progress, and Some(Lsn) if there is an active waiter for wait_lsn().
    1392            0 :     pub(crate) fn subscribe_for_wait_lsn_updates(&self) -> watch::Receiver<Option<Lsn>> {
    1393            0 :         self.last_record_lsn.status_receiver()
    1394            0 :     }
    1395              : 
    1396          896 :     pub(crate) fn get_disk_consistent_lsn(&self) -> Lsn {
    1397          896 :         self.disk_consistent_lsn.load()
    1398          896 :     }
    1399              : 
    1400              :     /// remote_consistent_lsn from the perspective of the tenant's current generation,
    1401              :     /// not validated with control plane yet.
    1402              :     /// See [`Self::get_remote_consistent_lsn_visible`].
    1403            0 :     pub(crate) fn get_remote_consistent_lsn_projected(&self) -> Option<Lsn> {
    1404            0 :         self.remote_client.remote_consistent_lsn_projected()
    1405            0 :     }
    1406              : 
    1407              :     /// remote_consistent_lsn which the tenant is guaranteed not to go backward from,
    1408              :     /// i.e. a value of remote_consistent_lsn_projected which has undergone
    1409              :     /// generation validation in the deletion queue.
    1410            0 :     pub(crate) fn get_remote_consistent_lsn_visible(&self) -> Option<Lsn> {
    1411            0 :         self.remote_client.remote_consistent_lsn_visible()
    1412            0 :     }
    1413              : 
    1414              :     /// The sum of the file size of all historic layers in the layer map.
    1415              :     /// This method makes no distinction between local and remote layers.
    1416              :     /// Hence, the result **does not represent local filesystem usage**.
    1417            0 :     pub(crate) async fn layer_size_sum(&self) -> u64 {
    1418            0 :         let guard = self.layers.read().await;
    1419            0 :         guard.layer_size_sum()
    1420            0 :     }
    1421              : 
    1422            0 :     pub(crate) fn resident_physical_size(&self) -> u64 {
    1423            0 :         self.metrics.resident_physical_size_get()
    1424            0 :     }
    1425              : 
    1426            0 :     pub(crate) fn get_directory_metrics(&self) -> [u64; DirectoryKind::KINDS_NUM] {
    1427            0 :         array::from_fn(|idx| self.directory_metrics[idx].load(AtomicOrdering::Relaxed))
    1428            0 :     }
    1429              : 
    1430              :     ///
    1431              :     /// Wait until WAL has been received and processed up to this LSN.
    1432              :     ///
    1433              :     /// You should call this before any of the other get_* or list_* functions. Calling
    1434              :     /// those functions with an LSN that has been processed yet is an error.
    1435              :     ///
    1436       450769 :     pub(crate) async fn wait_lsn(
    1437       450769 :         &self,
    1438       450769 :         lsn: Lsn,
    1439       450769 :         who_is_waiting: WaitLsnWaiter<'_>,
    1440       450769 :         timeout: WaitLsnTimeout,
    1441       450769 :         ctx: &RequestContext, /* Prepare for use by cancellation */
    1442       450769 :     ) -> Result<(), WaitLsnError> {
    1443       450769 :         let state = self.current_state();
    1444       450769 :         if self.cancel.is_cancelled() || matches!(state, TimelineState::Stopping) {
    1445            0 :             return Err(WaitLsnError::Shutdown);
    1446       450769 :         } else if !matches!(state, TimelineState::Active) {
    1447            0 :             return Err(WaitLsnError::BadState(state));
    1448       450769 :         }
    1449       450769 : 
    1450       450769 :         if cfg!(debug_assertions) {
    1451       450769 :             match ctx.task_kind() {
    1452              :                 TaskKind::WalReceiverManager
    1453              :                 | TaskKind::WalReceiverConnectionHandler
    1454              :                 | TaskKind::WalReceiverConnectionPoller => {
    1455            0 :                     let is_myself = match who_is_waiting {
    1456            0 :                         WaitLsnWaiter::Timeline(waiter) => {
    1457            0 :                             Weak::ptr_eq(&waiter.myself, &self.myself)
    1458              :                         }
    1459              :                         WaitLsnWaiter::Tenant
    1460              :                         | WaitLsnWaiter::PageService
    1461            0 :                         | WaitLsnWaiter::HttpEndpoint => unreachable!(
    1462            0 :                             "tenant or page_service context are not expected to have task kind {:?}",
    1463            0 :                             ctx.task_kind()
    1464            0 :                         ),
    1465              :                     };
    1466            0 :                     if is_myself {
    1467            0 :                         if let Err(current) = self.last_record_lsn.would_wait_for(lsn) {
    1468              :                             // walingest is the only one that can advance last_record_lsn; it should make sure to never reach here
    1469            0 :                             panic!(
    1470            0 :                                 "this timeline's walingest task is calling wait_lsn({lsn}) but we only have last_record_lsn={current}; would deadlock"
    1471            0 :                             );
    1472            0 :                         }
    1473            0 :                     } else {
    1474            0 :                         // if another  timeline's  is waiting for us, there's no deadlock risk because
    1475            0 :                         // our walreceiver task can make progress independent of theirs
    1476            0 :                     }
    1477              :                 }
    1478       450769 :                 _ => {}
    1479              :             }
    1480            0 :         }
    1481              : 
    1482       450769 :         let timeout = match timeout {
    1483            0 :             WaitLsnTimeout::Custom(t) => t,
    1484       450769 :             WaitLsnTimeout::Default => self.conf.wait_lsn_timeout,
    1485              :         };
    1486              : 
    1487       450769 :         let timer = crate::metrics::WAIT_LSN_TIME.start_timer();
    1488       450769 :         let start_finish_counterpair_guard = self.metrics.wait_lsn_start_finish_counterpair.guard();
    1489       450769 : 
    1490       450769 :         let wait_for_timeout = self.last_record_lsn.wait_for_timeout(lsn, timeout);
    1491       450769 :         let wait_for_timeout = std::pin::pin!(wait_for_timeout);
    1492       450769 :         // Use threshold of 1 because even 1 second of wait for ingest is very much abnormal.
    1493       450769 :         let log_slow_threshold = Duration::from_secs(1);
    1494       450769 :         // Use period of 10 to avoid flooding logs during an outage that affects all timelines.
    1495       450769 :         let log_slow_period = Duration::from_secs(10);
    1496       450769 :         let mut logging_permit = None;
    1497       450769 :         let wait_for_timeout = monitor_slow_future(
    1498       450769 :             log_slow_threshold,
    1499       450769 :             log_slow_period,
    1500       450769 :             wait_for_timeout,
    1501       450769 :             |MonitorSlowFutureCallback {
    1502              :                  ready,
    1503              :                  is_slow,
    1504              :                  elapsed_total,
    1505              :                  elapsed_since_last_callback,
    1506       450769 :              }| {
    1507       450769 :                 self.metrics
    1508       450769 :                     .wait_lsn_in_progress_micros
    1509       450769 :                     .inc_by(u64::try_from(elapsed_since_last_callback.as_micros()).unwrap());
    1510       450769 :                 if !is_slow {
    1511       450769 :                     return;
    1512            0 :                 }
    1513            0 :                 // It's slow, see if we should log it.
    1514            0 :                 // (We limit the logging to one per invocation per timeline to avoid excessive
    1515            0 :                 // logging during an extended broker / networking outage that affects all timelines.)
    1516            0 :                 if logging_permit.is_none() {
    1517            0 :                     logging_permit = self.wait_lsn_log_slow.try_acquire().ok();
    1518            0 :                 }
    1519            0 :                 if logging_permit.is_none() {
    1520            0 :                     return;
    1521            0 :                 }
    1522            0 :                 // We log it.
    1523            0 :                 if ready {
    1524            0 :                     info!(
    1525            0 :                         "slow wait_lsn completed after {:.3}s",
    1526            0 :                         elapsed_total.as_secs_f64()
    1527              :                     );
    1528              :                 } else {
    1529            0 :                     info!(
    1530            0 :                         "slow wait_lsn still running for {:.3}s",
    1531            0 :                         elapsed_total.as_secs_f64()
    1532              :                     );
    1533              :                 }
    1534       450769 :             },
    1535       450769 :         );
    1536       450769 :         let res = wait_for_timeout.await;
    1537              :         // don't count the time spent waiting for lock below, and also in walreceiver.status(), towards the wait_lsn_time_histo
    1538       450769 :         drop(logging_permit);
    1539       450769 :         drop(start_finish_counterpair_guard);
    1540       450769 :         drop(timer);
    1541       450769 :         match res {
    1542       450769 :             Ok(()) => Ok(()),
    1543            0 :             Err(e) => {
    1544              :                 use utils::seqwait::SeqWaitError::*;
    1545            0 :                 match e {
    1546            0 :                     Shutdown => Err(WaitLsnError::Shutdown),
    1547              :                     Timeout => {
    1548            0 :                         let walreceiver_status = self.walreceiver_status();
    1549            0 :                         Err(WaitLsnError::Timeout(format!(
    1550            0 :                             "Timed out while waiting for WAL record at LSN {} to arrive, last_record_lsn {} disk consistent LSN={}, WalReceiver status: {}",
    1551            0 :                             lsn,
    1552            0 :                             self.get_last_record_lsn(),
    1553            0 :                             self.get_disk_consistent_lsn(),
    1554            0 :                             walreceiver_status,
    1555            0 :                         )))
    1556              :                     }
    1557              :                 }
    1558              :             }
    1559              :         }
    1560       450769 :     }
    1561              : 
    1562            0 :     pub(crate) fn walreceiver_status(&self) -> String {
    1563            0 :         match &*self.walreceiver.lock().unwrap() {
    1564            0 :             None => "stopping or stopped".to_string(),
    1565            0 :             Some(walreceiver) => match walreceiver.status() {
    1566            0 :                 Some(status) => status.to_human_readable_string(),
    1567            0 :                 None => "Not active".to_string(),
    1568              :             },
    1569              :         }
    1570            0 :     }
    1571              : 
    1572              :     /// Check that it is valid to request operations with that lsn.
    1573          464 :     pub(crate) fn check_lsn_is_in_scope(
    1574          464 :         &self,
    1575          464 :         lsn: Lsn,
    1576          464 :         latest_gc_cutoff_lsn: &RcuReadGuard<Lsn>,
    1577          464 :     ) -> anyhow::Result<()> {
    1578          464 :         ensure!(
    1579          464 :             lsn >= **latest_gc_cutoff_lsn,
    1580            8 :             "LSN {} is earlier than latest GC cutoff {} (we might've already garbage collected needed data)",
    1581            8 :             lsn,
    1582            8 :             **latest_gc_cutoff_lsn,
    1583              :         );
    1584          456 :         Ok(())
    1585          464 :     }
    1586              : 
    1587              :     /// Initializes an LSN lease. The function will return an error if the requested LSN is less than the `latest_gc_cutoff_lsn`.
    1588           20 :     pub(crate) fn init_lsn_lease(
    1589           20 :         &self,
    1590           20 :         lsn: Lsn,
    1591           20 :         length: Duration,
    1592           20 :         ctx: &RequestContext,
    1593           20 :     ) -> anyhow::Result<LsnLease> {
    1594           20 :         self.make_lsn_lease(lsn, length, true, ctx)
    1595           20 :     }
    1596              : 
    1597              :     /// Renews a lease at a particular LSN. The requested LSN is not validated against the `latest_gc_cutoff_lsn` when we are in the grace period.
    1598            8 :     pub(crate) fn renew_lsn_lease(
    1599            8 :         &self,
    1600            8 :         lsn: Lsn,
    1601            8 :         length: Duration,
    1602            8 :         ctx: &RequestContext,
    1603            8 :     ) -> anyhow::Result<LsnLease> {
    1604            8 :         self.make_lsn_lease(lsn, length, false, ctx)
    1605            8 :     }
    1606              : 
    1607              :     /// Obtains a temporary lease blocking garbage collection for the given LSN.
    1608              :     ///
    1609              :     /// If we are in `AttachedSingle` mode and is not blocked by the lsn lease deadline, this function will error
    1610              :     /// if the requesting LSN is less than the `latest_gc_cutoff_lsn` and there is no existing request present.
    1611              :     ///
    1612              :     /// If there is an existing lease in the map, the lease will be renewed only if the request extends the lease.
    1613              :     /// The returned lease is therefore the maximum between the existing lease and the requesting lease.
    1614           28 :     fn make_lsn_lease(
    1615           28 :         &self,
    1616           28 :         lsn: Lsn,
    1617           28 :         length: Duration,
    1618           28 :         init: bool,
    1619           28 :         _ctx: &RequestContext,
    1620           28 :     ) -> anyhow::Result<LsnLease> {
    1621           24 :         let lease = {
    1622              :             // Normalize the requested LSN to be aligned, and move to the first record
    1623              :             // if it points to the beginning of the page (header).
    1624           28 :             let lsn = xlog_utils::normalize_lsn(lsn, WAL_SEGMENT_SIZE);
    1625           28 : 
    1626           28 :             let mut gc_info = self.gc_info.write().unwrap();
    1627           28 :             let planned_cutoff = gc_info.min_cutoff();
    1628           28 : 
    1629           28 :             let valid_until = SystemTime::now() + length;
    1630           28 : 
    1631           28 :             let entry = gc_info.leases.entry(lsn);
    1632           28 : 
    1633           28 :             match entry {
    1634           12 :                 Entry::Occupied(mut occupied) => {
    1635           12 :                     let existing_lease = occupied.get_mut();
    1636           12 :                     if valid_until > existing_lease.valid_until {
    1637            4 :                         existing_lease.valid_until = valid_until;
    1638            4 :                         let dt: DateTime<Utc> = valid_until.into();
    1639            4 :                         info!("lease extended to {}", dt);
    1640              :                     } else {
    1641            8 :                         let dt: DateTime<Utc> = existing_lease.valid_until.into();
    1642            8 :                         info!("existing lease covers greater length, valid until {}", dt);
    1643              :                     }
    1644              : 
    1645           12 :                     existing_lease.clone()
    1646              :                 }
    1647           16 :                 Entry::Vacant(vacant) => {
    1648              :                     // Reject already GC-ed LSN if we are in AttachedSingle and
    1649              :                     // not blocked by the lsn lease deadline.
    1650           16 :                     let validate = {
    1651           16 :                         let conf = self.tenant_conf.load();
    1652           16 :                         conf.location.attach_mode == AttachmentMode::Single
    1653           16 :                             && !conf.is_gc_blocked_by_lsn_lease_deadline()
    1654              :                     };
    1655              : 
    1656           16 :                     if init || validate {
    1657           16 :                         let latest_gc_cutoff_lsn = self.get_applied_gc_cutoff_lsn();
    1658           16 :                         if lsn < *latest_gc_cutoff_lsn {
    1659            4 :                             bail!(
    1660            4 :                                 "tried to request an lsn lease for an lsn below the latest gc cutoff. requested at {} gc cutoff {}",
    1661            4 :                                 lsn,
    1662            4 :                                 *latest_gc_cutoff_lsn
    1663            4 :                             );
    1664           12 :                         }
    1665           12 :                         if lsn < planned_cutoff {
    1666            0 :                             bail!(
    1667            0 :                                 "tried to request an lsn lease for an lsn below the planned gc cutoff. requested at {} planned gc cutoff {}",
    1668            0 :                                 lsn,
    1669            0 :                                 planned_cutoff
    1670            0 :                             );
    1671           12 :                         }
    1672            0 :                     }
    1673              : 
    1674           12 :                     let dt: DateTime<Utc> = valid_until.into();
    1675           12 :                     info!("lease created, valid until {}", dt);
    1676           12 :                     vacant.insert(LsnLease { valid_until }).clone()
    1677              :                 }
    1678              :             }
    1679              :         };
    1680              : 
    1681           24 :         Ok(lease)
    1682           28 :     }
    1683              : 
    1684              :     /// Freeze the current open in-memory layer. It will be written to disk on next iteration.
    1685              :     /// Returns the flush request ID which can be awaited with wait_flush_completion().
    1686              :     #[instrument(skip(self), fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id))]
    1687              :     pub(crate) async fn freeze(&self) -> Result<u64, FlushLayerError> {
    1688              :         self.freeze0().await
    1689              :     }
    1690              : 
    1691              :     /// Freeze and flush the open in-memory layer, waiting for it to be written to disk.
    1692              :     #[instrument(skip(self), fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id))]
    1693              :     pub(crate) async fn freeze_and_flush(&self) -> Result<(), FlushLayerError> {
    1694              :         self.freeze_and_flush0().await
    1695              :     }
    1696              : 
    1697              :     /// Freeze the current open in-memory layer. It will be written to disk on next iteration.
    1698              :     /// Returns the flush request ID which can be awaited with wait_flush_completion().
    1699         2252 :     pub(crate) async fn freeze0(&self) -> Result<u64, FlushLayerError> {
    1700         2252 :         let mut g = self.write_lock.lock().await;
    1701         2252 :         let to_lsn = self.get_last_record_lsn();
    1702         2252 :         self.freeze_inmem_layer_at(to_lsn, &mut g).await
    1703         2252 :     }
    1704              : 
    1705              :     // This exists to provide a non-span creating version of `freeze_and_flush` we can call without
    1706              :     // polluting the span hierarchy.
    1707         2252 :     pub(crate) async fn freeze_and_flush0(&self) -> Result<(), FlushLayerError> {
    1708         2252 :         let token = self.freeze0().await?;
    1709         2252 :         self.wait_flush_completion(token).await
    1710         2252 :     }
    1711              : 
    1712              :     // Check if an open ephemeral layer should be closed: this provides
    1713              :     // background enforcement of checkpoint interval if there is no active WAL receiver, to avoid keeping
    1714              :     // an ephemeral layer open forever when idle.  It also freezes layers if the global limit on
    1715              :     // ephemeral layer bytes has been breached.
    1716            0 :     pub(super) async fn maybe_freeze_ephemeral_layer(&self) {
    1717            0 :         let Ok(mut write_guard) = self.write_lock.try_lock() else {
    1718              :             // If the write lock is held, there is an active wal receiver: rolling open layers
    1719              :             // is their responsibility while they hold this lock.
    1720            0 :             return;
    1721              :         };
    1722              : 
    1723              :         // FIXME: why not early exit? because before #7927 the state would had been cleared every
    1724              :         // time, and this was missed.
    1725              :         // if write_guard.is_none() { return; }
    1726              : 
    1727            0 :         let Ok(layers_guard) = self.layers.try_read() else {
    1728              :             // Don't block if the layer lock is busy
    1729            0 :             return;
    1730              :         };
    1731              : 
    1732            0 :         let Ok(lm) = layers_guard.layer_map() else {
    1733            0 :             return;
    1734              :         };
    1735              : 
    1736            0 :         let Some(open_layer) = &lm.open_layer else {
    1737              :             // If there is no open layer, we have no layer freezing to do.  However, we might need to generate
    1738              :             // some updates to disk_consistent_lsn and remote_consistent_lsn, in case we ingested some WAL regions
    1739              :             // that didn't result in writes to this shard.
    1740              : 
    1741              :             // Must not hold the layers lock while waiting for a flush.
    1742            0 :             drop(layers_guard);
    1743            0 : 
    1744            0 :             let last_record_lsn = self.get_last_record_lsn();
    1745            0 :             let disk_consistent_lsn = self.get_disk_consistent_lsn();
    1746            0 :             if last_record_lsn > disk_consistent_lsn {
    1747              :                 // We have no open layer, but disk_consistent_lsn is behind the last record: this indicates
    1748              :                 // we are a sharded tenant and have skipped some WAL
    1749            0 :                 let last_freeze_ts = *self.last_freeze_ts.read().unwrap();
    1750            0 :                 if last_freeze_ts.elapsed() >= self.get_checkpoint_timeout() {
    1751              :                     // Only do this if have been layer-less longer than get_checkpoint_timeout, so that a shard
    1752              :                     // without any data ingested (yet) doesn't write a remote index as soon as it
    1753              :                     // sees its LSN advance: we only do this if we've been layer-less
    1754              :                     // for some time.
    1755            0 :                     tracing::debug!(
    1756            0 :                         "Advancing disk_consistent_lsn past WAL ingest gap {} -> {}",
    1757              :                         disk_consistent_lsn,
    1758              :                         last_record_lsn
    1759              :                     );
    1760              : 
    1761              :                     // The flush loop will update remote consistent LSN as well as disk consistent LSN.
    1762              :                     // We know there is no open layer, so we can request freezing without actually
    1763              :                     // freezing anything. This is true even if we have dropped the layers_guard, we
    1764              :                     // still hold the write_guard.
    1765            0 :                     let _ = async {
    1766            0 :                         let token = self
    1767            0 :                             .freeze_inmem_layer_at(last_record_lsn, &mut write_guard)
    1768            0 :                             .await?;
    1769            0 :                         self.wait_flush_completion(token).await
    1770            0 :                     }
    1771            0 :                     .await;
    1772            0 :                 }
    1773            0 :             }
    1774              : 
    1775            0 :             return;
    1776              :         };
    1777              : 
    1778            0 :         let Some(current_size) = open_layer.try_len() else {
    1779              :             // Unexpected: since we hold the write guard, nobody else should be writing to this layer, so
    1780              :             // read lock to get size should always succeed.
    1781            0 :             tracing::warn!("Lock conflict while reading size of open layer");
    1782            0 :             return;
    1783              :         };
    1784              : 
    1785            0 :         let current_lsn = self.get_last_record_lsn();
    1786              : 
    1787            0 :         let checkpoint_distance_override = open_layer.tick().await;
    1788              : 
    1789            0 :         if let Some(size_override) = checkpoint_distance_override {
    1790            0 :             if current_size > size_override {
    1791              :                 // This is not harmful, but it only happens in relatively rare cases where
    1792              :                 // time-based checkpoints are not happening fast enough to keep the amount of
    1793              :                 // ephemeral data within configured limits.  It's a sign of stress on the system.
    1794            0 :                 tracing::info!(
    1795            0 :                     "Early-rolling open layer at size {current_size} (limit {size_override}) due to dirty data pressure"
    1796              :                 );
    1797            0 :             }
    1798            0 :         }
    1799              : 
    1800            0 :         let checkpoint_distance =
    1801            0 :             checkpoint_distance_override.unwrap_or(self.get_checkpoint_distance());
    1802            0 : 
    1803            0 :         if self.should_roll(
    1804            0 :             current_size,
    1805            0 :             current_size,
    1806            0 :             checkpoint_distance,
    1807            0 :             self.get_last_record_lsn(),
    1808            0 :             self.last_freeze_at.load(),
    1809            0 :             open_layer.get_opened_at(),
    1810            0 :         ) {
    1811            0 :             match open_layer.info() {
    1812            0 :                 InMemoryLayerInfo::Frozen { lsn_start, lsn_end } => {
    1813            0 :                     // We may reach this point if the layer was already frozen by not yet flushed: flushing
    1814            0 :                     // happens asynchronously in the background.
    1815            0 :                     tracing::debug!(
    1816            0 :                         "Not freezing open layer, it's already frozen ({lsn_start}..{lsn_end})"
    1817              :                     );
    1818              :                 }
    1819              :                 InMemoryLayerInfo::Open { .. } => {
    1820              :                     // Upgrade to a write lock and freeze the layer
    1821            0 :                     drop(layers_guard);
    1822            0 :                     let res = self
    1823            0 :                         .freeze_inmem_layer_at(current_lsn, &mut write_guard)
    1824            0 :                         .await;
    1825              : 
    1826            0 :                     if let Err(e) = res {
    1827            0 :                         tracing::info!(
    1828            0 :                             "failed to flush frozen layer after background freeze: {e:#}"
    1829              :                         );
    1830            0 :                     }
    1831              :                 }
    1832              :             }
    1833            0 :         }
    1834            0 :     }
    1835              : 
    1836              :     /// Checks if the internal state of the timeline is consistent with it being able to be offloaded.
    1837              :     ///
    1838              :     /// This is neccessary but not sufficient for offloading of the timeline as it might have
    1839              :     /// child timelines that are not offloaded yet.
    1840            0 :     pub(crate) fn can_offload(&self) -> (bool, &'static str) {
    1841            0 :         if self.remote_client.is_archived() != Some(true) {
    1842            0 :             return (false, "the timeline is not archived");
    1843            0 :         }
    1844            0 :         if !self.remote_client.no_pending_work() {
    1845              :             // if the remote client is still processing some work, we can't offload
    1846            0 :             return (false, "the upload queue is not drained yet");
    1847            0 :         }
    1848            0 : 
    1849            0 :         (true, "ok")
    1850            0 :     }
    1851              : 
    1852              :     /// Outermost timeline compaction operation; downloads needed layers. Returns whether we have pending
    1853              :     /// compaction tasks.
    1854          728 :     pub(crate) async fn compact(
    1855          728 :         self: &Arc<Self>,
    1856          728 :         cancel: &CancellationToken,
    1857          728 :         flags: EnumSet<CompactFlags>,
    1858          728 :         ctx: &RequestContext,
    1859          728 :     ) -> Result<CompactionOutcome, CompactionError> {
    1860          728 :         let res = self
    1861          728 :             .compact_with_options(
    1862          728 :                 cancel,
    1863          728 :                 CompactOptions {
    1864          728 :                     flags,
    1865          728 :                     compact_key_range: None,
    1866          728 :                     compact_lsn_range: None,
    1867          728 :                     sub_compaction: false,
    1868          728 :                     sub_compaction_max_job_size_mb: None,
    1869          728 :                 },
    1870          728 :                 ctx,
    1871          728 :             )
    1872          728 :             .await;
    1873          728 :         if let Err(err) = &res {
    1874            0 :             log_compaction_error(err, None, cancel.is_cancelled());
    1875          728 :         }
    1876          728 :         res
    1877          728 :     }
    1878              : 
    1879              :     /// Outermost timeline compaction operation; downloads needed layers.
    1880              :     ///
    1881              :     /// NB: the cancellation token is usually from a background task, but can also come from a
    1882              :     /// request task.
    1883          728 :     pub(crate) async fn compact_with_options(
    1884          728 :         self: &Arc<Self>,
    1885          728 :         cancel: &CancellationToken,
    1886          728 :         options: CompactOptions,
    1887          728 :         ctx: &RequestContext,
    1888          728 :     ) -> Result<CompactionOutcome, CompactionError> {
    1889          728 :         // Acquire the compaction lock and task semaphore.
    1890          728 :         //
    1891          728 :         // L0-only compaction uses a separate semaphore (if enabled) to make sure it isn't starved
    1892          728 :         // out by other background tasks (including image compaction). We request this via
    1893          728 :         // `BackgroundLoopKind::L0Compaction`.
    1894          728 :         //
    1895          728 :         // If this is a regular compaction pass, and L0-only compaction is enabled in the config,
    1896          728 :         // then we should yield for immediate L0 compaction if necessary while we're waiting for the
    1897          728 :         // background task semaphore. There's no point yielding otherwise, since we'd just end up
    1898          728 :         // right back here.
    1899          728 :         let is_l0_only = options.flags.contains(CompactFlags::OnlyL0Compaction);
    1900          728 :         let semaphore_kind = match is_l0_only && self.get_compaction_l0_semaphore() {
    1901            0 :             true => BackgroundLoopKind::L0Compaction,
    1902          728 :             false => BackgroundLoopKind::Compaction,
    1903              :         };
    1904          728 :         let yield_for_l0 = !is_l0_only
    1905          728 :             && self.get_compaction_l0_first()
    1906          728 :             && !options.flags.contains(CompactFlags::NoYield);
    1907              : 
    1908          728 :         let acquire = async move {
    1909          725 :             let guard = self.compaction_lock.lock().await;
    1910          725 :             let permit = super::tasks::acquire_concurrency_permit(semaphore_kind, ctx).await;
    1911          725 :             (guard, permit)
    1912          725 :         };
    1913              : 
    1914          728 :         let (_guard, _permit) = tokio::select! {
    1915          728 :             (guard, permit) = acquire => (guard, permit),
    1916          728 :             _ = self.l0_compaction_trigger.notified(), if yield_for_l0 => {
    1917            3 :                 return Ok(CompactionOutcome::YieldForL0);
    1918              :             }
    1919          728 :             _ = self.cancel.cancelled() => return Ok(CompactionOutcome::Skipped),
    1920          728 :             _ = cancel.cancelled() => return Ok(CompactionOutcome::Skipped),
    1921              :         };
    1922              : 
    1923          725 :         let last_record_lsn = self.get_last_record_lsn();
    1924          725 : 
    1925          725 :         // Last record Lsn could be zero in case the timeline was just created
    1926          725 :         if !last_record_lsn.is_valid() {
    1927            0 :             warn!(
    1928            0 :                 "Skipping compaction for potentially just initialized timeline, it has invalid last record lsn: {last_record_lsn}"
    1929              :             );
    1930            0 :             return Ok(CompactionOutcome::Skipped);
    1931          725 :         }
    1932              : 
    1933          725 :         let result = match self.get_compaction_algorithm_settings().kind {
    1934              :             CompactionAlgorithm::Tiered => {
    1935            0 :                 self.compact_tiered(cancel, ctx).await?;
    1936            0 :                 Ok(CompactionOutcome::Done)
    1937              :             }
    1938          725 :             CompactionAlgorithm::Legacy => self.compact_legacy(cancel, options, ctx).await,
    1939              :         };
    1940              : 
    1941              :         // Signal compaction failure to avoid L0 flush stalls when it's broken.
    1942            0 :         match &result {
    1943          725 :             Ok(_) => self.compaction_failed.store(false, AtomicOrdering::Relaxed),
    1944            0 :             Err(e) if e.is_cancel() => {}
    1945            0 :             Err(CompactionError::ShuttingDown) => {
    1946            0 :                 // Covered by the `Err(e) if e.is_cancel()` branch.
    1947            0 :             }
    1948            0 :             Err(CompactionError::AlreadyRunning(_)) => {
    1949            0 :                 // Covered by the `Err(e) if e.is_cancel()` branch.
    1950            0 :             }
    1951              :             Err(CompactionError::Other(_)) => {
    1952            0 :                 self.compaction_failed.store(true, AtomicOrdering::Relaxed)
    1953              :             }
    1954              :             Err(CompactionError::CollectKeySpaceError(_)) => {
    1955              :                 // Cancelled errors are covered by the `Err(e) if e.is_cancel()` branch.
    1956            0 :                 self.compaction_failed.store(true, AtomicOrdering::Relaxed)
    1957              :             }
    1958              :             // Don't change the current value on offload failure or shutdown. We don't want to
    1959              :             // abruptly stall nor resume L0 flushes in these cases.
    1960            0 :             Err(CompactionError::Offload(_)) => {}
    1961              :         };
    1962              : 
    1963          725 :         result
    1964          728 :     }
    1965              : 
    1966              :     /// Mutate the timeline with a [`TimelineWriter`].
    1967     10266392 :     pub(crate) async fn writer(&self) -> TimelineWriter<'_> {
    1968     10266392 :         TimelineWriter {
    1969     10266392 :             tl: self,
    1970     10266392 :             write_guard: self.write_lock.lock().await,
    1971              :         }
    1972     10266392 :     }
    1973              : 
    1974            0 :     pub(crate) fn activate(
    1975            0 :         self: &Arc<Self>,
    1976            0 :         parent: Arc<crate::tenant::Tenant>,
    1977            0 :         broker_client: BrokerClientChannel,
    1978            0 :         background_jobs_can_start: Option<&completion::Barrier>,
    1979            0 :         ctx: &RequestContext,
    1980            0 :     ) {
    1981            0 :         if self.tenant_shard_id.is_shard_zero() {
    1982            0 :             // Logical size is only maintained accurately on shard zero.
    1983            0 :             self.spawn_initial_logical_size_computation_task(ctx);
    1984            0 :         }
    1985            0 :         self.launch_wal_receiver(ctx, broker_client);
    1986            0 :         self.set_state(TimelineState::Active);
    1987            0 :         self.launch_eviction_task(parent, background_jobs_can_start);
    1988            0 :     }
    1989              : 
    1990              :     /// After this function returns, there are no timeline-scoped tasks are left running.
    1991              :     ///
    1992              :     /// The preferred pattern for is:
    1993              :     /// - in any spawned tasks, keep Timeline::guard open + Timeline::cancel / child token
    1994              :     /// - if early shutdown (not just cancellation) of a sub-tree of tasks is required,
    1995              :     ///   go the extra mile and keep track of JoinHandles
    1996              :     /// - Keep track of JoinHandles using a passed-down `Arc<Mutex<Option<JoinSet>>>` or similar,
    1997              :     ///   instead of spawning directly on a runtime. It is a more composable / testable pattern.
    1998              :     ///
    1999              :     /// For legacy reasons, we still have multiple tasks spawned using
    2000              :     /// `task_mgr::spawn(X, Some(tenant_id), Some(timeline_id))`.
    2001              :     /// We refer to these as "timeline-scoped task_mgr tasks".
    2002              :     /// Some of these tasks are already sensitive to Timeline::cancel while others are
    2003              :     /// not sensitive to Timeline::cancel and instead respect [`task_mgr::shutdown_token`]
    2004              :     /// or [`task_mgr::shutdown_watcher`].
    2005              :     /// We want to gradually convert the code base away from these.
    2006              :     ///
    2007              :     /// Here is an inventory of timeline-scoped task_mgr tasks that are still sensitive to
    2008              :     /// `task_mgr::shutdown_{token,watcher}` (there are also tenant-scoped and global-scoped
    2009              :     /// ones that aren't mentioned here):
    2010              :     /// - [`TaskKind::TimelineDeletionWorker`]
    2011              :     ///    - NB: also used for tenant deletion
    2012              :     /// - [`TaskKind::RemoteUploadTask`]`
    2013              :     /// - [`TaskKind::InitialLogicalSizeCalculation`]
    2014              :     /// - [`TaskKind::DownloadAllRemoteLayers`] (can we get rid of it?)
    2015              :     // Inventory of timeline-scoped task_mgr tasks that use spawn but aren't sensitive:
    2016              :     /// - [`TaskKind::Eviction`]
    2017              :     /// - [`TaskKind::LayerFlushTask`]
    2018              :     /// - [`TaskKind::OndemandLogicalSizeCalculation`]
    2019              :     /// - [`TaskKind::GarbageCollector`] (immediate_gc is timeline-scoped)
    2020           20 :     pub(crate) async fn shutdown(&self, mode: ShutdownMode) {
    2021           20 :         debug_assert_current_span_has_tenant_and_timeline_id();
    2022           20 : 
    2023           20 :         // Regardless of whether we're going to try_freeze_and_flush
    2024           20 :         // or not, stop ingesting any more data. Walreceiver only provides
    2025           20 :         // cancellation but no "wait until gone", because it uses the Timeline::gate.
    2026           20 :         // So, only after the self.gate.close() below will we know for sure that
    2027           20 :         // no walreceiver tasks are left.
    2028           20 :         // For `try_freeze_and_flush=true`, this means that we might still be ingesting
    2029           20 :         // data during the call to `self.freeze_and_flush()` below.
    2030           20 :         // That's not ideal, but, we don't have the concept of a ChildGuard,
    2031           20 :         // which is what we'd need to properly model early shutdown of the walreceiver
    2032           20 :         // task sub-tree before the other Timeline task sub-trees.
    2033           20 :         let walreceiver = self.walreceiver.lock().unwrap().take();
    2034           20 :         tracing::debug!(
    2035            0 :             is_some = walreceiver.is_some(),
    2036            0 :             "Waiting for WalReceiverManager..."
    2037              :         );
    2038           20 :         if let Some(walreceiver) = walreceiver {
    2039            0 :             walreceiver.cancel();
    2040           20 :         }
    2041              :         // ... and inform any waiters for newer LSNs that there won't be any.
    2042           20 :         self.last_record_lsn.shutdown();
    2043           20 : 
    2044           20 :         if let ShutdownMode::FreezeAndFlush = mode {
    2045           12 :             let do_flush = if let Some((open, frozen)) = self
    2046           12 :                 .layers
    2047           12 :                 .read()
    2048           12 :                 .await
    2049           12 :                 .layer_map()
    2050           12 :                 .map(|lm| (lm.open_layer.is_some(), lm.frozen_layers.len()))
    2051           12 :                 .ok()
    2052           12 :                 .filter(|(open, frozen)| *open || *frozen > 0)
    2053              :             {
    2054            0 :                 if self.remote_client.is_archived() == Some(true) {
    2055              :                     // No point flushing on shutdown for an archived timeline: it is not important
    2056              :                     // to have it nice and fresh after our restart, and trying to flush here might
    2057              :                     // race with trying to offload it (which also stops the flush loop)
    2058            0 :                     false
    2059              :                 } else {
    2060            0 :                     tracing::info!(?open, frozen, "flushing and freezing on shutdown");
    2061            0 :                     true
    2062              :                 }
    2063              :             } else {
    2064              :                 // this is double-shutdown, it'll be a no-op
    2065           12 :                 true
    2066              :             };
    2067              : 
    2068              :             // we shut down walreceiver above, so, we won't add anything more
    2069              :             // to the InMemoryLayer; freeze it and wait for all frozen layers
    2070              :             // to reach the disk & upload queue, then shut the upload queue and
    2071              :             // wait for it to drain.
    2072           12 :             if do_flush {
    2073           12 :                 match self.freeze_and_flush().await {
    2074              :                     Ok(_) => {
    2075              :                         // drain the upload queue
    2076              :                         // if we did not wait for completion here, it might be our shutdown process
    2077              :                         // didn't wait for remote uploads to complete at all, as new tasks can forever
    2078              :                         // be spawned.
    2079              :                         //
    2080              :                         // what is problematic is the shutting down of RemoteTimelineClient, because
    2081              :                         // obviously it does not make sense to stop while we wait for it, but what
    2082              :                         // about corner cases like s3 suddenly hanging up?
    2083           12 :                         self.remote_client.shutdown().await;
    2084              :                     }
    2085              :                     Err(FlushLayerError::Cancelled) => {
    2086              :                         // this is likely the second shutdown, ignore silently.
    2087              :                         // TODO: this can be removed once https://github.com/neondatabase/neon/issues/5080
    2088            0 :                         debug_assert!(self.cancel.is_cancelled());
    2089              :                     }
    2090            0 :                     Err(e) => {
    2091            0 :                         // Non-fatal.  Shutdown is infallible.  Failures to flush just mean that
    2092            0 :                         // we have some extra WAL replay to do next time the timeline starts.
    2093            0 :                         warn!("failed to freeze and flush: {e:#}");
    2094              :                     }
    2095              :                 }
    2096              : 
    2097              :                 // `self.remote_client.shutdown().await` above should have already flushed everything from the queue, but
    2098              :                 // we also do a final check here to ensure that the queue is empty.
    2099           12 :                 if !self.remote_client.no_pending_work() {
    2100            0 :                     warn!(
    2101            0 :                         "still have pending work in remote upload queue, but continuing shutting down anyways"
    2102              :                     );
    2103           12 :                 }
    2104            0 :             }
    2105            8 :         }
    2106              : 
    2107           20 :         if let ShutdownMode::Reload = mode {
    2108              :             // drain the upload queue
    2109            4 :             self.remote_client.shutdown().await;
    2110            4 :             if !self.remote_client.no_pending_work() {
    2111            0 :                 warn!(
    2112            0 :                     "still have pending work in remote upload queue, but continuing shutting down anyways"
    2113              :                 );
    2114            4 :             }
    2115           16 :         }
    2116              : 
    2117              :         // Signal any subscribers to our cancellation token to drop out
    2118           20 :         tracing::debug!("Cancelling CancellationToken");
    2119           20 :         self.cancel.cancel();
    2120           20 : 
    2121           20 :         // If we have a background task downloading heatmap layers stop it.
    2122           20 :         // The background downloads are sensitive to timeline cancellation (done above),
    2123           20 :         // so the drain will be immediate.
    2124           20 :         self.stop_and_drain_heatmap_layers_download().await;
    2125              : 
    2126              :         // Ensure Prevent new page service requests from starting.
    2127           20 :         self.handles.shutdown();
    2128           20 : 
    2129           20 :         // Transition the remote_client into a state where it's only useful for timeline deletion.
    2130           20 :         // (The deletion use case is why we can't just hook up remote_client to Self::cancel).)
    2131           20 :         self.remote_client.stop();
    2132           20 : 
    2133           20 :         // As documented in remote_client.stop()'s doc comment, it's our responsibility
    2134           20 :         // to shut down the upload queue tasks.
    2135           20 :         // TODO: fix that, task management should be encapsulated inside remote_client.
    2136           20 :         task_mgr::shutdown_tasks(
    2137           20 :             Some(TaskKind::RemoteUploadTask),
    2138           20 :             Some(self.tenant_shard_id),
    2139           20 :             Some(self.timeline_id),
    2140           20 :         )
    2141           20 :         .await;
    2142              : 
    2143              :         // TODO: work toward making this a no-op. See this function's doc comment for more context.
    2144           20 :         tracing::debug!("Waiting for tasks...");
    2145           20 :         task_mgr::shutdown_tasks(None, Some(self.tenant_shard_id), Some(self.timeline_id)).await;
    2146              : 
    2147              :         {
    2148              :             // Allow any remaining in-memory layers to do cleanup -- until that, they hold the gate
    2149              :             // open.
    2150           20 :             let mut write_guard = self.write_lock.lock().await;
    2151           20 :             self.layers.write().await.shutdown(&mut write_guard);
    2152           20 :         }
    2153           20 : 
    2154           20 :         // Finally wait until any gate-holders are complete.
    2155           20 :         //
    2156           20 :         // TODO: once above shutdown_tasks is a no-op, we can close the gate before calling shutdown_tasks
    2157           20 :         // and use a TBD variant of shutdown_tasks that asserts that there were no tasks left.
    2158           20 :         self.gate.close().await;
    2159              : 
    2160           20 :         self.metrics.shutdown();
    2161           20 :     }
    2162              : 
    2163          908 :     pub(crate) fn set_state(&self, new_state: TimelineState) {
    2164          908 :         match (self.current_state(), new_state) {
    2165          908 :             (equal_state_1, equal_state_2) if equal_state_1 == equal_state_2 => {
    2166            4 :                 info!("Ignoring new state, equal to the existing one: {equal_state_2:?}");
    2167              :             }
    2168            0 :             (st, TimelineState::Loading) => {
    2169            0 :                 error!("ignoring transition from {st:?} into Loading state");
    2170              :             }
    2171            0 :             (TimelineState::Broken { .. }, new_state) => {
    2172            0 :                 error!("Ignoring state update {new_state:?} for broken timeline");
    2173              :             }
    2174              :             (TimelineState::Stopping, TimelineState::Active) => {
    2175            0 :                 error!("Not activating a Stopping timeline");
    2176              :             }
    2177          904 :             (_, new_state) => {
    2178          904 :                 self.state.send_replace(new_state);
    2179          904 :             }
    2180              :         }
    2181          908 :     }
    2182              : 
    2183            4 :     pub(crate) fn set_broken(&self, reason: String) {
    2184            4 :         let backtrace_str: String = format!("{}", std::backtrace::Backtrace::force_capture());
    2185            4 :         let broken_state = TimelineState::Broken {
    2186            4 :             reason,
    2187            4 :             backtrace: backtrace_str,
    2188            4 :         };
    2189            4 :         self.set_state(broken_state);
    2190            4 : 
    2191            4 :         // Although the Broken state is not equivalent to shutdown() (shutdown will be called
    2192            4 :         // later when this tenant is detach or the process shuts down), firing the cancellation token
    2193            4 :         // here avoids the need for other tasks to watch for the Broken state explicitly.
    2194            4 :         self.cancel.cancel();
    2195            4 :     }
    2196              : 
    2197       452882 :     pub(crate) fn current_state(&self) -> TimelineState {
    2198       452882 :         self.state.borrow().clone()
    2199       452882 :     }
    2200              : 
    2201           12 :     pub(crate) fn is_broken(&self) -> bool {
    2202           12 :         matches!(&*self.state.borrow(), TimelineState::Broken { .. })
    2203           12 :     }
    2204              : 
    2205          472 :     pub(crate) fn is_active(&self) -> bool {
    2206          472 :         self.current_state() == TimelineState::Active
    2207          472 :     }
    2208              : 
    2209            0 :     pub(crate) fn is_archived(&self) -> Option<bool> {
    2210            0 :         self.remote_client.is_archived()
    2211            0 :     }
    2212              : 
    2213          733 :     pub(crate) fn is_stopping(&self) -> bool {
    2214          733 :         self.current_state() == TimelineState::Stopping
    2215          733 :     }
    2216              : 
    2217            0 :     pub(crate) fn subscribe_for_state_updates(&self) -> watch::Receiver<TimelineState> {
    2218            0 :         self.state.subscribe()
    2219            0 :     }
    2220              : 
    2221       450773 :     pub(crate) async fn wait_to_become_active(
    2222       450773 :         &self,
    2223       450773 :         _ctx: &RequestContext, // Prepare for use by cancellation
    2224       450773 :     ) -> Result<(), TimelineState> {
    2225       450773 :         let mut receiver = self.state.subscribe();
    2226              :         loop {
    2227       450773 :             let current_state = receiver.borrow().clone();
    2228       450773 :             match current_state {
    2229              :                 TimelineState::Loading => {
    2230            0 :                     receiver
    2231            0 :                         .changed()
    2232            0 :                         .await
    2233            0 :                         .expect("holding a reference to self");
    2234              :                 }
    2235              :                 TimelineState::Active { .. } => {
    2236       450769 :                     return Ok(());
    2237              :                 }
    2238              :                 TimelineState::Broken { .. } | TimelineState::Stopping => {
    2239              :                     // There's no chance the timeline can transition back into ::Active
    2240            4 :                     return Err(current_state);
    2241              :                 }
    2242              :             }
    2243              :         }
    2244       450773 :     }
    2245              : 
    2246            0 :     pub(crate) async fn layer_map_info(
    2247            0 :         &self,
    2248            0 :         reset: LayerAccessStatsReset,
    2249            0 :     ) -> Result<LayerMapInfo, layer_manager::Shutdown> {
    2250            0 :         let guard = self.layers.read().await;
    2251            0 :         let layer_map = guard.layer_map()?;
    2252            0 :         let mut in_memory_layers = Vec::with_capacity(layer_map.frozen_layers.len() + 1);
    2253            0 :         if let Some(open_layer) = &layer_map.open_layer {
    2254            0 :             in_memory_layers.push(open_layer.info());
    2255            0 :         }
    2256            0 :         for frozen_layer in &layer_map.frozen_layers {
    2257            0 :             in_memory_layers.push(frozen_layer.info());
    2258            0 :         }
    2259              : 
    2260            0 :         let historic_layers = layer_map
    2261            0 :             .iter_historic_layers()
    2262            0 :             .map(|desc| guard.get_from_desc(&desc).info(reset))
    2263            0 :             .collect();
    2264            0 : 
    2265            0 :         Ok(LayerMapInfo {
    2266            0 :             in_memory_layers,
    2267            0 :             historic_layers,
    2268            0 :         })
    2269            0 :     }
    2270              : 
    2271              :     #[instrument(skip_all, fields(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))]
    2272              :     pub(crate) async fn download_layer(
    2273              :         &self,
    2274              :         layer_file_name: &LayerName,
    2275              :         ctx: &RequestContext,
    2276              :     ) -> Result<Option<bool>, super::storage_layer::layer::DownloadError> {
    2277              :         let Some(layer) = self
    2278              :             .find_layer(layer_file_name)
    2279              :             .await
    2280            0 :             .map_err(|e| match e {
    2281            0 :                 layer_manager::Shutdown => {
    2282            0 :                     super::storage_layer::layer::DownloadError::TimelineShutdown
    2283            0 :                 }
    2284            0 :             })?
    2285              :         else {
    2286              :             return Ok(None);
    2287              :         };
    2288              : 
    2289              :         layer.download(ctx).await?;
    2290              : 
    2291              :         Ok(Some(true))
    2292              :     }
    2293              : 
    2294              :     /// Evict just one layer.
    2295              :     ///
    2296              :     /// Returns `Ok(None)` in the case where the layer could not be found by its `layer_file_name`.
    2297            0 :     pub(crate) async fn evict_layer(
    2298            0 :         &self,
    2299            0 :         layer_file_name: &LayerName,
    2300            0 :     ) -> anyhow::Result<Option<bool>> {
    2301            0 :         let _gate = self
    2302            0 :             .gate
    2303            0 :             .enter()
    2304            0 :             .map_err(|_| anyhow::anyhow!("Shutting down"))?;
    2305              : 
    2306            0 :         let Some(local_layer) = self.find_layer(layer_file_name).await? else {
    2307            0 :             return Ok(None);
    2308              :         };
    2309              : 
    2310              :         // curl has this by default
    2311            0 :         let timeout = std::time::Duration::from_secs(120);
    2312            0 : 
    2313            0 :         match local_layer.evict_and_wait(timeout).await {
    2314            0 :             Ok(()) => Ok(Some(true)),
    2315            0 :             Err(EvictionError::NotFound) => Ok(Some(false)),
    2316            0 :             Err(EvictionError::Downloaded) => Ok(Some(false)),
    2317            0 :             Err(EvictionError::Timeout) => Ok(Some(false)),
    2318              :         }
    2319            0 :     }
    2320              : 
    2321      9606020 :     fn should_roll(
    2322      9606020 :         &self,
    2323      9606020 :         layer_size: u64,
    2324      9606020 :         projected_layer_size: u64,
    2325      9606020 :         checkpoint_distance: u64,
    2326      9606020 :         projected_lsn: Lsn,
    2327      9606020 :         last_freeze_at: Lsn,
    2328      9606020 :         opened_at: Instant,
    2329      9606020 :     ) -> bool {
    2330      9606020 :         let distance = projected_lsn.widening_sub(last_freeze_at);
    2331      9606020 : 
    2332      9606020 :         // Rolling the open layer can be triggered by:
    2333      9606020 :         // 1. The distance from the last LSN we rolled at. This bounds the amount of WAL that
    2334      9606020 :         //    the safekeepers need to store.  For sharded tenants, we multiply by shard count to
    2335      9606020 :         //    account for how writes are distributed across shards: we expect each node to consume
    2336      9606020 :         //    1/count of the LSN on average.
    2337      9606020 :         // 2. The size of the currently open layer.
    2338      9606020 :         // 3. The time since the last roll. It helps safekeepers to regard pageserver as caught
    2339      9606020 :         //    up and suspend activity.
    2340      9606020 :         if distance >= checkpoint_distance as i128 * self.shard_identity.count.count() as i128 {
    2341            0 :             info!(
    2342            0 :                 "Will roll layer at {} with layer size {} due to LSN distance ({})",
    2343              :                 projected_lsn, layer_size, distance
    2344              :             );
    2345              : 
    2346            0 :             true
    2347      9606020 :         } else if projected_layer_size >= checkpoint_distance {
    2348              :             // NB: this check is relied upon by:
    2349          160 :             let _ = IndexEntry::validate_checkpoint_distance;
    2350          160 :             info!(
    2351            0 :                 "Will roll layer at {} with layer size {} due to layer size ({})",
    2352              :                 projected_lsn, layer_size, projected_layer_size
    2353              :             );
    2354              : 
    2355          160 :             true
    2356      9605860 :         } else if distance > 0 && opened_at.elapsed() >= self.get_checkpoint_timeout() {
    2357            0 :             info!(
    2358            0 :                 "Will roll layer at {} with layer size {} due to time since first write to the layer ({:?})",
    2359            0 :                 projected_lsn,
    2360            0 :                 layer_size,
    2361            0 :                 opened_at.elapsed()
    2362              :             );
    2363              : 
    2364            0 :             true
    2365              :         } else {
    2366      9605860 :             false
    2367              :         }
    2368      9606020 :     }
    2369              : }
    2370              : 
    2371              : /// Number of times we will compute partition within a checkpoint distance.
    2372              : const REPARTITION_FREQ_IN_CHECKPOINT_DISTANCE: u64 = 10;
    2373              : 
    2374              : // Private functions
    2375              : impl Timeline {
    2376           24 :     pub(crate) fn get_lsn_lease_length(&self) -> Duration {
    2377           24 :         let tenant_conf = self.tenant_conf.load();
    2378           24 :         tenant_conf
    2379           24 :             .tenant_conf
    2380           24 :             .lsn_lease_length
    2381           24 :             .unwrap_or(self.conf.default_tenant_conf.lsn_lease_length)
    2382           24 :     }
    2383              : 
    2384            0 :     pub(crate) fn get_lsn_lease_length_for_ts(&self) -> Duration {
    2385            0 :         let tenant_conf = self.tenant_conf.load();
    2386            0 :         tenant_conf
    2387            0 :             .tenant_conf
    2388            0 :             .lsn_lease_length_for_ts
    2389            0 :             .unwrap_or(self.conf.default_tenant_conf.lsn_lease_length_for_ts)
    2390            0 :     }
    2391              : 
    2392            0 :     pub(crate) fn is_gc_blocked_by_lsn_lease_deadline(&self) -> bool {
    2393            0 :         let tenant_conf = self.tenant_conf.load();
    2394            0 :         tenant_conf.is_gc_blocked_by_lsn_lease_deadline()
    2395            0 :     }
    2396              : 
    2397            0 :     pub(crate) fn get_lazy_slru_download(&self) -> bool {
    2398            0 :         let tenant_conf = self.tenant_conf.load();
    2399            0 :         tenant_conf
    2400            0 :             .tenant_conf
    2401            0 :             .lazy_slru_download
    2402            0 :             .unwrap_or(self.conf.default_tenant_conf.lazy_slru_download)
    2403            0 :     }
    2404              : 
    2405      9609010 :     fn get_checkpoint_distance(&self) -> u64 {
    2406      9609010 :         let tenant_conf = self.tenant_conf.load();
    2407      9609010 :         tenant_conf
    2408      9609010 :             .tenant_conf
    2409      9609010 :             .checkpoint_distance
    2410      9609010 :             .unwrap_or(self.conf.default_tenant_conf.checkpoint_distance)
    2411      9609010 :     }
    2412              : 
    2413      9605860 :     fn get_checkpoint_timeout(&self) -> Duration {
    2414      9605860 :         let tenant_conf = self.tenant_conf.load();
    2415      9605860 :         tenant_conf
    2416      9605860 :             .tenant_conf
    2417      9605860 :             .checkpoint_timeout
    2418      9605860 :             .unwrap_or(self.conf.default_tenant_conf.checkpoint_timeout)
    2419      9605860 :     }
    2420              : 
    2421         5032 :     fn get_compaction_period(&self) -> Duration {
    2422         5032 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2423         5032 :         tenant_conf
    2424         5032 :             .compaction_period
    2425         5032 :             .unwrap_or(self.conf.default_tenant_conf.compaction_period)
    2426         5032 :     }
    2427              : 
    2428         1333 :     fn get_compaction_target_size(&self) -> u64 {
    2429         1333 :         let tenant_conf = self.tenant_conf.load();
    2430         1333 :         tenant_conf
    2431         1333 :             .tenant_conf
    2432         1333 :             .compaction_target_size
    2433         1333 :             .unwrap_or(self.conf.default_tenant_conf.compaction_target_size)
    2434         1333 :     }
    2435              : 
    2436         3137 :     fn get_compaction_threshold(&self) -> usize {
    2437         3137 :         let tenant_conf = self.tenant_conf.load();
    2438         3137 :         tenant_conf
    2439         3137 :             .tenant_conf
    2440         3137 :             .compaction_threshold
    2441         3137 :             .unwrap_or(self.conf.default_tenant_conf.compaction_threshold)
    2442         3137 :     }
    2443              : 
    2444              :     /// Returns `true` if the rel_size_v2 config is enabled. NOTE: the write path and read path
    2445              :     /// should look at `get_rel_size_v2_status()` to get the actual status of the timeline. It is
    2446              :     /// possible that the index part persists the state while the config doesn't get persisted.
    2447         3892 :     pub(crate) fn get_rel_size_v2_enabled(&self) -> bool {
    2448         3892 :         let tenant_conf = self.tenant_conf.load();
    2449         3892 :         tenant_conf
    2450         3892 :             .tenant_conf
    2451         3892 :             .rel_size_v2_enabled
    2452         3892 :             .unwrap_or(self.conf.default_tenant_conf.rel_size_v2_enabled)
    2453         3892 :     }
    2454              : 
    2455         4384 :     pub(crate) fn get_rel_size_v2_status(&self) -> RelSizeMigration {
    2456         4384 :         self.rel_size_v2_status
    2457         4384 :             .load()
    2458         4384 :             .as_ref()
    2459         4384 :             .map(|s| s.as_ref().clone())
    2460         4384 :             .unwrap_or(RelSizeMigration::Legacy)
    2461         4384 :     }
    2462              : 
    2463           56 :     fn get_compaction_upper_limit(&self) -> usize {
    2464           56 :         let tenant_conf = self.tenant_conf.load();
    2465           56 :         tenant_conf
    2466           56 :             .tenant_conf
    2467           56 :             .compaction_upper_limit
    2468           56 :             .unwrap_or(self.conf.default_tenant_conf.compaction_upper_limit)
    2469           56 :     }
    2470              : 
    2471          728 :     pub fn get_compaction_l0_first(&self) -> bool {
    2472          728 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2473          728 :         tenant_conf
    2474          728 :             .compaction_l0_first
    2475          728 :             .unwrap_or(self.conf.default_tenant_conf.compaction_l0_first)
    2476          728 :     }
    2477              : 
    2478            0 :     pub fn get_compaction_l0_semaphore(&self) -> bool {
    2479            0 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2480            0 :         tenant_conf
    2481            0 :             .compaction_l0_semaphore
    2482            0 :             .unwrap_or(self.conf.default_tenant_conf.compaction_l0_semaphore)
    2483            0 :     }
    2484              : 
    2485         2516 :     fn get_l0_flush_delay_threshold(&self) -> Option<usize> {
    2486              :         // By default, delay L0 flushes at 3x the compaction threshold. The compaction threshold
    2487              :         // defaults to 10, and L0 compaction is generally able to keep L0 counts below 30.
    2488              :         const DEFAULT_L0_FLUSH_DELAY_FACTOR: usize = 3;
    2489              : 
    2490              :         // If compaction is disabled, don't delay.
    2491         2516 :         if self.get_compaction_period() == Duration::ZERO {
    2492         2516 :             return None;
    2493            0 :         }
    2494            0 : 
    2495            0 :         let compaction_threshold = self.get_compaction_threshold();
    2496            0 :         let tenant_conf = self.tenant_conf.load();
    2497            0 :         let l0_flush_delay_threshold = tenant_conf
    2498            0 :             .tenant_conf
    2499            0 :             .l0_flush_delay_threshold
    2500            0 :             .or(self.conf.default_tenant_conf.l0_flush_delay_threshold)
    2501            0 :             .unwrap_or(DEFAULT_L0_FLUSH_DELAY_FACTOR * compaction_threshold);
    2502            0 : 
    2503            0 :         // 0 disables backpressure.
    2504            0 :         if l0_flush_delay_threshold == 0 {
    2505            0 :             return None;
    2506            0 :         }
    2507            0 : 
    2508            0 :         // Clamp the flush delay threshold to the compaction threshold; it doesn't make sense to
    2509            0 :         // backpressure flushes below this.
    2510            0 :         // TODO: the tenant config should have validation to prevent this instead.
    2511            0 :         debug_assert!(l0_flush_delay_threshold >= compaction_threshold);
    2512            0 :         Some(max(l0_flush_delay_threshold, compaction_threshold))
    2513         2516 :     }
    2514              : 
    2515         2516 :     fn get_l0_flush_stall_threshold(&self) -> Option<usize> {
    2516              :         // Disable L0 stalls by default. Stalling can cause unavailability if L0 compaction isn't
    2517              :         // responsive, and it can e.g. block on other compaction via the compaction semaphore or
    2518              :         // sibling timelines. We need more confidence before enabling this.
    2519              :         const DEFAULT_L0_FLUSH_STALL_FACTOR: usize = 0; // TODO: default to e.g. 5
    2520              : 
    2521              :         // If compaction is disabled, don't stall.
    2522         2516 :         if self.get_compaction_period() == Duration::ZERO {
    2523         2516 :             return None;
    2524            0 :         }
    2525            0 : 
    2526            0 :         // If compaction is failing, don't stall and try to keep the tenant alive. This may not be a
    2527            0 :         // good idea: read amp can grow unbounded, leading to terrible performance, and we may take
    2528            0 :         // on unbounded compaction debt that can take a long time to fix once compaction comes back
    2529            0 :         // online. At least we'll delay flushes, slowing down the growth and buying some time.
    2530            0 :         if self.compaction_failed.load(AtomicOrdering::Relaxed) {
    2531            0 :             return None;
    2532            0 :         }
    2533            0 : 
    2534            0 :         let compaction_threshold = self.get_compaction_threshold();
    2535            0 :         let tenant_conf = self.tenant_conf.load();
    2536            0 :         let l0_flush_stall_threshold = tenant_conf
    2537            0 :             .tenant_conf
    2538            0 :             .l0_flush_stall_threshold
    2539            0 :             .or(self.conf.default_tenant_conf.l0_flush_stall_threshold);
    2540            0 : 
    2541            0 :         // Tests sometimes set compaction_threshold=1 to generate lots of layer files, and don't
    2542            0 :         // handle the 20-second compaction delay. Some (e.g. `test_backward_compatibility`) can't
    2543            0 :         // easily adjust the L0 backpressure settings, so just disable stalls in this case.
    2544            0 :         if cfg!(feature = "testing")
    2545            0 :             && compaction_threshold == 1
    2546            0 :             && l0_flush_stall_threshold.is_none()
    2547              :         {
    2548            0 :             return None;
    2549            0 :         }
    2550            0 : 
    2551            0 :         let l0_flush_stall_threshold = l0_flush_stall_threshold
    2552            0 :             .unwrap_or(DEFAULT_L0_FLUSH_STALL_FACTOR * compaction_threshold);
    2553            0 : 
    2554            0 :         // 0 disables backpressure.
    2555            0 :         if l0_flush_stall_threshold == 0 {
    2556            0 :             return None;
    2557            0 :         }
    2558            0 : 
    2559            0 :         // Clamp the flush stall threshold to the compaction threshold; it doesn't make sense to
    2560            0 :         // backpressure flushes below this.
    2561            0 :         // TODO: the tenant config should have validation to prevent this instead.
    2562            0 :         debug_assert!(l0_flush_stall_threshold >= compaction_threshold);
    2563            0 :         Some(max(l0_flush_stall_threshold, compaction_threshold))
    2564         2516 :     }
    2565              : 
    2566         2356 :     fn get_l0_flush_wait_upload(&self) -> bool {
    2567         2356 :         let tenant_conf = self.tenant_conf.load();
    2568         2356 :         tenant_conf
    2569         2356 :             .tenant_conf
    2570         2356 :             .l0_flush_wait_upload
    2571         2356 :             .unwrap_or(self.conf.default_tenant_conf.l0_flush_wait_upload)
    2572         2356 :     }
    2573              : 
    2574           28 :     fn get_image_creation_threshold(&self) -> usize {
    2575           28 :         let tenant_conf = self.tenant_conf.load();
    2576           28 :         tenant_conf
    2577           28 :             .tenant_conf
    2578           28 :             .image_creation_threshold
    2579           28 :             .unwrap_or(self.conf.default_tenant_conf.image_creation_threshold)
    2580           28 :     }
    2581              : 
    2582          725 :     fn get_compaction_algorithm_settings(&self) -> CompactionAlgorithmSettings {
    2583          725 :         let tenant_conf = &self.tenant_conf.load();
    2584          725 :         tenant_conf
    2585          725 :             .tenant_conf
    2586          725 :             .compaction_algorithm
    2587          725 :             .as_ref()
    2588          725 :             .unwrap_or(&self.conf.default_tenant_conf.compaction_algorithm)
    2589          725 :             .clone()
    2590          725 :     }
    2591              : 
    2592            0 :     fn get_eviction_policy(&self) -> EvictionPolicy {
    2593            0 :         let tenant_conf = self.tenant_conf.load();
    2594            0 :         tenant_conf
    2595            0 :             .tenant_conf
    2596            0 :             .eviction_policy
    2597            0 :             .unwrap_or(self.conf.default_tenant_conf.eviction_policy)
    2598            0 :     }
    2599              : 
    2600          904 :     fn get_evictions_low_residence_duration_metric_threshold(
    2601          904 :         tenant_conf: &TenantConfOpt,
    2602          904 :         default_tenant_conf: &TenantConf,
    2603          904 :     ) -> Duration {
    2604          904 :         tenant_conf
    2605          904 :             .evictions_low_residence_duration_metric_threshold
    2606          904 :             .unwrap_or(default_tenant_conf.evictions_low_residence_duration_metric_threshold)
    2607          904 :     }
    2608              : 
    2609         1145 :     fn get_image_layer_creation_check_threshold(&self) -> u8 {
    2610         1145 :         let tenant_conf = self.tenant_conf.load();
    2611         1145 :         tenant_conf
    2612         1145 :             .tenant_conf
    2613         1145 :             .image_layer_creation_check_threshold
    2614         1145 :             .unwrap_or(
    2615         1145 :                 self.conf
    2616         1145 :                     .default_tenant_conf
    2617         1145 :                     .image_layer_creation_check_threshold,
    2618         1145 :             )
    2619         1145 :     }
    2620              : 
    2621            0 :     fn get_gc_compaction_settings(&self) -> GcCompactionCombinedSettings {
    2622            0 :         let tenant_conf = &self.tenant_conf.load();
    2623            0 :         let gc_compaction_enabled = tenant_conf
    2624            0 :             .tenant_conf
    2625            0 :             .gc_compaction_enabled
    2626            0 :             .unwrap_or(self.conf.default_tenant_conf.gc_compaction_enabled);
    2627            0 :         let gc_compaction_initial_threshold_kb = tenant_conf
    2628            0 :             .tenant_conf
    2629            0 :             .gc_compaction_initial_threshold_kb
    2630            0 :             .unwrap_or(
    2631            0 :                 self.conf
    2632            0 :                     .default_tenant_conf
    2633            0 :                     .gc_compaction_initial_threshold_kb,
    2634            0 :             );
    2635            0 :         let gc_compaction_ratio_percent = tenant_conf
    2636            0 :             .tenant_conf
    2637            0 :             .gc_compaction_ratio_percent
    2638            0 :             .unwrap_or(self.conf.default_tenant_conf.gc_compaction_ratio_percent);
    2639            0 :         GcCompactionCombinedSettings {
    2640            0 :             gc_compaction_enabled,
    2641            0 :             gc_compaction_initial_threshold_kb,
    2642            0 :             gc_compaction_ratio_percent,
    2643            0 :         }
    2644            0 :     }
    2645              : 
    2646            0 :     fn get_image_creation_preempt_threshold(&self) -> usize {
    2647            0 :         let tenant_conf = self.tenant_conf.load();
    2648            0 :         tenant_conf
    2649            0 :             .tenant_conf
    2650            0 :             .image_creation_preempt_threshold
    2651            0 :             .unwrap_or(
    2652            0 :                 self.conf
    2653            0 :                     .default_tenant_conf
    2654            0 :                     .image_creation_preempt_threshold,
    2655            0 :             )
    2656            0 :     }
    2657              : 
    2658              :     /// Resolve the effective WAL receiver protocol to use for this tenant.
    2659              :     ///
    2660              :     /// Priority order is:
    2661              :     /// 1. Tenant config override
    2662              :     /// 2. Default value for tenant config override
    2663              :     /// 3. Pageserver config override
    2664              :     /// 4. Pageserver config default
    2665            0 :     pub fn resolve_wal_receiver_protocol(&self) -> PostgresClientProtocol {
    2666            0 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2667            0 :         tenant_conf
    2668            0 :             .wal_receiver_protocol_override
    2669            0 :             .or(self.conf.default_tenant_conf.wal_receiver_protocol_override)
    2670            0 :             .unwrap_or(self.conf.wal_receiver_protocol)
    2671            0 :     }
    2672              : 
    2673            0 :     pub(super) fn tenant_conf_updated(&self, new_conf: &AttachedTenantConf) {
    2674            0 :         // NB: Most tenant conf options are read by background loops, so,
    2675            0 :         // changes will automatically be picked up.
    2676            0 : 
    2677            0 :         // The threshold is embedded in the metric. So, we need to update it.
    2678            0 :         {
    2679            0 :             let new_threshold = Self::get_evictions_low_residence_duration_metric_threshold(
    2680            0 :                 &new_conf.tenant_conf,
    2681            0 :                 &self.conf.default_tenant_conf,
    2682            0 :             );
    2683            0 : 
    2684            0 :             let tenant_id_str = self.tenant_shard_id.tenant_id.to_string();
    2685            0 :             let shard_id_str = format!("{}", self.tenant_shard_id.shard_slug());
    2686            0 : 
    2687            0 :             let timeline_id_str = self.timeline_id.to_string();
    2688            0 : 
    2689            0 :             self.remote_client.update_config(&new_conf.location);
    2690            0 : 
    2691            0 :             self.metrics
    2692            0 :                 .evictions_with_low_residence_duration
    2693            0 :                 .write()
    2694            0 :                 .unwrap()
    2695            0 :                 .change_threshold(
    2696            0 :                     &tenant_id_str,
    2697            0 :                     &shard_id_str,
    2698            0 :                     &timeline_id_str,
    2699            0 :                     new_threshold,
    2700            0 :                 );
    2701            0 :         }
    2702            0 :     }
    2703              : 
    2704              :     /// Open a Timeline handle.
    2705              :     ///
    2706              :     /// Loads the metadata for the timeline into memory, but not the layer map.
    2707              :     #[allow(clippy::too_many_arguments)]
    2708          904 :     pub(super) fn new(
    2709          904 :         conf: &'static PageServerConf,
    2710          904 :         tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
    2711          904 :         metadata: &TimelineMetadata,
    2712          904 :         previous_heatmap: Option<PreviousHeatmap>,
    2713          904 :         ancestor: Option<Arc<Timeline>>,
    2714          904 :         timeline_id: TimelineId,
    2715          904 :         tenant_shard_id: TenantShardId,
    2716          904 :         generation: Generation,
    2717          904 :         shard_identity: ShardIdentity,
    2718          904 :         walredo_mgr: Option<Arc<super::WalRedoManager>>,
    2719          904 :         resources: TimelineResources,
    2720          904 :         pg_version: u32,
    2721          904 :         state: TimelineState,
    2722          904 :         attach_wal_lag_cooldown: Arc<OnceLock<WalLagCooldown>>,
    2723          904 :         create_idempotency: crate::tenant::CreateTimelineIdempotency,
    2724          904 :         gc_compaction_state: Option<GcCompactionState>,
    2725          904 :         rel_size_v2_status: Option<RelSizeMigration>,
    2726          904 :         cancel: CancellationToken,
    2727          904 :     ) -> Arc<Self> {
    2728          904 :         let disk_consistent_lsn = metadata.disk_consistent_lsn();
    2729          904 :         let (state, _) = watch::channel(state);
    2730          904 : 
    2731          904 :         let (layer_flush_start_tx, _) = tokio::sync::watch::channel((0, disk_consistent_lsn));
    2732          904 :         let (layer_flush_done_tx, _) = tokio::sync::watch::channel((0, Ok(())));
    2733          904 : 
    2734          904 :         let evictions_low_residence_duration_metric_threshold = {
    2735          904 :             let loaded_tenant_conf = tenant_conf.load();
    2736          904 :             Self::get_evictions_low_residence_duration_metric_threshold(
    2737          904 :                 &loaded_tenant_conf.tenant_conf,
    2738          904 :                 &conf.default_tenant_conf,
    2739          904 :             )
    2740              :         };
    2741              : 
    2742          904 :         if let Some(ancestor) = &ancestor {
    2743          460 :             let mut ancestor_gc_info = ancestor.gc_info.write().unwrap();
    2744          460 :             // If we construct an explicit timeline object, it's obviously not offloaded
    2745          460 :             let is_offloaded = MaybeOffloaded::No;
    2746          460 :             ancestor_gc_info.insert_child(timeline_id, metadata.ancestor_lsn(), is_offloaded);
    2747          460 :         }
    2748              : 
    2749          904 :         Arc::new_cyclic(|myself| {
    2750          904 :             let metrics = Arc::new(TimelineMetrics::new(
    2751          904 :                 &tenant_shard_id,
    2752          904 :                 &timeline_id,
    2753          904 :                 crate::metrics::EvictionsWithLowResidenceDurationBuilder::new(
    2754          904 :                     "mtime",
    2755          904 :                     evictions_low_residence_duration_metric_threshold,
    2756          904 :                 ),
    2757          904 :             ));
    2758          904 :             let aux_file_metrics = metrics.aux_file_size_gauge.clone();
    2759              : 
    2760          904 :             let mut result = Timeline {
    2761          904 :                 conf,
    2762          904 :                 tenant_conf,
    2763          904 :                 myself: myself.clone(),
    2764          904 :                 timeline_id,
    2765          904 :                 tenant_shard_id,
    2766          904 :                 generation,
    2767          904 :                 shard_identity,
    2768          904 :                 pg_version,
    2769          904 :                 layers: Default::default(),
    2770          904 :                 gc_compaction_layer_update_lock: tokio::sync::RwLock::new(()),
    2771          904 : 
    2772          904 :                 walredo_mgr,
    2773          904 :                 walreceiver: Mutex::new(None),
    2774          904 : 
    2775          904 :                 remote_client: Arc::new(resources.remote_client),
    2776          904 : 
    2777          904 :                 // initialize in-memory 'last_record_lsn' from 'disk_consistent_lsn'.
    2778          904 :                 last_record_lsn: SeqWait::new(RecordLsn {
    2779          904 :                     last: disk_consistent_lsn,
    2780          904 :                     prev: metadata.prev_record_lsn().unwrap_or(Lsn(0)),
    2781          904 :                 }),
    2782          904 :                 disk_consistent_lsn: AtomicLsn::new(disk_consistent_lsn.0),
    2783          904 : 
    2784          904 :                 gc_compaction_state: ArcSwap::new(Arc::new(gc_compaction_state)),
    2785          904 : 
    2786          904 :                 last_freeze_at: AtomicLsn::new(disk_consistent_lsn.0),
    2787          904 :                 last_freeze_ts: RwLock::new(Instant::now()),
    2788          904 : 
    2789          904 :                 loaded_at: (disk_consistent_lsn, SystemTime::now()),
    2790          904 : 
    2791          904 :                 ancestor_timeline: ancestor,
    2792          904 :                 ancestor_lsn: metadata.ancestor_lsn(),
    2793          904 : 
    2794          904 :                 metrics,
    2795          904 : 
    2796          904 :                 query_metrics: crate::metrics::SmgrQueryTimePerTimeline::new(
    2797          904 :                     &tenant_shard_id,
    2798          904 :                     &timeline_id,
    2799          904 :                     resources.pagestream_throttle_metrics,
    2800          904 :                 ),
    2801          904 : 
    2802         7232 :                 directory_metrics: array::from_fn(|_| AtomicU64::new(0)),
    2803         7232 :                 directory_metrics_inited: array::from_fn(|_| AtomicBool::new(false)),
    2804          904 : 
    2805          904 :                 flush_loop_state: Mutex::new(FlushLoopState::NotStarted),
    2806          904 : 
    2807          904 :                 layer_flush_start_tx,
    2808          904 :                 layer_flush_done_tx,
    2809          904 : 
    2810          904 :                 write_lock: tokio::sync::Mutex::new(None),
    2811          904 : 
    2812          904 :                 gc_info: std::sync::RwLock::new(GcInfo::default()),
    2813          904 : 
    2814          904 :                 last_image_layer_creation_status: ArcSwap::new(Arc::new(
    2815          904 :                     LastImageLayerCreationStatus::default(),
    2816          904 :                 )),
    2817          904 : 
    2818          904 :                 applied_gc_cutoff_lsn: Rcu::new(metadata.latest_gc_cutoff_lsn()),
    2819          904 :                 initdb_lsn: metadata.initdb_lsn(),
    2820          904 : 
    2821          904 :                 current_logical_size: if disk_consistent_lsn.is_valid() {
    2822              :                     // we're creating timeline data with some layer files existing locally,
    2823              :                     // need to recalculate timeline's logical size based on data in the layers.
    2824          468 :                     LogicalSize::deferred_initial(disk_consistent_lsn)
    2825              :                 } else {
    2826              :                     // we're creating timeline data without any layers existing locally,
    2827              :                     // initial logical size is 0.
    2828          436 :                     LogicalSize::empty_initial()
    2829              :                 },
    2830              : 
    2831          904 :                 partitioning: GuardArcSwap::new((
    2832          904 :                     (KeyPartitioning::new(), KeyPartitioning::new().into_sparse()),
    2833          904 :                     Lsn(0),
    2834          904 :                 )),
    2835          904 :                 repartition_threshold: 0,
    2836          904 :                 last_image_layer_creation_check_at: AtomicLsn::new(0),
    2837          904 :                 last_image_layer_creation_check_instant: Mutex::new(None),
    2838          904 : 
    2839          904 :                 last_received_wal: Mutex::new(None),
    2840          904 :                 rel_size_cache: RwLock::new(RelSizeCache {
    2841          904 :                     complete_as_of: disk_consistent_lsn,
    2842          904 :                     map: HashMap::new(),
    2843          904 :                 }),
    2844          904 : 
    2845          904 :                 download_all_remote_layers_task_info: RwLock::new(None),
    2846          904 : 
    2847          904 :                 state,
    2848          904 : 
    2849          904 :                 eviction_task_timeline_state: tokio::sync::Mutex::new(
    2850          904 :                     EvictionTaskTimelineState::default(),
    2851          904 :                 ),
    2852          904 :                 delete_progress: TimelineDeleteProgress::default(),
    2853          904 : 
    2854          904 :                 cancel,
    2855          904 :                 gate: Gate::default(),
    2856          904 : 
    2857          904 :                 compaction_lock: tokio::sync::Mutex::default(),
    2858          904 :                 compaction_failed: AtomicBool::default(),
    2859          904 :                 l0_compaction_trigger: resources.l0_compaction_trigger,
    2860          904 :                 gc_lock: tokio::sync::Mutex::default(),
    2861          904 : 
    2862          904 :                 standby_horizon: AtomicLsn::new(0),
    2863          904 : 
    2864          904 :                 pagestream_throttle: resources.pagestream_throttle,
    2865          904 : 
    2866          904 :                 aux_file_size_estimator: AuxFileSizeEstimator::new(aux_file_metrics),
    2867          904 : 
    2868          904 :                 #[cfg(test)]
    2869          904 :                 extra_test_dense_keyspace: ArcSwap::new(Arc::new(KeySpace::default())),
    2870          904 : 
    2871          904 :                 l0_flush_global_state: resources.l0_flush_global_state,
    2872          904 : 
    2873          904 :                 handles: Default::default(),
    2874          904 : 
    2875          904 :                 attach_wal_lag_cooldown,
    2876          904 : 
    2877          904 :                 create_idempotency,
    2878          904 : 
    2879          904 :                 page_trace: Default::default(),
    2880          904 : 
    2881          904 :                 previous_heatmap: ArcSwapOption::from_pointee(previous_heatmap),
    2882          904 : 
    2883          904 :                 heatmap_layers_downloader: Mutex::new(None),
    2884          904 : 
    2885          904 :                 rel_size_v2_status: ArcSwapOption::from_pointee(rel_size_v2_status),
    2886          904 : 
    2887          904 :                 wait_lsn_log_slow: tokio::sync::Semaphore::new(1),
    2888          904 :             };
    2889          904 : 
    2890          904 :             result.repartition_threshold =
    2891          904 :                 result.get_checkpoint_distance() / REPARTITION_FREQ_IN_CHECKPOINT_DISTANCE;
    2892          904 : 
    2893          904 :             result
    2894          904 :                 .metrics
    2895          904 :                 .last_record_lsn_gauge
    2896          904 :                 .set(disk_consistent_lsn.0 as i64);
    2897          904 :             result
    2898          904 :         })
    2899          904 :     }
    2900              : 
    2901         1312 :     pub(super) fn maybe_spawn_flush_loop(self: &Arc<Self>) {
    2902         1312 :         let Ok(guard) = self.gate.enter() else {
    2903            0 :             info!("cannot start flush loop when the timeline gate has already been closed");
    2904            0 :             return;
    2905              :         };
    2906         1312 :         let mut flush_loop_state = self.flush_loop_state.lock().unwrap();
    2907         1312 :         match *flush_loop_state {
    2908          892 :             FlushLoopState::NotStarted => (),
    2909              :             FlushLoopState::Running { .. } => {
    2910          420 :                 info!(
    2911            0 :                     "skipping attempt to start flush_loop twice {}/{}",
    2912            0 :                     self.tenant_shard_id, self.timeline_id
    2913              :                 );
    2914          420 :                 return;
    2915              :             }
    2916              :             FlushLoopState::Exited => {
    2917            0 :                 info!(
    2918            0 :                     "ignoring attempt to restart exited flush_loop {}/{}",
    2919            0 :                     self.tenant_shard_id, self.timeline_id
    2920              :                 );
    2921            0 :                 return;
    2922              :             }
    2923              :         }
    2924              : 
    2925          892 :         let layer_flush_start_rx = self.layer_flush_start_tx.subscribe();
    2926          892 :         let self_clone = Arc::clone(self);
    2927          892 : 
    2928          892 :         debug!("spawning flush loop");
    2929          892 :         *flush_loop_state = FlushLoopState::Running {
    2930          892 :             #[cfg(test)]
    2931          892 :             expect_initdb_optimization: false,
    2932          892 :             #[cfg(test)]
    2933          892 :             initdb_optimization_count: 0,
    2934          892 :         };
    2935          892 :         task_mgr::spawn(
    2936          892 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    2937          892 :             task_mgr::TaskKind::LayerFlushTask,
    2938          892 :             self.tenant_shard_id,
    2939          892 :             Some(self.timeline_id),
    2940          892 :             "layer flush task",
    2941          892 :             async move {
    2942          892 :                 let _guard = guard;
    2943          892 :                 let background_ctx = RequestContext::todo_child(TaskKind::LayerFlushTask, DownloadBehavior::Error).with_scope_timeline(&self_clone);
    2944          892 :                 self_clone.flush_loop(layer_flush_start_rx, &background_ctx).await;
    2945           20 :                 let mut flush_loop_state = self_clone.flush_loop_state.lock().unwrap();
    2946           20 :                 assert!(matches!(*flush_loop_state, FlushLoopState::Running{..}));
    2947           20 :                 *flush_loop_state  = FlushLoopState::Exited;
    2948           20 :                 Ok(())
    2949           20 :             }
    2950          892 :             .instrument(info_span!(parent: None, "layer flush task", tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))
    2951              :         );
    2952         1312 :     }
    2953              : 
    2954            0 :     pub(crate) fn update_gc_compaction_state(
    2955            0 :         &self,
    2956            0 :         gc_compaction_state: GcCompactionState,
    2957            0 :     ) -> anyhow::Result<()> {
    2958            0 :         self.gc_compaction_state
    2959            0 :             .store(Arc::new(Some(gc_compaction_state.clone())));
    2960            0 :         self.remote_client
    2961            0 :             .schedule_index_upload_for_gc_compaction_state_update(gc_compaction_state)
    2962            0 :     }
    2963              : 
    2964            0 :     pub(crate) fn update_rel_size_v2_status(
    2965            0 :         &self,
    2966            0 :         rel_size_v2_status: RelSizeMigration,
    2967            0 :     ) -> anyhow::Result<()> {
    2968            0 :         self.rel_size_v2_status
    2969            0 :             .store(Some(Arc::new(rel_size_v2_status.clone())));
    2970            0 :         self.remote_client
    2971            0 :             .schedule_index_upload_for_rel_size_v2_status_update(rel_size_v2_status)
    2972            0 :     }
    2973              : 
    2974            0 :     pub(crate) fn get_gc_compaction_state(&self) -> Option<GcCompactionState> {
    2975            0 :         self.gc_compaction_state.load_full().as_ref().clone()
    2976            0 :     }
    2977              : 
    2978              :     /// Creates and starts the wal receiver.
    2979              :     ///
    2980              :     /// This function is expected to be called at most once per Timeline's lifecycle
    2981              :     /// when the timeline is activated.
    2982            0 :     fn launch_wal_receiver(
    2983            0 :         self: &Arc<Self>,
    2984            0 :         ctx: &RequestContext,
    2985            0 :         broker_client: BrokerClientChannel,
    2986            0 :     ) {
    2987            0 :         info!(
    2988            0 :             "launching WAL receiver for timeline {} of tenant {}",
    2989            0 :             self.timeline_id, self.tenant_shard_id
    2990              :         );
    2991              : 
    2992            0 :         let tenant_conf = self.tenant_conf.load();
    2993            0 :         let wal_connect_timeout = tenant_conf
    2994            0 :             .tenant_conf
    2995            0 :             .walreceiver_connect_timeout
    2996            0 :             .unwrap_or(self.conf.default_tenant_conf.walreceiver_connect_timeout);
    2997            0 :         let lagging_wal_timeout = tenant_conf
    2998            0 :             .tenant_conf
    2999            0 :             .lagging_wal_timeout
    3000            0 :             .unwrap_or(self.conf.default_tenant_conf.lagging_wal_timeout);
    3001            0 :         let max_lsn_wal_lag = tenant_conf
    3002            0 :             .tenant_conf
    3003            0 :             .max_lsn_wal_lag
    3004            0 :             .unwrap_or(self.conf.default_tenant_conf.max_lsn_wal_lag);
    3005            0 : 
    3006            0 :         let mut guard = self.walreceiver.lock().unwrap();
    3007            0 :         assert!(
    3008            0 :             guard.is_none(),
    3009            0 :             "multiple launches / re-launches of WAL receiver are not supported"
    3010              :         );
    3011            0 :         *guard = Some(WalReceiver::start(
    3012            0 :             Arc::clone(self),
    3013            0 :             WalReceiverConf {
    3014            0 :                 protocol: self.resolve_wal_receiver_protocol(),
    3015            0 :                 wal_connect_timeout,
    3016            0 :                 lagging_wal_timeout,
    3017            0 :                 max_lsn_wal_lag,
    3018            0 :                 auth_token: crate::config::SAFEKEEPER_AUTH_TOKEN.get().cloned(),
    3019            0 :                 availability_zone: self.conf.availability_zone.clone(),
    3020            0 :                 ingest_batch_size: self.conf.ingest_batch_size,
    3021            0 :                 validate_wal_contiguity: self.conf.validate_wal_contiguity,
    3022            0 :             },
    3023            0 :             broker_client,
    3024            0 :             ctx,
    3025            0 :         ));
    3026            0 :     }
    3027              : 
    3028              :     /// Initialize with an empty layer map. Used when creating a new timeline.
    3029          892 :     pub(super) fn init_empty_layer_map(&self, start_lsn: Lsn) {
    3030          892 :         let mut layers = self.layers.try_write().expect(
    3031          892 :             "in the context where we call this function, no other task has access to the object",
    3032          892 :         );
    3033          892 :         layers
    3034          892 :             .open_mut()
    3035          892 :             .expect("in this context the LayerManager must still be open")
    3036          892 :             .initialize_empty(Lsn(start_lsn.0));
    3037          892 :     }
    3038              : 
    3039              :     /// Scan the timeline directory, cleanup, populate the layer map, and schedule uploads for local-only
    3040              :     /// files.
    3041           12 :     pub(super) async fn load_layer_map(
    3042           12 :         &self,
    3043           12 :         disk_consistent_lsn: Lsn,
    3044           12 :         index_part: IndexPart,
    3045           12 :     ) -> anyhow::Result<()> {
    3046              :         use LayerName::*;
    3047              :         use init::Decision::*;
    3048              :         use init::{Discovered, DismissedLayer};
    3049              : 
    3050           12 :         let mut guard = self.layers.write().await;
    3051              : 
    3052           12 :         let timer = self.metrics.load_layer_map_histo.start_timer();
    3053           12 : 
    3054           12 :         // Scan timeline directory and create ImageLayerName and DeltaFilename
    3055           12 :         // structs representing all files on disk
    3056           12 :         let timeline_path = self
    3057           12 :             .conf
    3058           12 :             .timeline_path(&self.tenant_shard_id, &self.timeline_id);
    3059           12 :         let conf = self.conf;
    3060           12 :         let span = tracing::Span::current();
    3061           12 : 
    3062           12 :         // Copy to move into the task we're about to spawn
    3063           12 :         let this = self.myself.upgrade().expect("&self method holds the arc");
    3064              : 
    3065           12 :         let (loaded_layers, needs_cleanup, total_physical_size) = tokio::task::spawn_blocking({
    3066           12 :             move || {
    3067           12 :                 let _g = span.entered();
    3068           12 :                 let discovered = init::scan_timeline_dir(&timeline_path)?;
    3069           12 :                 let mut discovered_layers = Vec::with_capacity(discovered.len());
    3070           12 :                 let mut unrecognized_files = Vec::new();
    3071           12 : 
    3072           12 :                 let mut path = timeline_path;
    3073              : 
    3074           44 :                 for discovered in discovered {
    3075           32 :                     let (name, kind) = match discovered {
    3076           32 :                         Discovered::Layer(layer_file_name, local_metadata) => {
    3077           32 :                             discovered_layers.push((layer_file_name, local_metadata));
    3078           32 :                             continue;
    3079              :                         }
    3080            0 :                         Discovered::IgnoredBackup(path) => {
    3081            0 :                             std::fs::remove_file(path)
    3082            0 :                                 .or_else(fs_ext::ignore_not_found)
    3083            0 :                                 .fatal_err("Removing .old file");
    3084            0 :                             continue;
    3085              :                         }
    3086            0 :                         Discovered::Unknown(file_name) => {
    3087            0 :                             // we will later error if there are any
    3088            0 :                             unrecognized_files.push(file_name);
    3089            0 :                             continue;
    3090              :                         }
    3091            0 :                         Discovered::Ephemeral(name) => (name, "old ephemeral file"),
    3092            0 :                         Discovered::Temporary(name) => (name, "temporary timeline file"),
    3093            0 :                         Discovered::TemporaryDownload(name) => (name, "temporary download"),
    3094              :                     };
    3095            0 :                     path.push(Utf8Path::new(&name));
    3096            0 :                     init::cleanup(&path, kind)?;
    3097            0 :                     path.pop();
    3098              :                 }
    3099              : 
    3100           12 :                 if !unrecognized_files.is_empty() {
    3101              :                     // assume that if there are any there are many many.
    3102            0 :                     let n = unrecognized_files.len();
    3103            0 :                     let first = &unrecognized_files[..n.min(10)];
    3104            0 :                     anyhow::bail!(
    3105            0 :                         "unrecognized files in timeline dir (total {n}), first 10: {first:?}"
    3106            0 :                     );
    3107           12 :                 }
    3108           12 : 
    3109           12 :                 let decided = init::reconcile(discovered_layers, &index_part, disk_consistent_lsn);
    3110           12 : 
    3111           12 :                 let mut loaded_layers = Vec::new();
    3112           12 :                 let mut needs_cleanup = Vec::new();
    3113           12 :                 let mut total_physical_size = 0;
    3114              : 
    3115           44 :                 for (name, decision) in decided {
    3116           32 :                     let decision = match decision {
    3117           32 :                         Ok(decision) => decision,
    3118            0 :                         Err(DismissedLayer::Future { local }) => {
    3119            0 :                             if let Some(local) = local {
    3120            0 :                                 init::cleanup_future_layer(
    3121            0 :                                     &local.local_path,
    3122            0 :                                     &name,
    3123            0 :                                     disk_consistent_lsn,
    3124            0 :                                 )?;
    3125            0 :                             }
    3126            0 :                             needs_cleanup.push(name);
    3127            0 :                             continue;
    3128              :                         }
    3129            0 :                         Err(DismissedLayer::LocalOnly(local)) => {
    3130            0 :                             init::cleanup_local_only_file(&name, &local)?;
    3131              :                             // this file never existed remotely, we will have to do rework
    3132            0 :                             continue;
    3133              :                         }
    3134            0 :                         Err(DismissedLayer::BadMetadata(local)) => {
    3135            0 :                             init::cleanup_local_file_for_remote(&local)?;
    3136              :                             // this file never existed remotely, we will have to do rework
    3137            0 :                             continue;
    3138              :                         }
    3139              :                     };
    3140              : 
    3141           32 :                     match &name {
    3142           24 :                         Delta(d) => assert!(d.lsn_range.end <= disk_consistent_lsn + 1),
    3143            8 :                         Image(i) => assert!(i.lsn <= disk_consistent_lsn),
    3144              :                     }
    3145              : 
    3146           32 :                     tracing::debug!(layer=%name, ?decision, "applied");
    3147              : 
    3148           32 :                     let layer = match decision {
    3149           32 :                         Resident { local, remote } => {
    3150           32 :                             total_physical_size += local.file_size;
    3151           32 :                             Layer::for_resident(conf, &this, local.local_path, name, remote)
    3152           32 :                                 .drop_eviction_guard()
    3153              :                         }
    3154            0 :                         Evicted(remote) => Layer::for_evicted(conf, &this, name, remote),
    3155              :                     };
    3156              : 
    3157           32 :                     loaded_layers.push(layer);
    3158              :                 }
    3159           12 :                 Ok((loaded_layers, needs_cleanup, total_physical_size))
    3160           12 :             }
    3161           12 :         })
    3162           12 :         .await
    3163           12 :         .map_err(anyhow::Error::new)
    3164           12 :         .and_then(|x| x)?;
    3165              : 
    3166           12 :         let num_layers = loaded_layers.len();
    3167           12 : 
    3168           12 :         guard
    3169           12 :             .open_mut()
    3170           12 :             .expect("layermanager must be open during init")
    3171           12 :             .initialize_local_layers(loaded_layers, disk_consistent_lsn + 1);
    3172           12 : 
    3173           12 :         self.remote_client
    3174           12 :             .schedule_layer_file_deletion(&needs_cleanup)?;
    3175           12 :         self.remote_client
    3176           12 :             .schedule_index_upload_for_file_changes()?;
    3177              :         // This barrier orders above DELETEs before any later operations.
    3178              :         // This is critical because code executing after the barrier might
    3179              :         // create again objects with the same key that we just scheduled for deletion.
    3180              :         // For example, if we just scheduled deletion of an image layer "from the future",
    3181              :         // later compaction might run again and re-create the same image layer.
    3182              :         // "from the future" here means an image layer whose LSN is > IndexPart::disk_consistent_lsn.
    3183              :         // "same" here means same key range and LSN.
    3184              :         //
    3185              :         // Without a barrier between above DELETEs and the re-creation's PUTs,
    3186              :         // the upload queue may execute the PUT first, then the DELETE.
    3187              :         // In our example, we will end up with an IndexPart referencing a non-existent object.
    3188              :         //
    3189              :         // 1. a future image layer is created and uploaded
    3190              :         // 2. ps restart
    3191              :         // 3. the future layer from (1) is deleted during load layer map
    3192              :         // 4. image layer is re-created and uploaded
    3193              :         // 5. deletion queue would like to delete (1) but actually deletes (4)
    3194              :         // 6. delete by name works as expected, but it now deletes the wrong (later) version
    3195              :         //
    3196              :         // See https://github.com/neondatabase/neon/issues/5878
    3197              :         //
    3198              :         // NB: generation numbers naturally protect against this because they disambiguate
    3199              :         //     (1) and (4)
    3200              :         // TODO: this is basically a no-op now, should we remove it?
    3201           12 :         self.remote_client.schedule_barrier()?;
    3202              :         // Tenant::create_timeline will wait for these uploads to happen before returning, or
    3203              :         // on retry.
    3204              : 
    3205              :         // Now that we have the full layer map, we may calculate the visibility of layers within it (a global scan)
    3206           12 :         drop(guard); // drop write lock, update_layer_visibility will take a read lock.
    3207           12 :         self.update_layer_visibility().await?;
    3208              : 
    3209           12 :         info!(
    3210            0 :             "loaded layer map with {} layers at {}, total physical size: {}",
    3211              :             num_layers, disk_consistent_lsn, total_physical_size
    3212              :         );
    3213              : 
    3214           12 :         timer.stop_and_record();
    3215           12 :         Ok(())
    3216           12 :     }
    3217              : 
    3218              :     /// Retrieve current logical size of the timeline.
    3219              :     ///
    3220              :     /// The size could be lagging behind the actual number, in case
    3221              :     /// the initial size calculation has not been run (gets triggered on the first size access).
    3222              :     ///
    3223              :     /// return size and boolean flag that shows if the size is exact
    3224            0 :     pub(crate) fn get_current_logical_size(
    3225            0 :         self: &Arc<Self>,
    3226            0 :         priority: GetLogicalSizePriority,
    3227            0 :         ctx: &RequestContext,
    3228            0 :     ) -> logical_size::CurrentLogicalSize {
    3229            0 :         if !self.tenant_shard_id.is_shard_zero() {
    3230              :             // Logical size is only accurately maintained on shard zero: when called elsewhere, for example
    3231              :             // when HTTP API is serving a GET for timeline zero, return zero
    3232            0 :             return logical_size::CurrentLogicalSize::Approximate(logical_size::Approximate::zero());
    3233            0 :         }
    3234            0 : 
    3235            0 :         let current_size = self.current_logical_size.current_size();
    3236            0 :         debug!("Current size: {current_size:?}");
    3237              : 
    3238            0 :         match (current_size.accuracy(), priority) {
    3239            0 :             (logical_size::Accuracy::Exact, _) => (), // nothing to do
    3240            0 :             (logical_size::Accuracy::Approximate, GetLogicalSizePriority::Background) => {
    3241            0 :                 // background task will eventually deliver an exact value, we're in no rush
    3242            0 :             }
    3243              :             (logical_size::Accuracy::Approximate, GetLogicalSizePriority::User) => {
    3244              :                 // background task is not ready, but user is asking for it now;
    3245              :                 // => make the background task skip the line
    3246              :                 // (The alternative would be to calculate the size here, but,
    3247              :                 //  it can actually take a long time if the user has a lot of rels.
    3248              :                 //  And we'll inevitable need it again; So, let the background task do the work.)
    3249            0 :                 match self
    3250            0 :                     .current_logical_size
    3251            0 :                     .cancel_wait_for_background_loop_concurrency_limit_semaphore
    3252            0 :                     .get()
    3253              :                 {
    3254            0 :                     Some(cancel) => cancel.cancel(),
    3255              :                     None => {
    3256            0 :                         match self.current_state() {
    3257            0 :                             TimelineState::Broken { .. } | TimelineState::Stopping => {
    3258            0 :                                 // Can happen when timeline detail endpoint is used when deletion is ongoing (or its broken).
    3259            0 :                                 // Don't make noise.
    3260            0 :                             }
    3261              :                             TimelineState::Loading => {
    3262              :                                 // Import does not return an activated timeline.
    3263            0 :                                 info!(
    3264            0 :                                     "discarding priority boost for logical size calculation because timeline is not yet active"
    3265              :                                 );
    3266              :                             }
    3267              :                             TimelineState::Active => {
    3268              :                                 // activation should be setting the once cell
    3269            0 :                                 warn!(
    3270            0 :                                     "unexpected: cancel_wait_for_background_loop_concurrency_limit_semaphore not set, priority-boosting of logical size calculation will not work"
    3271              :                                 );
    3272            0 :                                 debug_assert!(false);
    3273              :                             }
    3274              :                         }
    3275              :                     }
    3276              :                 }
    3277              :             }
    3278              :         }
    3279              : 
    3280            0 :         if let CurrentLogicalSize::Approximate(_) = &current_size {
    3281            0 :             if ctx.task_kind() == TaskKind::WalReceiverConnectionHandler {
    3282            0 :                 let first = self
    3283            0 :                     .current_logical_size
    3284            0 :                     .did_return_approximate_to_walreceiver
    3285            0 :                     .compare_exchange(
    3286            0 :                         false,
    3287            0 :                         true,
    3288            0 :                         AtomicOrdering::Relaxed,
    3289            0 :                         AtomicOrdering::Relaxed,
    3290            0 :                     )
    3291            0 :                     .is_ok();
    3292            0 :                 if first {
    3293            0 :                     crate::metrics::initial_logical_size::TIMELINES_WHERE_WALRECEIVER_GOT_APPROXIMATE_SIZE.inc();
    3294            0 :                 }
    3295            0 :             }
    3296            0 :         }
    3297              : 
    3298            0 :         current_size
    3299            0 :     }
    3300              : 
    3301            0 :     fn spawn_initial_logical_size_computation_task(self: &Arc<Self>, ctx: &RequestContext) {
    3302            0 :         let Some(initial_part_end) = self.current_logical_size.initial_part_end else {
    3303              :             // nothing to do for freshly created timelines;
    3304            0 :             assert_eq!(
    3305            0 :                 self.current_logical_size.current_size().accuracy(),
    3306            0 :                 logical_size::Accuracy::Exact,
    3307            0 :             );
    3308            0 :             self.current_logical_size.initialized.add_permits(1);
    3309            0 :             return;
    3310              :         };
    3311              : 
    3312            0 :         let cancel_wait_for_background_loop_concurrency_limit_semaphore = CancellationToken::new();
    3313            0 :         let token = cancel_wait_for_background_loop_concurrency_limit_semaphore.clone();
    3314            0 :         self.current_logical_size
    3315            0 :             .cancel_wait_for_background_loop_concurrency_limit_semaphore.set(token)
    3316            0 :             .expect("initial logical size calculation task must be spawned exactly once per Timeline object");
    3317            0 : 
    3318            0 :         let self_clone = Arc::clone(self);
    3319            0 :         let background_ctx = ctx.detached_child(
    3320            0 :             TaskKind::InitialLogicalSizeCalculation,
    3321            0 :             DownloadBehavior::Download,
    3322            0 :         );
    3323            0 :         task_mgr::spawn(
    3324            0 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    3325            0 :             task_mgr::TaskKind::InitialLogicalSizeCalculation,
    3326            0 :             self.tenant_shard_id,
    3327            0 :             Some(self.timeline_id),
    3328            0 :             "initial size calculation",
    3329              :             // NB: don't log errors here, task_mgr will do that.
    3330            0 :             async move {
    3331            0 :                 self_clone
    3332            0 :                     .initial_logical_size_calculation_task(
    3333            0 :                         initial_part_end,
    3334            0 :                         cancel_wait_for_background_loop_concurrency_limit_semaphore,
    3335            0 :                         background_ctx,
    3336            0 :                     )
    3337            0 :                     .await;
    3338            0 :                 Ok(())
    3339            0 :             }
    3340            0 :             .instrument(info_span!(parent: None, "initial_size_calculation", tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id)),
    3341              :         );
    3342            0 :     }
    3343              : 
    3344              :     /// # Cancellation
    3345              :     ///
    3346              :     /// This method is sensitive to `Timeline::cancel`.
    3347              :     ///
    3348              :     /// It is _not_ sensitive to task_mgr::shutdown_token().
    3349              :     ///
    3350              :     /// # Cancel-Safety
    3351              :     ///
    3352              :     /// It does Timeline IO, hence this should be polled to completion because
    3353              :     /// we could be leaving in-flight IOs behind, which is safe, but annoying
    3354              :     /// to reason about.
    3355            0 :     async fn initial_logical_size_calculation_task(
    3356            0 :         self: Arc<Self>,
    3357            0 :         initial_part_end: Lsn,
    3358            0 :         skip_concurrency_limiter: CancellationToken,
    3359            0 :         background_ctx: RequestContext,
    3360            0 :     ) {
    3361            0 :         scopeguard::defer! {
    3362            0 :             // Irrespective of the outcome of this operation, we should unblock anyone waiting for it.
    3363            0 :             self.current_logical_size.initialized.add_permits(1);
    3364            0 :         }
    3365            0 : 
    3366            0 :         let try_once = |attempt: usize| {
    3367            0 :             let background_ctx = &background_ctx;
    3368            0 :             let self_ref = &self;
    3369            0 :             let skip_concurrency_limiter = &skip_concurrency_limiter;
    3370            0 :             async move {
    3371            0 :                 let wait_for_permit = super::tasks::acquire_concurrency_permit(
    3372            0 :                     BackgroundLoopKind::InitialLogicalSizeCalculation,
    3373            0 :                     background_ctx,
    3374            0 :                 );
    3375              : 
    3376              :                 use crate::metrics::initial_logical_size::StartCircumstances;
    3377            0 :                 let (_maybe_permit, circumstances) = tokio::select! {
    3378            0 :                     permit = wait_for_permit => {
    3379            0 :                         (Some(permit), StartCircumstances::AfterBackgroundTasksRateLimit)
    3380              :                     }
    3381            0 :                     _ = self_ref.cancel.cancelled() => {
    3382            0 :                         return Err(CalculateLogicalSizeError::Cancelled);
    3383              :                     }
    3384            0 :                     () = skip_concurrency_limiter.cancelled() => {
    3385              :                         // Some action that is part of a end user interaction requested logical size
    3386              :                         // => break out of the rate limit
    3387              :                         // TODO: ideally we'd not run on BackgroundRuntime but the requester's runtime;
    3388              :                         // but then again what happens if they cancel; also, we should just be using
    3389              :                         // one runtime across the entire process, so, let's leave this for now.
    3390            0 :                         (None, StartCircumstances::SkippedConcurrencyLimiter)
    3391              :                     }
    3392              :                 };
    3393              : 
    3394            0 :                 let metrics_guard = if attempt == 1 {
    3395            0 :                     crate::metrics::initial_logical_size::START_CALCULATION.first(circumstances)
    3396              :                 } else {
    3397            0 :                     crate::metrics::initial_logical_size::START_CALCULATION.retry(circumstances)
    3398              :                 };
    3399              : 
    3400            0 :                 let io_concurrency = IoConcurrency::spawn_from_conf(
    3401            0 :                     self_ref.conf,
    3402            0 :                     self_ref
    3403            0 :                         .gate
    3404            0 :                         .enter()
    3405            0 :                         .map_err(|_| CalculateLogicalSizeError::Cancelled)?,
    3406              :                 );
    3407              : 
    3408            0 :                 let calculated_size = self_ref
    3409            0 :                     .logical_size_calculation_task(
    3410            0 :                         initial_part_end,
    3411            0 :                         LogicalSizeCalculationCause::Initial,
    3412            0 :                         background_ctx,
    3413            0 :                     )
    3414            0 :                     .await?;
    3415              : 
    3416            0 :                 self_ref
    3417            0 :                     .trigger_aux_file_size_computation(
    3418            0 :                         initial_part_end,
    3419            0 :                         background_ctx,
    3420            0 :                         io_concurrency,
    3421            0 :                     )
    3422            0 :                     .await?;
    3423              : 
    3424              :                 // TODO: add aux file size to logical size
    3425              : 
    3426            0 :                 Ok((calculated_size, metrics_guard))
    3427            0 :             }
    3428            0 :         };
    3429              : 
    3430            0 :         let retrying = async {
    3431            0 :             let mut attempt = 0;
    3432              :             loop {
    3433            0 :                 attempt += 1;
    3434            0 : 
    3435            0 :                 match try_once(attempt).await {
    3436            0 :                     Ok(res) => return ControlFlow::Continue(res),
    3437            0 :                     Err(CalculateLogicalSizeError::Cancelled) => return ControlFlow::Break(()),
    3438              :                     Err(
    3439            0 :                         e @ (CalculateLogicalSizeError::Decode(_)
    3440            0 :                         | CalculateLogicalSizeError::PageRead(_)),
    3441            0 :                     ) => {
    3442            0 :                         warn!(attempt, "initial size calculation failed: {e:?}");
    3443              :                         // exponential back-off doesn't make sense at these long intervals;
    3444              :                         // use fixed retry interval with generous jitter instead
    3445            0 :                         let sleep_duration = Duration::from_secs(
    3446            0 :                             u64::try_from(
    3447            0 :                                 // 1hour base
    3448            0 :                                 (60_i64 * 60_i64)
    3449            0 :                                     // 10min jitter
    3450            0 :                                     + rand::thread_rng().gen_range(-10 * 60..10 * 60),
    3451            0 :                             )
    3452            0 :                             .expect("10min < 1hour"),
    3453            0 :                         );
    3454            0 :                         tokio::select! {
    3455            0 :                             _ = tokio::time::sleep(sleep_duration) => {}
    3456            0 :                             _ = self.cancel.cancelled() => return ControlFlow::Break(()),
    3457              :                         }
    3458              :                     }
    3459              :                 }
    3460              :             }
    3461            0 :         };
    3462              : 
    3463            0 :         let (calculated_size, metrics_guard) = match retrying.await {
    3464            0 :             ControlFlow::Continue(calculated_size) => calculated_size,
    3465            0 :             ControlFlow::Break(()) => return,
    3466              :         };
    3467              : 
    3468              :         // we cannot query current_logical_size.current_size() to know the current
    3469              :         // *negative* value, only truncated to u64.
    3470            0 :         let added = self
    3471            0 :             .current_logical_size
    3472            0 :             .size_added_after_initial
    3473            0 :             .load(AtomicOrdering::Relaxed);
    3474            0 : 
    3475            0 :         let sum = calculated_size.saturating_add_signed(added);
    3476            0 : 
    3477            0 :         // set the gauge value before it can be set in `update_current_logical_size`.
    3478            0 :         self.metrics.current_logical_size_gauge.set(sum);
    3479            0 : 
    3480            0 :         self.current_logical_size
    3481            0 :             .initial_logical_size
    3482            0 :             .set((calculated_size, metrics_guard.calculation_result_saved()))
    3483            0 :             .ok()
    3484            0 :             .expect("only this task sets it");
    3485            0 :     }
    3486              : 
    3487            0 :     pub(crate) fn spawn_ondemand_logical_size_calculation(
    3488            0 :         self: &Arc<Self>,
    3489            0 :         lsn: Lsn,
    3490            0 :         cause: LogicalSizeCalculationCause,
    3491            0 :         ctx: RequestContext,
    3492            0 :     ) -> oneshot::Receiver<Result<u64, CalculateLogicalSizeError>> {
    3493            0 :         let (sender, receiver) = oneshot::channel();
    3494            0 :         let self_clone = Arc::clone(self);
    3495            0 :         // XXX if our caller loses interest, i.e., ctx is cancelled,
    3496            0 :         // we should stop the size calculation work and return an error.
    3497            0 :         // That would require restructuring this function's API to
    3498            0 :         // return the result directly, instead of a Receiver for the result.
    3499            0 :         let ctx = ctx.detached_child(
    3500            0 :             TaskKind::OndemandLogicalSizeCalculation,
    3501            0 :             DownloadBehavior::Download,
    3502            0 :         );
    3503            0 :         task_mgr::spawn(
    3504            0 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    3505            0 :             task_mgr::TaskKind::OndemandLogicalSizeCalculation,
    3506            0 :             self.tenant_shard_id,
    3507            0 :             Some(self.timeline_id),
    3508            0 :             "ondemand logical size calculation",
    3509            0 :             async move {
    3510            0 :                 let res = self_clone
    3511            0 :                     .logical_size_calculation_task(lsn, cause, &ctx)
    3512            0 :                     .await;
    3513            0 :                 let _ = sender.send(res).ok();
    3514            0 :                 Ok(()) // Receiver is responsible for handling errors
    3515            0 :             }
    3516            0 :             .in_current_span(),
    3517            0 :         );
    3518            0 :         receiver
    3519            0 :     }
    3520              : 
    3521              :     #[instrument(skip_all)]
    3522              :     async fn logical_size_calculation_task(
    3523              :         self: &Arc<Self>,
    3524              :         lsn: Lsn,
    3525              :         cause: LogicalSizeCalculationCause,
    3526              :         ctx: &RequestContext,
    3527              :     ) -> Result<u64, CalculateLogicalSizeError> {
    3528              :         crate::span::debug_assert_current_span_has_tenant_and_timeline_id();
    3529              :         // We should never be calculating logical sizes on shard !=0, because these shards do not have
    3530              :         // accurate relation sizes, and they do not emit consumption metrics.
    3531              :         debug_assert!(self.tenant_shard_id.is_shard_zero());
    3532              : 
    3533              :         let guard = self
    3534              :             .gate
    3535              :             .enter()
    3536            0 :             .map_err(|_| CalculateLogicalSizeError::Cancelled)?;
    3537              : 
    3538              :         self.calculate_logical_size(lsn, cause, &guard, ctx).await
    3539              :     }
    3540              : 
    3541              :     /// Calculate the logical size of the database at the latest LSN.
    3542              :     ///
    3543              :     /// NOTE: counted incrementally, includes ancestors. This can be a slow operation,
    3544              :     /// especially if we need to download remote layers.
    3545            0 :     async fn calculate_logical_size(
    3546            0 :         &self,
    3547            0 :         up_to_lsn: Lsn,
    3548            0 :         cause: LogicalSizeCalculationCause,
    3549            0 :         _guard: &GateGuard,
    3550            0 :         ctx: &RequestContext,
    3551            0 :     ) -> Result<u64, CalculateLogicalSizeError> {
    3552            0 :         info!(
    3553            0 :             "Calculating logical size for timeline {} at {}",
    3554              :             self.timeline_id, up_to_lsn
    3555              :         );
    3556              : 
    3557            0 :         if let Err(()) = pausable_failpoint!("timeline-calculate-logical-size-pause", &self.cancel)
    3558              :         {
    3559            0 :             return Err(CalculateLogicalSizeError::Cancelled);
    3560            0 :         }
    3561              : 
    3562              :         // See if we've already done the work for initial size calculation.
    3563              :         // This is a short-cut for timelines that are mostly unused.
    3564            0 :         if let Some(size) = self.current_logical_size.initialized_size(up_to_lsn) {
    3565            0 :             return Ok(size);
    3566            0 :         }
    3567            0 :         let storage_time_metrics = match cause {
    3568              :             LogicalSizeCalculationCause::Initial
    3569              :             | LogicalSizeCalculationCause::ConsumptionMetricsSyntheticSize
    3570            0 :             | LogicalSizeCalculationCause::TenantSizeHandler => &self.metrics.logical_size_histo,
    3571              :             LogicalSizeCalculationCause::EvictionTaskImitation => {
    3572            0 :                 &self.metrics.imitate_logical_size_histo
    3573              :             }
    3574              :         };
    3575            0 :         let timer = storage_time_metrics.start_timer();
    3576            0 :         let logical_size = self
    3577            0 :             .get_current_logical_size_non_incremental(up_to_lsn, ctx)
    3578            0 :             .await?;
    3579            0 :         debug!("calculated logical size: {logical_size}");
    3580            0 :         timer.stop_and_record();
    3581            0 :         Ok(logical_size)
    3582            0 :     }
    3583              : 
    3584              :     /// Update current logical size, adding `delta' to the old value.
    3585       541140 :     fn update_current_logical_size(&self, delta: i64) {
    3586       541140 :         let logical_size = &self.current_logical_size;
    3587       541140 :         logical_size.increment_size(delta);
    3588       541140 : 
    3589       541140 :         // Also set the value in the prometheus gauge. Note that
    3590       541140 :         // there is a race condition here: if this is is called by two
    3591       541140 :         // threads concurrently, the prometheus gauge might be set to
    3592       541140 :         // one value while current_logical_size is set to the
    3593       541140 :         // other.
    3594       541140 :         match logical_size.current_size() {
    3595       541140 :             CurrentLogicalSize::Exact(ref new_current_size) => self
    3596       541140 :                 .metrics
    3597       541140 :                 .current_logical_size_gauge
    3598       541140 :                 .set(new_current_size.into()),
    3599            0 :             CurrentLogicalSize::Approximate(_) => {
    3600            0 :                 // don't update the gauge yet, this allows us not to update the gauge back and
    3601            0 :                 // forth between the initial size calculation task.
    3602            0 :             }
    3603              :         }
    3604       541140 :     }
    3605              : 
    3606         5988 :     pub(crate) fn update_directory_entries_count(&self, kind: DirectoryKind, count: MetricsUpdate) {
    3607         5988 :         // TODO: this directory metrics is not correct -- we could have multiple reldirs in the system
    3608         5988 :         // for each of the database, but we only store one value, and therefore each pgdirmodification
    3609         5988 :         // would overwrite the previous value if they modify different databases.
    3610         5988 : 
    3611         5988 :         match count {
    3612         2144 :             MetricsUpdate::Set(count) => {
    3613         2144 :                 self.directory_metrics[kind.offset()].store(count, AtomicOrdering::Relaxed);
    3614         2144 :                 self.directory_metrics_inited[kind.offset()].store(true, AtomicOrdering::Relaxed);
    3615         2144 :             }
    3616         3840 :             MetricsUpdate::Add(count) => {
    3617         3840 :                 // TODO: these operations are not atomic; but we only have one writer to the metrics, so
    3618         3840 :                 // it's fine.
    3619         3840 :                 if self.directory_metrics_inited[kind.offset()].load(AtomicOrdering::Relaxed) {
    3620         3840 :                     // The metrics has been initialized with `MetricsUpdate::Set` before, so we can add/sub
    3621         3840 :                     // the value reliably.
    3622         3840 :                     self.directory_metrics[kind.offset()].fetch_add(count, AtomicOrdering::Relaxed);
    3623         3840 :                 }
    3624              :                 // Otherwise, ignore this update
    3625              :             }
    3626            4 :             MetricsUpdate::Sub(count) => {
    3627            4 :                 // TODO: these operations are not atomic; but we only have one writer to the metrics, so
    3628            4 :                 // it's fine.
    3629            4 :                 if self.directory_metrics_inited[kind.offset()].load(AtomicOrdering::Relaxed) {
    3630            4 :                     // The metrics has been initialized with `MetricsUpdate::Set` before.
    3631            4 :                     // The operation could overflow so we need to normalize the value.
    3632            4 :                     let prev_val =
    3633            4 :                         self.directory_metrics[kind.offset()].load(AtomicOrdering::Relaxed);
    3634            4 :                     let res = prev_val.saturating_sub(count);
    3635            4 :                     self.directory_metrics[kind.offset()].store(res, AtomicOrdering::Relaxed);
    3636            4 :                 }
    3637              :                 // Otherwise, ignore this update
    3638              :             }
    3639              :         };
    3640              : 
    3641              :         // TODO: remove this, there's no place in the code that updates this aux metrics.
    3642         5988 :         let aux_metric =
    3643         5988 :             self.directory_metrics[DirectoryKind::AuxFiles.offset()].load(AtomicOrdering::Relaxed);
    3644         5988 : 
    3645         5988 :         let sum_of_entries = self
    3646         5988 :             .directory_metrics
    3647         5988 :             .iter()
    3648        47904 :             .map(|v| v.load(AtomicOrdering::Relaxed))
    3649         5988 :             .sum();
    3650              :         // Set a high general threshold and a lower threshold for the auxiliary files,
    3651              :         // as we can have large numbers of relations in the db directory.
    3652              :         const SUM_THRESHOLD: u64 = 5000;
    3653              :         const AUX_THRESHOLD: u64 = 1000;
    3654         5988 :         if sum_of_entries >= SUM_THRESHOLD || aux_metric >= AUX_THRESHOLD {
    3655            0 :             self.metrics
    3656            0 :                 .directory_entries_count_gauge
    3657            0 :                 .set(sum_of_entries);
    3658         5988 :         } else if let Some(metric) = Lazy::get(&self.metrics.directory_entries_count_gauge) {
    3659            0 :             metric.set(sum_of_entries);
    3660         5988 :         }
    3661         5988 :     }
    3662              : 
    3663            0 :     async fn find_layer(
    3664            0 :         &self,
    3665            0 :         layer_name: &LayerName,
    3666            0 :     ) -> Result<Option<Layer>, layer_manager::Shutdown> {
    3667            0 :         let guard = self.layers.read().await;
    3668            0 :         let layer = guard
    3669            0 :             .layer_map()?
    3670            0 :             .iter_historic_layers()
    3671            0 :             .find(|l| &l.layer_name() == layer_name)
    3672            0 :             .map(|found| guard.get_from_desc(&found));
    3673            0 :         Ok(layer)
    3674            0 :     }
    3675              : 
    3676            0 :     pub(super) fn should_keep_previous_heatmap(&self, new_heatmap_end_lsn: Lsn) -> bool {
    3677            0 :         let crnt = self.previous_heatmap.load();
    3678            0 :         match crnt.as_deref() {
    3679            0 :             Some(PreviousHeatmap::Active { end_lsn, .. }) => match end_lsn {
    3680            0 :                 Some(crnt_end_lsn) => *crnt_end_lsn > new_heatmap_end_lsn,
    3681            0 :                 None => true,
    3682              :             },
    3683            0 :             Some(PreviousHeatmap::Obsolete) => false,
    3684            0 :             None => false,
    3685              :         }
    3686            0 :     }
    3687              : 
    3688              :     /// The timeline heatmap is a hint to secondary locations from the primary location,
    3689              :     /// indicating which layers are currently on-disk on the primary.
    3690              :     ///
    3691              :     /// None is returned if the Timeline is in a state where uploading a heatmap
    3692              :     /// doesn't make sense, such as shutting down or initializing.  The caller
    3693              :     /// should treat this as a cue to simply skip doing any heatmap uploading
    3694              :     /// for this timeline.
    3695           32 :     pub(crate) async fn generate_heatmap(&self) -> Option<HeatMapTimeline> {
    3696           32 :         if !self.is_active() {
    3697            0 :             return None;
    3698           32 :         }
    3699              : 
    3700           32 :         let guard = self.layers.read().await;
    3701              : 
    3702              :         // Firstly, if there's any heatmap left over from when this location
    3703              :         // was a secondary, take that into account. Keep layers that are:
    3704              :         // * present in the layer map
    3705              :         // * visible
    3706              :         // * non-resident
    3707              :         // * not evicted since we read the heatmap
    3708              :         //
    3709              :         // Without this, a new cold, attached location would clobber the previous
    3710              :         // heatamp.
    3711           32 :         let previous_heatmap = self.previous_heatmap.load();
    3712           32 :         let visible_non_resident = match previous_heatmap.as_deref() {
    3713              :             Some(PreviousHeatmap::Active {
    3714           24 :                 heatmap, read_at, ..
    3715           92 :             }) => Some(heatmap.all_layers().filter_map(|hl| {
    3716           92 :                 let desc: PersistentLayerDesc = hl.name.clone().into();
    3717           92 :                 let layer = guard.try_get_from_key(&desc.key())?;
    3718              : 
    3719           92 :                 if layer.visibility() == LayerVisibilityHint::Covered {
    3720            0 :                     return None;
    3721           92 :                 }
    3722           92 : 
    3723           92 :                 if layer.is_likely_resident() {
    3724           40 :                     return None;
    3725           52 :                 }
    3726           52 : 
    3727           52 :                 if layer.last_evicted_at().happened_after(*read_at) {
    3728           12 :                     return None;
    3729           40 :                 }
    3730           40 : 
    3731           40 :                 Some((desc, hl.metadata.clone(), hl.access_time, hl.cold))
    3732           92 :             })),
    3733            0 :             Some(PreviousHeatmap::Obsolete) => None,
    3734            8 :             None => None,
    3735              :         };
    3736              : 
    3737              :         // Secondly, all currently visible, resident layers are included.
    3738           72 :         let resident = guard.likely_resident_layers().filter_map(|layer| {
    3739           72 :             match layer.visibility() {
    3740              :                 LayerVisibilityHint::Visible => {
    3741              :                     // Layer is visible to one or more read LSNs: elegible for inclusion in layer map
    3742           68 :                     let last_activity_ts = layer.latest_activity();
    3743           68 :                     Some((
    3744           68 :                         layer.layer_desc().clone(),
    3745           68 :                         layer.metadata(),
    3746           68 :                         last_activity_ts,
    3747           68 :                         false, // these layers are not cold
    3748           68 :                     ))
    3749              :                 }
    3750              :                 LayerVisibilityHint::Covered => {
    3751              :                     // Layer is resident but unlikely to be read: not elegible for inclusion in heatmap.
    3752            4 :                     None
    3753              :                 }
    3754              :             }
    3755           72 :         });
    3756              : 
    3757           32 :         let mut layers = match visible_non_resident {
    3758           24 :             Some(non_resident) => {
    3759           24 :                 let mut non_resident = non_resident.peekable();
    3760           24 :                 if non_resident.peek().is_none() {
    3761            8 :                     tracing::info!(timeline_id=%self.timeline_id, "Previous heatmap now obsolete");
    3762            8 :                     self.previous_heatmap
    3763            8 :                         .store(Some(PreviousHeatmap::Obsolete.into()));
    3764           16 :                 }
    3765              : 
    3766           24 :                 non_resident.chain(resident).collect::<Vec<_>>()
    3767              :             }
    3768            8 :             None => resident.collect::<Vec<_>>(),
    3769              :         };
    3770              : 
    3771              :         // Sort layers in order of which to download first.  For a large set of layers to download, we
    3772              :         // want to prioritize those layers which are most likely to still be in the resident many minutes
    3773              :         // or hours later:
    3774              :         // - Cold layers go last for convenience when a human inspects the heatmap.
    3775              :         // - Download L0s last, because they churn the fastest: L0s on a fast-writing tenant might
    3776              :         //   only exist for a few minutes before being compacted into L1s.
    3777              :         // - For L1 & image layers, download most recent LSNs first: the older the LSN, the sooner
    3778              :         //   the layer is likely to be covered by an image layer during compaction.
    3779          242 :         layers.sort_by_key(|(desc, _meta, _atime, cold)| {
    3780          242 :             std::cmp::Reverse((
    3781          242 :                 *cold,
    3782          242 :                 !LayerMap::is_l0(&desc.key_range, desc.is_delta),
    3783          242 :                 desc.lsn_range.end,
    3784          242 :             ))
    3785          242 :         });
    3786           32 : 
    3787           32 :         let layers = layers
    3788           32 :             .into_iter()
    3789          108 :             .map(|(desc, meta, atime, cold)| {
    3790          108 :                 HeatMapLayer::new(desc.layer_name(), meta, atime, cold)
    3791          108 :             })
    3792           32 :             .collect();
    3793           32 : 
    3794           32 :         Some(HeatMapTimeline::new(self.timeline_id, layers))
    3795           32 :     }
    3796              : 
    3797            0 :     pub(super) async fn generate_unarchival_heatmap(&self, end_lsn: Lsn) -> PreviousHeatmap {
    3798            0 :         let guard = self.layers.read().await;
    3799              : 
    3800            0 :         let now = SystemTime::now();
    3801            0 :         let mut heatmap_layers = Vec::default();
    3802            0 :         for vl in guard.visible_layers() {
    3803            0 :             if vl.layer_desc().get_lsn_range().start >= end_lsn {
    3804            0 :                 continue;
    3805            0 :             }
    3806            0 : 
    3807            0 :             let hl = HeatMapLayer {
    3808            0 :                 name: vl.layer_desc().layer_name(),
    3809            0 :                 metadata: vl.metadata(),
    3810            0 :                 access_time: now,
    3811            0 :                 cold: true,
    3812            0 :             };
    3813            0 :             heatmap_layers.push(hl);
    3814              :         }
    3815              : 
    3816            0 :         tracing::info!(
    3817            0 :             "Generating unarchival heatmap with {} layers",
    3818            0 :             heatmap_layers.len()
    3819              :         );
    3820              : 
    3821            0 :         let heatmap = HeatMapTimeline::new(self.timeline_id, heatmap_layers);
    3822            0 :         PreviousHeatmap::Active {
    3823            0 :             heatmap,
    3824            0 :             read_at: Instant::now(),
    3825            0 :             end_lsn: Some(end_lsn),
    3826            0 :         }
    3827            0 :     }
    3828              : 
    3829              :     /// Returns true if the given lsn is or was an ancestor branchpoint.
    3830            0 :     pub(crate) fn is_ancestor_lsn(&self, lsn: Lsn) -> bool {
    3831            0 :         // upon timeline detach, we set the ancestor_lsn to Lsn::INVALID and the store the original
    3832            0 :         // branchpoint in the value in IndexPart::lineage
    3833            0 :         self.ancestor_lsn == lsn
    3834            0 :             || (self.ancestor_lsn == Lsn::INVALID
    3835            0 :                 && self.remote_client.is_previous_ancestor_lsn(lsn))
    3836            0 :     }
    3837              : }
    3838              : 
    3839              : impl Timeline {
    3840              :     #[allow(clippy::doc_lazy_continuation)]
    3841              :     /// Get the data needed to reconstruct all keys in the provided keyspace
    3842              :     ///
    3843              :     /// The algorithm is as follows:
    3844              :     /// 1.   While some keys are still not done and there's a timeline to visit:
    3845              :     /// 2.   Visit the timeline (see [`Timeline::get_vectored_reconstruct_data_timeline`]:
    3846              :     /// 2.1: Build the fringe for the current keyspace
    3847              :     /// 2.2  Visit the newest layer from the fringe to collect all values for the range it
    3848              :     ///      intersects
    3849              :     /// 2.3. Pop the timeline from the fringe
    3850              :     /// 2.4. If the fringe is empty, go back to 1
    3851      1255396 :     async fn get_vectored_reconstruct_data(
    3852      1255396 :         &self,
    3853      1255396 :         mut keyspace: KeySpace,
    3854      1255396 :         request_lsn: Lsn,
    3855      1255396 :         reconstruct_state: &mut ValuesReconstructState,
    3856      1255396 :         ctx: &RequestContext,
    3857      1255396 :     ) -> Result<(), GetVectoredError> {
    3858      1255396 :         let mut timeline_owned: Arc<Timeline>;
    3859      1255396 :         let mut timeline = self;
    3860      1255396 : 
    3861      1255396 :         let mut cont_lsn = Lsn(request_lsn.0 + 1);
    3862              : 
    3863      1255392 :         let missing_keyspace = loop {
    3864      1706165 :             if self.cancel.is_cancelled() {
    3865            0 :                 return Err(GetVectoredError::Cancelled);
    3866      1706165 :             }
    3867              : 
    3868              :             let TimelineVisitOutcome {
    3869      1706165 :                 completed_keyspace: completed,
    3870      1706165 :                 image_covered_keyspace,
    3871      1706165 :             } = Self::get_vectored_reconstruct_data_timeline(
    3872      1706165 :                 timeline,
    3873      1706165 :                 keyspace.clone(),
    3874      1706165 :                 cont_lsn,
    3875      1706165 :                 reconstruct_state,
    3876      1706165 :                 &self.cancel,
    3877      1706165 :                 ctx,
    3878      1706165 :             )
    3879      1706165 :             .await?;
    3880              : 
    3881      1706165 :             keyspace.remove_overlapping_with(&completed);
    3882      1706165 : 
    3883      1706165 :             // Do not descend into the ancestor timeline for aux files.
    3884      1706165 :             // We don't return a blanket [`GetVectoredError::MissingKey`] to avoid
    3885      1706165 :             // stalling compaction.
    3886      1706165 :             keyspace.remove_overlapping_with(&KeySpace {
    3887      1706165 :                 ranges: vec![NON_INHERITED_RANGE, Key::sparse_non_inherited_keyspace()],
    3888      1706165 :             });
    3889      1706165 : 
    3890      1706165 :             // Keyspace is fully retrieved
    3891      1706165 :             if keyspace.is_empty() {
    3892      1254884 :                 break None;
    3893       451281 :             }
    3894              : 
    3895       451281 :             let Some(ancestor_timeline) = timeline.ancestor_timeline.as_ref() else {
    3896              :                 // Not fully retrieved but no ancestor timeline.
    3897          508 :                 break Some(keyspace);
    3898              :             };
    3899              : 
    3900              :             // Now we see if there are keys covered by the image layer but does not exist in the
    3901              :             // image layer, which means that the key does not exist.
    3902              : 
    3903              :             // The block below will stop the vectored search if any of the keys encountered an image layer
    3904              :             // which did not contain a snapshot for said key. Since we have already removed all completed
    3905              :             // keys from `keyspace`, we expect there to be no overlap between it and the image covered key
    3906              :             // space. If that's not the case, we had at least one key encounter a gap in the image layer
    3907              :             // and stop the search as a result of that.
    3908       450773 :             let mut removed = keyspace.remove_overlapping_with(&image_covered_keyspace);
    3909       450773 :             // Do not fire missing key error and end early for sparse keys. Note that we hava already removed
    3910       450773 :             // non-inherited keyspaces before, so we can safely do a full `SPARSE_RANGE` remove instead of
    3911       450773 :             // figuring out what is the inherited key range and do a fine-grained pruning.
    3912       450773 :             removed.remove_overlapping_with(&KeySpace {
    3913       450773 :                 ranges: vec![SPARSE_RANGE],
    3914       450773 :             });
    3915       450773 :             if !removed.is_empty() {
    3916            0 :                 break Some(removed);
    3917       450773 :             }
    3918       450773 :             // If we reached this point, `remove_overlapping_with` should not have made any change to the
    3919       450773 :             // keyspace.
    3920       450773 : 
    3921       450773 :             // Take the min to avoid reconstructing a page with data newer than request Lsn.
    3922       450773 :             cont_lsn = std::cmp::min(Lsn(request_lsn.0 + 1), Lsn(timeline.ancestor_lsn.0 + 1));
    3923       450773 :             timeline_owned = timeline
    3924       450773 :                 .get_ready_ancestor_timeline(ancestor_timeline, ctx)
    3925       450773 :                 .await?;
    3926       450769 :             timeline = &*timeline_owned;
    3927              :         };
    3928              : 
    3929              :         // Remove sparse keys from the keyspace so that it doesn't fire errors.
    3930      1255392 :         let missing_keyspace = if let Some(missing_keyspace) = missing_keyspace {
    3931          508 :             let mut missing_keyspace = missing_keyspace;
    3932          508 :             missing_keyspace.remove_overlapping_with(&KeySpace {
    3933          508 :                 ranges: vec![SPARSE_RANGE],
    3934          508 :             });
    3935          508 :             if missing_keyspace.is_empty() {
    3936          480 :                 None
    3937              :             } else {
    3938           28 :                 Some(missing_keyspace)
    3939              :             }
    3940              :         } else {
    3941      1254884 :             None
    3942              :         };
    3943              : 
    3944      1255392 :         if let Some(missing_keyspace) = missing_keyspace {
    3945           28 :             return Err(GetVectoredError::MissingKey(MissingKeyError {
    3946           28 :                 key: missing_keyspace.start().unwrap(), /* better if we can store the full keyspace */
    3947           28 :                 shard: self
    3948           28 :                     .shard_identity
    3949           28 :                     .get_shard_number(&missing_keyspace.start().unwrap()),
    3950           28 :                 cont_lsn,
    3951           28 :                 request_lsn,
    3952           28 :                 ancestor_lsn: Some(timeline.ancestor_lsn),
    3953           28 :                 backtrace: None,
    3954           28 :                 read_path: std::mem::take(&mut reconstruct_state.read_path),
    3955           28 :             }));
    3956      1255364 :         }
    3957      1255364 : 
    3958      1255364 :         Ok(())
    3959      1255396 :     }
    3960              : 
    3961              :     /// Collect the reconstruct data for a keyspace from the specified timeline.
    3962              :     ///
    3963              :     /// Maintain a fringe [`LayerFringe`] which tracks all the layers that intersect
    3964              :     /// the current keyspace. The current keyspace of the search at any given timeline
    3965              :     /// is the original keyspace minus all the keys that have been completed minus
    3966              :     /// any keys for which we couldn't find an intersecting layer. It's not tracked explicitly,
    3967              :     /// but if you merge all the keyspaces in the fringe, you get the "current keyspace".
    3968              :     ///
    3969              :     /// This is basically a depth-first search visitor implementation where a vertex
    3970              :     /// is the (layer, lsn range, key space) tuple. The fringe acts as the stack.
    3971              :     ///
    3972              :     /// At each iteration pop the top of the fringe (the layer with the highest Lsn)
    3973              :     /// and get all the required reconstruct data from the layer in one go.
    3974              :     ///
    3975              :     /// Returns the completed keyspace and the keyspaces with image coverage. The caller
    3976              :     /// decides how to deal with these two keyspaces.
    3977      1706165 :     async fn get_vectored_reconstruct_data_timeline(
    3978      1706165 :         timeline: &Timeline,
    3979      1706165 :         keyspace: KeySpace,
    3980      1706165 :         mut cont_lsn: Lsn,
    3981      1706165 :         reconstruct_state: &mut ValuesReconstructState,
    3982      1706165 :         cancel: &CancellationToken,
    3983      1706165 :         ctx: &RequestContext,
    3984      1706165 :     ) -> Result<TimelineVisitOutcome, GetVectoredError> {
    3985      1706165 :         let mut unmapped_keyspace = keyspace.clone();
    3986      1706165 :         let mut fringe = LayerFringe::new();
    3987      1706165 : 
    3988      1706165 :         let mut completed_keyspace = KeySpace::default();
    3989      1706165 :         let mut image_covered_keyspace = KeySpaceRandomAccum::new();
    3990      1706165 : 
    3991      1706165 :         // Prevent GC from progressing while visiting the current timeline.
    3992      1706165 :         // If we are GC-ing because a new image layer was added while traversing
    3993      1706165 :         // the timeline, then it will remove layers that are required for fulfilling
    3994      1706165 :         // the current get request (read-path cannot "look back" and notice the new
    3995      1706165 :         // image layer).
    3996      1706165 :         let _gc_cutoff_holder = timeline.get_applied_gc_cutoff_lsn();
    3997              : 
    3998              :         // See `compaction::compact_with_gc` for why we need this.
    3999      1706165 :         let _guard = timeline.gc_compaction_layer_update_lock.read().await;
    4000              : 
    4001              :         loop {
    4002      3398061 :             if cancel.is_cancelled() {
    4003            0 :                 return Err(GetVectoredError::Cancelled);
    4004      3398061 :             }
    4005      3398061 : 
    4006      3398061 :             let (keys_done_last_step, keys_with_image_coverage) =
    4007      3398061 :                 reconstruct_state.consume_done_keys();
    4008      3398061 :             unmapped_keyspace.remove_overlapping_with(&keys_done_last_step);
    4009      3398061 :             completed_keyspace.merge(&keys_done_last_step);
    4010      3398061 :             if let Some(keys_with_image_coverage) = keys_with_image_coverage {
    4011        45100 :                 unmapped_keyspace
    4012        45100 :                     .remove_overlapping_with(&KeySpace::single(keys_with_image_coverage.clone()));
    4013        45100 :                 image_covered_keyspace.add_range(keys_with_image_coverage);
    4014      3352961 :             }
    4015              : 
    4016              :             // Do not descent any further if the last layer we visited
    4017              :             // completed all keys in the keyspace it inspected. This is not
    4018              :             // required for correctness, but avoids visiting extra layers
    4019              :             // which turns out to be a perf bottleneck in some cases.
    4020      3398061 :             if !unmapped_keyspace.is_empty() {
    4021      2147217 :                 let guard = timeline.layers.read().await;
    4022      2147217 :                 let layers = guard.layer_map()?;
    4023              : 
    4024      2148613 :                 for range in unmapped_keyspace.ranges.iter() {
    4025      2148613 :                     let results = layers.range_search(range.clone(), cont_lsn);
    4026      2148613 : 
    4027      2148613 :                     results
    4028      2148613 :                         .found
    4029      2148613 :                         .into_iter()
    4030      2148613 :                         .map(|(SearchResult { layer, lsn_floor }, keyspace_accum)| {
    4031      1692832 :                             (
    4032      1692832 :                                 guard.upgrade(layer),
    4033      1692832 :                                 keyspace_accum.to_keyspace(),
    4034      1692832 :                                 lsn_floor..cont_lsn,
    4035      1692832 :                             )
    4036      2148613 :                         })
    4037      2148613 :                         .for_each(|(layer, keyspace, lsn_range)| {
    4038      1692832 :                             fringe.update(layer, keyspace, lsn_range)
    4039      2148613 :                         });
    4040      2148613 :                 }
    4041              : 
    4042              :                 // It's safe to drop the layer map lock after planning the next round of reads.
    4043              :                 // The fringe keeps readable handles for the layers which are safe to read even
    4044              :                 // if layers were compacted or flushed.
    4045              :                 //
    4046              :                 // The more interesting consideration is: "Why is the read algorithm still correct
    4047              :                 // if the layer map changes while it is operating?". Doing a vectored read on a
    4048              :                 // timeline boils down to pushing an imaginary lsn boundary downwards for each range
    4049              :                 // covered by the read. The layer map tells us how to move the lsn downwards for a
    4050              :                 // range at *a particular point in time*. It is fine for the answer to be different
    4051              :                 // at two different time points.
    4052      2147217 :                 drop(guard);
    4053      1250844 :             }
    4054              : 
    4055      3398061 :             if let Some((layer_to_read, keyspace_to_read, lsn_range)) = fringe.next_layer() {
    4056      1691896 :                 if let Some(ref mut read_path) = reconstruct_state.read_path {
    4057      1691896 :                     read_path.record_layer_visit(&layer_to_read, &keyspace_to_read, &lsn_range);
    4058      1691896 :                 }
    4059      1691896 :                 let next_cont_lsn = lsn_range.start;
    4060      1691896 :                 layer_to_read
    4061      1691896 :                     .get_values_reconstruct_data(
    4062      1691896 :                         keyspace_to_read.clone(),
    4063      1691896 :                         lsn_range,
    4064      1691896 :                         reconstruct_state,
    4065      1691896 :                         ctx,
    4066      1691896 :                     )
    4067      1691896 :                     .await?;
    4068              : 
    4069      1691896 :                 unmapped_keyspace = keyspace_to_read;
    4070      1691896 :                 cont_lsn = next_cont_lsn;
    4071      1691896 : 
    4072      1691896 :                 reconstruct_state.on_layer_visited(&layer_to_read);
    4073              :             } else {
    4074      1706165 :                 break;
    4075      1706165 :             }
    4076      1706165 :         }
    4077      1706165 : 
    4078      1706165 :         Ok(TimelineVisitOutcome {
    4079      1706165 :             completed_keyspace,
    4080      1706165 :             image_covered_keyspace: image_covered_keyspace.consume_keyspace(),
    4081      1706165 :         })
    4082      1706165 :     }
    4083              : 
    4084       450773 :     async fn get_ready_ancestor_timeline(
    4085       450773 :         &self,
    4086       450773 :         ancestor: &Arc<Timeline>,
    4087       450773 :         ctx: &RequestContext,
    4088       450773 :     ) -> Result<Arc<Timeline>, GetReadyAncestorError> {
    4089       450773 :         // It's possible that the ancestor timeline isn't active yet, or
    4090       450773 :         // is active but hasn't yet caught up to the branch point. Wait
    4091       450773 :         // for it.
    4092       450773 :         //
    4093       450773 :         // This cannot happen while the pageserver is running normally,
    4094       450773 :         // because you cannot create a branch from a point that isn't
    4095       450773 :         // present in the pageserver yet. However, we don't wait for the
    4096       450773 :         // branch point to be uploaded to cloud storage before creating
    4097       450773 :         // a branch. I.e., the branch LSN need not be remote consistent
    4098       450773 :         // for the branching operation to succeed.
    4099       450773 :         //
    4100       450773 :         // Hence, if we try to load a tenant in such a state where
    4101       450773 :         // 1. the existence of the branch was persisted (in IndexPart and/or locally)
    4102       450773 :         // 2. but the ancestor state is behind branch_lsn because it was not yet persisted
    4103       450773 :         // then we will need to wait for the ancestor timeline to
    4104       450773 :         // re-stream WAL up to branch_lsn before we access it.
    4105       450773 :         //
    4106       450773 :         // How can a tenant get in such a state?
    4107       450773 :         // - ungraceful pageserver process exit
    4108       450773 :         // - detach+attach => this is a bug, https://github.com/neondatabase/neon/issues/4219
    4109       450773 :         //
    4110       450773 :         // NB: this could be avoided by requiring
    4111       450773 :         //   branch_lsn >= remote_consistent_lsn
    4112       450773 :         // during branch creation.
    4113       450773 :         match ancestor.wait_to_become_active(ctx).await {
    4114       450769 :             Ok(()) => {}
    4115              :             Err(TimelineState::Stopping) => {
    4116              :                 // If an ancestor is stopping, it means the tenant is stopping: handle this the same as if this timeline was stopping.
    4117            0 :                 return Err(GetReadyAncestorError::Cancelled);
    4118              :             }
    4119            4 :             Err(state) => {
    4120            4 :                 return Err(GetReadyAncestorError::BadState {
    4121            4 :                     timeline_id: ancestor.timeline_id,
    4122            4 :                     state,
    4123            4 :                 });
    4124              :             }
    4125              :         }
    4126       450769 :         ancestor
    4127       450769 :             .wait_lsn(
    4128       450769 :                 self.ancestor_lsn,
    4129       450769 :                 WaitLsnWaiter::Timeline(self),
    4130       450769 :                 WaitLsnTimeout::Default,
    4131       450769 :                 ctx,
    4132       450769 :             )
    4133       450769 :             .await
    4134       450769 :             .map_err(|e| match e {
    4135            0 :                 e @ WaitLsnError::Timeout(_) => GetReadyAncestorError::AncestorLsnTimeout(e),
    4136            0 :                 WaitLsnError::Shutdown => GetReadyAncestorError::Cancelled,
    4137            0 :                 WaitLsnError::BadState(state) => GetReadyAncestorError::BadState {
    4138            0 :                     timeline_id: ancestor.timeline_id,
    4139            0 :                     state,
    4140            0 :                 },
    4141       450769 :             })?;
    4142              : 
    4143       450769 :         Ok(ancestor.clone())
    4144       450773 :     }
    4145              : 
    4146       594312 :     pub(crate) fn get_shard_identity(&self) -> &ShardIdentity {
    4147       594312 :         &self.shard_identity
    4148       594312 :     }
    4149              : 
    4150              :     #[inline(always)]
    4151            0 :     pub(crate) fn shard_timeline_id(&self) -> ShardTimelineId {
    4152            0 :         ShardTimelineId {
    4153            0 :             shard_index: ShardIndex {
    4154            0 :                 shard_number: self.shard_identity.number,
    4155            0 :                 shard_count: self.shard_identity.count,
    4156            0 :             },
    4157            0 :             timeline_id: self.timeline_id,
    4158            0 :         }
    4159            0 :     }
    4160              : 
    4161              :     /// Returns a non-frozen open in-memory layer for ingestion.
    4162              :     ///
    4163              :     /// Takes a witness of timeline writer state lock being held, because it makes no sense to call
    4164              :     /// this function without holding the mutex.
    4165         2604 :     async fn get_layer_for_write(
    4166         2604 :         &self,
    4167         2604 :         lsn: Lsn,
    4168         2604 :         _guard: &tokio::sync::MutexGuard<'_, Option<TimelineWriterState>>,
    4169         2604 :         ctx: &RequestContext,
    4170         2604 :     ) -> anyhow::Result<Arc<InMemoryLayer>> {
    4171         2604 :         let mut guard = self.layers.write().await;
    4172              : 
    4173         2604 :         let last_record_lsn = self.get_last_record_lsn();
    4174         2604 :         ensure!(
    4175         2604 :             lsn > last_record_lsn,
    4176            0 :             "cannot modify relation after advancing last_record_lsn (incoming_lsn={}, last_record_lsn={})",
    4177              :             lsn,
    4178              :             last_record_lsn,
    4179              :         );
    4180              : 
    4181         2604 :         let layer = guard
    4182         2604 :             .open_mut()?
    4183         2604 :             .get_layer_for_write(
    4184         2604 :                 lsn,
    4185         2604 :                 self.conf,
    4186         2604 :                 self.timeline_id,
    4187         2604 :                 self.tenant_shard_id,
    4188         2604 :                 &self.gate,
    4189         2604 :                 ctx,
    4190         2604 :             )
    4191         2604 :             .await?;
    4192         2604 :         Ok(layer)
    4193         2604 :     }
    4194              : 
    4195     10558196 :     pub(crate) fn finish_write(&self, new_lsn: Lsn) {
    4196     10558196 :         assert!(new_lsn.is_aligned());
    4197              : 
    4198     10558196 :         self.metrics.last_record_lsn_gauge.set(new_lsn.0 as i64);
    4199     10558196 :         self.last_record_lsn.advance(new_lsn);
    4200     10558196 :     }
    4201              : 
    4202              :     /// Freeze any existing open in-memory layer and unconditionally notify the flush loop.
    4203              :     ///
    4204              :     /// Unconditional flush loop notification is given because in sharded cases we will want to
    4205              :     /// leave an Lsn gap. Unsharded tenants do not have Lsn gaps.
    4206         2412 :     async fn freeze_inmem_layer_at(
    4207         2412 :         &self,
    4208         2412 :         at: Lsn,
    4209         2412 :         write_lock: &mut tokio::sync::MutexGuard<'_, Option<TimelineWriterState>>,
    4210         2412 :     ) -> Result<u64, FlushLayerError> {
    4211         2412 :         let frozen = {
    4212         2412 :             let mut guard = self.layers.write().await;
    4213         2412 :             guard
    4214         2412 :                 .open_mut()?
    4215         2412 :                 .try_freeze_in_memory_layer(at, &self.last_freeze_at, write_lock, &self.metrics)
    4216         2412 :                 .await
    4217              :         };
    4218              : 
    4219         2412 :         if frozen {
    4220         2356 :             let now = Instant::now();
    4221         2356 :             *(self.last_freeze_ts.write().unwrap()) = now;
    4222         2356 :         }
    4223              : 
    4224              :         // Increment the flush cycle counter and wake up the flush task.
    4225              :         // Remember the new value, so that when we listen for the flush
    4226              :         // to finish, we know when the flush that we initiated has
    4227              :         // finished, instead of some other flush that was started earlier.
    4228         2412 :         let mut my_flush_request = 0;
    4229         2412 : 
    4230         2412 :         let flush_loop_state = { *self.flush_loop_state.lock().unwrap() };
    4231         2412 :         if !matches!(flush_loop_state, FlushLoopState::Running { .. }) {
    4232            0 :             return Err(FlushLayerError::NotRunning(flush_loop_state));
    4233         2412 :         }
    4234         2412 : 
    4235         2412 :         self.layer_flush_start_tx.send_modify(|(counter, lsn)| {
    4236         2412 :             my_flush_request = *counter + 1;
    4237         2412 :             *counter = my_flush_request;
    4238         2412 :             *lsn = std::cmp::max(at, *lsn);
    4239         2412 :         });
    4240         2412 : 
    4241         2412 :         assert_ne!(my_flush_request, 0);
    4242              : 
    4243         2412 :         Ok(my_flush_request)
    4244         2412 :     }
    4245              : 
    4246              :     /// Layer flusher task's main loop.
    4247          892 :     async fn flush_loop(
    4248          892 :         self: &Arc<Self>,
    4249          892 :         mut layer_flush_start_rx: tokio::sync::watch::Receiver<(u64, Lsn)>,
    4250          892 :         ctx: &RequestContext,
    4251          892 :     ) {
    4252              :         // Subscribe to L0 delta layer updates, for compaction backpressure.
    4253          892 :         let mut watch_l0 = match self.layers.read().await.layer_map() {
    4254          892 :             Ok(lm) => lm.watch_level0_deltas(),
    4255            0 :             Err(Shutdown) => return,
    4256              :         };
    4257              : 
    4258          892 :         info!("started flush loop");
    4259              :         loop {
    4260         3277 :             tokio::select! {
    4261         3277 :                 _ = self.cancel.cancelled() => {
    4262           20 :                     info!("shutting down layer flush task due to Timeline::cancel");
    4263           20 :                     break;
    4264              :                 },
    4265         3277 :                 _ = layer_flush_start_rx.changed() => {}
    4266         2385 :             }
    4267         2385 :             trace!("waking up");
    4268         2385 :             let (flush_counter, frozen_to_lsn) = *layer_flush_start_rx.borrow();
    4269         2385 : 
    4270         2385 :             // The highest LSN to which we flushed in the loop over frozen layers
    4271         2385 :             let mut flushed_to_lsn = Lsn(0);
    4272              : 
    4273         2385 :             let result = loop {
    4274         4741 :                 if self.cancel.is_cancelled() {
    4275            0 :                     info!("dropping out of flush loop for timeline shutdown");
    4276              :                     // Note: we do not bother transmitting into [`layer_flush_done_tx`], because
    4277              :                     // anyone waiting on that will respect self.cancel as well: they will stop
    4278              :                     // waiting at the same time we as drop out of this loop.
    4279            0 :                     return;
    4280         4741 :                 }
    4281         4741 : 
    4282         4741 :                 // Break to notify potential waiters as soon as we've flushed the requested LSN. If
    4283         4741 :                 // more requests have arrived in the meanwhile, we'll resume flushing afterwards.
    4284         4741 :                 if flushed_to_lsn >= frozen_to_lsn {
    4285         2329 :                     break Ok(());
    4286         2412 :                 }
    4287              : 
    4288              :                 // Fetch the next layer to flush, if any.
    4289         2412 :                 let (layer, l0_count, frozen_count, frozen_size) = {
    4290         2412 :                     let layers = self.layers.read().await;
    4291         2412 :                     let Ok(lm) = layers.layer_map() else {
    4292            0 :                         info!("dropping out of flush loop for timeline shutdown");
    4293            0 :                         return;
    4294              :                     };
    4295         2412 :                     let l0_count = lm.level0_deltas().len();
    4296         2412 :                     let frozen_count = lm.frozen_layers.len();
    4297         2412 :                     let frozen_size: u64 = lm
    4298         2412 :                         .frozen_layers
    4299         2412 :                         .iter()
    4300         2412 :                         .map(|l| l.estimated_in_mem_size())
    4301         2412 :                         .sum();
    4302         2412 :                     let layer = lm.frozen_layers.front().cloned();
    4303         2412 :                     (layer, l0_count, frozen_count, frozen_size)
    4304         2412 :                     // drop 'layers' lock
    4305         2412 :                 };
    4306         2412 :                 let Some(layer) = layer else {
    4307           56 :                     break Ok(());
    4308              :                 };
    4309              : 
    4310              :                 // Stall flushes to backpressure if compaction can't keep up. This is propagated up
    4311              :                 // to WAL ingestion by having ephemeral layer rolls wait for flushes.
    4312         2356 :                 if let Some(stall_threshold) = self.get_l0_flush_stall_threshold() {
    4313            0 :                     if l0_count >= stall_threshold {
    4314            0 :                         warn!(
    4315            0 :                             "stalling layer flushes for compaction backpressure at {l0_count} \
    4316            0 :                             L0 layers ({frozen_count} frozen layers with {frozen_size} bytes)"
    4317              :                         );
    4318            0 :                         let stall_timer = self
    4319            0 :                             .metrics
    4320            0 :                             .flush_delay_histo
    4321            0 :                             .start_timer()
    4322            0 :                             .record_on_drop();
    4323            0 :                         tokio::select! {
    4324            0 :                             result = watch_l0.wait_for(|l0| *l0 < stall_threshold) => {
    4325            0 :                                 if let Ok(l0) = result.as_deref() {
    4326            0 :                                     let delay = stall_timer.elapsed().as_secs_f64();
    4327            0 :                                     info!("resuming layer flushes at {l0} L0 layers after {delay:.3}s");
    4328            0 :                                 }
    4329              :                             },
    4330            0 :                             _ = self.cancel.cancelled() => {},
    4331              :                         }
    4332            0 :                         continue; // check again
    4333            0 :                     }
    4334         2356 :                 }
    4335              : 
    4336              :                 // Flush the layer.
    4337         2356 :                 let flush_timer = self.metrics.flush_time_histo.start_timer();
    4338         2356 :                 match self.flush_frozen_layer(layer, ctx).await {
    4339         2356 :                     Ok(layer_lsn) => flushed_to_lsn = max(flushed_to_lsn, layer_lsn),
    4340              :                     Err(FlushLayerError::Cancelled) => {
    4341            0 :                         info!("dropping out of flush loop for timeline shutdown");
    4342            0 :                         return;
    4343              :                     }
    4344            0 :                     err @ Err(
    4345            0 :                         FlushLayerError::NotRunning(_)
    4346            0 :                         | FlushLayerError::Other(_)
    4347            0 :                         | FlushLayerError::CreateImageLayersError(_),
    4348            0 :                     ) => {
    4349            0 :                         error!("could not flush frozen layer: {err:?}");
    4350            0 :                         break err.map(|_| ());
    4351              :                     }
    4352              :                 }
    4353         2356 :                 let flush_duration = flush_timer.stop_and_record();
    4354         2356 : 
    4355         2356 :                 // Notify the tenant compaction loop if L0 compaction is needed.
    4356         2356 :                 let l0_count = *watch_l0.borrow();
    4357         2356 :                 if l0_count >= self.get_compaction_threshold() {
    4358          956 :                     self.l0_compaction_trigger.notify_one();
    4359         1400 :                 }
    4360              : 
    4361              :                 // Delay the next flush to backpressure if compaction can't keep up. We delay by the
    4362              :                 // flush duration such that the flush takes 2x as long. This is propagated up to WAL
    4363              :                 // ingestion by having ephemeral layer rolls wait for flushes.
    4364         2356 :                 if let Some(delay_threshold) = self.get_l0_flush_delay_threshold() {
    4365            0 :                     if l0_count >= delay_threshold {
    4366            0 :                         let delay = flush_duration.as_secs_f64();
    4367            0 :                         info!(
    4368            0 :                             "delaying layer flush by {delay:.3}s for compaction backpressure at \
    4369            0 :                             {l0_count} L0 layers ({frozen_count} frozen layers with {frozen_size} bytes)"
    4370              :                         );
    4371            0 :                         let _delay_timer = self
    4372            0 :                             .metrics
    4373            0 :                             .flush_delay_histo
    4374            0 :                             .start_timer()
    4375            0 :                             .record_on_drop();
    4376            0 :                         tokio::select! {
    4377            0 :                             _ = tokio::time::sleep(flush_duration) => {},
    4378            0 :                             _ = watch_l0.wait_for(|l0| *l0 < delay_threshold) => {},
    4379            0 :                             _ = self.cancel.cancelled() => {},
    4380              :                         }
    4381            0 :                     }
    4382         2356 :                 }
    4383              :             };
    4384              : 
    4385              :             // Unsharded tenants should never advance their LSN beyond the end of the
    4386              :             // highest layer they write: such gaps between layer data and the frozen LSN
    4387              :             // are only legal on sharded tenants.
    4388         2385 :             debug_assert!(
    4389         2385 :                 self.shard_identity.count.count() > 1
    4390         2385 :                     || flushed_to_lsn >= frozen_to_lsn
    4391           56 :                     || !flushed_to_lsn.is_valid()
    4392              :             );
    4393              : 
    4394         2385 :             if flushed_to_lsn < frozen_to_lsn && self.shard_identity.count.count() > 1 {
    4395              :                 // If our layer flushes didn't carry disk_consistent_lsn up to the `to_lsn` advertised
    4396              :                 // to us via layer_flush_start_rx, then advance it here.
    4397              :                 //
    4398              :                 // This path is only taken for tenants with multiple shards: single sharded tenants should
    4399              :                 // never encounter a gap in the wal.
    4400            0 :                 let old_disk_consistent_lsn = self.disk_consistent_lsn.load();
    4401            0 :                 tracing::debug!(
    4402            0 :                     "Advancing disk_consistent_lsn across layer gap {old_disk_consistent_lsn}->{frozen_to_lsn}"
    4403              :                 );
    4404            0 :                 if self.set_disk_consistent_lsn(frozen_to_lsn) {
    4405            0 :                     if let Err(e) = self.schedule_uploads(frozen_to_lsn, vec![]) {
    4406            0 :                         tracing::warn!(
    4407            0 :                             "Failed to schedule metadata upload after updating disk_consistent_lsn: {e}"
    4408              :                         );
    4409            0 :                     }
    4410            0 :                 }
    4411         2385 :             }
    4412              : 
    4413              :             // Notify any listeners that we're done
    4414         2385 :             let _ = self
    4415         2385 :                 .layer_flush_done_tx
    4416         2385 :                 .send_replace((flush_counter, result));
    4417              :         }
    4418           20 :     }
    4419              : 
    4420              :     /// Waits any flush request created by [`Self::freeze_inmem_layer_at`] to complete.
    4421         2252 :     async fn wait_flush_completion(&self, request: u64) -> Result<(), FlushLayerError> {
    4422         2252 :         let mut rx = self.layer_flush_done_tx.subscribe();
    4423              :         loop {
    4424              :             {
    4425         4572 :                 let (last_result_counter, last_result) = &*rx.borrow();
    4426         4572 :                 if *last_result_counter >= request {
    4427         2252 :                     if let Err(err) = last_result {
    4428              :                         // We already logged the original error in
    4429              :                         // flush_loop. We cannot propagate it to the caller
    4430              :                         // here, because it might not be Cloneable
    4431            0 :                         return Err(err.clone());
    4432              :                     } else {
    4433         2252 :                         return Ok(());
    4434              :                     }
    4435         2320 :                 }
    4436         2320 :             }
    4437         2320 :             trace!("waiting for flush to complete");
    4438         2320 :             tokio::select! {
    4439         2320 :                 rx_e = rx.changed() => {
    4440         2320 :                     rx_e.map_err(|_| FlushLayerError::NotRunning(*self.flush_loop_state.lock().unwrap()))?;
    4441              :                 },
    4442              :                 // Cancellation safety: we are not leaving an I/O in-flight for the flush, we're just ignoring
    4443              :                 // the notification from [`flush_loop`] that it completed.
    4444         2320 :                 _ = self.cancel.cancelled() => {
    4445            0 :                     tracing::info!("Cancelled layer flush due on timeline shutdown");
    4446            0 :                     return Ok(())
    4447              :                 }
    4448              :             };
    4449         2320 :             trace!("done")
    4450              :         }
    4451         2252 :     }
    4452              : 
    4453              :     /// Flush one frozen in-memory layer to disk, as a new delta layer.
    4454              :     ///
    4455              :     /// Return value is the last lsn (inclusive) of the layer that was frozen.
    4456              :     #[instrument(skip_all, fields(layer=%frozen_layer))]
    4457              :     async fn flush_frozen_layer(
    4458              :         self: &Arc<Self>,
    4459              :         frozen_layer: Arc<InMemoryLayer>,
    4460              :         ctx: &RequestContext,
    4461              :     ) -> Result<Lsn, FlushLayerError> {
    4462              :         debug_assert_current_span_has_tenant_and_timeline_id();
    4463              : 
    4464              :         // As a special case, when we have just imported an image into the repository,
    4465              :         // instead of writing out a L0 delta layer, we directly write out image layer
    4466              :         // files instead. This is possible as long as *all* the data imported into the
    4467              :         // repository have the same LSN.
    4468              :         let lsn_range = frozen_layer.get_lsn_range();
    4469              : 
    4470              :         // Whether to directly create image layers for this flush, or flush them as delta layers
    4471              :         let create_image_layer =
    4472              :             lsn_range.start == self.initdb_lsn && lsn_range.end == Lsn(self.initdb_lsn.0 + 1);
    4473              : 
    4474              :         #[cfg(test)]
    4475              :         {
    4476              :             match &mut *self.flush_loop_state.lock().unwrap() {
    4477              :                 FlushLoopState::NotStarted | FlushLoopState::Exited => {
    4478              :                     panic!("flush loop not running")
    4479              :                 }
    4480              :                 FlushLoopState::Running {
    4481              :                     expect_initdb_optimization,
    4482              :                     initdb_optimization_count,
    4483              :                     ..
    4484              :                 } => {
    4485              :                     if create_image_layer {
    4486              :                         *initdb_optimization_count += 1;
    4487              :                     } else {
    4488              :                         assert!(!*expect_initdb_optimization, "expected initdb optimization");
    4489              :                     }
    4490              :                 }
    4491              :             }
    4492              :         }
    4493              : 
    4494              :         let (layers_to_upload, delta_layer_to_add) = if create_image_layer {
    4495              :             // Note: The 'ctx' in use here has DownloadBehavior::Error. We should not
    4496              :             // require downloading anything during initial import.
    4497              :             let ((rel_partition, metadata_partition), _lsn) = self
    4498              :                 .repartition(
    4499              :                     self.initdb_lsn,
    4500              :                     self.get_compaction_target_size(),
    4501              :                     EnumSet::empty(),
    4502              :                     ctx,
    4503              :                 )
    4504              :                 .await
    4505            0 :                 .map_err(|e| FlushLayerError::from_anyhow(self, e.into()))?;
    4506              : 
    4507              :             if self.cancel.is_cancelled() {
    4508              :                 return Err(FlushLayerError::Cancelled);
    4509              :             }
    4510              : 
    4511              :             // Ensure that we have a single call to `create_image_layers` with a combined dense keyspace.
    4512              :             // So that the key ranges don't overlap.
    4513              :             let mut partitions = KeyPartitioning::default();
    4514              :             partitions.parts.extend(rel_partition.parts);
    4515              :             if !metadata_partition.parts.is_empty() {
    4516              :                 assert_eq!(
    4517              :                     metadata_partition.parts.len(),
    4518              :                     1,
    4519              :                     "currently sparse keyspace should only contain a single metadata keyspace"
    4520              :                 );
    4521              :                 // Safety: create_image_layers treat sparse keyspaces differently that it does not scan
    4522              :                 // every single key within the keyspace, and therefore, it's safe to force converting it
    4523              :                 // into a dense keyspace before calling this function.
    4524              :                 partitions
    4525              :                     .parts
    4526              :                     .extend(metadata_partition.into_dense().parts);
    4527              :             }
    4528              : 
    4529              :             let mut layers_to_upload = Vec::new();
    4530              :             let (generated_image_layers, is_complete) = self
    4531              :                 .create_image_layers(
    4532              :                     &partitions,
    4533              :                     self.initdb_lsn,
    4534              :                     ImageLayerCreationMode::Initial,
    4535              :                     ctx,
    4536              :                     LastImageLayerCreationStatus::Initial,
    4537              :                     false, // don't yield for L0, we're flushing L0
    4538              :                 )
    4539              :                 .await?;
    4540              :             debug_assert!(
    4541              :                 matches!(is_complete, LastImageLayerCreationStatus::Complete),
    4542              :                 "init image generation mode must fully cover the keyspace"
    4543              :             );
    4544              :             layers_to_upload.extend(generated_image_layers);
    4545              : 
    4546              :             (layers_to_upload, None)
    4547              :         } else {
    4548              :             // Normal case, write out a L0 delta layer file.
    4549              :             // `create_delta_layer` will not modify the layer map.
    4550              :             // We will remove frozen layer and add delta layer in one atomic operation later.
    4551              :             let Some(layer) = self
    4552              :                 .create_delta_layer(&frozen_layer, None, ctx)
    4553              :                 .await
    4554            0 :                 .map_err(|e| FlushLayerError::from_anyhow(self, e))?
    4555              :             else {
    4556              :                 panic!("delta layer cannot be empty if no filter is applied");
    4557              :             };
    4558              :             (
    4559              :                 // FIXME: even though we have a single image and single delta layer assumption
    4560              :                 // we push them to vec
    4561              :                 vec![layer.clone()],
    4562              :                 Some(layer),
    4563              :             )
    4564              :         };
    4565              : 
    4566              :         pausable_failpoint!("flush-layer-cancel-after-writing-layer-out-pausable");
    4567              : 
    4568              :         if self.cancel.is_cancelled() {
    4569              :             return Err(FlushLayerError::Cancelled);
    4570              :         }
    4571              : 
    4572              :         let disk_consistent_lsn = Lsn(lsn_range.end.0 - 1);
    4573              : 
    4574              :         // The new on-disk layers are now in the layer map. We can remove the
    4575              :         // in-memory layer from the map now. The flushed layer is stored in
    4576              :         // the mapping in `create_delta_layer`.
    4577              :         {
    4578              :             let mut guard = self.layers.write().await;
    4579              : 
    4580              :             guard.open_mut()?.finish_flush_l0_layer(
    4581              :                 delta_layer_to_add.as_ref(),
    4582              :                 &frozen_layer,
    4583              :                 &self.metrics,
    4584              :             );
    4585              : 
    4586              :             if self.set_disk_consistent_lsn(disk_consistent_lsn) {
    4587              :                 // Schedule remote uploads that will reflect our new disk_consistent_lsn
    4588              :                 self.schedule_uploads(disk_consistent_lsn, layers_to_upload)
    4589            0 :                     .map_err(|e| FlushLayerError::from_anyhow(self, e))?;
    4590              :             }
    4591              :             // release lock on 'layers'
    4592              :         };
    4593              : 
    4594              :         // Backpressure mechanism: wait with continuation of the flush loop until we have uploaded all layer files.
    4595              :         // This makes us refuse ingest until the new layers have been persisted to the remote
    4596              :         // TODO: remove this, and rely on l0_flush_{delay,stall}_threshold instead.
    4597              :         if self.get_l0_flush_wait_upload() {
    4598              :             let start = Instant::now();
    4599              :             self.remote_client
    4600              :                 .wait_completion()
    4601              :                 .await
    4602            0 :                 .map_err(|e| match e {
    4603              :                     WaitCompletionError::UploadQueueShutDownOrStopped
    4604              :                     | WaitCompletionError::NotInitialized(
    4605              :                         NotInitialized::ShuttingDown | NotInitialized::Stopped,
    4606            0 :                     ) => FlushLayerError::Cancelled,
    4607              :                     WaitCompletionError::NotInitialized(NotInitialized::Uninitialized) => {
    4608            0 :                         FlushLayerError::Other(anyhow!(e).into())
    4609              :                     }
    4610            0 :                 })?;
    4611              :             let duration = start.elapsed().as_secs_f64();
    4612              :             self.metrics.flush_wait_upload_time_gauge_add(duration);
    4613              :         }
    4614              : 
    4615              :         // FIXME: between create_delta_layer and the scheduling of the upload in `update_metadata_file`,
    4616              :         // a compaction can delete the file and then it won't be available for uploads any more.
    4617              :         // We still schedule the upload, resulting in an error, but ideally we'd somehow avoid this
    4618              :         // race situation.
    4619              :         // See https://github.com/neondatabase/neon/issues/4526
    4620              :         pausable_failpoint!("flush-frozen-pausable");
    4621              : 
    4622              :         // This failpoint is used by another test case `test_pageserver_recovery`.
    4623              :         fail_point!("flush-frozen-exit");
    4624              : 
    4625              :         Ok(Lsn(lsn_range.end.0 - 1))
    4626              :     }
    4627              : 
    4628              :     /// Return true if the value changed
    4629              :     ///
    4630              :     /// This function must only be used from the layer flush task.
    4631         2356 :     fn set_disk_consistent_lsn(&self, new_value: Lsn) -> bool {
    4632         2356 :         let old_value = self.disk_consistent_lsn.fetch_max(new_value);
    4633         2356 :         assert!(
    4634         2356 :             new_value >= old_value,
    4635            0 :             "disk_consistent_lsn must be growing monotonously at runtime; current {old_value}, offered {new_value}"
    4636              :         );
    4637              : 
    4638         2356 :         self.metrics
    4639         2356 :             .disk_consistent_lsn_gauge
    4640         2356 :             .set(new_value.0 as i64);
    4641         2356 :         new_value != old_value
    4642         2356 :     }
    4643              : 
    4644              :     /// Update metadata file
    4645         2456 :     fn schedule_uploads(
    4646         2456 :         &self,
    4647         2456 :         disk_consistent_lsn: Lsn,
    4648         2456 :         layers_to_upload: impl IntoIterator<Item = ResidentLayer>,
    4649         2456 :     ) -> anyhow::Result<()> {
    4650         2456 :         // We can only save a valid 'prev_record_lsn' value on disk if we
    4651         2456 :         // flushed *all* in-memory changes to disk. We only track
    4652         2456 :         // 'prev_record_lsn' in memory for the latest processed record, so we
    4653         2456 :         // don't remember what the correct value that corresponds to some old
    4654         2456 :         // LSN is. But if we flush everything, then the value corresponding
    4655         2456 :         // current 'last_record_lsn' is correct and we can store it on disk.
    4656         2456 :         let RecordLsn {
    4657         2456 :             last: last_record_lsn,
    4658         2456 :             prev: prev_record_lsn,
    4659         2456 :         } = self.last_record_lsn.load();
    4660         2456 :         let ondisk_prev_record_lsn = if disk_consistent_lsn == last_record_lsn {
    4661         2200 :             Some(prev_record_lsn)
    4662              :         } else {
    4663          256 :             None
    4664              :         };
    4665              : 
    4666         2456 :         let update = crate::tenant::metadata::MetadataUpdate::new(
    4667         2456 :             disk_consistent_lsn,
    4668         2456 :             ondisk_prev_record_lsn,
    4669         2456 :             *self.applied_gc_cutoff_lsn.read(),
    4670         2456 :         );
    4671         2456 : 
    4672         2456 :         fail_point!("checkpoint-before-saving-metadata", |x| bail!(
    4673            0 :             "{}",
    4674            0 :             x.unwrap()
    4675         2456 :         ));
    4676              : 
    4677         4836 :         for layer in layers_to_upload {
    4678         2380 :             self.remote_client.schedule_layer_file_upload(layer)?;
    4679              :         }
    4680         2456 :         self.remote_client
    4681         2456 :             .schedule_index_upload_for_metadata_update(&update)?;
    4682              : 
    4683         2456 :         Ok(())
    4684         2456 :     }
    4685              : 
    4686            0 :     pub(crate) async fn preserve_initdb_archive(&self) -> anyhow::Result<()> {
    4687            0 :         self.remote_client
    4688            0 :             .preserve_initdb_archive(
    4689            0 :                 &self.tenant_shard_id.tenant_id,
    4690            0 :                 &self.timeline_id,
    4691            0 :                 &self.cancel,
    4692            0 :             )
    4693            0 :             .await
    4694            0 :     }
    4695              : 
    4696              :     // Write out the given frozen in-memory layer as a new L0 delta file. This L0 file will not be tracked
    4697              :     // in layer map immediately. The caller is responsible to put it into the layer map.
    4698         1936 :     async fn create_delta_layer(
    4699         1936 :         self: &Arc<Self>,
    4700         1936 :         frozen_layer: &Arc<InMemoryLayer>,
    4701         1936 :         key_range: Option<Range<Key>>,
    4702         1936 :         ctx: &RequestContext,
    4703         1936 :     ) -> anyhow::Result<Option<ResidentLayer>> {
    4704         1936 :         let self_clone = Arc::clone(self);
    4705         1936 :         let frozen_layer = Arc::clone(frozen_layer);
    4706         1936 :         let ctx = ctx.attached_child();
    4707         1936 :         let work = async move {
    4708         1936 :             let Some((desc, path)) = frozen_layer
    4709         1936 :                 .write_to_disk(&ctx, key_range, self_clone.l0_flush_global_state.inner())
    4710         1936 :                 .await?
    4711              :             else {
    4712            0 :                 return Ok(None);
    4713              :             };
    4714         1936 :             let new_delta = Layer::finish_creating(self_clone.conf, &self_clone, desc, &path)?;
    4715              : 
    4716              :             // The write_to_disk() above calls writer.finish() which already did the fsync of the inodes.
    4717              :             // We just need to fsync the directory in which these inodes are linked,
    4718              :             // which we know to be the timeline directory.
    4719              :             //
    4720              :             // We use fatal_err() below because the after write_to_disk returns with success,
    4721              :             // the in-memory state of the filesystem already has the layer file in its final place,
    4722              :             // and subsequent pageserver code could think it's durable while it really isn't.
    4723         1936 :             let timeline_dir = VirtualFile::open(
    4724         1936 :                 &self_clone
    4725         1936 :                     .conf
    4726         1936 :                     .timeline_path(&self_clone.tenant_shard_id, &self_clone.timeline_id),
    4727         1936 :                 &ctx,
    4728         1936 :             )
    4729         1936 :             .await
    4730         1936 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    4731         1936 :             timeline_dir
    4732         1936 :                 .sync_all()
    4733         1936 :                 .await
    4734         1936 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    4735         1936 :             anyhow::Ok(Some(new_delta))
    4736         1936 :         };
    4737              :         // Before tokio-epoll-uring, we ran write_to_disk & the sync_all inside spawn_blocking.
    4738              :         // Preserve that behavior to maintain the same behavior for `virtual_file_io_engine=std-fs`.
    4739              :         use crate::virtual_file::io_engine::IoEngine;
    4740         1936 :         match crate::virtual_file::io_engine::get() {
    4741            0 :             IoEngine::NotSet => panic!("io engine not set"),
    4742              :             IoEngine::StdFs => {
    4743          968 :                 let span = tracing::info_span!("blocking");
    4744          968 :                 tokio::task::spawn_blocking({
    4745          968 :                     move || Handle::current().block_on(work.instrument(span))
    4746          968 :                 })
    4747          968 :                 .await
    4748          968 :                 .context("spawn_blocking")
    4749          968 :                 .and_then(|x| x)
    4750              :             }
    4751              :             #[cfg(target_os = "linux")]
    4752          968 :             IoEngine::TokioEpollUring => work.await,
    4753              :         }
    4754         1936 :     }
    4755              : 
    4756         1145 :     async fn repartition(
    4757         1145 :         &self,
    4758         1145 :         lsn: Lsn,
    4759         1145 :         partition_size: u64,
    4760         1145 :         flags: EnumSet<CompactFlags>,
    4761         1145 :         ctx: &RequestContext,
    4762         1145 :     ) -> Result<((KeyPartitioning, SparseKeyPartitioning), Lsn), CompactionError> {
    4763         1145 :         let Ok(mut guard) = self.partitioning.try_write_guard() else {
    4764              :             // NB: there are two callers, one is the compaction task, of which there is only one per struct Tenant and hence Timeline.
    4765              :             // The other is the initdb optimization in flush_frozen_layer, used by `boostrap_timeline`, which runs before `.activate()`
    4766              :             // and hence before the compaction task starts.
    4767            0 :             return Err(CompactionError::Other(anyhow!(
    4768            0 :                 "repartition() called concurrently"
    4769            0 :             )));
    4770              :         };
    4771         1145 :         let ((dense_partition, sparse_partition), partition_lsn) = &*guard.read();
    4772         1145 :         if lsn < *partition_lsn {
    4773            0 :             return Err(CompactionError::Other(anyhow!(
    4774            0 :                 "repartition() called with LSN going backwards, this should not happen"
    4775            0 :             )));
    4776         1145 :         }
    4777         1145 : 
    4778         1145 :         let distance = lsn.0 - partition_lsn.0;
    4779         1145 :         if *partition_lsn != Lsn(0)
    4780          521 :             && distance <= self.repartition_threshold
    4781          521 :             && !flags.contains(CompactFlags::ForceRepartition)
    4782              :         {
    4783          493 :             debug!(
    4784              :                 distance,
    4785              :                 threshold = self.repartition_threshold,
    4786            0 :                 "no repartitioning needed"
    4787              :             );
    4788          493 :             return Ok((
    4789          493 :                 (dense_partition.clone(), sparse_partition.clone()),
    4790          493 :                 *partition_lsn,
    4791          493 :             ));
    4792          652 :         }
    4793              : 
    4794          652 :         let (dense_ks, sparse_ks) = self.collect_keyspace(lsn, ctx).await?;
    4795          652 :         let dense_partitioning = dense_ks.partition(&self.shard_identity, partition_size);
    4796          652 :         let sparse_partitioning = SparseKeyPartitioning {
    4797          652 :             parts: vec![sparse_ks],
    4798          652 :         }; // no partitioning for metadata keys for now
    4799          652 :         let result = ((dense_partitioning, sparse_partitioning), lsn);
    4800          652 :         guard.write(result.clone());
    4801          652 :         Ok(result)
    4802         1145 :     }
    4803              : 
    4804              :     // Is it time to create a new image layer for the given partition? True if we want to generate.
    4805           28 :     async fn time_for_new_image_layer(&self, partition: &KeySpace, lsn: Lsn) -> bool {
    4806           28 :         let threshold = self.get_image_creation_threshold();
    4807              : 
    4808           28 :         let guard = self.layers.read().await;
    4809           28 :         let Ok(layers) = guard.layer_map() else {
    4810            0 :             return false;
    4811              :         };
    4812              : 
    4813           28 :         let mut max_deltas = 0;
    4814           56 :         for part_range in &partition.ranges {
    4815           28 :             let image_coverage = layers.image_coverage(part_range, lsn);
    4816           56 :             for (img_range, last_img) in image_coverage {
    4817           28 :                 let img_lsn = if let Some(last_img) = last_img {
    4818            0 :                     last_img.get_lsn_range().end
    4819              :                 } else {
    4820           28 :                     Lsn(0)
    4821              :                 };
    4822              :                 // Let's consider an example:
    4823              :                 //
    4824              :                 // delta layer with LSN range 71-81
    4825              :                 // delta layer with LSN range 81-91
    4826              :                 // delta layer with LSN range 91-101
    4827              :                 // image layer at LSN 100
    4828              :                 //
    4829              :                 // If 'lsn' is still 100, i.e. no new WAL has been processed since the last image layer,
    4830              :                 // there's no need to create a new one. We check this case explicitly, to avoid passing
    4831              :                 // a bogus range to count_deltas below, with start > end. It's even possible that there
    4832              :                 // are some delta layers *later* than current 'lsn', if more WAL was processed and flushed
    4833              :                 // after we read last_record_lsn, which is passed here in the 'lsn' argument.
    4834           28 :                 if img_lsn < lsn {
    4835           28 :                     let num_deltas =
    4836           28 :                         layers.count_deltas(&img_range, &(img_lsn..lsn), Some(threshold));
    4837           28 : 
    4838           28 :                     max_deltas = max_deltas.max(num_deltas);
    4839           28 :                     if num_deltas >= threshold {
    4840            0 :                         debug!(
    4841            0 :                             "key range {}-{}, has {} deltas on this timeline in LSN range {}..{}",
    4842              :                             img_range.start, img_range.end, num_deltas, img_lsn, lsn
    4843              :                         );
    4844            0 :                         return true;
    4845           28 :                     }
    4846            0 :                 }
    4847              :             }
    4848              :         }
    4849              : 
    4850           28 :         debug!(
    4851              :             max_deltas,
    4852            0 :             "none of the partitioned ranges had >= {threshold} deltas"
    4853              :         );
    4854           28 :         false
    4855           28 :     }
    4856              : 
    4857              :     /// Create image layers for Postgres data. Assumes the caller passes a partition that is not too large,
    4858              :     /// so that at most one image layer will be produced from this function.
    4859              :     #[allow(clippy::too_many_arguments)]
    4860          472 :     async fn create_image_layer_for_rel_blocks(
    4861          472 :         self: &Arc<Self>,
    4862          472 :         partition: &KeySpace,
    4863          472 :         mut image_layer_writer: ImageLayerWriter,
    4864          472 :         lsn: Lsn,
    4865          472 :         ctx: &RequestContext,
    4866          472 :         img_range: Range<Key>,
    4867          472 :         io_concurrency: IoConcurrency,
    4868          472 :     ) -> Result<ImageLayerCreationOutcome, CreateImageLayersError> {
    4869          472 :         let mut wrote_keys = false;
    4870          472 : 
    4871          472 :         let mut key_request_accum = KeySpaceAccum::new();
    4872         3128 :         for range in &partition.ranges {
    4873         2656 :             let mut key = range.start;
    4874         5756 :             while key < range.end {
    4875              :                 // Decide whether to retain this key: usually we do, but sharded tenants may
    4876              :                 // need to drop keys that don't belong to them.  If we retain the key, add it
    4877              :                 // to `key_request_accum` for later issuing a vectored get
    4878         3100 :                 if self.shard_identity.is_key_disposable(&key) {
    4879            0 :                     debug!(
    4880            0 :                         "Dropping key {} during compaction (it belongs on shard {:?})",
    4881            0 :                         key,
    4882            0 :                         self.shard_identity.get_shard_number(&key)
    4883              :                     );
    4884         3100 :                 } else {
    4885         3100 :                     key_request_accum.add_key(key);
    4886         3100 :                 }
    4887              : 
    4888         3100 :                 let last_key_in_range = key.next() == range.end;
    4889         3100 :                 key = key.next();
    4890         3100 : 
    4891         3100 :                 // Maybe flush `key_rest_accum`
    4892         3100 :                 if key_request_accum.raw_size() >= Timeline::MAX_GET_VECTORED_KEYS
    4893         3100 :                     || (last_key_in_range && key_request_accum.raw_size() > 0)
    4894              :                 {
    4895         2656 :                     let results = self
    4896         2656 :                         .get_vectored(
    4897         2656 :                             key_request_accum.consume_keyspace(),
    4898         2656 :                             lsn,
    4899         2656 :                             io_concurrency.clone(),
    4900         2656 :                             ctx,
    4901         2656 :                         )
    4902         2656 :                         .await?;
    4903              : 
    4904         2656 :                     if self.cancel.is_cancelled() {
    4905            0 :                         return Err(CreateImageLayersError::Cancelled);
    4906         2656 :                     }
    4907              : 
    4908         5756 :                     for (img_key, img) in results {
    4909         3100 :                         let img = match img {
    4910         3100 :                             Ok(img) => img,
    4911            0 :                             Err(err) => {
    4912            0 :                                 // If we fail to reconstruct a VM or FSM page, we can zero the
    4913            0 :                                 // page without losing any actual user data. That seems better
    4914            0 :                                 // than failing repeatedly and getting stuck.
    4915            0 :                                 //
    4916            0 :                                 // We had a bug at one point, where we truncated the FSM and VM
    4917            0 :                                 // in the pageserver, but the Postgres didn't know about that
    4918            0 :                                 // and continued to generate incremental WAL records for pages
    4919            0 :                                 // that didn't exist in the pageserver. Trying to replay those
    4920            0 :                                 // WAL records failed to find the previous image of the page.
    4921            0 :                                 // This special case allows us to recover from that situation.
    4922            0 :                                 // See https://github.com/neondatabase/neon/issues/2601.
    4923            0 :                                 //
    4924            0 :                                 // Unfortunately we cannot do this for the main fork, or for
    4925            0 :                                 // any metadata keys, keys, as that would lead to actual data
    4926            0 :                                 // loss.
    4927            0 :                                 if img_key.is_rel_fsm_block_key() || img_key.is_rel_vm_block_key() {
    4928            0 :                                     warn!(
    4929            0 :                                         "could not reconstruct FSM or VM key {img_key}, filling with zeros: {err:?}"
    4930              :                                     );
    4931            0 :                                     ZERO_PAGE.clone()
    4932              :                                 } else {
    4933            0 :                                     return Err(CreateImageLayersError::from(err));
    4934              :                                 }
    4935              :                             }
    4936              :                         };
    4937              : 
    4938              :                         // Write all the keys we just read into our new image layer.
    4939         3100 :                         image_layer_writer.put_image(img_key, img, ctx).await?;
    4940         3100 :                         wrote_keys = true;
    4941              :                     }
    4942          444 :                 }
    4943              :             }
    4944              :         }
    4945              : 
    4946          472 :         if wrote_keys {
    4947              :             // Normal path: we have written some data into the new image layer for this
    4948              :             // partition, so flush it to disk.
    4949          472 :             info!(
    4950            0 :                 "produced image layer for rel {}",
    4951            0 :                 ImageLayerName {
    4952            0 :                     key_range: img_range.clone(),
    4953            0 :                     lsn
    4954            0 :                 },
    4955              :             );
    4956          472 :             Ok(ImageLayerCreationOutcome::Generated {
    4957          472 :                 unfinished_image_layer: image_layer_writer,
    4958          472 :             })
    4959              :         } else {
    4960            0 :             tracing::debug!("no data in range {}-{}", img_range.start, img_range.end);
    4961            0 :             Ok(ImageLayerCreationOutcome::Empty)
    4962              :         }
    4963          472 :     }
    4964              : 
    4965              :     /// Create an image layer for metadata keys. This function produces one image layer for all metadata
    4966              :     /// keys for now. Because metadata keys cannot exceed basebackup size limit, the image layer for it
    4967              :     /// would not be too large to fit in a single image layer.
    4968              :     ///
    4969              :     /// Creating image layers for metadata keys are different from relational keys. Firstly, instead of
    4970              :     /// iterating each key and get an image for each of them, we do a `vectored_get` scan over the sparse
    4971              :     /// keyspace to get all images in one run. Secondly, we use a different image layer generation metrics
    4972              :     /// for metadata keys than relational keys, which is the number of delta files visited during the scan.
    4973              :     #[allow(clippy::too_many_arguments)]
    4974          452 :     async fn create_image_layer_for_metadata_keys(
    4975          452 :         self: &Arc<Self>,
    4976          452 :         partition: &KeySpace,
    4977          452 :         mut image_layer_writer: ImageLayerWriter,
    4978          452 :         lsn: Lsn,
    4979          452 :         ctx: &RequestContext,
    4980          452 :         img_range: Range<Key>,
    4981          452 :         mode: ImageLayerCreationMode,
    4982          452 :         io_concurrency: IoConcurrency,
    4983          452 :     ) -> Result<ImageLayerCreationOutcome, CreateImageLayersError> {
    4984          452 :         // Metadata keys image layer creation.
    4985          452 :         let mut reconstruct_state = ValuesReconstructState::new(io_concurrency);
    4986          452 :         let begin = Instant::now();
    4987              :         // Directly use `get_vectored_impl` to skip the max_vectored_read_key limit check. Note that the keyspace should
    4988              :         // not contain too many keys, otherwise this takes a lot of memory.
    4989          452 :         let data = self
    4990          452 :             .get_vectored_impl(partition.clone(), lsn, &mut reconstruct_state, ctx)
    4991          452 :             .await?;
    4992          452 :         let (data, total_kb_retrieved, total_keys_retrieved) = {
    4993          452 :             let mut new_data = BTreeMap::new();
    4994          452 :             let mut total_kb_retrieved = 0;
    4995          452 :             let mut total_keys_retrieved = 0;
    4996        20476 :             for (k, v) in data {
    4997        20024 :                 let v = v?;
    4998        20024 :                 total_kb_retrieved += KEY_SIZE + v.len();
    4999        20024 :                 total_keys_retrieved += 1;
    5000        20024 :                 new_data.insert(k, v);
    5001              :             }
    5002          452 :             (new_data, total_kb_retrieved / 1024, total_keys_retrieved)
    5003          452 :         };
    5004          452 :         let delta_files_accessed = reconstruct_state.get_delta_layers_visited();
    5005          452 :         let elapsed = begin.elapsed();
    5006          452 : 
    5007          452 :         let trigger_generation = delta_files_accessed as usize >= MAX_AUX_FILE_V2_DELTAS;
    5008          452 :         info!(
    5009            0 :             "metadata key compaction: trigger_generation={trigger_generation}, delta_files_accessed={delta_files_accessed}, total_kb_retrieved={total_kb_retrieved}, total_keys_retrieved={total_keys_retrieved}, read_time={}s",
    5010            0 :             elapsed.as_secs_f64()
    5011              :         );
    5012              : 
    5013          452 :         if !trigger_generation && mode == ImageLayerCreationMode::Try {
    5014            4 :             return Ok(ImageLayerCreationOutcome::Skip);
    5015          448 :         }
    5016          448 :         if self.cancel.is_cancelled() {
    5017            0 :             return Err(CreateImageLayersError::Cancelled);
    5018          448 :         }
    5019          448 :         let mut wrote_any_image = false;
    5020        20472 :         for (k, v) in data {
    5021        20024 :             if v.is_empty() {
    5022              :                 // the key has been deleted, it does not need an image
    5023              :                 // in metadata keyspace, an empty image == tombstone
    5024           16 :                 continue;
    5025        20008 :             }
    5026        20008 :             wrote_any_image = true;
    5027        20008 : 
    5028        20008 :             // No need to handle sharding b/c metadata keys are always on the 0-th shard.
    5029        20008 : 
    5030        20008 :             // TODO: split image layers to avoid too large layer files. Too large image files are not handled
    5031        20008 :             // on the normal data path either.
    5032        20008 :             image_layer_writer.put_image(k, v, ctx).await?;
    5033              :         }
    5034              : 
    5035          448 :         if wrote_any_image {
    5036              :             // Normal path: we have written some data into the new image layer for this
    5037              :             // partition, so flush it to disk.
    5038           24 :             info!(
    5039            0 :                 "created image layer for metadata {}",
    5040            0 :                 ImageLayerName {
    5041            0 :                     key_range: img_range.clone(),
    5042            0 :                     lsn
    5043            0 :                 }
    5044              :             );
    5045           24 :             Ok(ImageLayerCreationOutcome::Generated {
    5046           24 :                 unfinished_image_layer: image_layer_writer,
    5047           24 :             })
    5048              :         } else {
    5049          424 :             tracing::debug!("no data in range {}-{}", img_range.start, img_range.end);
    5050          424 :             Ok(ImageLayerCreationOutcome::Empty)
    5051              :         }
    5052          452 :     }
    5053              : 
    5054              :     /// Predicate function which indicates whether we should check if new image layers
    5055              :     /// are required. Since checking if new image layers are required is expensive in
    5056              :     /// terms of CPU, we only do it in the following cases:
    5057              :     /// 1. If the timeline has ingested sufficient WAL to justify the cost
    5058              :     /// 2. If enough time has passed since the last check:
    5059              :     ///     1. For large tenants, we wish to perform the check more often since they
    5060              :     ///        suffer from the lack of image layers
    5061              :     ///     2. For small tenants (that can mostly fit in RAM), we use a much longer interval
    5062         1145 :     fn should_check_if_image_layers_required(self: &Arc<Timeline>, lsn: Lsn) -> bool {
    5063              :         const LARGE_TENANT_THRESHOLD: u64 = 2 * 1024 * 1024 * 1024;
    5064              : 
    5065         1145 :         let last_checks_at = self.last_image_layer_creation_check_at.load();
    5066         1145 :         let distance = lsn
    5067         1145 :             .checked_sub(last_checks_at)
    5068         1145 :             .expect("Attempt to compact with LSN going backwards");
    5069         1145 :         let min_distance =
    5070         1145 :             self.get_image_layer_creation_check_threshold() as u64 * self.get_checkpoint_distance();
    5071         1145 : 
    5072         1145 :         let distance_based_decision = distance.0 >= min_distance;
    5073         1145 : 
    5074         1145 :         let mut time_based_decision = false;
    5075         1145 :         let mut last_check_instant = self.last_image_layer_creation_check_instant.lock().unwrap();
    5076         1145 :         if let CurrentLogicalSize::Exact(logical_size) = self.current_logical_size.current_size() {
    5077          941 :             let check_required_after = if Into::<u64>::into(&logical_size) >= LARGE_TENANT_THRESHOLD
    5078              :             {
    5079            0 :                 self.get_checkpoint_timeout()
    5080              :             } else {
    5081          941 :                 Duration::from_secs(3600 * 48)
    5082              :             };
    5083              : 
    5084          941 :             time_based_decision = match *last_check_instant {
    5085          521 :                 Some(last_check) => {
    5086          521 :                     let elapsed = last_check.elapsed();
    5087          521 :                     elapsed >= check_required_after
    5088              :                 }
    5089          420 :                 None => true,
    5090              :             };
    5091          204 :         }
    5092              : 
    5093              :         // Do the expensive delta layer counting only if this timeline has ingested sufficient
    5094              :         // WAL since the last check or a checkpoint timeout interval has elapsed since the last
    5095              :         // check.
    5096         1145 :         let decision = distance_based_decision || time_based_decision;
    5097              : 
    5098         1145 :         if decision {
    5099          424 :             self.last_image_layer_creation_check_at.store(lsn);
    5100          424 :             *last_check_instant = Some(Instant::now());
    5101          721 :         }
    5102              : 
    5103         1145 :         decision
    5104         1145 :     }
    5105              : 
    5106              :     /// Returns the image layers generated and an enum indicating whether the process is fully completed.
    5107              :     /// true = we have generate all image layers, false = we preempt the process for L0 compaction.
    5108              :     #[tracing::instrument(skip_all, fields(%lsn, %mode))]
    5109              :     async fn create_image_layers(
    5110              :         self: &Arc<Timeline>,
    5111              :         partitioning: &KeyPartitioning,
    5112              :         lsn: Lsn,
    5113              :         mode: ImageLayerCreationMode,
    5114              :         ctx: &RequestContext,
    5115              :         last_status: LastImageLayerCreationStatus,
    5116              :         yield_for_l0: bool,
    5117              :     ) -> Result<(Vec<ResidentLayer>, LastImageLayerCreationStatus), CreateImageLayersError> {
    5118              :         let timer = self.metrics.create_images_time_histo.start_timer();
    5119              : 
    5120              :         if partitioning.parts.is_empty() {
    5121              :             warn!("no partitions to create image layers for");
    5122              :             return Ok((vec![], LastImageLayerCreationStatus::Complete));
    5123              :         }
    5124              : 
    5125              :         // We need to avoid holes between generated image layers.
    5126              :         // Otherwise LayerMap::image_layer_exists will return false if key range of some layer is covered by more than one
    5127              :         // image layer with hole between them. In this case such layer can not be utilized by GC.
    5128              :         //
    5129              :         // How such hole between partitions can appear?
    5130              :         // if we have relation with relid=1 and size 100 and relation with relid=2 with size 200 then result of
    5131              :         // KeySpace::partition may contain partitions <100000000..100000099> and <200000000..200000199>.
    5132              :         // If there is delta layer <100000000..300000000> then it never be garbage collected because
    5133              :         // image layers  <100000000..100000099> and <200000000..200000199> are not completely covering it.
    5134              :         let mut start = Key::MIN;
    5135              : 
    5136              :         let check_for_image_layers =
    5137              :             if let LastImageLayerCreationStatus::Incomplete { last_key } = last_status {
    5138              :                 info!(
    5139              :                     "resuming image layer creation: last_status=incomplete, continue from {}",
    5140              :                     last_key
    5141              :                 );
    5142              :                 true
    5143              :             } else {
    5144              :                 self.should_check_if_image_layers_required(lsn)
    5145              :             };
    5146              : 
    5147              :         let mut batch_image_writer = BatchLayerWriter::new(self.conf).await?;
    5148              : 
    5149              :         let mut all_generated = true;
    5150              : 
    5151              :         let mut partition_processed = 0;
    5152              :         let mut total_partitions = partitioning.parts.len();
    5153              :         let mut last_partition_processed = None;
    5154              :         let mut partition_parts = partitioning.parts.clone();
    5155              : 
    5156              :         if let LastImageLayerCreationStatus::Incomplete { last_key } = last_status {
    5157              :             // We need to skip the partitions that have already been processed.
    5158              :             let mut found = false;
    5159              :             for (i, partition) in partition_parts.iter().enumerate() {
    5160              :                 if last_key <= partition.end().unwrap() {
    5161              :                     // ```plain
    5162              :                     // |------|--------|----------|------|
    5163              :                     //              ^last_key
    5164              :                     //                    ^start from this partition
    5165              :                     // ```
    5166              :                     // Why `i+1` instead of `i`?
    5167              :                     // It is possible that the user did some writes after the previous image layer creation attempt so that
    5168              :                     // a relation grows in size, and the last_key is now in the middle of the partition. In this case, we
    5169              :                     // still want to skip this partition, so that we can make progress and avoid generating image layers over
    5170              :                     // the same partition. Doing a mod to ensure we don't end up with an empty vec.
    5171              :                     if i + 1 >= total_partitions {
    5172              :                         // In general, this case should not happen -- if last_key is on the last partition, the previous
    5173              :                         // iteration of image layer creation should return a complete status.
    5174              :                         break; // with found=false
    5175              :                     }
    5176              :                     partition_parts = partition_parts.split_off(i + 1); // Remove the first i + 1 elements
    5177              :                     total_partitions = partition_parts.len();
    5178              :                     // Update the start key to the partition start.
    5179              :                     start = partition_parts[0].start().unwrap();
    5180              :                     found = true;
    5181              :                     break;
    5182              :                 }
    5183              :             }
    5184              :             if !found {
    5185              :                 // Last key is within the last partition, or larger than all partitions.
    5186              :                 return Ok((vec![], LastImageLayerCreationStatus::Complete));
    5187              :             }
    5188              :         }
    5189              : 
    5190              :         for partition in partition_parts.iter() {
    5191              :             if self.cancel.is_cancelled() {
    5192              :                 return Err(CreateImageLayersError::Cancelled);
    5193              :             }
    5194              :             partition_processed += 1;
    5195              :             let img_range = start..partition.ranges.last().unwrap().end;
    5196              :             let compact_metadata = partition.overlaps(&Key::metadata_key_range());
    5197              :             if compact_metadata {
    5198              :                 for range in &partition.ranges {
    5199              :                     assert!(
    5200              :                         range.start.field1 >= METADATA_KEY_BEGIN_PREFIX
    5201              :                             && range.end.field1 <= METADATA_KEY_END_PREFIX,
    5202              :                         "metadata keys must be partitioned separately"
    5203              :                     );
    5204              :                 }
    5205              :                 if mode == ImageLayerCreationMode::Try && !check_for_image_layers {
    5206              :                     // Skip compaction if there are not enough updates. Metadata compaction will do a scan and
    5207              :                     // might mess up with evictions.
    5208              :                     start = img_range.end;
    5209              :                     continue;
    5210              :                 }
    5211              :                 // For initial and force modes, we always generate image layers for metadata keys.
    5212              :             } else if let ImageLayerCreationMode::Try = mode {
    5213              :                 // check_for_image_layers = false -> skip
    5214              :                 // check_for_image_layers = true -> check time_for_new_image_layer -> skip/generate
    5215              :                 if !check_for_image_layers || !self.time_for_new_image_layer(partition, lsn).await {
    5216              :                     start = img_range.end;
    5217              :                     continue;
    5218              :                 }
    5219              :             }
    5220              :             if let ImageLayerCreationMode::Force = mode {
    5221              :                 // When forced to create image layers, we might try and create them where they already
    5222              :                 // exist.  This mode is only used in tests/debug.
    5223              :                 let layers = self.layers.read().await;
    5224              :                 if layers.contains_key(&PersistentLayerKey {
    5225              :                     key_range: img_range.clone(),
    5226              :                     lsn_range: PersistentLayerDesc::image_layer_lsn_range(lsn),
    5227              :                     is_delta: false,
    5228              :                 }) {
    5229              :                     // TODO: this can be processed with the BatchLayerWriter::finish_with_discard
    5230              :                     // in the future.
    5231              :                     tracing::info!(
    5232              :                         "Skipping image layer at {lsn} {}..{}, already exists",
    5233              :                         img_range.start,
    5234              :                         img_range.end
    5235              :                     );
    5236              :                     start = img_range.end;
    5237              :                     continue;
    5238              :                 }
    5239              :             }
    5240              : 
    5241              :             let image_layer_writer = ImageLayerWriter::new(
    5242              :                 self.conf,
    5243              :                 self.timeline_id,
    5244              :                 self.tenant_shard_id,
    5245              :                 &img_range,
    5246              :                 lsn,
    5247              :                 ctx,
    5248              :             )
    5249              :             .await?;
    5250              : 
    5251            0 :             fail_point!("image-layer-writer-fail-before-finish", |_| {
    5252            0 :                 Err(CreateImageLayersError::Other(anyhow::anyhow!(
    5253            0 :                     "failpoint image-layer-writer-fail-before-finish"
    5254            0 :                 )))
    5255            0 :             });
    5256              : 
    5257              :             let io_concurrency = IoConcurrency::spawn_from_conf(
    5258              :                 self.conf,
    5259              :                 self.gate
    5260              :                     .enter()
    5261            0 :                     .map_err(|_| CreateImageLayersError::Cancelled)?,
    5262              :             );
    5263              : 
    5264              :             let outcome = if !compact_metadata {
    5265              :                 self.create_image_layer_for_rel_blocks(
    5266              :                     partition,
    5267              :                     image_layer_writer,
    5268              :                     lsn,
    5269              :                     ctx,
    5270              :                     img_range.clone(),
    5271              :                     io_concurrency,
    5272              :                 )
    5273              :                 .await?
    5274              :             } else {
    5275              :                 self.create_image_layer_for_metadata_keys(
    5276              :                     partition,
    5277              :                     image_layer_writer,
    5278              :                     lsn,
    5279              :                     ctx,
    5280              :                     img_range.clone(),
    5281              :                     mode,
    5282              :                     io_concurrency,
    5283              :                 )
    5284              :                 .await?
    5285              :             };
    5286              :             match outcome {
    5287              :                 ImageLayerCreationOutcome::Empty => {
    5288              :                     // No data in this partition, so we don't need to create an image layer (for now).
    5289              :                     // The next image layer should cover this key range, so we don't advance the `start`
    5290              :                     // key.
    5291              :                 }
    5292              :                 ImageLayerCreationOutcome::Generated {
    5293              :                     unfinished_image_layer,
    5294              :                 } => {
    5295              :                     batch_image_writer.add_unfinished_image_writer(
    5296              :                         unfinished_image_layer,
    5297              :                         img_range.clone(),
    5298              :                         lsn,
    5299              :                     );
    5300              :                     // The next image layer should be generated right after this one.
    5301              :                     start = img_range.end;
    5302              :                 }
    5303              :                 ImageLayerCreationOutcome::Skip => {
    5304              :                     // We don't need to create an image layer for this partition.
    5305              :                     // The next image layer should NOT cover this range, otherwise
    5306              :                     // the keyspace becomes empty (reads don't go past image layers).
    5307              :                     start = img_range.end;
    5308              :                 }
    5309              :             }
    5310              : 
    5311              :             if let ImageLayerCreationMode::Try = mode {
    5312              :                 // We have at least made some progress
    5313              :                 if yield_for_l0 && batch_image_writer.pending_layer_num() >= 1 {
    5314              :                     // The `Try` mode is currently only used on the compaction path. We want to avoid
    5315              :                     // image layer generation taking too long time and blocking L0 compaction. So in this
    5316              :                     // mode, we also inspect the current number of L0 layers and skip image layer generation
    5317              :                     // if there are too many of them.
    5318              :                     let image_preempt_threshold = self.get_image_creation_preempt_threshold()
    5319              :                         * self.get_compaction_threshold();
    5320              :                     // TODO: currently we do not respect `get_image_creation_preempt_threshold` and always yield
    5321              :                     // when there is a single timeline with more than L0 threshold L0 layers. As long as the
    5322              :                     // `get_image_creation_preempt_threshold` is set to a value greater than 0, we will yield for L0 compaction.
    5323              :                     if image_preempt_threshold != 0 {
    5324              :                         let should_yield = self
    5325              :                             .l0_compaction_trigger
    5326              :                             .notified()
    5327              :                             .now_or_never()
    5328              :                             .is_some();
    5329              :                         if should_yield {
    5330              :                             tracing::info!(
    5331              :                                 "preempt image layer generation at {lsn} when processing partition {}..{}: too many L0 layers",
    5332              :                                 partition.start().unwrap(),
    5333              :                                 partition.end().unwrap()
    5334              :                             );
    5335              :                             last_partition_processed = Some(partition.clone());
    5336              :                             all_generated = false;
    5337              :                             break;
    5338              :                         }
    5339              :                     }
    5340              :                 }
    5341              :             }
    5342              :         }
    5343              : 
    5344              :         let image_layers = batch_image_writer.finish(self, ctx).await?;
    5345              : 
    5346              :         let mut guard = self.layers.write().await;
    5347              : 
    5348              :         // FIXME: we could add the images to be uploaded *before* returning from here, but right
    5349              :         // now they are being scheduled outside of write lock; current way is inconsistent with
    5350              :         // compaction lock order.
    5351              :         guard
    5352              :             .open_mut()?
    5353              :             .track_new_image_layers(&image_layers, &self.metrics);
    5354              :         drop_wlock(guard);
    5355              :         let duration = timer.stop_and_record();
    5356              : 
    5357              :         // Creating image layers may have caused some previously visible layers to be covered
    5358              :         if !image_layers.is_empty() {
    5359              :             self.update_layer_visibility().await?;
    5360              :         }
    5361              : 
    5362              :         let total_layer_size = image_layers
    5363              :             .iter()
    5364          496 :             .map(|l| l.metadata().file_size)
    5365              :             .sum::<u64>();
    5366              : 
    5367              :         if !image_layers.is_empty() {
    5368              :             info!(
    5369              :                 "created {} image layers ({} bytes) in {}s, processed {} out of {} partitions",
    5370              :                 image_layers.len(),
    5371              :                 total_layer_size,
    5372              :                 duration.as_secs_f64(),
    5373              :                 partition_processed,
    5374              :                 total_partitions
    5375              :             );
    5376              :         }
    5377              : 
    5378              :         Ok((
    5379              :             image_layers,
    5380              :             if all_generated {
    5381              :                 LastImageLayerCreationStatus::Complete
    5382              :             } else {
    5383              :                 LastImageLayerCreationStatus::Incomplete {
    5384              :                     last_key: if let Some(last_partition_processed) = last_partition_processed {
    5385              :                         last_partition_processed.end().unwrap_or(Key::MIN)
    5386              :                     } else {
    5387              :                         // This branch should be unreachable, but in case it happens, we can just return the start key.
    5388              :                         Key::MIN
    5389              :                     },
    5390              :                 }
    5391              :             },
    5392              :         ))
    5393              :     }
    5394              : 
    5395              :     /// Wait until the background initial logical size calculation is complete, or
    5396              :     /// this Timeline is shut down.  Calling this function will cause the initial
    5397              :     /// logical size calculation to skip waiting for the background jobs barrier.
    5398            0 :     pub(crate) async fn await_initial_logical_size(self: Arc<Self>) {
    5399            0 :         if !self.shard_identity.is_shard_zero() {
    5400              :             // We don't populate logical size on shard >0: skip waiting for it.
    5401            0 :             return;
    5402            0 :         }
    5403            0 : 
    5404            0 :         if self.remote_client.is_deleting() {
    5405              :             // The timeline was created in a deletion-resume state, we don't expect logical size to be populated
    5406            0 :             return;
    5407            0 :         }
    5408            0 : 
    5409            0 :         if self.current_logical_size.current_size().is_exact() {
    5410              :             // root timelines are initialized with exact count, but never start the background
    5411              :             // calculation
    5412            0 :             return;
    5413            0 :         }
    5414              : 
    5415            0 :         if let Some(await_bg_cancel) = self
    5416            0 :             .current_logical_size
    5417            0 :             .cancel_wait_for_background_loop_concurrency_limit_semaphore
    5418            0 :             .get()
    5419            0 :         {
    5420            0 :             await_bg_cancel.cancel();
    5421            0 :         } else {
    5422              :             // We should not wait if we were not able to explicitly instruct
    5423              :             // the logical size cancellation to skip the concurrency limit semaphore.
    5424              :             // TODO: this is an unexpected case.  We should restructure so that it
    5425              :             // can't happen.
    5426            0 :             tracing::warn!(
    5427            0 :                 "await_initial_logical_size: can't get semaphore cancel token, skipping"
    5428              :             );
    5429            0 :             debug_assert!(false);
    5430              :         }
    5431              : 
    5432            0 :         tokio::select!(
    5433            0 :             _ = self.current_logical_size.initialized.acquire() => {},
    5434            0 :             _ = self.cancel.cancelled() => {}
    5435              :         )
    5436            0 :     }
    5437              : 
    5438              :     /// Detach this timeline from its ancestor by copying all of ancestors layers as this
    5439              :     /// Timelines layers up to the ancestor_lsn.
    5440              :     ///
    5441              :     /// Requires a timeline that:
    5442              :     /// - has an ancestor to detach from
    5443              :     /// - the ancestor does not have an ancestor -- follows from the original RFC limitations, not
    5444              :     ///   a technical requirement
    5445              :     ///
    5446              :     /// After the operation has been started, it cannot be canceled. Upon restart it needs to be
    5447              :     /// polled again until completion.
    5448              :     ///
    5449              :     /// During the operation all timelines sharing the data with this timeline will be reparented
    5450              :     /// from our ancestor to be branches of this timeline.
    5451            0 :     pub(crate) async fn prepare_to_detach_from_ancestor(
    5452            0 :         self: &Arc<Timeline>,
    5453            0 :         tenant: &crate::tenant::Tenant,
    5454            0 :         options: detach_ancestor::Options,
    5455            0 :         behavior: DetachBehavior,
    5456            0 :         ctx: &RequestContext,
    5457            0 :     ) -> Result<detach_ancestor::Progress, detach_ancestor::Error> {
    5458            0 :         detach_ancestor::prepare(self, tenant, behavior, options, ctx).await
    5459            0 :     }
    5460              : 
    5461              :     /// Second step of detach from ancestor; detaches the `self` from it's current ancestor and
    5462              :     /// reparents any reparentable children of previous ancestor.
    5463              :     ///
    5464              :     /// This method is to be called while holding the TenantManager's tenant slot, so during this
    5465              :     /// method we cannot be deleted nor can any timeline be deleted. After this method returns
    5466              :     /// successfully, tenant must be reloaded.
    5467              :     ///
    5468              :     /// Final step will be to [`Self::complete_detaching_timeline_ancestor`] after optionally
    5469              :     /// resetting the tenant.
    5470            0 :     pub(crate) async fn detach_from_ancestor_and_reparent(
    5471            0 :         self: &Arc<Timeline>,
    5472            0 :         tenant: &crate::tenant::Tenant,
    5473            0 :         prepared: detach_ancestor::PreparedTimelineDetach,
    5474            0 :         ancestor_timeline_id: TimelineId,
    5475            0 :         ancestor_lsn: Lsn,
    5476            0 :         behavior: DetachBehavior,
    5477            0 :         ctx: &RequestContext,
    5478            0 :     ) -> Result<detach_ancestor::DetachingAndReparenting, detach_ancestor::Error> {
    5479            0 :         detach_ancestor::detach_and_reparent(
    5480            0 :             self,
    5481            0 :             tenant,
    5482            0 :             prepared,
    5483            0 :             ancestor_timeline_id,
    5484            0 :             ancestor_lsn,
    5485            0 :             behavior,
    5486            0 :             ctx,
    5487            0 :         )
    5488            0 :         .await
    5489            0 :     }
    5490              : 
    5491              :     /// Final step which unblocks the GC.
    5492              :     ///
    5493              :     /// The tenant must've been reset if ancestry was modified previously (in tenant manager).
    5494            0 :     pub(crate) async fn complete_detaching_timeline_ancestor(
    5495            0 :         self: &Arc<Timeline>,
    5496            0 :         tenant: &crate::tenant::Tenant,
    5497            0 :         attempt: detach_ancestor::Attempt,
    5498            0 :         ctx: &RequestContext,
    5499            0 :     ) -> Result<(), detach_ancestor::Error> {
    5500            0 :         detach_ancestor::complete(self, tenant, attempt, ctx).await
    5501            0 :     }
    5502              : }
    5503              : 
    5504              : impl Drop for Timeline {
    5505           20 :     fn drop(&mut self) {
    5506           20 :         if let Some(ancestor) = &self.ancestor_timeline {
    5507              :             // This lock should never be poisoned, but in case it is we do a .map() instead of
    5508              :             // an unwrap(), to avoid panicking in a destructor and thereby aborting the process.
    5509            8 :             if let Ok(mut gc_info) = ancestor.gc_info.write() {
    5510            8 :                 if !gc_info.remove_child_not_offloaded(self.timeline_id) {
    5511            0 :                     tracing::error!(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id,
    5512            0 :                         "Couldn't remove retain_lsn entry from offloaded timeline's parent: already removed");
    5513            8 :                 }
    5514            0 :             }
    5515           12 :         }
    5516           20 :         info!(
    5517            0 :             "Timeline {} for tenant {} is being dropped",
    5518              :             self.timeline_id, self.tenant_shard_id.tenant_id
    5519              :         );
    5520           20 :     }
    5521              : }
    5522              : 
    5523              : /// Top-level failure to compact.
    5524              : #[derive(Debug, thiserror::Error)]
    5525              : pub(crate) enum CompactionError {
    5526              :     #[error("The timeline or pageserver is shutting down")]
    5527              :     ShuttingDown,
    5528              :     /// Compaction tried to offload a timeline and failed
    5529              :     #[error("Failed to offload timeline: {0}")]
    5530              :     Offload(OffloadError),
    5531              :     /// Compaction cannot be done right now; page reconstruction and so on.
    5532              :     #[error("Failed to collect keyspace: {0}")]
    5533              :     CollectKeySpaceError(#[from] CollectKeySpaceError),
    5534              :     #[error(transparent)]
    5535              :     Other(anyhow::Error),
    5536              :     #[error("Compaction already running: {0}")]
    5537              :     AlreadyRunning(&'static str),
    5538              : }
    5539              : 
    5540              : impl CompactionError {
    5541              :     /// Errors that can be ignored, i.e., cancel and shutdown.
    5542            0 :     pub fn is_cancel(&self) -> bool {
    5543            0 :         matches!(
    5544            0 :             self,
    5545              :             Self::ShuttingDown
    5546              :                 | Self::AlreadyRunning(_)
    5547              :                 | Self::CollectKeySpaceError(CollectKeySpaceError::Cancelled)
    5548              :                 | Self::CollectKeySpaceError(CollectKeySpaceError::PageRead(
    5549              :                     PageReconstructError::Cancelled
    5550              :                 ))
    5551              :                 | Self::Offload(OffloadError::Cancelled)
    5552              :         )
    5553            0 :     }
    5554              : 
    5555              :     /// Critical errors that indicate data corruption.
    5556            0 :     pub fn is_critical(&self) -> bool {
    5557            0 :         matches!(
    5558            0 :             self,
    5559              :             Self::CollectKeySpaceError(
    5560              :                 CollectKeySpaceError::Decode(_)
    5561              :                     | CollectKeySpaceError::PageRead(
    5562              :                         PageReconstructError::MissingKey(_) | PageReconstructError::WalRedo(_),
    5563              :                     )
    5564              :             )
    5565              :         )
    5566            0 :     }
    5567              : }
    5568              : 
    5569              : impl From<OffloadError> for CompactionError {
    5570            0 :     fn from(e: OffloadError) -> Self {
    5571            0 :         match e {
    5572            0 :             OffloadError::Cancelled => Self::ShuttingDown,
    5573            0 :             _ => Self::Offload(e),
    5574              :         }
    5575            0 :     }
    5576              : }
    5577              : 
    5578              : impl From<super::upload_queue::NotInitialized> for CompactionError {
    5579            0 :     fn from(value: super::upload_queue::NotInitialized) -> Self {
    5580            0 :         match value {
    5581              :             super::upload_queue::NotInitialized::Uninitialized => {
    5582            0 :                 CompactionError::Other(anyhow::anyhow!(value))
    5583              :             }
    5584              :             super::upload_queue::NotInitialized::ShuttingDown
    5585            0 :             | super::upload_queue::NotInitialized::Stopped => CompactionError::ShuttingDown,
    5586              :         }
    5587            0 :     }
    5588              : }
    5589              : 
    5590              : impl From<super::storage_layer::layer::DownloadError> for CompactionError {
    5591            0 :     fn from(e: super::storage_layer::layer::DownloadError) -> Self {
    5592            0 :         match e {
    5593              :             super::storage_layer::layer::DownloadError::TimelineShutdown
    5594              :             | super::storage_layer::layer::DownloadError::DownloadCancelled => {
    5595            0 :                 CompactionError::ShuttingDown
    5596              :             }
    5597              :             super::storage_layer::layer::DownloadError::ContextAndConfigReallyDeniesDownloads
    5598              :             | super::storage_layer::layer::DownloadError::DownloadRequired
    5599              :             | super::storage_layer::layer::DownloadError::NotFile(_)
    5600              :             | super::storage_layer::layer::DownloadError::DownloadFailed
    5601              :             | super::storage_layer::layer::DownloadError::PreStatFailed(_) => {
    5602            0 :                 CompactionError::Other(anyhow::anyhow!(e))
    5603              :             }
    5604              :             #[cfg(test)]
    5605              :             super::storage_layer::layer::DownloadError::Failpoint(_) => {
    5606            0 :                 CompactionError::Other(anyhow::anyhow!(e))
    5607              :             }
    5608              :         }
    5609            0 :     }
    5610              : }
    5611              : 
    5612              : impl From<layer_manager::Shutdown> for CompactionError {
    5613            0 :     fn from(_: layer_manager::Shutdown) -> Self {
    5614            0 :         CompactionError::ShuttingDown
    5615            0 :     }
    5616              : }
    5617              : 
    5618              : #[serde_as]
    5619          392 : #[derive(serde::Serialize)]
    5620              : struct RecordedDuration(#[serde_as(as = "serde_with::DurationMicroSeconds")] Duration);
    5621              : 
    5622              : #[derive(Default)]
    5623              : enum DurationRecorder {
    5624              :     #[default]
    5625              :     NotStarted,
    5626              :     Recorded(RecordedDuration, tokio::time::Instant),
    5627              : }
    5628              : 
    5629              : impl DurationRecorder {
    5630         1005 :     fn till_now(&self) -> DurationRecorder {
    5631         1005 :         match self {
    5632              :             DurationRecorder::NotStarted => {
    5633            0 :                 panic!("must only call on recorded measurements")
    5634              :             }
    5635         1005 :             DurationRecorder::Recorded(_, ended) => {
    5636         1005 :                 let now = tokio::time::Instant::now();
    5637         1005 :                 DurationRecorder::Recorded(RecordedDuration(now - *ended), now)
    5638         1005 :             }
    5639         1005 :         }
    5640         1005 :     }
    5641          392 :     fn into_recorded(self) -> Option<RecordedDuration> {
    5642          392 :         match self {
    5643            0 :             DurationRecorder::NotStarted => None,
    5644          392 :             DurationRecorder::Recorded(recorded, _) => Some(recorded),
    5645              :         }
    5646          392 :     }
    5647              : }
    5648              : 
    5649              : /// Descriptor for a delta layer used in testing infra. The start/end key/lsn range of the
    5650              : /// delta layer might be different from the min/max key/lsn in the delta layer. Therefore,
    5651              : /// the layer descriptor requires the user to provide the ranges, which should cover all
    5652              : /// keys specified in the `data` field.
    5653              : #[cfg(test)]
    5654              : #[derive(Clone)]
    5655              : pub struct DeltaLayerTestDesc {
    5656              :     pub lsn_range: Range<Lsn>,
    5657              :     pub key_range: Range<Key>,
    5658              :     pub data: Vec<(Key, Lsn, Value)>,
    5659              : }
    5660              : 
    5661              : #[cfg(test)]
    5662              : #[derive(Clone)]
    5663              : pub struct InMemoryLayerTestDesc {
    5664              :     pub lsn_range: Range<Lsn>,
    5665              :     pub data: Vec<(Key, Lsn, Value)>,
    5666              :     pub is_open: bool,
    5667              : }
    5668              : 
    5669              : #[cfg(test)]
    5670              : impl DeltaLayerTestDesc {
    5671            8 :     pub fn new(lsn_range: Range<Lsn>, key_range: Range<Key>, data: Vec<(Key, Lsn, Value)>) -> Self {
    5672            8 :         Self {
    5673            8 :             lsn_range,
    5674            8 :             key_range,
    5675            8 :             data,
    5676            8 :         }
    5677            8 :     }
    5678              : 
    5679          176 :     pub fn new_with_inferred_key_range(
    5680          176 :         lsn_range: Range<Lsn>,
    5681          176 :         data: Vec<(Key, Lsn, Value)>,
    5682          176 :     ) -> Self {
    5683          440 :         let key_min = data.iter().map(|(key, _, _)| key).min().unwrap();
    5684          440 :         let key_max = data.iter().map(|(key, _, _)| key).max().unwrap();
    5685          176 :         Self {
    5686          176 :             key_range: (*key_min)..(key_max.next()),
    5687          176 :             lsn_range,
    5688          176 :             data,
    5689          176 :         }
    5690          176 :     }
    5691              : 
    5692           20 :     pub(crate) fn layer_name(&self) -> LayerName {
    5693           20 :         LayerName::Delta(super::storage_layer::DeltaLayerName {
    5694           20 :             key_range: self.key_range.clone(),
    5695           20 :             lsn_range: self.lsn_range.clone(),
    5696           20 :         })
    5697           20 :     }
    5698              : }
    5699              : 
    5700              : impl Timeline {
    5701           56 :     async fn finish_compact_batch(
    5702           56 :         self: &Arc<Self>,
    5703           56 :         new_deltas: &[ResidentLayer],
    5704           56 :         new_images: &[ResidentLayer],
    5705           56 :         layers_to_remove: &[Layer],
    5706           56 :     ) -> Result<(), CompactionError> {
    5707           56 :         let mut guard = tokio::select! {
    5708           56 :             guard = self.layers.write() => guard,
    5709           56 :             _ = self.cancel.cancelled() => {
    5710            0 :                 return Err(CompactionError::ShuttingDown);
    5711              :             }
    5712              :         };
    5713              : 
    5714           56 :         let mut duplicated_layers = HashSet::new();
    5715           56 : 
    5716           56 :         let mut insert_layers = Vec::with_capacity(new_deltas.len());
    5717              : 
    5718          672 :         for l in new_deltas {
    5719          616 :             if guard.contains(l.as_ref()) {
    5720              :                 // expected in tests
    5721            0 :                 tracing::error!(layer=%l, "duplicated L1 layer");
    5722              : 
    5723              :                 // good ways to cause a duplicate: we repeatedly error after taking the writelock
    5724              :                 // `guard`  on self.layers. as of writing this, there are no error returns except
    5725              :                 // for compact_level0_phase1 creating an L0, which does not happen in practice
    5726              :                 // because we have not implemented L0 => L0 compaction.
    5727            0 :                 duplicated_layers.insert(l.layer_desc().key());
    5728          616 :             } else if LayerMap::is_l0(&l.layer_desc().key_range, l.layer_desc().is_delta) {
    5729            0 :                 return Err(CompactionError::Other(anyhow::anyhow!(
    5730            0 :                     "compaction generates a L0 layer file as output, which will cause infinite compaction."
    5731            0 :                 )));
    5732          616 :             } else {
    5733          616 :                 insert_layers.push(l.clone());
    5734          616 :             }
    5735              :         }
    5736              : 
    5737              :         // only remove those inputs which were not outputs
    5738           56 :         let remove_layers: Vec<Layer> = layers_to_remove
    5739           56 :             .iter()
    5740          804 :             .filter(|l| !duplicated_layers.contains(&l.layer_desc().key()))
    5741           56 :             .cloned()
    5742           56 :             .collect();
    5743           56 : 
    5744           56 :         if !new_images.is_empty() {
    5745            0 :             guard
    5746            0 :                 .open_mut()?
    5747            0 :                 .track_new_image_layers(new_images, &self.metrics);
    5748           56 :         }
    5749              : 
    5750           56 :         guard
    5751           56 :             .open_mut()?
    5752           56 :             .finish_compact_l0(&remove_layers, &insert_layers, &self.metrics);
    5753           56 : 
    5754           56 :         self.remote_client
    5755           56 :             .schedule_compaction_update(&remove_layers, new_deltas)?;
    5756              : 
    5757           56 :         drop_wlock(guard);
    5758           56 : 
    5759           56 :         Ok(())
    5760           56 :     }
    5761              : 
    5762            0 :     async fn rewrite_layers(
    5763            0 :         self: &Arc<Self>,
    5764            0 :         mut replace_layers: Vec<(Layer, ResidentLayer)>,
    5765            0 :         mut drop_layers: Vec<Layer>,
    5766            0 :     ) -> Result<(), CompactionError> {
    5767            0 :         let mut guard = self.layers.write().await;
    5768              : 
    5769              :         // Trim our lists in case our caller (compaction) raced with someone else (GC) removing layers: we want
    5770              :         // to avoid double-removing, and avoid rewriting something that was removed.
    5771            0 :         replace_layers.retain(|(l, _)| guard.contains(l));
    5772            0 :         drop_layers.retain(|l| guard.contains(l));
    5773            0 : 
    5774            0 :         guard
    5775            0 :             .open_mut()?
    5776            0 :             .rewrite_layers(&replace_layers, &drop_layers, &self.metrics);
    5777            0 : 
    5778            0 :         let upload_layers: Vec<_> = replace_layers.into_iter().map(|r| r.1).collect();
    5779            0 : 
    5780            0 :         self.remote_client
    5781            0 :             .schedule_compaction_update(&drop_layers, &upload_layers)?;
    5782              : 
    5783            0 :         Ok(())
    5784            0 :     }
    5785              : 
    5786              :     /// Schedules the uploads of the given image layers
    5787          725 :     fn upload_new_image_layers(
    5788          725 :         self: &Arc<Self>,
    5789          725 :         new_images: impl IntoIterator<Item = ResidentLayer>,
    5790          725 :     ) -> Result<(), super::upload_queue::NotInitialized> {
    5791          777 :         for layer in new_images {
    5792           52 :             self.remote_client.schedule_layer_file_upload(layer)?;
    5793              :         }
    5794              :         // should any new image layer been created, not uploading index_part will
    5795              :         // result in a mismatch between remote_physical_size and layermap calculated
    5796              :         // size, which will fail some tests, but should not be an issue otherwise.
    5797          725 :         self.remote_client
    5798          725 :             .schedule_index_upload_for_file_changes()?;
    5799          725 :         Ok(())
    5800          725 :     }
    5801              : 
    5802            0 :     async fn find_gc_time_cutoff(
    5803            0 :         &self,
    5804            0 :         now: SystemTime,
    5805            0 :         pitr: Duration,
    5806            0 :         cancel: &CancellationToken,
    5807            0 :         ctx: &RequestContext,
    5808            0 :     ) -> Result<Option<Lsn>, PageReconstructError> {
    5809            0 :         debug_assert_current_span_has_tenant_and_timeline_id();
    5810            0 :         if self.shard_identity.is_shard_zero() {
    5811              :             // Shard Zero has SLRU data and can calculate the PITR time -> LSN mapping itself
    5812            0 :             let time_range = if pitr == Duration::ZERO {
    5813            0 :                 humantime::parse_duration(DEFAULT_PITR_INTERVAL).expect("constant is invalid")
    5814              :             } else {
    5815            0 :                 pitr
    5816              :             };
    5817              : 
    5818              :             // If PITR is so large or `now` is so small that this underflows, we will retain no history (highly unexpected case)
    5819            0 :             let time_cutoff = now.checked_sub(time_range).unwrap_or(now);
    5820            0 :             let timestamp = to_pg_timestamp(time_cutoff);
    5821              : 
    5822            0 :             let time_cutoff = match self.find_lsn_for_timestamp(timestamp, cancel, ctx).await? {
    5823            0 :                 LsnForTimestamp::Present(lsn) => Some(lsn),
    5824            0 :                 LsnForTimestamp::Future(lsn) => {
    5825            0 :                     // The timestamp is in the future. That sounds impossible,
    5826            0 :                     // but what it really means is that there hasn't been
    5827            0 :                     // any commits since the cutoff timestamp.
    5828            0 :                     //
    5829            0 :                     // In this case we should use the LSN of the most recent commit,
    5830            0 :                     // which is implicitly the last LSN in the log.
    5831            0 :                     debug!("future({})", lsn);
    5832            0 :                     Some(self.get_last_record_lsn())
    5833              :                 }
    5834            0 :                 LsnForTimestamp::Past(lsn) => {
    5835            0 :                     debug!("past({})", lsn);
    5836            0 :                     None
    5837              :                 }
    5838            0 :                 LsnForTimestamp::NoData(lsn) => {
    5839            0 :                     debug!("nodata({})", lsn);
    5840            0 :                     None
    5841              :                 }
    5842              :             };
    5843            0 :             Ok(time_cutoff)
    5844              :         } else {
    5845              :             // Shards other than shard zero cannot do timestamp->lsn lookups, and must instead learn their GC cutoff
    5846              :             // from shard zero's index.  The index doesn't explicitly tell us the time cutoff, but we may assume that
    5847              :             // the point up to which shard zero's last_gc_cutoff has advanced will either be the time cutoff, or a
    5848              :             // space cutoff that we would also have respected ourselves.
    5849            0 :             match self
    5850            0 :                 .remote_client
    5851            0 :                 .download_foreign_index(ShardNumber(0), cancel)
    5852            0 :                 .await
    5853              :             {
    5854            0 :                 Ok((index_part, index_generation, _index_mtime)) => {
    5855            0 :                     tracing::info!(
    5856            0 :                         "GC loaded shard zero metadata (gen {index_generation:?}): latest_gc_cutoff_lsn: {}",
    5857            0 :                         index_part.metadata.latest_gc_cutoff_lsn()
    5858              :                     );
    5859            0 :                     Ok(Some(index_part.metadata.latest_gc_cutoff_lsn()))
    5860              :                 }
    5861              :                 Err(DownloadError::NotFound) => {
    5862              :                     // This is unexpected, because during timeline creations shard zero persists to remote
    5863              :                     // storage before other shards are called, and during timeline deletion non-zeroth shards are
    5864              :                     // deleted before the zeroth one.  However, it should be harmless: if we somehow end up in this
    5865              :                     // state, then shard zero should _eventually_ write an index when it GCs.
    5866            0 :                     tracing::warn!("GC couldn't find shard zero's index for timeline");
    5867            0 :                     Ok(None)
    5868              :                 }
    5869            0 :                 Err(e) => {
    5870            0 :                     // TODO: this function should return a different error type than page reconstruct error
    5871            0 :                     Err(PageReconstructError::Other(anyhow::anyhow!(e)))
    5872              :                 }
    5873              :             }
    5874              : 
    5875              :             // TODO: after reading shard zero's GC cutoff, we should validate its generation with the storage
    5876              :             // controller.  Otherwise, it is possible that we see the GC cutoff go backwards while shard zero
    5877              :             // is going through a migration if we read the old location's index and it has GC'd ahead of the
    5878              :             // new location.  This is legal in principle, but problematic in practice because it might result
    5879              :             // in a timeline creation succeeding on shard zero ('s new location) but then failing on other shards
    5880              :             // because they have GC'd past the branch point.
    5881              :         }
    5882            0 :     }
    5883              : 
    5884              :     /// Find the Lsns above which layer files need to be retained on
    5885              :     /// garbage collection.
    5886              :     ///
    5887              :     /// We calculate two cutoffs, one based on time and one based on WAL size.  `pitr`
    5888              :     /// controls the time cutoff (or ZERO to disable time-based retention), and `space_cutoff` controls
    5889              :     /// the space-based retention.
    5890              :     ///
    5891              :     /// This function doesn't simply to calculate time & space based retention: it treats time-based
    5892              :     /// retention as authoritative if enabled, and falls back to space-based retention if calculating
    5893              :     /// the LSN for a time point isn't possible.  Therefore the GcCutoffs::horizon in the response might
    5894              :     /// be different to the `space_cutoff` input.  Callers should treat the min() of the two cutoffs
    5895              :     /// in the response as the GC cutoff point for the timeline.
    5896              :     #[instrument(skip_all, fields(timeline_id=%self.timeline_id))]
    5897              :     pub(super) async fn find_gc_cutoffs(
    5898              :         &self,
    5899              :         now: SystemTime,
    5900              :         space_cutoff: Lsn,
    5901              :         pitr: Duration,
    5902              :         cancel: &CancellationToken,
    5903              :         ctx: &RequestContext,
    5904              :     ) -> Result<GcCutoffs, PageReconstructError> {
    5905              :         let _timer = self
    5906              :             .metrics
    5907              :             .find_gc_cutoffs_histo
    5908              :             .start_timer()
    5909              :             .record_on_drop();
    5910              : 
    5911              :         pausable_failpoint!("Timeline::find_gc_cutoffs-pausable");
    5912              : 
    5913              :         if cfg!(test) {
    5914              :             // Unit tests which specify zero PITR interval expect to avoid doing any I/O for timestamp lookup
    5915              :             if pitr == Duration::ZERO {
    5916              :                 return Ok(GcCutoffs {
    5917              :                     time: self.get_last_record_lsn(),
    5918              :                     space: space_cutoff,
    5919              :                 });
    5920              :             }
    5921              :         }
    5922              : 
    5923              :         // Calculate a time-based limit on how much to retain:
    5924              :         // - if PITR interval is set, then this is our cutoff.
    5925              :         // - if PITR interval is not set, then we do a lookup
    5926              :         //   based on DEFAULT_PITR_INTERVAL, so that size-based retention does not result in keeping history around permanently on idle databases.
    5927              :         let time_cutoff = self.find_gc_time_cutoff(now, pitr, cancel, ctx).await?;
    5928              : 
    5929              :         Ok(match (pitr, time_cutoff) {
    5930              :             (Duration::ZERO, Some(time_cutoff)) => {
    5931              :                 // PITR is not set. Retain the size-based limit, or the default time retention,
    5932              :                 // whichever requires less data.
    5933              :                 GcCutoffs {
    5934              :                     time: self.get_last_record_lsn(),
    5935              :                     space: std::cmp::max(time_cutoff, space_cutoff),
    5936              :                 }
    5937              :             }
    5938              :             (Duration::ZERO, None) => {
    5939              :                 // PITR is not set, and time lookup failed
    5940              :                 GcCutoffs {
    5941              :                     time: self.get_last_record_lsn(),
    5942              :                     space: space_cutoff,
    5943              :                 }
    5944              :             }
    5945              :             (_, None) => {
    5946              :                 // PITR interval is set & we didn't look up a timestamp successfully.  Conservatively assume PITR
    5947              :                 // cannot advance beyond what was already GC'd, and respect space-based retention
    5948              :                 GcCutoffs {
    5949              :                     time: *self.get_applied_gc_cutoff_lsn(),
    5950              :                     space: space_cutoff,
    5951              :                 }
    5952              :             }
    5953              :             (_, Some(time_cutoff)) => {
    5954              :                 // PITR interval is set and we looked up timestamp successfully.  Ignore
    5955              :                 // size based retention and make time cutoff authoritative
    5956              :                 GcCutoffs {
    5957              :                     time: time_cutoff,
    5958              :                     space: time_cutoff,
    5959              :                 }
    5960              :             }
    5961              :         })
    5962              :     }
    5963              : 
    5964              :     /// Garbage collect layer files on a timeline that are no longer needed.
    5965              :     ///
    5966              :     /// Currently, we don't make any attempt at removing unneeded page versions
    5967              :     /// within a layer file. We can only remove the whole file if it's fully
    5968              :     /// obsolete.
    5969            8 :     pub(super) async fn gc(&self) -> Result<GcResult, GcError> {
    5970              :         // this is most likely the background tasks, but it might be the spawned task from
    5971              :         // immediate_gc
    5972            8 :         let _g = tokio::select! {
    5973            8 :             guard = self.gc_lock.lock() => guard,
    5974            8 :             _ = self.cancel.cancelled() => return Ok(GcResult::default()),
    5975              :         };
    5976            8 :         let timer = self.metrics.garbage_collect_histo.start_timer();
    5977            8 : 
    5978            8 :         fail_point!("before-timeline-gc");
    5979            8 : 
    5980            8 :         // Is the timeline being deleted?
    5981            8 :         if self.is_stopping() {
    5982            0 :             return Err(GcError::TimelineCancelled);
    5983            8 :         }
    5984            8 : 
    5985            8 :         let (space_cutoff, time_cutoff, retain_lsns, max_lsn_with_valid_lease) = {
    5986            8 :             let gc_info = self.gc_info.read().unwrap();
    5987            8 : 
    5988            8 :             let space_cutoff = min(gc_info.cutoffs.space, self.get_disk_consistent_lsn());
    5989            8 :             let time_cutoff = gc_info.cutoffs.time;
    5990            8 :             let retain_lsns = gc_info
    5991            8 :                 .retain_lsns
    5992            8 :                 .iter()
    5993            8 :                 .map(|(lsn, _child_id, _is_offloaded)| *lsn)
    5994            8 :                 .collect();
    5995            8 : 
    5996            8 :             // Gets the maximum LSN that holds the valid lease.
    5997            8 :             //
    5998            8 :             // Caveat: `refresh_gc_info` is in charged of updating the lease map.
    5999            8 :             // Here, we do not check for stale leases again.
    6000            8 :             let max_lsn_with_valid_lease = gc_info.leases.last_key_value().map(|(lsn, _)| *lsn);
    6001            8 : 
    6002            8 :             (
    6003            8 :                 space_cutoff,
    6004            8 :                 time_cutoff,
    6005            8 :                 retain_lsns,
    6006            8 :                 max_lsn_with_valid_lease,
    6007            8 :             )
    6008            8 :         };
    6009            8 : 
    6010            8 :         let mut new_gc_cutoff = Lsn::min(space_cutoff, time_cutoff);
    6011            8 :         let standby_horizon = self.standby_horizon.load();
    6012            8 :         // Hold GC for the standby, but as a safety guard do it only within some
    6013            8 :         // reasonable lag.
    6014            8 :         if standby_horizon != Lsn::INVALID {
    6015            0 :             if let Some(standby_lag) = new_gc_cutoff.checked_sub(standby_horizon) {
    6016              :                 const MAX_ALLOWED_STANDBY_LAG: u64 = 10u64 << 30; // 10 GB
    6017            0 :                 if standby_lag.0 < MAX_ALLOWED_STANDBY_LAG {
    6018            0 :                     new_gc_cutoff = Lsn::min(standby_horizon, new_gc_cutoff);
    6019            0 :                     trace!("holding off GC for standby apply LSN {}", standby_horizon);
    6020              :                 } else {
    6021            0 :                     warn!(
    6022            0 :                         "standby is lagging for more than {}MB, not holding gc for it",
    6023            0 :                         MAX_ALLOWED_STANDBY_LAG / 1024 / 1024
    6024              :                     )
    6025              :                 }
    6026            0 :             }
    6027            8 :         }
    6028              : 
    6029              :         // Reset standby horizon to ignore it if it is not updated till next GC.
    6030              :         // It is an easy way to unset it when standby disappears without adding
    6031              :         // more conf options.
    6032            8 :         self.standby_horizon.store(Lsn::INVALID);
    6033            8 :         self.metrics
    6034            8 :             .standby_horizon_gauge
    6035            8 :             .set(Lsn::INVALID.0 as i64);
    6036              : 
    6037            8 :         let res = self
    6038            8 :             .gc_timeline(
    6039            8 :                 space_cutoff,
    6040            8 :                 time_cutoff,
    6041            8 :                 retain_lsns,
    6042            8 :                 max_lsn_with_valid_lease,
    6043            8 :                 new_gc_cutoff,
    6044            8 :             )
    6045            8 :             .instrument(
    6046            8 :                 info_span!("gc_timeline", timeline_id = %self.timeline_id, cutoff = %new_gc_cutoff),
    6047              :             )
    6048            8 :             .await?;
    6049              : 
    6050              :         // only record successes
    6051            8 :         timer.stop_and_record();
    6052            8 : 
    6053            8 :         Ok(res)
    6054            8 :     }
    6055              : 
    6056            8 :     async fn gc_timeline(
    6057            8 :         &self,
    6058            8 :         space_cutoff: Lsn,
    6059            8 :         time_cutoff: Lsn,
    6060            8 :         retain_lsns: Vec<Lsn>,
    6061            8 :         max_lsn_with_valid_lease: Option<Lsn>,
    6062            8 :         new_gc_cutoff: Lsn,
    6063            8 :     ) -> Result<GcResult, GcError> {
    6064            8 :         // FIXME: if there is an ongoing detach_from_ancestor, we should just skip gc
    6065            8 : 
    6066            8 :         let now = SystemTime::now();
    6067            8 :         let mut result: GcResult = GcResult::default();
    6068            8 : 
    6069            8 :         // Nothing to GC. Return early.
    6070            8 :         let latest_gc_cutoff = *self.get_applied_gc_cutoff_lsn();
    6071            8 :         if latest_gc_cutoff >= new_gc_cutoff {
    6072            0 :             info!(
    6073            0 :                 "Nothing to GC: new_gc_cutoff_lsn {new_gc_cutoff}, latest_gc_cutoff_lsn {latest_gc_cutoff}",
    6074              :             );
    6075            0 :             return Ok(result);
    6076            8 :         }
    6077              : 
    6078              :         // We need to ensure that no one tries to read page versions or create
    6079              :         // branches at a point before latest_gc_cutoff_lsn. See branch_timeline()
    6080              :         // for details. This will block until the old value is no longer in use.
    6081              :         //
    6082              :         // The GC cutoff should only ever move forwards.
    6083            8 :         let waitlist = {
    6084            8 :             let write_guard = self.applied_gc_cutoff_lsn.lock_for_write();
    6085            8 :             if *write_guard > new_gc_cutoff {
    6086            0 :                 return Err(GcError::BadLsn {
    6087            0 :                     why: format!(
    6088            0 :                         "Cannot move GC cutoff LSN backwards (was {}, new {})",
    6089            0 :                         *write_guard, new_gc_cutoff
    6090            0 :                     ),
    6091            0 :                 });
    6092            8 :             }
    6093            8 : 
    6094            8 :             write_guard.store_and_unlock(new_gc_cutoff)
    6095            8 :         };
    6096            8 :         waitlist.wait().await;
    6097              : 
    6098            8 :         info!("GC starting");
    6099              : 
    6100            8 :         debug!("retain_lsns: {:?}", retain_lsns);
    6101              : 
    6102            8 :         let mut layers_to_remove = Vec::new();
    6103              : 
    6104              :         // Scan all layers in the timeline (remote or on-disk).
    6105              :         //
    6106              :         // Garbage collect the layer if all conditions are satisfied:
    6107              :         // 1. it is older than cutoff LSN;
    6108              :         // 2. it is older than PITR interval;
    6109              :         // 3. it doesn't need to be retained for 'retain_lsns';
    6110              :         // 4. it does not need to be kept for LSNs holding valid leases.
    6111              :         // 5. newer on-disk image layers cover the layer's whole key range
    6112              :         //
    6113              :         // TODO holding a write lock is too agressive and avoidable
    6114            8 :         let mut guard = self.layers.write().await;
    6115            8 :         let layers = guard.layer_map()?;
    6116           48 :         'outer: for l in layers.iter_historic_layers() {
    6117           48 :             result.layers_total += 1;
    6118           48 : 
    6119           48 :             // 1. Is it newer than GC horizon cutoff point?
    6120           48 :             if l.get_lsn_range().end > space_cutoff {
    6121            4 :                 info!(
    6122            0 :                     "keeping {} because it's newer than space_cutoff {}",
    6123            0 :                     l.layer_name(),
    6124              :                     space_cutoff,
    6125              :                 );
    6126            4 :                 result.layers_needed_by_cutoff += 1;
    6127            4 :                 continue 'outer;
    6128           44 :             }
    6129           44 : 
    6130           44 :             // 2. It is newer than PiTR cutoff point?
    6131           44 :             if l.get_lsn_range().end > time_cutoff {
    6132            0 :                 info!(
    6133            0 :                     "keeping {} because it's newer than time_cutoff {}",
    6134            0 :                     l.layer_name(),
    6135              :                     time_cutoff,
    6136              :                 );
    6137            0 :                 result.layers_needed_by_pitr += 1;
    6138            0 :                 continue 'outer;
    6139           44 :             }
    6140              : 
    6141              :             // 3. Is it needed by a child branch?
    6142              :             // NOTE With that we would keep data that
    6143              :             // might be referenced by child branches forever.
    6144              :             // We can track this in child timeline GC and delete parent layers when
    6145              :             // they are no longer needed. This might be complicated with long inheritance chains.
    6146              :             //
    6147              :             // TODO Vec is not a great choice for `retain_lsns`
    6148           44 :             for retain_lsn in &retain_lsns {
    6149              :                 // start_lsn is inclusive
    6150            0 :                 if &l.get_lsn_range().start <= retain_lsn {
    6151            0 :                     info!(
    6152            0 :                         "keeping {} because it's still might be referenced by child branch forked at {} is_dropped: xx is_incremental: {}",
    6153            0 :                         l.layer_name(),
    6154            0 :                         retain_lsn,
    6155            0 :                         l.is_incremental(),
    6156              :                     );
    6157            0 :                     result.layers_needed_by_branches += 1;
    6158            0 :                     continue 'outer;
    6159            0 :                 }
    6160              :             }
    6161              : 
    6162              :             // 4. Is there a valid lease that requires us to keep this layer?
    6163           44 :             if let Some(lsn) = &max_lsn_with_valid_lease {
    6164              :                 // keep if layer start <= any of the lease
    6165           36 :                 if &l.get_lsn_range().start <= lsn {
    6166           28 :                     info!(
    6167            0 :                         "keeping {} because there is a valid lease preventing GC at {}",
    6168            0 :                         l.layer_name(),
    6169              :                         lsn,
    6170              :                     );
    6171           28 :                     result.layers_needed_by_leases += 1;
    6172           28 :                     continue 'outer;
    6173            8 :                 }
    6174            8 :             }
    6175              : 
    6176              :             // 5. Is there a later on-disk layer for this relation?
    6177              :             //
    6178              :             // The end-LSN is exclusive, while disk_consistent_lsn is
    6179              :             // inclusive. For example, if disk_consistent_lsn is 100, it is
    6180              :             // OK for a delta layer to have end LSN 101, but if the end LSN
    6181              :             // is 102, then it might not have been fully flushed to disk
    6182              :             // before crash.
    6183              :             //
    6184              :             // For example, imagine that the following layers exist:
    6185              :             //
    6186              :             // 1000      - image (A)
    6187              :             // 1000-2000 - delta (B)
    6188              :             // 2000      - image (C)
    6189              :             // 2000-3000 - delta (D)
    6190              :             // 3000      - image (E)
    6191              :             //
    6192              :             // If GC horizon is at 2500, we can remove layers A and B, but
    6193              :             // we cannot remove C, even though it's older than 2500, because
    6194              :             // the delta layer 2000-3000 depends on it.
    6195           16 :             if !layers
    6196           16 :                 .image_layer_exists(&l.get_key_range(), &(l.get_lsn_range().end..new_gc_cutoff))
    6197              :             {
    6198           12 :                 info!("keeping {} because it is the latest layer", l.layer_name());
    6199           12 :                 result.layers_not_updated += 1;
    6200           12 :                 continue 'outer;
    6201            4 :             }
    6202            4 : 
    6203            4 :             // We didn't find any reason to keep this file, so remove it.
    6204            4 :             info!(
    6205            0 :                 "garbage collecting {} is_dropped: xx is_incremental: {}",
    6206            0 :                 l.layer_name(),
    6207            0 :                 l.is_incremental(),
    6208              :             );
    6209            4 :             layers_to_remove.push(l);
    6210              :         }
    6211              : 
    6212            8 :         if !layers_to_remove.is_empty() {
    6213              :             // Persist the new GC cutoff value before we actually remove anything.
    6214              :             // This unconditionally schedules also an index_part.json update, even though, we will
    6215              :             // be doing one a bit later with the unlinked gc'd layers.
    6216            4 :             let disk_consistent_lsn = self.disk_consistent_lsn.load();
    6217            4 :             self.schedule_uploads(disk_consistent_lsn, None)
    6218            4 :                 .map_err(|e| {
    6219            0 :                     if self.cancel.is_cancelled() {
    6220            0 :                         GcError::TimelineCancelled
    6221              :                     } else {
    6222            0 :                         GcError::Remote(e)
    6223              :                     }
    6224            4 :                 })?;
    6225              : 
    6226            4 :             let gc_layers = layers_to_remove
    6227            4 :                 .iter()
    6228            4 :                 .map(|x| guard.get_from_desc(x))
    6229            4 :                 .collect::<Vec<Layer>>();
    6230            4 : 
    6231            4 :             result.layers_removed = gc_layers.len() as u64;
    6232            4 : 
    6233            4 :             self.remote_client.schedule_gc_update(&gc_layers)?;
    6234              : 
    6235            4 :             guard.open_mut()?.finish_gc_timeline(&gc_layers);
    6236            4 : 
    6237            4 :             #[cfg(feature = "testing")]
    6238            4 :             {
    6239            4 :                 result.doomed_layers = gc_layers;
    6240            4 :             }
    6241            4 :         }
    6242              : 
    6243            8 :         info!(
    6244            0 :             "GC completed removing {} layers, cutoff {}",
    6245              :             result.layers_removed, new_gc_cutoff
    6246              :         );
    6247              : 
    6248            8 :         result.elapsed = now.elapsed().unwrap_or(Duration::ZERO);
    6249            8 :         Ok(result)
    6250            8 :     }
    6251              : 
    6252              :     /// Reconstruct a value, using the given base image and WAL records in 'data'.
    6253      1340148 :     async fn reconstruct_value(
    6254      1340148 :         &self,
    6255      1340148 :         key: Key,
    6256      1340148 :         request_lsn: Lsn,
    6257      1340148 :         mut data: ValueReconstructState,
    6258      1340148 :     ) -> Result<Bytes, PageReconstructError> {
    6259      1340148 :         // Perform WAL redo if needed
    6260      1340148 :         data.records.reverse();
    6261      1340148 : 
    6262      1340148 :         // If we have a page image, and no WAL, we're all set
    6263      1340148 :         if data.records.is_empty() {
    6264      1338472 :             if let Some((img_lsn, img)) = &data.img {
    6265      1338472 :                 trace!(
    6266            0 :                     "found page image for key {} at {}, no WAL redo required, req LSN {}",
    6267              :                     key, img_lsn, request_lsn,
    6268              :                 );
    6269      1338472 :                 Ok(img.clone())
    6270              :             } else {
    6271            0 :                 Err(PageReconstructError::from(anyhow!(
    6272            0 :                     "base image for {key} at {request_lsn} not found"
    6273            0 :                 )))
    6274              :             }
    6275              :         } else {
    6276              :             // We need to do WAL redo.
    6277              :             //
    6278              :             // If we don't have a base image, then the oldest WAL record better initialize
    6279              :             // the page
    6280         1676 :             if data.img.is_none() && !data.records.first().unwrap().1.will_init() {
    6281            0 :                 Err(PageReconstructError::from(anyhow!(
    6282            0 :                     "Base image for {} at {} not found, but got {} WAL records",
    6283            0 :                     key,
    6284            0 :                     request_lsn,
    6285            0 :                     data.records.len()
    6286            0 :                 )))
    6287              :             } else {
    6288         1676 :                 if data.img.is_some() {
    6289         1536 :                     trace!(
    6290            0 :                         "found {} WAL records and a base image for {} at {}, performing WAL redo",
    6291            0 :                         data.records.len(),
    6292              :                         key,
    6293              :                         request_lsn
    6294              :                     );
    6295              :                 } else {
    6296          140 :                     trace!(
    6297            0 :                         "found {} WAL records that will init the page for {} at {}, performing WAL redo",
    6298            0 :                         data.records.len(),
    6299              :                         key,
    6300              :                         request_lsn
    6301              :                     );
    6302              :                 };
    6303         1676 :                 let res = self
    6304         1676 :                     .walredo_mgr
    6305         1676 :                     .as_ref()
    6306         1676 :                     .context("timeline has no walredo manager")
    6307         1676 :                     .map_err(PageReconstructError::WalRedo)?
    6308         1676 :                     .request_redo(key, request_lsn, data.img, data.records, self.pg_version)
    6309         1676 :                     .await;
    6310         1676 :                 let img = match res {
    6311         1676 :                     Ok(img) => img,
    6312            0 :                     Err(walredo::Error::Cancelled) => return Err(PageReconstructError::Cancelled),
    6313            0 :                     Err(walredo::Error::Other(err)) => {
    6314            0 :                         critical!("walredo failure during page reconstruction: {err:?}");
    6315            0 :                         return Err(PageReconstructError::WalRedo(
    6316            0 :                             err.context("reconstruct a page image"),
    6317            0 :                         ));
    6318              :                     }
    6319              :                 };
    6320         1676 :                 Ok(img)
    6321              :             }
    6322              :         }
    6323      1340148 :     }
    6324              : 
    6325            0 :     pub(crate) async fn spawn_download_all_remote_layers(
    6326            0 :         self: Arc<Self>,
    6327            0 :         request: DownloadRemoteLayersTaskSpawnRequest,
    6328            0 :         ctx: &RequestContext,
    6329            0 :     ) -> Result<DownloadRemoteLayersTaskInfo, DownloadRemoteLayersTaskInfo> {
    6330              :         use pageserver_api::models::DownloadRemoteLayersTaskState;
    6331              : 
    6332              :         // this is not really needed anymore; it has tests which really check the return value from
    6333              :         // http api. it would be better not to maintain this anymore.
    6334              : 
    6335            0 :         let mut status_guard = self.download_all_remote_layers_task_info.write().unwrap();
    6336            0 :         if let Some(st) = &*status_guard {
    6337            0 :             match &st.state {
    6338              :                 DownloadRemoteLayersTaskState::Running => {
    6339            0 :                     return Err(st.clone());
    6340              :                 }
    6341              :                 DownloadRemoteLayersTaskState::ShutDown
    6342            0 :                 | DownloadRemoteLayersTaskState::Completed => {
    6343            0 :                     *status_guard = None;
    6344            0 :                 }
    6345              :             }
    6346            0 :         }
    6347              : 
    6348            0 :         let self_clone = Arc::clone(&self);
    6349            0 :         let task_ctx = ctx.detached_child(
    6350            0 :             TaskKind::DownloadAllRemoteLayers,
    6351            0 :             DownloadBehavior::Download,
    6352            0 :         );
    6353            0 :         let task_id = task_mgr::spawn(
    6354            0 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    6355            0 :             task_mgr::TaskKind::DownloadAllRemoteLayers,
    6356            0 :             self.tenant_shard_id,
    6357            0 :             Some(self.timeline_id),
    6358            0 :             "download all remote layers task",
    6359            0 :             async move {
    6360            0 :                 self_clone.download_all_remote_layers(request, &task_ctx).await;
    6361            0 :                 let mut status_guard = self_clone.download_all_remote_layers_task_info.write().unwrap();
    6362            0 :                  match &mut *status_guard {
    6363              :                     None => {
    6364            0 :                         warn!("tasks status is supposed to be Some(), since we are running");
    6365              :                     }
    6366            0 :                     Some(st) => {
    6367            0 :                         let exp_task_id = format!("{}", task_mgr::current_task_id().unwrap());
    6368            0 :                         if st.task_id != exp_task_id {
    6369            0 :                             warn!("task id changed while we were still running, expecting {} but have {}", exp_task_id, st.task_id);
    6370            0 :                         } else {
    6371            0 :                             st.state = DownloadRemoteLayersTaskState::Completed;
    6372            0 :                         }
    6373              :                     }
    6374              :                 };
    6375            0 :                 Ok(())
    6376            0 :             }
    6377            0 :             .instrument(info_span!(parent: None, "download_all_remote_layers", tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))
    6378              :         );
    6379              : 
    6380            0 :         let initial_info = DownloadRemoteLayersTaskInfo {
    6381            0 :             task_id: format!("{task_id}"),
    6382            0 :             state: DownloadRemoteLayersTaskState::Running,
    6383            0 :             total_layer_count: 0,
    6384            0 :             successful_download_count: 0,
    6385            0 :             failed_download_count: 0,
    6386            0 :         };
    6387            0 :         *status_guard = Some(initial_info.clone());
    6388            0 : 
    6389            0 :         Ok(initial_info)
    6390            0 :     }
    6391              : 
    6392            0 :     async fn download_all_remote_layers(
    6393            0 :         self: &Arc<Self>,
    6394            0 :         request: DownloadRemoteLayersTaskSpawnRequest,
    6395            0 :         ctx: &RequestContext,
    6396            0 :     ) {
    6397              :         use pageserver_api::models::DownloadRemoteLayersTaskState;
    6398              : 
    6399            0 :         let remaining = {
    6400            0 :             let guard = self.layers.read().await;
    6401            0 :             let Ok(lm) = guard.layer_map() else {
    6402              :                 // technically here we could look into iterating accessible layers, but downloading
    6403              :                 // all layers of a shutdown timeline makes no sense regardless.
    6404            0 :                 tracing::info!("attempted to download all layers of shutdown timeline");
    6405            0 :                 return;
    6406              :             };
    6407            0 :             lm.iter_historic_layers()
    6408            0 :                 .map(|desc| guard.get_from_desc(&desc))
    6409            0 :                 .collect::<Vec<_>>()
    6410            0 :         };
    6411            0 :         let total_layer_count = remaining.len();
    6412              : 
    6413              :         macro_rules! lock_status {
    6414              :             ($st:ident) => {
    6415              :                 let mut st = self.download_all_remote_layers_task_info.write().unwrap();
    6416              :                 let st = st
    6417              :                     .as_mut()
    6418              :                     .expect("this function is only called after the task has been spawned");
    6419              :                 assert_eq!(
    6420              :                     st.task_id,
    6421              :                     format!(
    6422              :                         "{}",
    6423              :                         task_mgr::current_task_id().expect("we run inside a task_mgr task")
    6424              :                     )
    6425              :                 );
    6426              :                 let $st = st;
    6427              :             };
    6428              :         }
    6429              : 
    6430              :         {
    6431            0 :             lock_status!(st);
    6432            0 :             st.total_layer_count = total_layer_count as u64;
    6433            0 :         }
    6434            0 : 
    6435            0 :         let mut remaining = remaining.into_iter();
    6436            0 :         let mut have_remaining = true;
    6437            0 :         let mut js = tokio::task::JoinSet::new();
    6438            0 : 
    6439            0 :         let cancel = task_mgr::shutdown_token();
    6440            0 : 
    6441            0 :         let limit = request.max_concurrent_downloads;
    6442              : 
    6443              :         loop {
    6444            0 :             while js.len() < limit.get() && have_remaining && !cancel.is_cancelled() {
    6445            0 :                 let Some(next) = remaining.next() else {
    6446            0 :                     have_remaining = false;
    6447            0 :                     break;
    6448              :                 };
    6449              : 
    6450            0 :                 let span = tracing::info_span!("download", layer = %next);
    6451              : 
    6452            0 :                 let ctx = ctx.attached_child();
    6453            0 :                 js.spawn(
    6454            0 :                     async move {
    6455            0 :                         let res = next.download(&ctx).await;
    6456            0 :                         (next, res)
    6457            0 :                     }
    6458            0 :                     .instrument(span),
    6459            0 :                 );
    6460            0 :             }
    6461              : 
    6462            0 :             while let Some(res) = js.join_next().await {
    6463            0 :                 match res {
    6464              :                     Ok((_, Ok(_))) => {
    6465            0 :                         lock_status!(st);
    6466            0 :                         st.successful_download_count += 1;
    6467              :                     }
    6468            0 :                     Ok((layer, Err(e))) => {
    6469            0 :                         tracing::error!(%layer, "download failed: {e:#}");
    6470            0 :                         lock_status!(st);
    6471            0 :                         st.failed_download_count += 1;
    6472              :                     }
    6473            0 :                     Err(je) if je.is_cancelled() => unreachable!("not used here"),
    6474            0 :                     Err(je) if je.is_panic() => {
    6475            0 :                         lock_status!(st);
    6476            0 :                         st.failed_download_count += 1;
    6477              :                     }
    6478            0 :                     Err(je) => tracing::warn!("unknown joinerror: {je:?}"),
    6479              :                 }
    6480              :             }
    6481              : 
    6482            0 :             if js.is_empty() && (!have_remaining || cancel.is_cancelled()) {
    6483            0 :                 break;
    6484            0 :             }
    6485              :         }
    6486              : 
    6487              :         {
    6488            0 :             lock_status!(st);
    6489            0 :             st.state = DownloadRemoteLayersTaskState::Completed;
    6490              :         }
    6491            0 :     }
    6492              : 
    6493            0 :     pub(crate) fn get_download_all_remote_layers_task_info(
    6494            0 :         &self,
    6495            0 :     ) -> Option<DownloadRemoteLayersTaskInfo> {
    6496            0 :         self.download_all_remote_layers_task_info
    6497            0 :             .read()
    6498            0 :             .unwrap()
    6499            0 :             .clone()
    6500            0 :     }
    6501              : }
    6502              : 
    6503              : impl Timeline {
    6504              :     /// Returns non-remote layers for eviction.
    6505            0 :     pub(crate) async fn get_local_layers_for_disk_usage_eviction(&self) -> DiskUsageEvictionInfo {
    6506            0 :         let guard = self.layers.read().await;
    6507            0 :         let mut max_layer_size: Option<u64> = None;
    6508            0 : 
    6509            0 :         let resident_layers = guard
    6510            0 :             .likely_resident_layers()
    6511            0 :             .map(|layer| {
    6512            0 :                 let file_size = layer.layer_desc().file_size;
    6513            0 :                 max_layer_size = max_layer_size.map_or(Some(file_size), |m| Some(m.max(file_size)));
    6514            0 : 
    6515            0 :                 let last_activity_ts = layer.latest_activity();
    6516            0 : 
    6517            0 :                 EvictionCandidate {
    6518            0 :                     layer: layer.to_owned().into(),
    6519            0 :                     last_activity_ts,
    6520            0 :                     relative_last_activity: finite_f32::FiniteF32::ZERO,
    6521            0 :                     visibility: layer.visibility(),
    6522            0 :                 }
    6523            0 :             })
    6524            0 :             .collect();
    6525            0 : 
    6526            0 :         DiskUsageEvictionInfo {
    6527            0 :             max_layer_size,
    6528            0 :             resident_layers,
    6529            0 :         }
    6530            0 :     }
    6531              : 
    6532         3748 :     pub(crate) fn get_shard_index(&self) -> ShardIndex {
    6533         3748 :         ShardIndex {
    6534         3748 :             shard_number: self.tenant_shard_id.shard_number,
    6535         3748 :             shard_count: self.tenant_shard_id.shard_count,
    6536         3748 :         }
    6537         3748 :     }
    6538              : 
    6539              :     /// Persistently blocks gc for `Manual` reason.
    6540              :     ///
    6541              :     /// Returns true if no such block existed before, false otherwise.
    6542            0 :     pub(crate) async fn block_gc(&self, tenant: &super::Tenant) -> anyhow::Result<bool> {
    6543              :         use crate::tenant::remote_timeline_client::index::GcBlockingReason;
    6544            0 :         assert_eq!(self.tenant_shard_id, tenant.tenant_shard_id);
    6545            0 :         tenant.gc_block.insert(self, GcBlockingReason::Manual).await
    6546            0 :     }
    6547              : 
    6548              :     /// Persistently unblocks gc for `Manual` reason.
    6549            0 :     pub(crate) async fn unblock_gc(&self, tenant: &super::Tenant) -> anyhow::Result<()> {
    6550              :         use crate::tenant::remote_timeline_client::index::GcBlockingReason;
    6551            0 :         assert_eq!(self.tenant_shard_id, tenant.tenant_shard_id);
    6552            0 :         tenant.gc_block.remove(self, GcBlockingReason::Manual).await
    6553            0 :     }
    6554              : 
    6555              :     #[cfg(test)]
    6556          100 :     pub(super) fn force_advance_lsn(self: &Arc<Timeline>, new_lsn: Lsn) {
    6557          100 :         self.last_record_lsn.advance(new_lsn);
    6558          100 :     }
    6559              : 
    6560              :     #[cfg(test)]
    6561            4 :     pub(super) fn force_set_disk_consistent_lsn(&self, new_value: Lsn) {
    6562            4 :         self.disk_consistent_lsn.store(new_value);
    6563            4 :     }
    6564              : 
    6565              :     /// Force create an image layer and place it into the layer map.
    6566              :     ///
    6567              :     /// DO NOT use this function directly. Use [`Tenant::branch_timeline_test_with_layers`]
    6568              :     /// or [`Tenant::create_test_timeline_with_layers`] to ensure all these layers are
    6569              :     /// placed into the layer map in one run AND be validated.
    6570              :     #[cfg(test)]
    6571          128 :     pub(super) async fn force_create_image_layer(
    6572          128 :         self: &Arc<Timeline>,
    6573          128 :         lsn: Lsn,
    6574          128 :         mut images: Vec<(Key, Bytes)>,
    6575          128 :         check_start_lsn: Option<Lsn>,
    6576          128 :         ctx: &RequestContext,
    6577          128 :     ) -> anyhow::Result<()> {
    6578          128 :         let last_record_lsn = self.get_last_record_lsn();
    6579          128 :         assert!(
    6580          128 :             lsn <= last_record_lsn,
    6581            0 :             "advance last record lsn before inserting a layer, lsn={lsn}, last_record_lsn={last_record_lsn}"
    6582              :         );
    6583          128 :         if let Some(check_start_lsn) = check_start_lsn {
    6584          128 :             assert!(lsn >= check_start_lsn);
    6585            0 :         }
    6586          380 :         images.sort_unstable_by(|(ka, _), (kb, _)| ka.cmp(kb));
    6587          128 :         let min_key = *images.first().map(|(k, _)| k).unwrap();
    6588          128 :         let end_key = images.last().map(|(k, _)| k).unwrap().next();
    6589          128 :         let mut image_layer_writer = ImageLayerWriter::new(
    6590          128 :             self.conf,
    6591          128 :             self.timeline_id,
    6592          128 :             self.tenant_shard_id,
    6593          128 :             &(min_key..end_key),
    6594          128 :             lsn,
    6595          128 :             ctx,
    6596          128 :         )
    6597          128 :         .await?;
    6598          636 :         for (key, img) in images {
    6599          508 :             image_layer_writer.put_image(key, img, ctx).await?;
    6600              :         }
    6601          128 :         let (desc, path) = image_layer_writer.finish(ctx).await?;
    6602          128 :         let image_layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    6603          128 :         info!("force created image layer {}", image_layer.local_path());
    6604              :         {
    6605          128 :             let mut guard = self.layers.write().await;
    6606          128 :             guard
    6607          128 :                 .open_mut()
    6608          128 :                 .unwrap()
    6609          128 :                 .force_insert_layer(image_layer.clone());
    6610          128 :         }
    6611          128 : 
    6612          128 :         // Update remote_timeline_client state to reflect existence of this layer
    6613          128 :         self.remote_client
    6614          128 :             .schedule_layer_file_upload(image_layer)
    6615          128 :             .unwrap();
    6616          128 : 
    6617          128 :         Ok(())
    6618          128 :     }
    6619              : 
    6620              :     /// Force create a delta layer and place it into the layer map.
    6621              :     ///
    6622              :     /// DO NOT use this function directly. Use [`Tenant::branch_timeline_test_with_layers`]
    6623              :     /// or [`Tenant::create_test_timeline_with_layers`] to ensure all these layers are
    6624              :     /// placed into the layer map in one run AND be validated.
    6625              :     #[cfg(test)]
    6626          184 :     pub(super) async fn force_create_delta_layer(
    6627          184 :         self: &Arc<Timeline>,
    6628          184 :         mut deltas: DeltaLayerTestDesc,
    6629          184 :         check_start_lsn: Option<Lsn>,
    6630          184 :         ctx: &RequestContext,
    6631          184 :     ) -> anyhow::Result<()> {
    6632          184 :         let last_record_lsn = self.get_last_record_lsn();
    6633          184 :         deltas
    6634          184 :             .data
    6635          264 :             .sort_unstable_by(|(ka, la, _), (kb, lb, _)| (ka, la).cmp(&(kb, lb)));
    6636          184 :         assert!(deltas.data.first().unwrap().0 >= deltas.key_range.start);
    6637          184 :         assert!(deltas.data.last().unwrap().0 < deltas.key_range.end);
    6638          632 :         for (_, lsn, _) in &deltas.data {
    6639          448 :             assert!(deltas.lsn_range.start <= *lsn && *lsn < deltas.lsn_range.end);
    6640              :         }
    6641          184 :         assert!(
    6642          184 :             deltas.lsn_range.end <= last_record_lsn,
    6643            0 :             "advance last record lsn before inserting a layer, end_lsn={}, last_record_lsn={}",
    6644              :             deltas.lsn_range.end,
    6645              :             last_record_lsn
    6646              :         );
    6647          184 :         if let Some(check_start_lsn) = check_start_lsn {
    6648          184 :             assert!(deltas.lsn_range.start >= check_start_lsn);
    6649            0 :         }
    6650          184 :         let mut delta_layer_writer = DeltaLayerWriter::new(
    6651          184 :             self.conf,
    6652          184 :             self.timeline_id,
    6653          184 :             self.tenant_shard_id,
    6654          184 :             deltas.key_range.start,
    6655          184 :             deltas.lsn_range,
    6656          184 :             ctx,
    6657          184 :         )
    6658          184 :         .await?;
    6659          632 :         for (key, lsn, val) in deltas.data {
    6660          448 :             delta_layer_writer.put_value(key, lsn, val, ctx).await?;
    6661              :         }
    6662          184 :         let (desc, path) = delta_layer_writer.finish(deltas.key_range.end, ctx).await?;
    6663          184 :         let delta_layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    6664          184 :         info!("force created delta layer {}", delta_layer.local_path());
    6665              :         {
    6666          184 :             let mut guard = self.layers.write().await;
    6667          184 :             guard
    6668          184 :                 .open_mut()
    6669          184 :                 .unwrap()
    6670          184 :                 .force_insert_layer(delta_layer.clone());
    6671          184 :         }
    6672          184 : 
    6673          184 :         // Update remote_timeline_client state to reflect existence of this layer
    6674          184 :         self.remote_client
    6675          184 :             .schedule_layer_file_upload(delta_layer)
    6676          184 :             .unwrap();
    6677          184 : 
    6678          184 :         Ok(())
    6679          184 :     }
    6680              : 
    6681              :     /// Force create an in-memory layer and place them into the layer map.
    6682              :     #[cfg(test)]
    6683            8 :     pub(super) async fn force_create_in_memory_layer(
    6684            8 :         self: &Arc<Timeline>,
    6685            8 :         mut in_memory: InMemoryLayerTestDesc,
    6686            8 :         check_start_lsn: Option<Lsn>,
    6687            8 :         ctx: &RequestContext,
    6688            8 :     ) -> anyhow::Result<()> {
    6689              :         use utils::bin_ser::BeSer;
    6690              : 
    6691              :         // Validate LSNs
    6692            8 :         if let Some(check_start_lsn) = check_start_lsn {
    6693            8 :             assert!(in_memory.lsn_range.start >= check_start_lsn);
    6694            0 :         }
    6695              : 
    6696            8 :         let last_record_lsn = self.get_last_record_lsn();
    6697            8 :         let layer_end_lsn = if in_memory.is_open {
    6698            4 :             in_memory
    6699            4 :                 .data
    6700            4 :                 .iter()
    6701           40 :                 .map(|(_key, lsn, _value)| lsn)
    6702            4 :                 .max()
    6703            4 :                 .cloned()
    6704              :         } else {
    6705            4 :             Some(in_memory.lsn_range.end)
    6706              :         };
    6707              : 
    6708            8 :         if let Some(end) = layer_end_lsn {
    6709            8 :             assert!(
    6710            8 :                 end <= last_record_lsn,
    6711            0 :                 "advance last record lsn before inserting a layer, end_lsn={}, last_record_lsn={}",
    6712              :                 end,
    6713              :                 last_record_lsn,
    6714              :             );
    6715            0 :         }
    6716              : 
    6717           80 :         in_memory.data.iter().for_each(|(_key, lsn, _value)| {
    6718           80 :             assert!(*lsn >= in_memory.lsn_range.start);
    6719           80 :             assert!(*lsn < in_memory.lsn_range.end);
    6720           80 :         });
    6721            8 : 
    6722            8 :         // Build the batch
    6723            8 :         in_memory
    6724            8 :             .data
    6725           72 :             .sort_unstable_by(|(ka, la, _), (kb, lb, _)| (ka, la).cmp(&(kb, lb)));
    6726            8 : 
    6727            8 :         let data = in_memory
    6728            8 :             .data
    6729            8 :             .into_iter()
    6730           80 :             .map(|(key, lsn, value)| {
    6731           80 :                 let value_size = value.serialized_size().unwrap() as usize;
    6732           80 :                 (key.to_compact(), lsn, value_size, value)
    6733           80 :             })
    6734            8 :             .collect::<Vec<_>>();
    6735            8 : 
    6736            8 :         let batch = SerializedValueBatch::from_values(data);
    6737              : 
    6738              :         // Create the in-memory layer and write the batch into it
    6739            8 :         let layer = InMemoryLayer::create(
    6740            8 :             self.conf,
    6741            8 :             self.timeline_id,
    6742            8 :             self.tenant_shard_id,
    6743            8 :             in_memory.lsn_range.start,
    6744            8 :             &self.gate,
    6745            8 :             ctx,
    6746            8 :         )
    6747            8 :         .await
    6748            8 :         .unwrap();
    6749            8 : 
    6750            8 :         layer.put_batch(batch, ctx).await.unwrap();
    6751            8 :         if !in_memory.is_open {
    6752            4 :             layer.freeze(in_memory.lsn_range.end).await;
    6753            4 :         }
    6754              : 
    6755            8 :         info!("force created in-memory layer {:?}", in_memory.lsn_range);
    6756              : 
    6757              :         // Link the layer to the layer map
    6758              :         {
    6759            8 :             let mut guard = self.layers.write().await;
    6760            8 :             let layer_map = guard.open_mut().unwrap();
    6761            8 :             layer_map.force_insert_in_memory_layer(Arc::new(layer));
    6762            8 :         }
    6763            8 : 
    6764            8 :         Ok(())
    6765            8 :     }
    6766              : 
    6767              :     /// Return all keys at the LSN in the image layers
    6768              :     #[cfg(test)]
    6769           12 :     pub(crate) async fn inspect_image_layers(
    6770           12 :         self: &Arc<Timeline>,
    6771           12 :         lsn: Lsn,
    6772           12 :         ctx: &RequestContext,
    6773           12 :         io_concurrency: IoConcurrency,
    6774           12 :     ) -> anyhow::Result<Vec<(Key, Bytes)>> {
    6775           12 :         let mut all_data = Vec::new();
    6776           12 :         let guard = self.layers.read().await;
    6777           68 :         for layer in guard.layer_map()?.iter_historic_layers() {
    6778           68 :             if !layer.is_delta() && layer.image_layer_lsn() == lsn {
    6779           16 :                 let layer = guard.get_from_desc(&layer);
    6780           16 :                 let mut reconstruct_data = ValuesReconstructState::new(io_concurrency.clone());
    6781           16 :                 layer
    6782           16 :                     .get_values_reconstruct_data(
    6783           16 :                         KeySpace::single(Key::MIN..Key::MAX),
    6784           16 :                         lsn..Lsn(lsn.0 + 1),
    6785           16 :                         &mut reconstruct_data,
    6786           16 :                         ctx,
    6787           16 :                     )
    6788           16 :                     .await?;
    6789          132 :                 for (k, v) in std::mem::take(&mut reconstruct_data.keys) {
    6790          132 :                     let v = v.collect_pending_ios().await?;
    6791          132 :                     all_data.push((k, v.img.unwrap().1));
    6792              :                 }
    6793           52 :             }
    6794              :         }
    6795           12 :         all_data.sort();
    6796           12 :         Ok(all_data)
    6797           12 :     }
    6798              : 
    6799              :     /// Get all historic layer descriptors in the layer map
    6800              :     #[cfg(test)]
    6801           48 :     pub(crate) async fn inspect_historic_layers(
    6802           48 :         self: &Arc<Timeline>,
    6803           48 :     ) -> anyhow::Result<Vec<super::storage_layer::PersistentLayerKey>> {
    6804           48 :         let mut layers = Vec::new();
    6805           48 :         let guard = self.layers.read().await;
    6806          228 :         for layer in guard.layer_map()?.iter_historic_layers() {
    6807          228 :             layers.push(layer.key());
    6808          228 :         }
    6809           48 :         Ok(layers)
    6810           48 :     }
    6811              : 
    6812              :     #[cfg(test)]
    6813           20 :     pub(crate) fn add_extra_test_dense_keyspace(&self, ks: KeySpace) {
    6814           20 :         let mut keyspace = self.extra_test_dense_keyspace.load().as_ref().clone();
    6815           20 :         keyspace.merge(&ks);
    6816           20 :         self.extra_test_dense_keyspace.store(Arc::new(keyspace));
    6817           20 :     }
    6818              : }
    6819              : 
    6820              : /// Tracking writes ingestion does to a particular in-memory layer.
    6821              : ///
    6822              : /// Cleared upon freezing a layer.
    6823              : pub(crate) struct TimelineWriterState {
    6824              :     open_layer: Arc<InMemoryLayer>,
    6825              :     current_size: u64,
    6826              :     // Previous Lsn which passed through
    6827              :     prev_lsn: Option<Lsn>,
    6828              :     // Largest Lsn which passed through the current writer
    6829              :     max_lsn: Option<Lsn>,
    6830              :     // Cached details of the last freeze. Avoids going trough the atomic/lock on every put.
    6831              :     cached_last_freeze_at: Lsn,
    6832              : }
    6833              : 
    6834              : impl TimelineWriterState {
    6835         2604 :     fn new(open_layer: Arc<InMemoryLayer>, current_size: u64, last_freeze_at: Lsn) -> Self {
    6836         2604 :         Self {
    6837         2604 :             open_layer,
    6838         2604 :             current_size,
    6839         2604 :             prev_lsn: None,
    6840         2604 :             max_lsn: None,
    6841         2604 :             cached_last_freeze_at: last_freeze_at,
    6842         2604 :         }
    6843         2604 :     }
    6844              : }
    6845              : 
    6846              : /// Various functions to mutate the timeline.
    6847              : // TODO Currently, Deref is used to allow easy access to read methods from this trait.
    6848              : // This is probably considered a bad practice in Rust and should be fixed eventually,
    6849              : // but will cause large code changes.
    6850              : pub(crate) struct TimelineWriter<'a> {
    6851              :     tl: &'a Timeline,
    6852              :     write_guard: tokio::sync::MutexGuard<'a, Option<TimelineWriterState>>,
    6853              : }
    6854              : 
    6855              : impl Deref for TimelineWriter<'_> {
    6856              :     type Target = Timeline;
    6857              : 
    6858     19796508 :     fn deref(&self) -> &Self::Target {
    6859     19796508 :         self.tl
    6860     19796508 :     }
    6861              : }
    6862              : 
    6863              : #[derive(PartialEq)]
    6864              : enum OpenLayerAction {
    6865              :     Roll,
    6866              :     Open,
    6867              :     None,
    6868              : }
    6869              : 
    6870              : impl TimelineWriter<'_> {
    6871      9608476 :     async fn handle_open_layer_action(
    6872      9608476 :         &mut self,
    6873      9608476 :         at: Lsn,
    6874      9608476 :         action: OpenLayerAction,
    6875      9608476 :         ctx: &RequestContext,
    6876      9608476 :     ) -> anyhow::Result<&Arc<InMemoryLayer>> {
    6877      9608476 :         match action {
    6878              :             OpenLayerAction::Roll => {
    6879          160 :                 let freeze_at = self.write_guard.as_ref().unwrap().max_lsn.unwrap();
    6880          160 :                 self.roll_layer(freeze_at).await?;
    6881          160 :                 self.open_layer(at, ctx).await?;
    6882              :             }
    6883         2444 :             OpenLayerAction::Open => self.open_layer(at, ctx).await?,
    6884              :             OpenLayerAction::None => {
    6885      9605872 :                 assert!(self.write_guard.is_some());
    6886              :             }
    6887              :         }
    6888              : 
    6889      9608476 :         Ok(&self.write_guard.as_ref().unwrap().open_layer)
    6890      9608476 :     }
    6891              : 
    6892         2604 :     async fn open_layer(&mut self, at: Lsn, ctx: &RequestContext) -> anyhow::Result<()> {
    6893         2604 :         let layer = self
    6894         2604 :             .tl
    6895         2604 :             .get_layer_for_write(at, &self.write_guard, ctx)
    6896         2604 :             .await?;
    6897         2604 :         let initial_size = layer.size().await?;
    6898              : 
    6899         2604 :         let last_freeze_at = self.last_freeze_at.load();
    6900         2604 :         self.write_guard.replace(TimelineWriterState::new(
    6901         2604 :             layer,
    6902         2604 :             initial_size,
    6903         2604 :             last_freeze_at,
    6904         2604 :         ));
    6905         2604 : 
    6906         2604 :         Ok(())
    6907         2604 :     }
    6908              : 
    6909          160 :     async fn roll_layer(&mut self, freeze_at: Lsn) -> Result<(), FlushLayerError> {
    6910          160 :         let current_size = self.write_guard.as_ref().unwrap().current_size;
    6911              : 
    6912              :         // If layer flushes are backpressured due to compaction not keeping up, wait for the flush
    6913              :         // to propagate the backpressure up into WAL ingestion.
    6914          160 :         let l0_count = self
    6915          160 :             .tl
    6916          160 :             .layers
    6917          160 :             .read()
    6918          160 :             .await
    6919          160 :             .layer_map()?
    6920          160 :             .level0_deltas()
    6921          160 :             .len();
    6922          160 :         let wait_thresholds = [
    6923          160 :             self.get_l0_flush_delay_threshold(),
    6924          160 :             self.get_l0_flush_stall_threshold(),
    6925          160 :         ];
    6926          160 :         let wait_threshold = wait_thresholds.into_iter().flatten().min();
    6927              : 
    6928              :         // self.write_guard will be taken by the freezing
    6929          160 :         let flush_id = self
    6930          160 :             .tl
    6931          160 :             .freeze_inmem_layer_at(freeze_at, &mut self.write_guard)
    6932          160 :             .await?;
    6933              : 
    6934          160 :         assert!(self.write_guard.is_none());
    6935              : 
    6936          160 :         if let Some(wait_threshold) = wait_threshold {
    6937            0 :             if l0_count >= wait_threshold {
    6938            0 :                 debug!(
    6939            0 :                     "layer roll waiting for flush due to compaction backpressure at {l0_count} L0 layers"
    6940              :                 );
    6941            0 :                 self.tl.wait_flush_completion(flush_id).await?;
    6942            0 :             }
    6943          160 :         }
    6944              : 
    6945          160 :         if current_size >= self.get_checkpoint_distance() * 2 {
    6946            0 :             warn!("Flushed oversized open layer with size {}", current_size)
    6947          160 :         }
    6948              : 
    6949          160 :         Ok(())
    6950          160 :     }
    6951              : 
    6952      9608476 :     fn get_open_layer_action(&self, lsn: Lsn, new_value_size: u64) -> OpenLayerAction {
    6953      9608476 :         let state = &*self.write_guard;
    6954      9608476 :         let Some(state) = &state else {
    6955         2444 :             return OpenLayerAction::Open;
    6956              :         };
    6957              : 
    6958              :         #[cfg(feature = "testing")]
    6959      9606032 :         if state.cached_last_freeze_at < self.tl.last_freeze_at.load() {
    6960              :             // this check and assertion are not really needed because
    6961              :             // LayerManager::try_freeze_in_memory_layer will always clear out the
    6962              :             // TimelineWriterState if something is frozen. however, we can advance last_freeze_at when there
    6963              :             // is no TimelineWriterState.
    6964            0 :             assert!(
    6965            0 :                 state.open_layer.end_lsn.get().is_some(),
    6966            0 :                 "our open_layer must be outdated"
    6967              :             );
    6968              : 
    6969              :             // this would be a memory leak waiting to happen because the in-memory layer always has
    6970              :             // an index
    6971            0 :             panic!("BUG: TimelineWriterState held on to frozen in-memory layer.");
    6972      9606032 :         }
    6973      9606032 : 
    6974      9606032 :         if state.prev_lsn == Some(lsn) {
    6975              :             // Rolling mid LSN is not supported by [downstream code].
    6976              :             // Hence, only roll at LSN boundaries.
    6977              :             //
    6978              :             // [downstream code]: https://github.com/neondatabase/neon/pull/7993#discussion_r1633345422
    6979           12 :             return OpenLayerAction::None;
    6980      9606020 :         }
    6981      9606020 : 
    6982      9606020 :         if state.current_size == 0 {
    6983              :             // Don't roll empty layers
    6984            0 :             return OpenLayerAction::None;
    6985      9606020 :         }
    6986      9606020 : 
    6987      9606020 :         if self.tl.should_roll(
    6988      9606020 :             state.current_size,
    6989      9606020 :             state.current_size + new_value_size,
    6990      9606020 :             self.get_checkpoint_distance(),
    6991      9606020 :             lsn,
    6992      9606020 :             state.cached_last_freeze_at,
    6993      9606020 :             state.open_layer.get_opened_at(),
    6994      9606020 :         ) {
    6995          160 :             OpenLayerAction::Roll
    6996              :         } else {
    6997      9605860 :             OpenLayerAction::None
    6998              :         }
    6999      9608476 :     }
    7000              : 
    7001              :     /// Put a batch of keys at the specified Lsns.
    7002      9608472 :     pub(crate) async fn put_batch(
    7003      9608472 :         &mut self,
    7004      9608472 :         batch: SerializedValueBatch,
    7005      9608472 :         ctx: &RequestContext,
    7006      9608472 :     ) -> anyhow::Result<()> {
    7007      9608472 :         if !batch.has_data() {
    7008            0 :             return Ok(());
    7009      9608472 :         }
    7010      9608472 : 
    7011      9608472 :         // In debug builds, assert that we don't write any keys that don't belong to this shard.
    7012      9608472 :         // We don't assert this in release builds, since key ownership policies may change over
    7013      9608472 :         // time. Stray keys will be removed during compaction.
    7014      9608472 :         if cfg!(debug_assertions) {
    7015     19789888 :             for metadata in &batch.metadata {
    7016     10181416 :                 if let ValueMeta::Serialized(metadata) = metadata {
    7017     10181416 :                     let key = Key::from_compact(metadata.key);
    7018     10181416 :                     assert!(
    7019     10181416 :                         self.shard_identity.is_key_local(&key)
    7020            0 :                             || self.shard_identity.is_key_global(&key),
    7021            0 :                         "key {key} does not belong on shard {}",
    7022            0 :                         self.shard_identity.shard_index()
    7023              :                     );
    7024            0 :                 }
    7025              :             }
    7026            0 :         }
    7027              : 
    7028      9608472 :         let batch_max_lsn = batch.max_lsn;
    7029      9608472 :         let buf_size: u64 = batch.buffer_size() as u64;
    7030      9608472 : 
    7031      9608472 :         let action = self.get_open_layer_action(batch_max_lsn, buf_size);
    7032      9608472 :         let layer = self
    7033      9608472 :             .handle_open_layer_action(batch_max_lsn, action, ctx)
    7034      9608472 :             .await?;
    7035              : 
    7036      9608472 :         let res = layer.put_batch(batch, ctx).await;
    7037              : 
    7038      9608472 :         if res.is_ok() {
    7039      9608472 :             // Update the current size only when the entire write was ok.
    7040      9608472 :             // In case of failures, we may have had partial writes which
    7041      9608472 :             // render the size tracking out of sync. That's ok because
    7042      9608472 :             // the checkpoint distance should be significantly smaller
    7043      9608472 :             // than the S3 single shot upload limit of 5GiB.
    7044      9608472 :             let state = self.write_guard.as_mut().unwrap();
    7045      9608472 : 
    7046      9608472 :             state.current_size += buf_size;
    7047      9608472 :             state.prev_lsn = Some(batch_max_lsn);
    7048      9608472 :             state.max_lsn = std::cmp::max(state.max_lsn, Some(batch_max_lsn));
    7049      9608472 :         }
    7050              : 
    7051      9608472 :         res
    7052      9608472 :     }
    7053              : 
    7054              :     #[cfg(test)]
    7055              :     /// Test helper, for tests that would like to poke individual values without composing a batch
    7056      8780308 :     pub(crate) async fn put(
    7057      8780308 :         &mut self,
    7058      8780308 :         key: Key,
    7059      8780308 :         lsn: Lsn,
    7060      8780308 :         value: &Value,
    7061      8780308 :         ctx: &RequestContext,
    7062      8780308 :     ) -> anyhow::Result<()> {
    7063              :         use utils::bin_ser::BeSer;
    7064      8780308 :         if !key.is_valid_key_on_write_path() {
    7065            0 :             bail!(
    7066            0 :                 "the request contains data not supported by pageserver at TimelineWriter::put: {}",
    7067            0 :                 key
    7068            0 :             );
    7069      8780308 :         }
    7070      8780308 :         let val_ser_size = value.serialized_size().unwrap() as usize;
    7071      8780308 :         let batch = SerializedValueBatch::from_values(vec![(
    7072      8780308 :             key.to_compact(),
    7073      8780308 :             lsn,
    7074      8780308 :             val_ser_size,
    7075      8780308 :             value.clone(),
    7076      8780308 :         )]);
    7077      8780308 : 
    7078      8780308 :         self.put_batch(batch, ctx).await
    7079      8780308 :     }
    7080              : 
    7081            4 :     pub(crate) async fn delete_batch(
    7082            4 :         &mut self,
    7083            4 :         batch: &[(Range<Key>, Lsn)],
    7084            4 :         ctx: &RequestContext,
    7085            4 :     ) -> anyhow::Result<()> {
    7086            4 :         if let Some((_, lsn)) = batch.first() {
    7087            4 :             let action = self.get_open_layer_action(*lsn, 0);
    7088            4 :             let layer = self.handle_open_layer_action(*lsn, action, ctx).await?;
    7089            4 :             layer.put_tombstones(batch).await?;
    7090            0 :         }
    7091              : 
    7092            4 :         Ok(())
    7093            4 :     }
    7094              : 
    7095              :     /// Track the end of the latest digested WAL record.
    7096              :     /// Remember the (end of) last valid WAL record remembered in the timeline.
    7097              :     ///
    7098              :     /// Call this after you have finished writing all the WAL up to 'lsn'.
    7099              :     ///
    7100              :     /// 'lsn' must be aligned. This wakes up any wait_lsn() callers waiting for
    7101              :     /// the 'lsn' or anything older. The previous last record LSN is stored alongside
    7102              :     /// the latest and can be read.
    7103     10558196 :     pub(crate) fn finish_write(&self, new_lsn: Lsn) {
    7104     10558196 :         self.tl.finish_write(new_lsn);
    7105     10558196 :     }
    7106              : 
    7107       541140 :     pub(crate) fn update_current_logical_size(&self, delta: i64) {
    7108       541140 :         self.tl.update_current_logical_size(delta)
    7109       541140 :     }
    7110              : }
    7111              : 
    7112              : // We need TimelineWriter to be send in upcoming conversion of
    7113              : // Timeline::layers to tokio::sync::RwLock.
    7114              : #[test]
    7115            4 : fn is_send() {
    7116            4 :     fn _assert_send<T: Send>() {}
    7117            4 :     _assert_send::<TimelineWriter<'_>>();
    7118            4 : }
    7119              : 
    7120              : #[cfg(test)]
    7121              : mod tests {
    7122              :     use std::sync::Arc;
    7123              : 
    7124              :     use pageserver_api::key::Key;
    7125              :     use pageserver_api::value::Value;
    7126              :     use std::iter::Iterator;
    7127              :     use tracing::Instrument;
    7128              :     use utils::id::TimelineId;
    7129              :     use utils::lsn::Lsn;
    7130              : 
    7131              :     use super::HeatMapTimeline;
    7132              :     use crate::context::RequestContextBuilder;
    7133              :     use crate::tenant::harness::{TenantHarness, test_img};
    7134              :     use crate::tenant::layer_map::LayerMap;
    7135              :     use crate::tenant::storage_layer::{Layer, LayerName, LayerVisibilityHint};
    7136              :     use crate::tenant::timeline::{DeltaLayerTestDesc, EvictionError};
    7137              :     use crate::tenant::{PreviousHeatmap, Timeline};
    7138              : 
    7139           20 :     fn assert_heatmaps_have_same_layers(lhs: &HeatMapTimeline, rhs: &HeatMapTimeline) {
    7140           20 :         assert_eq!(lhs.all_layers().count(), rhs.all_layers().count());
    7141           20 :         let lhs_rhs = lhs.all_layers().zip(rhs.all_layers());
    7142          100 :         for (l, r) in lhs_rhs {
    7143           80 :             assert_eq!(l.name, r.name);
    7144           80 :             assert_eq!(l.metadata, r.metadata);
    7145              :         }
    7146           20 :     }
    7147              : 
    7148              :     #[tokio::test]
    7149            4 :     async fn test_heatmap_generation() {
    7150            4 :         let harness = TenantHarness::create("heatmap_generation").await.unwrap();
    7151            4 : 
    7152            4 :         let covered_delta = DeltaLayerTestDesc::new_with_inferred_key_range(
    7153            4 :             Lsn(0x10)..Lsn(0x20),
    7154            4 :             vec![(
    7155            4 :                 Key::from_hex("620000000033333333444444445500000000").unwrap(),
    7156            4 :                 Lsn(0x11),
    7157            4 :                 Value::Image(test_img("foo")),
    7158            4 :             )],
    7159            4 :         );
    7160            4 :         let visible_delta = DeltaLayerTestDesc::new_with_inferred_key_range(
    7161            4 :             Lsn(0x10)..Lsn(0x20),
    7162            4 :             vec![(
    7163            4 :                 Key::from_hex("720000000033333333444444445500000000").unwrap(),
    7164            4 :                 Lsn(0x11),
    7165            4 :                 Value::Image(test_img("foo")),
    7166            4 :             )],
    7167            4 :         );
    7168            4 :         let l0_delta = DeltaLayerTestDesc::new(
    7169            4 :             Lsn(0x20)..Lsn(0x30),
    7170            4 :             Key::from_hex("000000000000000000000000000000000000").unwrap()
    7171            4 :                 ..Key::from_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF").unwrap(),
    7172            4 :             vec![(
    7173            4 :                 Key::from_hex("720000000033333333444444445500000000").unwrap(),
    7174            4 :                 Lsn(0x25),
    7175            4 :                 Value::Image(test_img("foo")),
    7176            4 :             )],
    7177            4 :         );
    7178            4 :         let delta_layers = vec![
    7179            4 :             covered_delta.clone(),
    7180            4 :             visible_delta.clone(),
    7181            4 :             l0_delta.clone(),
    7182            4 :         ];
    7183            4 : 
    7184            4 :         let image_layer = (
    7185            4 :             Lsn(0x40),
    7186            4 :             vec![(
    7187            4 :                 Key::from_hex("620000000033333333444444445500000000").unwrap(),
    7188            4 :                 test_img("bar"),
    7189            4 :             )],
    7190            4 :         );
    7191            4 :         let image_layers = vec![image_layer];
    7192            4 : 
    7193            4 :         let (tenant, ctx) = harness.load().await;
    7194            4 :         let timeline = tenant
    7195            4 :             .create_test_timeline_with_layers(
    7196            4 :                 TimelineId::generate(),
    7197            4 :                 Lsn(0x10),
    7198            4 :                 14,
    7199            4 :                 &ctx,
    7200            4 :                 Vec::new(), // in-memory layers
    7201            4 :                 delta_layers,
    7202            4 :                 image_layers,
    7203            4 :                 Lsn(0x100),
    7204            4 :             )
    7205            4 :             .await
    7206            4 :             .unwrap();
    7207            4 :         let ctx = &ctx.with_scope_timeline(&timeline);
    7208            4 : 
    7209            4 :         // Layer visibility is an input to heatmap generation, so refresh it first
    7210            4 :         timeline.update_layer_visibility().await.unwrap();
    7211            4 : 
    7212            4 :         let heatmap = timeline
    7213            4 :             .generate_heatmap()
    7214            4 :             .await
    7215            4 :             .expect("Infallible while timeline is not shut down");
    7216            4 : 
    7217            4 :         assert_eq!(heatmap.timeline_id, timeline.timeline_id);
    7218            4 : 
    7219            4 :         // L0 should come last
    7220            4 :         let heatmap_layers = heatmap.all_layers().collect::<Vec<_>>();
    7221            4 :         assert_eq!(heatmap_layers.last().unwrap().name, l0_delta.layer_name());
    7222            4 : 
    7223            4 :         let mut last_lsn = Lsn::MAX;
    7224           20 :         for layer in heatmap_layers {
    7225            4 :             // Covered layer should be omitted
    7226           16 :             assert!(layer.name != covered_delta.layer_name());
    7227            4 : 
    7228           16 :             let layer_lsn = match &layer.name {
    7229            8 :                 LayerName::Delta(d) => d.lsn_range.end,
    7230            8 :                 LayerName::Image(i) => i.lsn,
    7231            4 :             };
    7232            4 : 
    7233            4 :             // Apart from L0s, newest Layers should come first
    7234           16 :             if !LayerMap::is_l0(layer.name.key_range(), layer.name.is_delta()) {
    7235           12 :                 assert!(layer_lsn <= last_lsn);
    7236           12 :                 last_lsn = layer_lsn;
    7237            4 :             }
    7238            4 :         }
    7239            4 : 
    7240            4 :         // Evict all the layers and stash the old heatmap in the timeline.
    7241            4 :         // This simulates a migration to a cold secondary location.
    7242            4 : 
    7243            4 :         let guard = timeline.layers.read().await;
    7244            4 :         let mut all_layers = Vec::new();
    7245            4 :         let forever = std::time::Duration::from_secs(120);
    7246           20 :         for layer in guard.likely_resident_layers() {
    7247           20 :             all_layers.push(layer.clone());
    7248           20 :             layer.evict_and_wait(forever).await.unwrap();
    7249            4 :         }
    7250            4 :         drop(guard);
    7251            4 : 
    7252            4 :         timeline
    7253            4 :             .previous_heatmap
    7254            4 :             .store(Some(Arc::new(PreviousHeatmap::Active {
    7255            4 :                 heatmap: heatmap.clone(),
    7256            4 :                 read_at: std::time::Instant::now(),
    7257            4 :                 end_lsn: None,
    7258            4 :             })));
    7259            4 : 
    7260            4 :         // Generate a new heatmap and assert that it contains the same layers as the old one.
    7261            4 :         let post_migration_heatmap = timeline.generate_heatmap().await.unwrap();
    7262            4 :         assert_heatmaps_have_same_layers(&heatmap, &post_migration_heatmap);
    7263            4 : 
    7264            4 :         // Download each layer one by one. Generate the heatmap at each step and check
    7265            4 :         // that it's stable.
    7266           24 :         for layer in all_layers {
    7267           20 :             if layer.visibility() == LayerVisibilityHint::Covered {
    7268            4 :                 continue;
    7269           16 :             }
    7270           16 : 
    7271           16 :             eprintln!("Downloading {layer} and re-generating heatmap");
    7272           16 : 
    7273           16 :             let ctx = &RequestContextBuilder::extend(ctx)
    7274           16 :                 .download_behavior(crate::context::DownloadBehavior::Download)
    7275           16 :                 .build();
    7276            4 : 
    7277           16 :             let _resident = layer
    7278           16 :                 .download_and_keep_resident(ctx)
    7279           16 :                 .instrument(tracing::info_span!(
    7280           16 :                     parent: None,
    7281            4 :                     "download_layer",
    7282            4 :                     tenant_id = %timeline.tenant_shard_id.tenant_id,
    7283            0 :                     shard_id = %timeline.tenant_shard_id.shard_slug(),
    7284            0 :                     timeline_id = %timeline.timeline_id
    7285            4 :                 ))
    7286           16 :                 .await
    7287           16 :                 .unwrap();
    7288            4 : 
    7289           16 :             let post_download_heatmap = timeline.generate_heatmap().await.unwrap();
    7290           16 :             assert_heatmaps_have_same_layers(&heatmap, &post_download_heatmap);
    7291            4 :         }
    7292            4 : 
    7293            4 :         // Everything from the post-migration heatmap is now resident.
    7294            4 :         // Check that we drop it from memory.
    7295            4 :         assert!(matches!(
    7296            4 :             timeline.previous_heatmap.load().as_deref(),
    7297            4 :             Some(PreviousHeatmap::Obsolete)
    7298            4 :         ));
    7299            4 :     }
    7300              : 
    7301              :     #[tokio::test]
    7302            4 :     async fn test_previous_heatmap_obsoletion() {
    7303            4 :         let harness = TenantHarness::create("heatmap_previous_heatmap_obsoletion")
    7304            4 :             .await
    7305            4 :             .unwrap();
    7306            4 : 
    7307            4 :         let l0_delta = DeltaLayerTestDesc::new(
    7308            4 :             Lsn(0x20)..Lsn(0x30),
    7309            4 :             Key::from_hex("000000000000000000000000000000000000").unwrap()
    7310            4 :                 ..Key::from_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF").unwrap(),
    7311            4 :             vec![(
    7312            4 :                 Key::from_hex("720000000033333333444444445500000000").unwrap(),
    7313            4 :                 Lsn(0x25),
    7314            4 :                 Value::Image(test_img("foo")),
    7315            4 :             )],
    7316            4 :         );
    7317            4 : 
    7318            4 :         let image_layer = (
    7319            4 :             Lsn(0x40),
    7320            4 :             vec![(
    7321            4 :                 Key::from_hex("620000000033333333444444445500000000").unwrap(),
    7322            4 :                 test_img("bar"),
    7323            4 :             )],
    7324            4 :         );
    7325            4 : 
    7326            4 :         let delta_layers = vec![l0_delta];
    7327            4 :         let image_layers = vec![image_layer];
    7328            4 : 
    7329            4 :         let (tenant, ctx) = harness.load().await;
    7330            4 :         let timeline = tenant
    7331            4 :             .create_test_timeline_with_layers(
    7332            4 :                 TimelineId::generate(),
    7333            4 :                 Lsn(0x10),
    7334            4 :                 14,
    7335            4 :                 &ctx,
    7336            4 :                 Vec::new(), // in-memory layers
    7337            4 :                 delta_layers,
    7338            4 :                 image_layers,
    7339            4 :                 Lsn(0x100),
    7340            4 :             )
    7341            4 :             .await
    7342            4 :             .unwrap();
    7343            4 : 
    7344            4 :         // Layer visibility is an input to heatmap generation, so refresh it first
    7345            4 :         timeline.update_layer_visibility().await.unwrap();
    7346            4 : 
    7347            4 :         let heatmap = timeline
    7348            4 :             .generate_heatmap()
    7349            4 :             .await
    7350            4 :             .expect("Infallible while timeline is not shut down");
    7351            4 : 
    7352            4 :         // Both layers should be in the heatmap
    7353            4 :         assert!(heatmap.all_layers().count() > 0);
    7354            4 : 
    7355            4 :         // Now simulate a migration.
    7356            4 :         timeline
    7357            4 :             .previous_heatmap
    7358            4 :             .store(Some(Arc::new(PreviousHeatmap::Active {
    7359            4 :                 heatmap: heatmap.clone(),
    7360            4 :                 read_at: std::time::Instant::now(),
    7361            4 :                 end_lsn: None,
    7362            4 :             })));
    7363            4 : 
    7364            4 :         // Evict all the layers in the previous heatmap
    7365            4 :         let guard = timeline.layers.read().await;
    7366            4 :         let forever = std::time::Duration::from_secs(120);
    7367           12 :         for layer in guard.likely_resident_layers() {
    7368           12 :             layer.evict_and_wait(forever).await.unwrap();
    7369            4 :         }
    7370            4 :         drop(guard);
    7371            4 : 
    7372            4 :         // Generate a new heatmap and check that the previous heatmap
    7373            4 :         // has been marked obsolete.
    7374            4 :         let post_eviction_heatmap = timeline
    7375            4 :             .generate_heatmap()
    7376            4 :             .await
    7377            4 :             .expect("Infallible while timeline is not shut down");
    7378            4 : 
    7379            4 :         assert_eq!(post_eviction_heatmap.all_layers().count(), 0);
    7380            4 :         assert!(matches!(
    7381            4 :             timeline.previous_heatmap.load().as_deref(),
    7382            4 :             Some(PreviousHeatmap::Obsolete)
    7383            4 :         ));
    7384            4 :     }
    7385              : 
    7386              :     #[tokio::test]
    7387            4 :     async fn two_layer_eviction_attempts_at_the_same_time() {
    7388            4 :         let harness = TenantHarness::create("two_layer_eviction_attempts_at_the_same_time")
    7389            4 :             .await
    7390            4 :             .unwrap();
    7391            4 : 
    7392            4 :         let (tenant, ctx) = harness.load().await;
    7393            4 :         let timeline = tenant
    7394            4 :             .create_test_timeline(TimelineId::generate(), Lsn(0x10), 14, &ctx)
    7395            4 :             .await
    7396            4 :             .unwrap();
    7397            4 : 
    7398            4 :         let layer = find_some_layer(&timeline).await;
    7399            4 :         let layer = layer
    7400            4 :             .keep_resident()
    7401            4 :             .await
    7402            4 :             .expect("no download => no downloading errors")
    7403            4 :             .drop_eviction_guard();
    7404            4 : 
    7405            4 :         let forever = std::time::Duration::from_secs(120);
    7406            4 : 
    7407            4 :         let first = layer.evict_and_wait(forever);
    7408            4 :         let second = layer.evict_and_wait(forever);
    7409            4 : 
    7410            4 :         let (first, second) = tokio::join!(first, second);
    7411            4 : 
    7412            4 :         let res = layer.keep_resident().await;
    7413            4 :         assert!(res.is_none(), "{res:?}");
    7414            4 : 
    7415            4 :         match (first, second) {
    7416            4 :             (Ok(()), Ok(())) => {
    7417            4 :                 // because there are no more timeline locks being taken on eviction path, we can
    7418            4 :                 // witness all three outcomes here.
    7419            4 :             }
    7420            4 :             (Ok(()), Err(EvictionError::NotFound)) | (Err(EvictionError::NotFound), Ok(())) => {
    7421            0 :                 // if one completes before the other, this is fine just as well.
    7422            0 :             }
    7423            4 :             other => unreachable!("unexpected {:?}", other),
    7424            4 :         }
    7425            4 :     }
    7426              : 
    7427            4 :     async fn find_some_layer(timeline: &Timeline) -> Layer {
    7428            4 :         let layers = timeline.layers.read().await;
    7429            4 :         let desc = layers
    7430            4 :             .layer_map()
    7431            4 :             .unwrap()
    7432            4 :             .iter_historic_layers()
    7433            4 :             .next()
    7434            4 :             .expect("must find one layer to evict");
    7435            4 : 
    7436            4 :         layers.get_from_desc(&desc)
    7437            4 :     }
    7438              : }
        

Generated by: LCOV version 2.1-beta