LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: a2776bf42b420512b50fede714e94e827acbbd55.info Lines: 53.6 % 2671 1431
Test Date: 2025-03-13 16:38:48 Functions: 38.6 % 171 66

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : use std::time::Instant;
      11              : 
      12              : use super::layer_manager::LayerManager;
      13              : use super::{
      14              :     CompactFlags, CompactOptions, CompactionError, CreateImageLayersError, DurationRecorder,
      15              :     GetVectoredError, ImageLayerCreationMode, LastImageLayerCreationStatus, RecordedDuration,
      16              :     Timeline,
      17              : };
      18              : 
      19              : use anyhow::{Context, anyhow};
      20              : use bytes::Bytes;
      21              : use enumset::EnumSet;
      22              : use fail::fail_point;
      23              : use futures::FutureExt;
      24              : use itertools::Itertools;
      25              : use once_cell::sync::Lazy;
      26              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
      27              : use pageserver_api::key::{KEY_SIZE, Key};
      28              : use pageserver_api::keyspace::{KeySpace, ShardedRange};
      29              : use pageserver_api::models::CompactInfoResponse;
      30              : use pageserver_api::record::NeonWalRecord;
      31              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      32              : use pageserver_api::value::Value;
      33              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      34              : use pageserver_compaction::interface::*;
      35              : use serde::Serialize;
      36              : use tokio::sync::{OwnedSemaphorePermit, Semaphore};
      37              : use tokio_util::sync::CancellationToken;
      38              : use tracing::{Instrument, debug, error, info, info_span, trace, warn};
      39              : use utils::critical;
      40              : use utils::id::TimelineId;
      41              : use utils::lsn::Lsn;
      42              : 
      43              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      44              : use crate::page_cache;
      45              : use crate::statvfs::Statvfs;
      46              : use crate::tenant::checks::check_valid_layermap;
      47              : use crate::tenant::gc_block::GcBlock;
      48              : use crate::tenant::layer_map::LayerMap;
      49              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      50              : use crate::tenant::remote_timeline_client::index::GcCompactionState;
      51              : use crate::tenant::storage_layer::batch_split_writer::{
      52              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      53              : };
      54              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      55              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      56              : use crate::tenant::storage_layer::{
      57              :     AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
      58              : };
      59              : use crate::tenant::timeline::{
      60              :     DeltaLayerWriter, ImageLayerCreationOutcome, ImageLayerWriter, IoConcurrency, Layer,
      61              :     ResidentLayer, drop_rlock,
      62              : };
      63              : use crate::tenant::{DeltaLayer, MaybeOffloaded, gc_block};
      64              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      65              : 
      66              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      67              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      68              : 
      69              : #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
      70              : pub struct GcCompactionJobId(pub usize);
      71              : 
      72              : impl std::fmt::Display for GcCompactionJobId {
      73            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      74            0 :         write!(f, "{}", self.0)
      75            0 :     }
      76              : }
      77              : 
      78              : pub struct GcCompactionCombinedSettings {
      79              :     pub gc_compaction_enabled: bool,
      80              :     pub gc_compaction_initial_threshold_kb: u64,
      81              :     pub gc_compaction_ratio_percent: u64,
      82              : }
      83              : 
      84              : #[derive(Debug, Clone)]
      85              : pub enum GcCompactionQueueItem {
      86              :     MetaJob {
      87              :         /// Compaction options
      88              :         options: CompactOptions,
      89              :         /// Whether the compaction is triggered automatically (determines whether we need to update L2 LSN)
      90              :         auto: bool,
      91              :     },
      92              :     SubCompactionJob(CompactOptions),
      93              :     Notify(GcCompactionJobId, Option<Lsn>),
      94              : }
      95              : 
      96              : impl GcCompactionQueueItem {
      97            0 :     pub fn into_compact_info_resp(
      98            0 :         self,
      99            0 :         id: GcCompactionJobId,
     100            0 :         running: bool,
     101            0 :     ) -> Option<CompactInfoResponse> {
     102            0 :         match self {
     103            0 :             GcCompactionQueueItem::MetaJob { options, .. } => Some(CompactInfoResponse {
     104            0 :                 compact_key_range: options.compact_key_range,
     105            0 :                 compact_lsn_range: options.compact_lsn_range,
     106            0 :                 sub_compaction: options.sub_compaction,
     107            0 :                 running,
     108            0 :                 job_id: id.0,
     109            0 :             }),
     110            0 :             GcCompactionQueueItem::SubCompactionJob(options) => Some(CompactInfoResponse {
     111            0 :                 compact_key_range: options.compact_key_range,
     112            0 :                 compact_lsn_range: options.compact_lsn_range,
     113            0 :                 sub_compaction: options.sub_compaction,
     114            0 :                 running,
     115            0 :                 job_id: id.0,
     116            0 :             }),
     117            0 :             GcCompactionQueueItem::Notify(_, _) => None,
     118              :         }
     119            0 :     }
     120              : }
     121              : 
     122              : #[derive(Default)]
     123              : struct GcCompactionGuardItems {
     124              :     notify: Option<tokio::sync::oneshot::Sender<()>>,
     125              :     gc_guard: Option<gc_block::Guard>,
     126              :     permit: Option<OwnedSemaphorePermit>,
     127              : }
     128              : 
     129              : struct GcCompactionQueueInner {
     130              :     running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     131              :     queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     132              :     guards: HashMap<GcCompactionJobId, GcCompactionGuardItems>,
     133              :     last_id: GcCompactionJobId,
     134              : }
     135              : 
     136              : impl GcCompactionQueueInner {
     137            0 :     fn next_id(&mut self) -> GcCompactionJobId {
     138            0 :         let id = self.last_id;
     139            0 :         self.last_id = GcCompactionJobId(id.0 + 1);
     140            0 :         id
     141            0 :     }
     142              : }
     143              : 
     144              : /// A structure to store gc_compaction jobs.
     145              : pub struct GcCompactionQueue {
     146              :     /// All items in the queue, and the currently-running job.
     147              :     inner: std::sync::Mutex<GcCompactionQueueInner>,
     148              :     /// Ensure only one thread is consuming the queue.
     149              :     consumer_lock: tokio::sync::Mutex<()>,
     150              : }
     151              : 
     152            0 : static CONCURRENT_GC_COMPACTION_TASKS: Lazy<Arc<Semaphore>> = Lazy::new(|| {
     153            0 :     // Only allow two timelines on one pageserver to run gc compaction at a time.
     154            0 :     Arc::new(Semaphore::new(2))
     155            0 : });
     156              : 
     157              : impl GcCompactionQueue {
     158            0 :     pub fn new() -> Self {
     159            0 :         GcCompactionQueue {
     160            0 :             inner: std::sync::Mutex::new(GcCompactionQueueInner {
     161            0 :                 running: None,
     162            0 :                 queued: VecDeque::new(),
     163            0 :                 guards: HashMap::new(),
     164            0 :                 last_id: GcCompactionJobId(0),
     165            0 :             }),
     166            0 :             consumer_lock: tokio::sync::Mutex::new(()),
     167            0 :         }
     168            0 :     }
     169              : 
     170            0 :     pub fn cancel_scheduled(&self) {
     171            0 :         let mut guard = self.inner.lock().unwrap();
     172            0 :         guard.queued.clear();
     173            0 :         // TODO: if there is a running job, we should keep the gc guard. However, currently, the cancel
     174            0 :         // API is only used for testing purposes, so we can drop everything here.
     175            0 :         guard.guards.clear();
     176            0 :     }
     177              : 
     178              :     /// Schedule a manual compaction job.
     179            0 :     pub fn schedule_manual_compaction(
     180            0 :         &self,
     181            0 :         options: CompactOptions,
     182            0 :         notify: Option<tokio::sync::oneshot::Sender<()>>,
     183            0 :     ) -> GcCompactionJobId {
     184            0 :         let mut guard = self.inner.lock().unwrap();
     185            0 :         let id = guard.next_id();
     186            0 :         guard.queued.push_back((
     187            0 :             id,
     188            0 :             GcCompactionQueueItem::MetaJob {
     189            0 :                 options,
     190            0 :                 auto: false,
     191            0 :             },
     192            0 :         ));
     193            0 :         guard.guards.entry(id).or_default().notify = notify;
     194            0 :         info!("scheduled compaction job id={}", id);
     195            0 :         id
     196            0 :     }
     197              : 
     198              :     /// Schedule an auto compaction job.
     199            0 :     fn schedule_auto_compaction(
     200            0 :         &self,
     201            0 :         options: CompactOptions,
     202            0 :         permit: OwnedSemaphorePermit,
     203            0 :     ) -> GcCompactionJobId {
     204            0 :         let mut guard = self.inner.lock().unwrap();
     205            0 :         let id = guard.next_id();
     206            0 :         guard.queued.push_back((
     207            0 :             id,
     208            0 :             GcCompactionQueueItem::MetaJob {
     209            0 :                 options,
     210            0 :                 auto: true,
     211            0 :             },
     212            0 :         ));
     213            0 :         guard.guards.entry(id).or_default().permit = Some(permit);
     214            0 :         id
     215            0 :     }
     216              : 
     217              :     /// Trigger an auto compaction.
     218            0 :     pub async fn trigger_auto_compaction(
     219            0 :         &self,
     220            0 :         timeline: &Arc<Timeline>,
     221            0 :     ) -> Result<(), CompactionError> {
     222            0 :         let GcCompactionCombinedSettings {
     223            0 :             gc_compaction_enabled,
     224            0 :             gc_compaction_initial_threshold_kb,
     225            0 :             gc_compaction_ratio_percent,
     226            0 :         } = timeline.get_gc_compaction_settings();
     227            0 :         if !gc_compaction_enabled {
     228            0 :             return Ok(());
     229            0 :         }
     230            0 :         if self.remaining_jobs_num() > 0 {
     231              :             // Only schedule auto compaction when the queue is empty
     232            0 :             return Ok(());
     233            0 :         }
     234            0 :         if timeline.ancestor_timeline().is_some() {
     235              :             // Do not trigger auto compaction for child timelines. We haven't tested
     236              :             // it enough in staging yet.
     237            0 :             return Ok(());
     238            0 :         }
     239            0 :         if timeline.get_gc_compaction_watermark() == Lsn::INVALID {
     240              :             // If the gc watermark is not set, we don't need to trigger auto compaction.
     241              :             // This check is the same as in `gc_compaction_split_jobs` but we don't log
     242              :             // here and we can also skip the computation of the trigger condition earlier.
     243            0 :             return Ok(());
     244            0 :         }
     245              : 
     246            0 :         let Ok(permit) = CONCURRENT_GC_COMPACTION_TASKS.clone().try_acquire_owned() else {
     247              :             // Only allow one compaction run at a time. TODO: As we do `try_acquire_owned`, we cannot ensure
     248              :             // the fairness of the lock across timelines. We should listen for both `acquire` and `l0_compaction_trigger`
     249              :             // to ensure the fairness while avoid starving other tasks.
     250            0 :             return Ok(());
     251              :         };
     252              : 
     253            0 :         let gc_compaction_state = timeline.get_gc_compaction_state();
     254            0 :         let l2_lsn = gc_compaction_state
     255            0 :             .map(|x| x.last_completed_lsn)
     256            0 :             .unwrap_or(Lsn::INVALID);
     257              : 
     258            0 :         let layers = {
     259            0 :             let guard = timeline.layers.read().await;
     260            0 :             let layer_map = guard.layer_map()?;
     261            0 :             layer_map.iter_historic_layers().collect_vec()
     262            0 :         };
     263            0 :         let mut l2_size: u64 = 0;
     264            0 :         let mut l1_size = 0;
     265            0 :         let gc_cutoff = *timeline.get_applied_gc_cutoff_lsn();
     266            0 :         for layer in layers {
     267            0 :             if layer.lsn_range.start <= l2_lsn {
     268            0 :                 l2_size += layer.file_size();
     269            0 :             } else if layer.lsn_range.start <= gc_cutoff {
     270            0 :                 l1_size += layer.file_size();
     271            0 :             }
     272              :         }
     273              : 
     274            0 :         fn trigger_compaction(
     275            0 :             l1_size: u64,
     276            0 :             l2_size: u64,
     277            0 :             gc_compaction_initial_threshold_kb: u64,
     278            0 :             gc_compaction_ratio_percent: u64,
     279            0 :         ) -> bool {
     280              :             const AUTO_TRIGGER_LIMIT: u64 = 150 * 1024 * 1024 * 1024; // 150GB
     281            0 :             if l1_size >= AUTO_TRIGGER_LIMIT || l2_size >= AUTO_TRIGGER_LIMIT {
     282              :                 // Do not auto-trigger when physical size >= 150GB
     283            0 :                 return false;
     284            0 :             }
     285            0 :             // initial trigger
     286            0 :             if l2_size == 0 && l1_size >= gc_compaction_initial_threshold_kb * 1024 {
     287            0 :                 info!(
     288            0 :                     "trigger auto-compaction because l1_size={} >= gc_compaction_initial_threshold_kb={}",
     289              :                     l1_size, gc_compaction_initial_threshold_kb
     290              :                 );
     291            0 :                 return true;
     292            0 :             }
     293            0 :             // size ratio trigger
     294            0 :             if l2_size == 0 {
     295            0 :                 return false;
     296            0 :             }
     297            0 :             if l1_size as f64 / l2_size as f64 >= (gc_compaction_ratio_percent as f64 / 100.0) {
     298            0 :                 info!(
     299            0 :                     "trigger auto-compaction because l1_size={} / l2_size={} > gc_compaction_ratio_percent={}",
     300              :                     l1_size, l2_size, gc_compaction_ratio_percent
     301              :                 );
     302            0 :                 return true;
     303            0 :             }
     304            0 :             false
     305            0 :         }
     306              : 
     307            0 :         if trigger_compaction(
     308            0 :             l1_size,
     309            0 :             l2_size,
     310            0 :             gc_compaction_initial_threshold_kb,
     311            0 :             gc_compaction_ratio_percent,
     312            0 :         ) {
     313            0 :             self.schedule_auto_compaction(
     314            0 :                 CompactOptions {
     315            0 :                     flags: {
     316            0 :                         let mut flags = EnumSet::new();
     317            0 :                         flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     318            0 :                         flags
     319            0 :                     },
     320            0 :                     sub_compaction: true,
     321            0 :                     compact_key_range: None,
     322            0 :                     compact_lsn_range: None,
     323            0 :                     sub_compaction_max_job_size_mb: None,
     324            0 :                 },
     325            0 :                 permit,
     326            0 :             );
     327            0 :             info!(
     328            0 :                 "scheduled auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     329              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     330              :             );
     331              :         } else {
     332            0 :             debug!(
     333            0 :                 "did not trigger auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     334              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     335              :             );
     336              :         }
     337            0 :         Ok(())
     338            0 :     }
     339              : 
     340              :     /// Notify the caller the job has finished and unblock GC.
     341            0 :     fn notify_and_unblock(&self, id: GcCompactionJobId) {
     342            0 :         info!("compaction job id={} finished", id);
     343            0 :         let mut guard = self.inner.lock().unwrap();
     344            0 :         if let Some(items) = guard.guards.remove(&id) {
     345            0 :             drop(items.gc_guard);
     346            0 :             if let Some(tx) = items.notify {
     347            0 :                 let _ = tx.send(());
     348            0 :             }
     349            0 :         }
     350            0 :     }
     351              : 
     352            0 :     async fn handle_sub_compaction(
     353            0 :         &self,
     354            0 :         id: GcCompactionJobId,
     355            0 :         options: CompactOptions,
     356            0 :         timeline: &Arc<Timeline>,
     357            0 :         gc_block: &GcBlock,
     358            0 :         auto: bool,
     359            0 :     ) -> Result<(), CompactionError> {
     360            0 :         info!(
     361            0 :             "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     362              :         );
     363            0 :         let jobs = timeline
     364            0 :             .gc_compaction_split_jobs(
     365            0 :                 GcCompactJob::from_compact_options(options.clone()),
     366            0 :                 options.sub_compaction_max_job_size_mb,
     367            0 :             )
     368            0 :             .await?;
     369            0 :         if jobs.is_empty() {
     370            0 :             info!("no jobs to run, skipping scheduled compaction task");
     371            0 :             self.notify_and_unblock(id);
     372              :         } else {
     373            0 :             let gc_guard = match gc_block.start().await {
     374            0 :                 Ok(guard) => guard,
     375            0 :                 Err(e) => {
     376            0 :                     return Err(CompactionError::Other(anyhow!(
     377            0 :                         "cannot run gc-compaction because gc is blocked: {}",
     378            0 :                         e
     379            0 :                     )));
     380              :                 }
     381              :             };
     382              : 
     383            0 :             let jobs_len = jobs.len();
     384            0 :             let mut pending_tasks = Vec::new();
     385            0 :             // gc-compaction might pick more layers or fewer layers to compact. The L2 LSN does not need to be accurate.
     386            0 :             // And therefore, we simply assume the maximum LSN of all jobs is the expected L2 LSN.
     387            0 :             let expected_l2_lsn = jobs.iter().map(|job| job.compact_lsn_range.end).max();
     388            0 :             for job in jobs {
     389              :                 // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
     390              :                 // until we do further refactors to allow directly call `compact_with_gc`.
     391            0 :                 let mut flags: EnumSet<CompactFlags> = EnumSet::default();
     392            0 :                 flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     393            0 :                 if job.dry_run {
     394            0 :                     flags |= CompactFlags::DryRun;
     395            0 :                 }
     396            0 :                 if options.flags.contains(CompactFlags::NoYield) {
     397            0 :                     flags |= CompactFlags::NoYield;
     398            0 :                 }
     399            0 :                 let options = CompactOptions {
     400            0 :                     flags,
     401            0 :                     sub_compaction: false,
     402            0 :                     compact_key_range: Some(job.compact_key_range.into()),
     403            0 :                     compact_lsn_range: Some(job.compact_lsn_range.into()),
     404            0 :                     sub_compaction_max_job_size_mb: None,
     405            0 :                 };
     406            0 :                 pending_tasks.push(GcCompactionQueueItem::SubCompactionJob(options));
     407              :             }
     408              : 
     409            0 :             if !auto {
     410            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, None));
     411            0 :             } else {
     412            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, expected_l2_lsn));
     413            0 :             }
     414              : 
     415              :             {
     416            0 :                 let mut guard = self.inner.lock().unwrap();
     417            0 :                 guard.guards.entry(id).or_default().gc_guard = Some(gc_guard);
     418            0 :                 let mut tasks = Vec::new();
     419            0 :                 for task in pending_tasks {
     420            0 :                     let id = guard.next_id();
     421            0 :                     tasks.push((id, task));
     422            0 :                 }
     423            0 :                 tasks.reverse();
     424            0 :                 for item in tasks {
     425            0 :                     guard.queued.push_front(item);
     426            0 :                 }
     427              :             }
     428            0 :             info!(
     429            0 :                 "scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs",
     430              :                 jobs_len
     431              :             );
     432              :         }
     433            0 :         Ok(())
     434            0 :     }
     435              : 
     436              :     /// Take a job from the queue and process it. Returns if there are still pending tasks.
     437            0 :     pub async fn iteration(
     438            0 :         &self,
     439            0 :         cancel: &CancellationToken,
     440            0 :         ctx: &RequestContext,
     441            0 :         gc_block: &GcBlock,
     442            0 :         timeline: &Arc<Timeline>,
     443            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     444            0 :         let Ok(_one_op_at_a_time_guard) = self.consumer_lock.try_lock() else {
     445            0 :             return Err(CompactionError::AlreadyRunning(
     446            0 :                 "cannot run gc-compaction because another gc-compaction is running. This should not happen because we only call this function from the gc-compaction queue.",
     447            0 :             ));
     448              :         };
     449              :         let has_pending_tasks;
     450            0 :         let mut yield_for_l0 = false;
     451            0 :         let Some((id, item)) = ({
     452            0 :             let mut guard = self.inner.lock().unwrap();
     453            0 :             if let Some((id, item)) = guard.queued.pop_front() {
     454            0 :                 guard.running = Some((id, item.clone()));
     455            0 :                 has_pending_tasks = !guard.queued.is_empty();
     456            0 :                 Some((id, item))
     457              :             } else {
     458            0 :                 has_pending_tasks = false;
     459            0 :                 None
     460              :             }
     461              :         }) else {
     462            0 :             self.trigger_auto_compaction(timeline).await?;
     463              :             // Always yield after triggering auto-compaction. Gc-compaction is a low-priority task and we
     464              :             // have not implemented preemption mechanism yet. We always want to yield it to more important
     465              :             // tasks if there is one.
     466            0 :             return Ok(CompactionOutcome::Done);
     467              :         };
     468            0 :         match item {
     469            0 :             GcCompactionQueueItem::MetaJob { options, auto } => {
     470            0 :                 if !options
     471            0 :                     .flags
     472            0 :                     .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     473              :                 {
     474            0 :                     warn!(
     475            0 :                         "ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}",
     476              :                         options
     477              :                     );
     478            0 :                 } else if options.sub_compaction {
     479            0 :                     info!(
     480            0 :                         "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     481              :                     );
     482            0 :                     self.handle_sub_compaction(id, options, timeline, gc_block, auto)
     483            0 :                         .await?;
     484              :                 } else {
     485              :                     // Auto compaction always enables sub-compaction so we don't need to handle update_l2_lsn
     486              :                     // in this branch.
     487            0 :                     let gc_guard = match gc_block.start().await {
     488            0 :                         Ok(guard) => guard,
     489            0 :                         Err(e) => {
     490            0 :                             return Err(CompactionError::Other(anyhow!(
     491            0 :                                 "cannot run gc-compaction because gc is blocked: {}",
     492            0 :                                 e
     493            0 :                             )));
     494              :                         }
     495              :                     };
     496            0 :                     {
     497            0 :                         let mut guard = self.inner.lock().unwrap();
     498            0 :                         guard.guards.entry(id).or_default().gc_guard = Some(gc_guard);
     499            0 :                     }
     500            0 :                     let compaction_result =
     501            0 :                         timeline.compact_with_options(cancel, options, ctx).await?;
     502            0 :                     self.notify_and_unblock(id);
     503            0 :                     if compaction_result == CompactionOutcome::YieldForL0 {
     504            0 :                         yield_for_l0 = true;
     505            0 :                     }
     506              :                 }
     507              :             }
     508            0 :             GcCompactionQueueItem::SubCompactionJob(options) => {
     509              :                 // TODO: error handling, clear the queue if any task fails?
     510            0 :                 let compaction_result = timeline.compact_with_options(cancel, options, ctx).await?;
     511            0 :                 if compaction_result == CompactionOutcome::YieldForL0 {
     512            0 :                     // We will permenantly give up a task if we yield for L0 compaction: the preempted subcompaction job won't be running
     513            0 :                     // again. This ensures that we don't keep doing duplicated work within gc-compaction. Not directly returning here because
     514            0 :                     // we need to clean things up before returning from the function.
     515            0 :                     yield_for_l0 = true;
     516            0 :                 }
     517              :             }
     518            0 :             GcCompactionQueueItem::Notify(id, l2_lsn) => {
     519            0 :                 self.notify_and_unblock(id);
     520            0 :                 if let Some(l2_lsn) = l2_lsn {
     521            0 :                     let current_l2_lsn = timeline
     522            0 :                         .get_gc_compaction_state()
     523            0 :                         .map(|x| x.last_completed_lsn)
     524            0 :                         .unwrap_or(Lsn::INVALID);
     525            0 :                     if l2_lsn >= current_l2_lsn {
     526            0 :                         info!("l2_lsn updated to {}", l2_lsn);
     527            0 :                         timeline
     528            0 :                             .update_gc_compaction_state(GcCompactionState {
     529            0 :                                 last_completed_lsn: l2_lsn,
     530            0 :                             })
     531            0 :                             .map_err(CompactionError::Other)?;
     532              :                     } else {
     533            0 :                         warn!(
     534            0 :                             "l2_lsn updated to {} but it is less than the current l2_lsn {}",
     535              :                             l2_lsn, current_l2_lsn
     536              :                         );
     537              :                     }
     538            0 :                 }
     539              :             }
     540              :         }
     541            0 :         {
     542            0 :             let mut guard = self.inner.lock().unwrap();
     543            0 :             guard.running = None;
     544            0 :         }
     545            0 :         Ok(if yield_for_l0 {
     546            0 :             tracing::info!("give up gc-compaction: yield for L0 compaction");
     547            0 :             CompactionOutcome::YieldForL0
     548            0 :         } else if has_pending_tasks {
     549            0 :             CompactionOutcome::Pending
     550              :         } else {
     551            0 :             CompactionOutcome::Done
     552              :         })
     553            0 :     }
     554              : 
     555              :     #[allow(clippy::type_complexity)]
     556            0 :     pub fn remaining_jobs(
     557            0 :         &self,
     558            0 :     ) -> (
     559            0 :         Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     560            0 :         VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     561            0 :     ) {
     562            0 :         let guard = self.inner.lock().unwrap();
     563            0 :         (guard.running.clone(), guard.queued.clone())
     564            0 :     }
     565              : 
     566            0 :     pub fn remaining_jobs_num(&self) -> usize {
     567            0 :         let guard = self.inner.lock().unwrap();
     568            0 :         guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
     569            0 :     }
     570              : }
     571              : 
     572              : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
     573              : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
     574              : /// called.
     575              : #[derive(Debug, Clone)]
     576              : pub(crate) struct GcCompactJob {
     577              :     pub dry_run: bool,
     578              :     /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
     579              :     /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
     580              :     pub compact_key_range: Range<Key>,
     581              :     /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
     582              :     /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
     583              :     /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
     584              :     /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
     585              :     pub compact_lsn_range: Range<Lsn>,
     586              : }
     587              : 
     588              : impl GcCompactJob {
     589          108 :     pub fn from_compact_options(options: CompactOptions) -> Self {
     590          108 :         GcCompactJob {
     591          108 :             dry_run: options.flags.contains(CompactFlags::DryRun),
     592          108 :             compact_key_range: options
     593          108 :                 .compact_key_range
     594          108 :                 .map(|x| x.into())
     595          108 :                 .unwrap_or(Key::MIN..Key::MAX),
     596          108 :             compact_lsn_range: options
     597          108 :                 .compact_lsn_range
     598          108 :                 .map(|x| x.into())
     599          108 :                 .unwrap_or(Lsn::INVALID..Lsn::MAX),
     600          108 :         }
     601          108 :     }
     602              : }
     603              : 
     604              : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
     605              : /// and contains the exact layers we want to compact.
     606              : pub struct GcCompactionJobDescription {
     607              :     /// All layers to read in the compaction job
     608              :     selected_layers: Vec<Layer>,
     609              :     /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
     610              :     /// keep all deltas <= this LSN or generate an image == this LSN.
     611              :     gc_cutoff: Lsn,
     612              :     /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
     613              :     /// generate an image == this LSN.
     614              :     retain_lsns_below_horizon: Vec<Lsn>,
     615              :     /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
     616              :     /// \>= this LSN will be kept and will not be rewritten.
     617              :     max_layer_lsn: Lsn,
     618              :     /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
     619              :     /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
     620              :     /// k-merge within gc-compaction.
     621              :     min_layer_lsn: Lsn,
     622              :     /// Only compact layers overlapping with this range.
     623              :     compaction_key_range: Range<Key>,
     624              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
     625              :     /// This field is here solely for debugging. The field will not be read once the compaction
     626              :     /// description is generated.
     627              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
     628              : }
     629              : 
     630              : /// The result of bottom-most compaction for a single key at each LSN.
     631              : #[derive(Debug)]
     632              : #[cfg_attr(test, derive(PartialEq))]
     633              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
     634              : 
     635              : /// The result of bottom-most compaction.
     636              : #[derive(Debug)]
     637              : #[cfg_attr(test, derive(PartialEq))]
     638              : pub(crate) struct KeyHistoryRetention {
     639              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
     640              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
     641              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
     642              :     pub(crate) above_horizon: KeyLogAtLsn,
     643              : }
     644              : 
     645              : impl KeyHistoryRetention {
     646              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     647              :     ///
     648              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     649              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     650              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     651              :     /// Then we delete branch @ 0x20.
     652              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     653              :     /// And that wouldnt' change the shape of the layer.
     654              :     ///
     655              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     656              :     ///
     657              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     658          148 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     659          148 :         if dry_run {
     660            0 :             return true;
     661          148 :         }
     662          148 :         if LayerMap::is_l0(&key.key_range, key.is_delta) {
     663              :             // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
     664              :             // We should ignore such layers.
     665            0 :             return true;
     666          148 :         }
     667              :         let layer_generation;
     668              :         {
     669          148 :             let guard = tline.layers.read().await;
     670          148 :             if !guard.contains_key(key) {
     671          104 :                 return false;
     672           44 :             }
     673           44 :             layer_generation = guard.get_from_key(key).metadata().generation;
     674           44 :         }
     675           44 :         if layer_generation == tline.generation {
     676           44 :             info!(
     677              :                 key=%key,
     678              :                 ?layer_generation,
     679            0 :                 "discard layer due to duplicated layer key in the same generation",
     680              :             );
     681           44 :             true
     682              :         } else {
     683            0 :             false
     684              :         }
     685          148 :     }
     686              : 
     687              :     /// Pipe a history of a single key to the writers.
     688              :     ///
     689              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     690              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     691              :     #[allow(clippy::too_many_arguments)]
     692         1244 :     async fn pipe_to(
     693         1244 :         self,
     694         1244 :         key: Key,
     695         1244 :         delta_writer: &mut SplitDeltaLayerWriter,
     696         1244 :         mut image_writer: Option<&mut SplitImageLayerWriter>,
     697         1244 :         stat: &mut CompactionStatistics,
     698         1244 :         ctx: &RequestContext,
     699         1244 :     ) -> anyhow::Result<()> {
     700         1244 :         let mut first_batch = true;
     701         4024 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     702         2780 :             if first_batch {
     703         1244 :                 if logs.len() == 1 && logs[0].1.is_image() {
     704         1168 :                     let Value::Image(img) = &logs[0].1 else {
     705            0 :                         unreachable!()
     706              :                     };
     707         1168 :                     stat.produce_image_key(img);
     708         1168 :                     if let Some(image_writer) = image_writer.as_mut() {
     709         1168 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     710              :                     } else {
     711            0 :                         delta_writer
     712            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     713            0 :                             .await?;
     714              :                     }
     715              :                 } else {
     716          132 :                     for (lsn, val) in logs {
     717           56 :                         stat.produce_key(&val);
     718           56 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     719              :                     }
     720              :                 }
     721         1244 :                 first_batch = false;
     722              :             } else {
     723         1768 :                 for (lsn, val) in logs {
     724          232 :                     stat.produce_key(&val);
     725          232 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     726              :                 }
     727              :             }
     728              :         }
     729         1244 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     730         1360 :         for (lsn, val) in above_horizon_logs {
     731          116 :             stat.produce_key(&val);
     732          116 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     733              :         }
     734         1244 :         Ok(())
     735         1244 :     }
     736              : }
     737              : 
     738              : #[derive(Debug, Serialize, Default)]
     739              : struct CompactionStatisticsNumSize {
     740              :     num: u64,
     741              :     size: u64,
     742              : }
     743              : 
     744              : #[derive(Debug, Serialize, Default)]
     745              : pub struct CompactionStatistics {
     746              :     /// Delta layer visited (maybe compressed, physical size)
     747              :     delta_layer_visited: CompactionStatisticsNumSize,
     748              :     /// Image layer visited (maybe compressed, physical size)
     749              :     image_layer_visited: CompactionStatisticsNumSize,
     750              :     /// Delta layer produced (maybe compressed, physical size)
     751              :     delta_layer_produced: CompactionStatisticsNumSize,
     752              :     /// Image layer produced (maybe compressed, physical size)
     753              :     image_layer_produced: CompactionStatisticsNumSize,
     754              :     /// Delta layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
     755              :     delta_layer_discarded: CompactionStatisticsNumSize,
     756              :     /// Image layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
     757              :     image_layer_discarded: CompactionStatisticsNumSize,
     758              :     num_unique_keys_visited: usize,
     759              :     /// Delta visited (uncompressed, original size)
     760              :     wal_keys_visited: CompactionStatisticsNumSize,
     761              :     /// Image visited (uncompressed, original size)
     762              :     image_keys_visited: CompactionStatisticsNumSize,
     763              :     /// Delta produced (uncompressed, original size)
     764              :     wal_produced: CompactionStatisticsNumSize,
     765              :     /// Image produced (uncompressed, original size)
     766              :     image_produced: CompactionStatisticsNumSize,
     767              : 
     768              :     // Time spent in each phase
     769              :     time_acquire_lock_secs: f64,
     770              :     time_analyze_secs: f64,
     771              :     time_download_layer_secs: f64,
     772              :     time_main_loop_secs: f64,
     773              :     time_final_phase_secs: f64,
     774              :     time_total_secs: f64,
     775              : 
     776              :     // Summary
     777              :     /// Ratio of the key-value size before/after gc-compaction.
     778              :     uncompressed_size_ratio: f64,
     779              :     /// Ratio of the physical size before/after gc-compaction.
     780              :     physical_size_ratio: f64,
     781              : }
     782              : 
     783              : impl CompactionStatistics {
     784         2084 :     fn estimated_size_of_value(val: &Value) -> usize {
     785          864 :         match val {
     786         1220 :             Value::Image(img) => img.len(),
     787            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
     788          864 :             _ => std::mem::size_of::<NeonWalRecord>(),
     789              :         }
     790         2084 :     }
     791         3272 :     fn estimated_size_of_key() -> usize {
     792         3272 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
     793         3272 :     }
     794          172 :     fn visit_delta_layer(&mut self, size: u64) {
     795          172 :         self.delta_layer_visited.num += 1;
     796          172 :         self.delta_layer_visited.size += size;
     797          172 :     }
     798          132 :     fn visit_image_layer(&mut self, size: u64) {
     799          132 :         self.image_layer_visited.num += 1;
     800          132 :         self.image_layer_visited.size += size;
     801          132 :     }
     802         1244 :     fn on_unique_key_visited(&mut self) {
     803         1244 :         self.num_unique_keys_visited += 1;
     804         1244 :     }
     805          480 :     fn visit_wal_key(&mut self, val: &Value) {
     806          480 :         self.wal_keys_visited.num += 1;
     807          480 :         self.wal_keys_visited.size +=
     808          480 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     809          480 :     }
     810         1220 :     fn visit_image_key(&mut self, val: &Value) {
     811         1220 :         self.image_keys_visited.num += 1;
     812         1220 :         self.image_keys_visited.size +=
     813         1220 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     814         1220 :     }
     815          404 :     fn produce_key(&mut self, val: &Value) {
     816          404 :         match val {
     817           20 :             Value::Image(img) => self.produce_image_key(img),
     818          384 :             Value::WalRecord(_) => self.produce_wal_key(val),
     819              :         }
     820          404 :     }
     821          384 :     fn produce_wal_key(&mut self, val: &Value) {
     822          384 :         self.wal_produced.num += 1;
     823          384 :         self.wal_produced.size +=
     824          384 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     825          384 :     }
     826         1188 :     fn produce_image_key(&mut self, val: &Bytes) {
     827         1188 :         self.image_produced.num += 1;
     828         1188 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
     829         1188 :     }
     830           28 :     fn discard_delta_layer(&mut self, original_size: u64) {
     831           28 :         self.delta_layer_discarded.num += 1;
     832           28 :         self.delta_layer_discarded.size += original_size;
     833           28 :     }
     834           16 :     fn discard_image_layer(&mut self, original_size: u64) {
     835           16 :         self.image_layer_discarded.num += 1;
     836           16 :         self.image_layer_discarded.size += original_size;
     837           16 :     }
     838           48 :     fn produce_delta_layer(&mut self, size: u64) {
     839           48 :         self.delta_layer_produced.num += 1;
     840           48 :         self.delta_layer_produced.size += size;
     841           48 :     }
     842           60 :     fn produce_image_layer(&mut self, size: u64) {
     843           60 :         self.image_layer_produced.num += 1;
     844           60 :         self.image_layer_produced.size += size;
     845           60 :     }
     846          104 :     fn finalize(&mut self) {
     847          104 :         let original_key_value_size = self.image_keys_visited.size + self.wal_keys_visited.size;
     848          104 :         let produced_key_value_size = self.image_produced.size + self.wal_produced.size;
     849          104 :         self.uncompressed_size_ratio =
     850          104 :             original_key_value_size as f64 / (produced_key_value_size as f64 + 1.0); // avoid div by 0
     851          104 :         let original_physical_size = self.image_layer_visited.size + self.delta_layer_visited.size;
     852          104 :         let produced_physical_size = self.image_layer_produced.size
     853          104 :             + self.delta_layer_produced.size
     854          104 :             + self.image_layer_discarded.size
     855          104 :             + self.delta_layer_discarded.size; // Also include the discarded layers to make the ratio accurate
     856          104 :         self.physical_size_ratio =
     857          104 :             original_physical_size as f64 / (produced_physical_size as f64 + 1.0); // avoid div by 0
     858          104 :     }
     859              : }
     860              : 
     861              : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
     862              : pub enum CompactionOutcome {
     863              :     #[default]
     864              :     /// No layers need to be compacted after this round. Compaction doesn't need
     865              :     /// to be immediately scheduled.
     866              :     Done,
     867              :     /// Still has pending layers to be compacted after this round. Ideally, the scheduler
     868              :     /// should immediately schedule another compaction.
     869              :     Pending,
     870              :     /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
     871              :     /// guaranteed when `compaction_l0_first` is enabled).
     872              :     YieldForL0,
     873              :     /// Compaction was skipped, because the timeline is ineligible for compaction.
     874              :     Skipped,
     875              : }
     876              : 
     877              : impl Timeline {
     878              :     /// TODO: cancellation
     879              :     ///
     880              :     /// Returns whether the compaction has pending tasks.
     881          691 :     pub(crate) async fn compact_legacy(
     882          691 :         self: &Arc<Self>,
     883          691 :         cancel: &CancellationToken,
     884          691 :         options: CompactOptions,
     885          691 :         ctx: &RequestContext,
     886          691 :     ) -> Result<CompactionOutcome, CompactionError> {
     887          691 :         if options
     888          691 :             .flags
     889          691 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     890              :         {
     891            0 :             self.compact_with_gc(cancel, options, ctx).await?;
     892            0 :             return Ok(CompactionOutcome::Done);
     893          691 :         }
     894          691 : 
     895          691 :         if options.flags.contains(CompactFlags::DryRun) {
     896            0 :             return Err(CompactionError::Other(anyhow!(
     897            0 :                 "dry-run mode is not supported for legacy compaction for now"
     898            0 :             )));
     899          691 :         }
     900          691 : 
     901          691 :         if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
     902              :             // maybe useful in the future? could implement this at some point
     903            0 :             return Err(CompactionError::Other(anyhow!(
     904            0 :                 "compaction range is not supported for legacy compaction for now"
     905            0 :             )));
     906          691 :         }
     907          691 : 
     908          691 :         // High level strategy for compaction / image creation:
     909          691 :         //
     910          691 :         // 1. First, do a L0 compaction to ensure we move the L0
     911          691 :         // layers into the historic layer map get flat levels of
     912          691 :         // layers. If we did not compact all L0 layers, we will
     913          691 :         // prioritize compacting the timeline again and not do
     914          691 :         // any of the compactions below.
     915          691 :         //
     916          691 :         // 2. Then, calculate the desired "partitioning" of the
     917          691 :         // currently in-use key space. The goal is to partition the
     918          691 :         // key space into roughly fixed-size chunks, but also take into
     919          691 :         // account any existing image layers, and try to align the
     920          691 :         // chunk boundaries with the existing image layers to avoid
     921          691 :         // too much churn. Also try to align chunk boundaries with
     922          691 :         // relation boundaries.  In principle, we don't know about
     923          691 :         // relation boundaries here, we just deal with key-value
     924          691 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
     925          691 :         // map relations into key-value pairs. But in practice we know
     926          691 :         // that 'field6' is the block number, and the fields 1-5
     927          691 :         // identify a relation. This is just an optimization,
     928          691 :         // though.
     929          691 :         //
     930          691 :         // 3. Once we know the partitioning, for each partition,
     931          691 :         // decide if it's time to create a new image layer. The
     932          691 :         // criteria is: there has been too much "churn" since the last
     933          691 :         // image layer? The "churn" is fuzzy concept, it's a
     934          691 :         // combination of too many delta files, or too much WAL in
     935          691 :         // total in the delta file. Or perhaps: if creating an image
     936          691 :         // file would allow to delete some older files.
     937          691 :         //
     938          691 :         // 4. In the end, if the tenant gets auto-sharded, we will run
     939          691 :         // a shard-ancestor compaction.
     940          691 : 
     941          691 :         // Is the timeline being deleted?
     942          691 :         if self.is_stopping() {
     943            0 :             trace!("Dropping out of compaction on timeline shutdown");
     944            0 :             return Err(CompactionError::ShuttingDown);
     945          691 :         }
     946          691 : 
     947          691 :         let target_file_size = self.get_checkpoint_distance();
     948              : 
     949              :         // Define partitioning schema if needed
     950              : 
     951              :         // 1. L0 Compact
     952          691 :         let l0_outcome = {
     953          691 :             let timer = self.metrics.compact_time_histo.start_timer();
     954          691 :             let l0_outcome = self
     955          691 :                 .compact_level0(
     956          691 :                     target_file_size,
     957          691 :                     options.flags.contains(CompactFlags::ForceL0Compaction),
     958          691 :                     ctx,
     959          691 :                 )
     960          691 :                 .await?;
     961          691 :             timer.stop_and_record();
     962          691 :             l0_outcome
     963          691 :         };
     964          691 : 
     965          691 :         if options.flags.contains(CompactFlags::OnlyL0Compaction) {
     966            0 :             return Ok(l0_outcome);
     967          691 :         }
     968          691 : 
     969          691 :         // Yield if we have pending L0 compaction. The scheduler will do another pass.
     970          691 :         if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
     971            0 :             && !options.flags.contains(CompactFlags::NoYield)
     972              :         {
     973            0 :             info!("image/ancestor compaction yielding for L0 compaction");
     974            0 :             return Ok(CompactionOutcome::YieldForL0);
     975          691 :         }
     976          691 : 
     977          691 :         // 2. Repartition and create image layers if necessary
     978          691 :         match self
     979          691 :             .repartition(
     980          691 :                 self.get_last_record_lsn(),
     981          691 :                 self.get_compaction_target_size(),
     982          691 :                 options.flags,
     983          691 :                 ctx,
     984          691 :             )
     985          691 :             .await
     986              :         {
     987          691 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
     988          691 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
     989          691 :                 let image_ctx = RequestContextBuilder::extend(ctx)
     990          691 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
     991          691 :                     .build();
     992          691 : 
     993          691 :                 let mut partitioning = dense_partitioning;
     994          691 :                 partitioning
     995          691 :                     .parts
     996          691 :                     .extend(sparse_partitioning.into_dense().parts);
     997              : 
     998              :                 // 3. Create new image layers for partitions that have been modified "enough".
     999          691 :                 let (image_layers, outcome) = self
    1000          691 :                     .create_image_layers(
    1001          691 :                         &partitioning,
    1002          691 :                         lsn,
    1003          691 :                         if options
    1004          691 :                             .flags
    1005          691 :                             .contains(CompactFlags::ForceImageLayerCreation)
    1006              :                         {
    1007           28 :                             ImageLayerCreationMode::Force
    1008              :                         } else {
    1009          663 :                             ImageLayerCreationMode::Try
    1010              :                         },
    1011          691 :                         &image_ctx,
    1012          691 :                         self.last_image_layer_creation_status
    1013          691 :                             .load()
    1014          691 :                             .as_ref()
    1015          691 :                             .clone(),
    1016          691 :                         !options.flags.contains(CompactFlags::NoYield),
    1017          691 :                     )
    1018          691 :                     .await
    1019          691 :                     .inspect_err(|err| {
    1020              :                         if let CreateImageLayersError::GetVectoredError(
    1021              :                             GetVectoredError::MissingKey(_),
    1022            0 :                         ) = err
    1023              :                         {
    1024            0 :                             critical!("missing key during compaction: {err:?}");
    1025            0 :                         }
    1026          691 :                     })?;
    1027              : 
    1028          691 :                 self.last_image_layer_creation_status
    1029          691 :                     .store(Arc::new(outcome.clone()));
    1030          691 : 
    1031          691 :                 self.upload_new_image_layers(image_layers)?;
    1032          691 :                 if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
    1033              :                     // Yield and do not do any other kind of compaction.
    1034            0 :                     info!(
    1035            0 :                         "skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction)."
    1036              :                     );
    1037            0 :                     return Ok(CompactionOutcome::YieldForL0);
    1038          691 :                 }
    1039              :             }
    1040              : 
    1041              :             // Suppress errors when cancelled.
    1042            0 :             Err(_) if self.cancel.is_cancelled() => {}
    1043            0 :             Err(err) if err.is_cancel() => {}
    1044              : 
    1045              :             // Alert on critical errors that indicate data corruption.
    1046            0 :             Err(err) if err.is_critical() => {
    1047            0 :                 critical!("could not compact, repartitioning keyspace failed: {err:?}");
    1048              :             }
    1049              : 
    1050              :             // Log other errors. No partitioning? This is normal, if the timeline was just created
    1051              :             // as an empty timeline. Also in unit tests, when we use the timeline as a simple
    1052              :             // key-value store, ignoring the datadir layout. Log the error but continue.
    1053            0 :             Err(err) => error!("could not compact, repartitioning keyspace failed: {err:?}"),
    1054              :         };
    1055              : 
    1056          691 :         let partition_count = self.partitioning.read().0.0.parts.len();
    1057          691 : 
    1058          691 :         // 4. Shard ancestor compaction
    1059          691 : 
    1060          691 :         if self.shard_identity.count >= ShardCount::new(2) {
    1061              :             // Limit the number of layer rewrites to the number of partitions: this means its
    1062              :             // runtime should be comparable to a full round of image layer creations, rather than
    1063              :             // being potentially much longer.
    1064            0 :             let rewrite_max = partition_count;
    1065            0 : 
    1066            0 :             self.compact_shard_ancestors(rewrite_max, ctx).await?;
    1067          691 :         }
    1068              : 
    1069          691 :         Ok(CompactionOutcome::Done)
    1070          691 :     }
    1071              : 
    1072              :     /// Check for layers that are elegible to be rewritten:
    1073              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
    1074              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
    1075              :     /// - For future use: layers beyond pitr_interval that are in formats we would
    1076              :     ///   rather not maintain compatibility with indefinitely.
    1077              :     ///
    1078              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
    1079              :     /// how much work it will try to do in each compaction pass.
    1080            0 :     async fn compact_shard_ancestors(
    1081            0 :         self: &Arc<Self>,
    1082            0 :         rewrite_max: usize,
    1083            0 :         ctx: &RequestContext,
    1084            0 :     ) -> Result<(), CompactionError> {
    1085            0 :         let mut drop_layers = Vec::new();
    1086            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
    1087            0 : 
    1088            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
    1089            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
    1090            0 :         // pitr_interval, for example because a branchpoint references it.
    1091            0 :         //
    1092            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
    1093            0 :         // are rewriting layers.
    1094            0 :         let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
    1095            0 : 
    1096            0 :         tracing::info!(
    1097            0 :             "starting shard ancestor compaction, latest_gc_cutoff: {}, pitr cutoff {}",
    1098            0 :             *latest_gc_cutoff,
    1099            0 :             self.gc_info.read().unwrap().cutoffs.time
    1100              :         );
    1101              : 
    1102            0 :         let layers = self.layers.read().await;
    1103            0 :         for layer_desc in layers.layer_map()?.iter_historic_layers() {
    1104            0 :             let layer = layers.get_from_desc(&layer_desc);
    1105            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
    1106              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
    1107            0 :                 continue;
    1108            0 :             }
    1109            0 : 
    1110            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
    1111            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
    1112            0 :             let layer_local_page_count = sharded_range.page_count();
    1113            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
    1114            0 :             if layer_local_page_count == 0 {
    1115              :                 // This ancestral layer only covers keys that belong to other shards.
    1116              :                 // We include the full metadata in the log: if we had some critical bug that caused
    1117              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
    1118            0 :                 info!(%layer, old_metadata=?layer.metadata(),
    1119            0 :                     "dropping layer after shard split, contains no keys for this shard.",
    1120              :                 );
    1121              : 
    1122            0 :                 if cfg!(debug_assertions) {
    1123              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
    1124              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
    1125              :                     // should be !is_key_disposable()
    1126              :                     // TODO: exclude sparse keyspace from this check, otherwise it will infinitely loop.
    1127            0 :                     let range = layer_desc.get_key_range();
    1128            0 :                     let mut key = range.start;
    1129            0 :                     while key < range.end {
    1130            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
    1131            0 :                         key = key.next();
    1132              :                     }
    1133            0 :                 }
    1134              : 
    1135            0 :                 drop_layers.push(layer);
    1136            0 :                 continue;
    1137            0 :             } else if layer_local_page_count != u32::MAX
    1138            0 :                 && layer_local_page_count == layer_raw_page_count
    1139              :             {
    1140            0 :                 debug!(%layer,
    1141            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
    1142              :                     layer_local_page_count
    1143              :                 );
    1144            0 :                 continue;
    1145            0 :             }
    1146            0 : 
    1147            0 :             // Don't bother re-writing a layer unless it will at least halve its size
    1148            0 :             if layer_local_page_count != u32::MAX
    1149            0 :                 && layer_local_page_count > layer_raw_page_count / 2
    1150              :             {
    1151            0 :                 debug!(%layer,
    1152            0 :                     "layer is already mostly local ({}/{}), not rewriting",
    1153              :                     layer_local_page_count,
    1154              :                     layer_raw_page_count
    1155              :                 );
    1156            0 :             }
    1157              : 
    1158              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
    1159              :             // without incurring the I/O cost of a rewrite.
    1160            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
    1161            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
    1162            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
    1163            0 :                 continue;
    1164            0 :             }
    1165            0 : 
    1166            0 :             if layer_desc.is_delta() {
    1167              :                 // We do not yet implement rewrite of delta layers
    1168            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
    1169            0 :                 continue;
    1170            0 :             }
    1171            0 : 
    1172            0 :             // Only rewrite layers if their generations differ.  This guarantees:
    1173            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
    1174            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
    1175            0 :             if layer.metadata().generation == self.generation {
    1176            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
    1177            0 :                 continue;
    1178            0 :             }
    1179            0 : 
    1180            0 :             if layers_to_rewrite.len() >= rewrite_max {
    1181            0 :                 tracing::info!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
    1182            0 :                     layers_to_rewrite.len()
    1183              :                 );
    1184            0 :                 continue;
    1185            0 :             }
    1186            0 : 
    1187            0 :             // Fall through: all our conditions for doing a rewrite passed.
    1188            0 :             layers_to_rewrite.push(layer);
    1189              :         }
    1190              : 
    1191              :         // Drop read lock on layer map before we start doing time-consuming I/O
    1192            0 :         drop(layers);
    1193            0 : 
    1194            0 :         let mut replace_image_layers = Vec::new();
    1195              : 
    1196            0 :         for layer in layers_to_rewrite {
    1197            0 :             tracing::info!(layer=%layer, "Rewriting layer after shard split...");
    1198            0 :             let mut image_layer_writer = ImageLayerWriter::new(
    1199            0 :                 self.conf,
    1200            0 :                 self.timeline_id,
    1201            0 :                 self.tenant_shard_id,
    1202            0 :                 &layer.layer_desc().key_range,
    1203            0 :                 layer.layer_desc().image_layer_lsn(),
    1204            0 :                 ctx,
    1205            0 :             )
    1206            0 :             .await
    1207            0 :             .map_err(CompactionError::Other)?;
    1208              : 
    1209              :             // Safety of layer rewrites:
    1210              :             // - We are writing to a different local file path than we are reading from, so the old Layer
    1211              :             //   cannot interfere with the new one.
    1212              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
    1213              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
    1214              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
    1215              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
    1216              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
    1217              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
    1218              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
    1219              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
    1220              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
    1221              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
    1222            0 :             let resident = layer.download_and_keep_resident(ctx).await?;
    1223              : 
    1224            0 :             let keys_written = resident
    1225            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
    1226            0 :                 .await?;
    1227              : 
    1228            0 :             if keys_written > 0 {
    1229            0 :                 let (desc, path) = image_layer_writer
    1230            0 :                     .finish(ctx)
    1231            0 :                     .await
    1232            0 :                     .map_err(CompactionError::Other)?;
    1233            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
    1234            0 :                     .map_err(CompactionError::Other)?;
    1235            0 :                 tracing::info!(layer=%new_layer, "Rewrote layer, {} -> {} bytes",
    1236            0 :                     layer.metadata().file_size,
    1237            0 :                     new_layer.metadata().file_size);
    1238              : 
    1239            0 :                 replace_image_layers.push((layer, new_layer));
    1240            0 :             } else {
    1241            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
    1242            0 :                 // the layer has no data for us with the ShardedRange check above, but
    1243            0 :                 drop_layers.push(layer);
    1244            0 :             }
    1245              :         }
    1246              : 
    1247              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
    1248              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
    1249              :         // to remote index) and be removed. This is inefficient but safe.
    1250            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
    1251            0 : 
    1252            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
    1253            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
    1254            0 :             .await?;
    1255              : 
    1256            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
    1257            0 : 
    1258            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
    1259            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
    1260            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
    1261            0 :         // load.
    1262            0 :         match self.remote_client.wait_completion().await {
    1263            0 :             Ok(()) => (),
    1264            0 :             Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
    1265              :             Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
    1266            0 :                 return Err(CompactionError::ShuttingDown);
    1267              :             }
    1268              :         }
    1269              : 
    1270            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
    1271            0 : 
    1272            0 :         Ok(())
    1273            0 :     }
    1274              : 
    1275              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
    1276              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
    1277              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
    1278              :     ///
    1279              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
    1280              :     /// that we know won't be needed for reads.
    1281          470 :     pub(crate) async fn update_layer_visibility(
    1282          470 :         &self,
    1283          470 :     ) -> Result<(), super::layer_manager::Shutdown> {
    1284          470 :         let head_lsn = self.get_last_record_lsn();
    1285              : 
    1286              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
    1287              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
    1288              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
    1289              :         // they will be subject to L0->L1 compaction in the near future.
    1290          470 :         let layer_manager = self.layers.read().await;
    1291          470 :         let layer_map = layer_manager.layer_map()?;
    1292              : 
    1293          470 :         let readable_points = {
    1294          470 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
    1295          470 : 
    1296          470 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
    1297          470 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
    1298            0 :                 if *is_offloaded == MaybeOffloaded::Yes {
    1299            0 :                     continue;
    1300            0 :                 }
    1301            0 :                 readable_points.push(*child_lsn);
    1302              :             }
    1303          470 :             readable_points.push(head_lsn);
    1304          470 :             readable_points
    1305          470 :         };
    1306          470 : 
    1307          470 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
    1308         1187 :         for (layer_desc, visibility) in layer_visibility {
    1309          717 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
    1310          717 :             let layer = layer_manager.get_from_desc(&layer_desc);
    1311          717 :             layer.set_visibility(visibility);
    1312          717 :         }
    1313              : 
    1314              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
    1315              :         // avoid assuming that everything at a branch point is visible.
    1316          470 :         drop(covered);
    1317          470 :         Ok(())
    1318          470 :     }
    1319              : 
    1320              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
    1321              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
    1322          691 :     async fn compact_level0(
    1323          691 :         self: &Arc<Self>,
    1324          691 :         target_file_size: u64,
    1325          691 :         force_compaction_ignore_threshold: bool,
    1326          691 :         ctx: &RequestContext,
    1327          691 :     ) -> Result<CompactionOutcome, CompactionError> {
    1328              :         let CompactLevel0Phase1Result {
    1329          691 :             new_layers,
    1330          691 :             deltas_to_compact,
    1331          691 :             outcome,
    1332              :         } = {
    1333          691 :             let phase1_span = info_span!("compact_level0_phase1");
    1334          691 :             let ctx = ctx.attached_child();
    1335          691 :             let mut stats = CompactLevel0Phase1StatsBuilder {
    1336          691 :                 version: Some(2),
    1337          691 :                 tenant_id: Some(self.tenant_shard_id),
    1338          691 :                 timeline_id: Some(self.timeline_id),
    1339          691 :                 ..Default::default()
    1340          691 :             };
    1341          691 : 
    1342          691 :             let begin = tokio::time::Instant::now();
    1343          691 :             let phase1_layers_locked = self.layers.read().await;
    1344          691 :             let now = tokio::time::Instant::now();
    1345          691 :             stats.read_lock_acquisition_micros =
    1346          691 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
    1347          691 :             self.compact_level0_phase1(
    1348          691 :                 phase1_layers_locked,
    1349          691 :                 stats,
    1350          691 :                 target_file_size,
    1351          691 :                 force_compaction_ignore_threshold,
    1352          691 :                 &ctx,
    1353          691 :             )
    1354          691 :             .instrument(phase1_span)
    1355          691 :             .await?
    1356              :         };
    1357              : 
    1358          691 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
    1359              :             // nothing to do
    1360          642 :             return Ok(CompactionOutcome::Done);
    1361           49 :         }
    1362           49 : 
    1363           49 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
    1364           49 :             .await?;
    1365           49 :         Ok(outcome)
    1366          691 :     }
    1367              : 
    1368              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
    1369          691 :     async fn compact_level0_phase1<'a>(
    1370          691 :         self: &'a Arc<Self>,
    1371          691 :         guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
    1372          691 :         mut stats: CompactLevel0Phase1StatsBuilder,
    1373          691 :         target_file_size: u64,
    1374          691 :         force_compaction_ignore_threshold: bool,
    1375          691 :         ctx: &RequestContext,
    1376          691 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
    1377          691 :         stats.read_lock_held_spawn_blocking_startup_micros =
    1378          691 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
    1379          691 :         let layers = guard.layer_map()?;
    1380          691 :         let level0_deltas = layers.level0_deltas();
    1381          691 :         stats.level0_deltas_count = Some(level0_deltas.len());
    1382          691 : 
    1383          691 :         // Only compact if enough layers have accumulated.
    1384          691 :         let threshold = self.get_compaction_threshold();
    1385          691 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
    1386          642 :             if force_compaction_ignore_threshold {
    1387            0 :                 if !level0_deltas.is_empty() {
    1388            0 :                     info!(
    1389            0 :                         level0_deltas = level0_deltas.len(),
    1390            0 :                         threshold, "too few deltas to compact, but forcing compaction"
    1391              :                     );
    1392              :                 } else {
    1393            0 :                     info!(
    1394            0 :                         level0_deltas = level0_deltas.len(),
    1395            0 :                         threshold, "too few deltas to compact, cannot force compaction"
    1396              :                     );
    1397            0 :                     return Ok(CompactLevel0Phase1Result::default());
    1398              :                 }
    1399              :             } else {
    1400          642 :                 debug!(
    1401            0 :                     level0_deltas = level0_deltas.len(),
    1402            0 :                     threshold, "too few deltas to compact"
    1403              :                 );
    1404          642 :                 return Ok(CompactLevel0Phase1Result::default());
    1405              :             }
    1406           49 :         }
    1407              : 
    1408           49 :         let mut level0_deltas = level0_deltas
    1409           49 :             .iter()
    1410          637 :             .map(|x| guard.get_from_desc(x))
    1411           49 :             .collect::<Vec<_>>();
    1412           49 : 
    1413           49 :         // Gather the files to compact in this iteration.
    1414           49 :         //
    1415           49 :         // Start with the oldest Level 0 delta file, and collect any other
    1416           49 :         // level 0 files that form a contiguous sequence, such that the end
    1417           49 :         // LSN of previous file matches the start LSN of the next file.
    1418           49 :         //
    1419           49 :         // Note that if the files don't form such a sequence, we might
    1420           49 :         // "compact" just a single file. That's a bit pointless, but it allows
    1421           49 :         // us to get rid of the level 0 file, and compact the other files on
    1422           49 :         // the next iteration. This could probably made smarter, but such
    1423           49 :         // "gaps" in the sequence of level 0 files should only happen in case
    1424           49 :         // of a crash, partial download from cloud storage, or something like
    1425           49 :         // that, so it's not a big deal in practice.
    1426         1176 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
    1427           49 :         let mut level0_deltas_iter = level0_deltas.iter();
    1428           49 : 
    1429           49 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
    1430           49 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
    1431           49 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
    1432           49 : 
    1433           49 :         // Accumulate the size of layers in `deltas_to_compact`
    1434           49 :         let mut deltas_to_compact_bytes = 0;
    1435           49 : 
    1436           49 :         // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
    1437           49 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
    1438           49 :         // work in this function to only operate on this much delta data at once.
    1439           49 :         //
    1440           49 :         // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
    1441           49 :         // the constraint is not respected, we use the larger of the two.
    1442           49 :         let delta_size_limit = std::cmp::max(
    1443           49 :             self.get_compaction_upper_limit(),
    1444           49 :             self.get_compaction_threshold(),
    1445           49 :         ) as u64
    1446           49 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
    1447           49 : 
    1448           49 :         let mut fully_compacted = true;
    1449           49 : 
    1450           49 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident(ctx).await?);
    1451          637 :         for l in level0_deltas_iter {
    1452          588 :             let lsn_range = &l.layer_desc().lsn_range;
    1453          588 : 
    1454          588 :             if lsn_range.start != prev_lsn_end {
    1455            0 :                 break;
    1456          588 :             }
    1457          588 :             deltas_to_compact.push(l.download_and_keep_resident(ctx).await?);
    1458          588 :             deltas_to_compact_bytes += l.metadata().file_size;
    1459          588 :             prev_lsn_end = lsn_range.end;
    1460          588 : 
    1461          588 :             if deltas_to_compact_bytes >= delta_size_limit {
    1462            0 :                 info!(
    1463            0 :                     l0_deltas_selected = deltas_to_compact.len(),
    1464            0 :                     l0_deltas_total = level0_deltas.len(),
    1465            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
    1466              :                     delta_size_limit
    1467              :                 );
    1468            0 :                 fully_compacted = false;
    1469            0 : 
    1470            0 :                 // Proceed with compaction, but only a subset of L0s
    1471            0 :                 break;
    1472          588 :             }
    1473              :         }
    1474           49 :         let lsn_range = Range {
    1475           49 :             start: deltas_to_compact
    1476           49 :                 .first()
    1477           49 :                 .unwrap()
    1478           49 :                 .layer_desc()
    1479           49 :                 .lsn_range
    1480           49 :                 .start,
    1481           49 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
    1482           49 :         };
    1483           49 : 
    1484           49 :         info!(
    1485            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
    1486            0 :             lsn_range.start,
    1487            0 :             lsn_range.end,
    1488            0 :             deltas_to_compact.len(),
    1489            0 :             level0_deltas.len()
    1490              :         );
    1491              : 
    1492          637 :         for l in deltas_to_compact.iter() {
    1493          637 :             info!("compact includes {l}");
    1494              :         }
    1495              : 
    1496              :         // We don't need the original list of layers anymore. Drop it so that
    1497              :         // we don't accidentally use it later in the function.
    1498           49 :         drop(level0_deltas);
    1499           49 : 
    1500           49 :         stats.read_lock_held_prerequisites_micros = stats
    1501           49 :             .read_lock_held_spawn_blocking_startup_micros
    1502           49 :             .till_now();
    1503              : 
    1504              :         // TODO: replace with streaming k-merge
    1505           49 :         let all_keys = {
    1506           49 :             let mut all_keys = Vec::new();
    1507          637 :             for l in deltas_to_compact.iter() {
    1508          637 :                 if self.cancel.is_cancelled() {
    1509            0 :                     return Err(CompactionError::ShuttingDown);
    1510          637 :                 }
    1511          637 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1512          637 :                 let keys = delta
    1513          637 :                     .index_entries(ctx)
    1514          637 :                     .await
    1515          637 :                     .map_err(CompactionError::Other)?;
    1516          637 :                 all_keys.extend(keys);
    1517              :             }
    1518              :             // The current stdlib sorting implementation is designed in a way where it is
    1519              :             // particularly fast where the slice is made up of sorted sub-ranges.
    1520      7907578 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    1521           49 :             all_keys
    1522           49 :         };
    1523           49 : 
    1524           49 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
    1525              : 
    1526              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
    1527              :         //
    1528              :         // A hole is a key range for which this compaction doesn't have any WAL records.
    1529              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
    1530              :         // cover the hole, but actually don't contain any WAL records for that key range.
    1531              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
    1532              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
    1533              :         //
    1534              :         // The algorithm chooses holes as follows.
    1535              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
    1536              :         // - Filter: min threshold on range length
    1537              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
    1538              :         //
    1539              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
    1540              :         #[derive(PartialEq, Eq)]
    1541              :         struct Hole {
    1542              :             key_range: Range<Key>,
    1543              :             coverage_size: usize,
    1544              :         }
    1545           49 :         let holes: Vec<Hole> = {
    1546              :             use std::cmp::Ordering;
    1547              :             impl Ord for Hole {
    1548            0 :                 fn cmp(&self, other: &Self) -> Ordering {
    1549            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
    1550            0 :                 }
    1551              :             }
    1552              :             impl PartialOrd for Hole {
    1553            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    1554            0 :                     Some(self.cmp(other))
    1555            0 :                 }
    1556              :             }
    1557           49 :             let max_holes = deltas_to_compact.len();
    1558           49 :             let last_record_lsn = self.get_last_record_lsn();
    1559           49 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
    1560           49 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
    1561           49 :             // min-heap (reserve space for one more element added before eviction)
    1562           49 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
    1563           49 :             let mut prev: Option<Key> = None;
    1564              : 
    1565      3658078 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
    1566      3658078 :                 if let Some(prev_key) = prev {
    1567              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
    1568              :                     // compaction is the gap between data key and metadata keys.
    1569      3658029 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
    1570            0 :                         && !Key::is_metadata_key(&prev_key)
    1571              :                     {
    1572            0 :                         let key_range = prev_key..next_key;
    1573            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
    1574            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
    1575            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
    1576            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
    1577            0 :                         let coverage_size =
    1578            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
    1579            0 :                         if coverage_size >= min_hole_coverage_size {
    1580            0 :                             heap.push(Hole {
    1581            0 :                                 key_range,
    1582            0 :                                 coverage_size,
    1583            0 :                             });
    1584            0 :                             if heap.len() > max_holes {
    1585            0 :                                 heap.pop(); // remove smallest hole
    1586            0 :                             }
    1587            0 :                         }
    1588      3658029 :                     }
    1589           49 :                 }
    1590      3658078 :                 prev = Some(next_key.next());
    1591              :             }
    1592           49 :             let mut holes = heap.into_vec();
    1593           49 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
    1594           49 :             holes
    1595           49 :         };
    1596           49 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
    1597           49 :         drop_rlock(guard);
    1598           49 : 
    1599           49 :         if self.cancel.is_cancelled() {
    1600            0 :             return Err(CompactionError::ShuttingDown);
    1601           49 :         }
    1602           49 : 
    1603           49 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
    1604              : 
    1605              :         // This iterator walks through all key-value pairs from all the layers
    1606              :         // we're compacting, in key, LSN order.
    1607              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
    1608              :         // then the Value::Image is ordered before Value::WalRecord.
    1609           49 :         let mut all_values_iter = {
    1610           49 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
    1611          637 :             for l in deltas_to_compact.iter() {
    1612          637 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1613          637 :                 deltas.push(l);
    1614              :             }
    1615           49 :             MergeIterator::create(&deltas, &[], ctx)
    1616           49 :         };
    1617           49 : 
    1618           49 :         // This iterator walks through all keys and is needed to calculate size used by each key
    1619           49 :         let mut all_keys_iter = all_keys
    1620           49 :             .iter()
    1621      3658078 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
    1622      3658029 :             .coalesce(|mut prev, cur| {
    1623      3658029 :                 // Coalesce keys that belong to the same key pair.
    1624      3658029 :                 // This ensures that compaction doesn't put them
    1625      3658029 :                 // into different layer files.
    1626      3658029 :                 // Still limit this by the target file size,
    1627      3658029 :                 // so that we keep the size of the files in
    1628      3658029 :                 // check.
    1629      3658029 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
    1630        80076 :                     prev.2 += cur.2;
    1631        80076 :                     Ok(prev)
    1632              :                 } else {
    1633      3577953 :                     Err((prev, cur))
    1634              :                 }
    1635      3658029 :             });
    1636           49 : 
    1637           49 :         // Merge the contents of all the input delta layers into a new set
    1638           49 :         // of delta layers, based on the current partitioning.
    1639           49 :         //
    1640           49 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
    1641           49 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
    1642           49 :         // would be too large. In that case, we also split on the LSN dimension.
    1643           49 :         //
    1644           49 :         // LSN
    1645           49 :         //  ^
    1646           49 :         //  |
    1647           49 :         //  | +-----------+            +--+--+--+--+
    1648           49 :         //  | |           |            |  |  |  |  |
    1649           49 :         //  | +-----------+            |  |  |  |  |
    1650           49 :         //  | |           |            |  |  |  |  |
    1651           49 :         //  | +-----------+     ==>    |  |  |  |  |
    1652           49 :         //  | |           |            |  |  |  |  |
    1653           49 :         //  | +-----------+            |  |  |  |  |
    1654           49 :         //  | |           |            |  |  |  |  |
    1655           49 :         //  | +-----------+            +--+--+--+--+
    1656           49 :         //  |
    1657           49 :         //  +--------------> key
    1658           49 :         //
    1659           49 :         //
    1660           49 :         // If one key (X) has a lot of page versions:
    1661           49 :         //
    1662           49 :         // LSN
    1663           49 :         //  ^
    1664           49 :         //  |                                 (X)
    1665           49 :         //  | +-----------+            +--+--+--+--+
    1666           49 :         //  | |           |            |  |  |  |  |
    1667           49 :         //  | +-----------+            |  |  +--+  |
    1668           49 :         //  | |           |            |  |  |  |  |
    1669           49 :         //  | +-----------+     ==>    |  |  |  |  |
    1670           49 :         //  | |           |            |  |  +--+  |
    1671           49 :         //  | +-----------+            |  |  |  |  |
    1672           49 :         //  | |           |            |  |  |  |  |
    1673           49 :         //  | +-----------+            +--+--+--+--+
    1674           49 :         //  |
    1675           49 :         //  +--------------> key
    1676           49 :         // TODO: this actually divides the layers into fixed-size chunks, not
    1677           49 :         // based on the partitioning.
    1678           49 :         //
    1679           49 :         // TODO: we should also opportunistically materialize and
    1680           49 :         // garbage collect what we can.
    1681           49 :         let mut new_layers = Vec::new();
    1682           49 :         let mut prev_key: Option<Key> = None;
    1683           49 :         let mut writer: Option<DeltaLayerWriter> = None;
    1684           49 :         let mut key_values_total_size = 0u64;
    1685           49 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    1686           49 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    1687           49 :         let mut next_hole = 0; // index of next hole in holes vector
    1688           49 : 
    1689           49 :         let mut keys = 0;
    1690              : 
    1691      3658127 :         while let Some((key, lsn, value)) = all_values_iter
    1692      3658127 :             .next()
    1693      3658127 :             .await
    1694      3658127 :             .map_err(CompactionError::Other)?
    1695              :         {
    1696      3658078 :             keys += 1;
    1697      3658078 : 
    1698      3658078 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    1699              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    1700              :                 // shuffling an order of million keys per layer, this means we'll check it
    1701              :                 // around tens of times per layer.
    1702            0 :                 return Err(CompactionError::ShuttingDown);
    1703      3658078 :             }
    1704      3658078 : 
    1705      3658078 :             let same_key = prev_key == Some(key);
    1706      3658078 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    1707      3658078 :             if !same_key || lsn == dup_end_lsn {
    1708      3578002 :                 let mut next_key_size = 0u64;
    1709      3578002 :                 let is_dup_layer = dup_end_lsn.is_valid();
    1710      3578002 :                 dup_start_lsn = Lsn::INVALID;
    1711      3578002 :                 if !same_key {
    1712      3578002 :                     dup_end_lsn = Lsn::INVALID;
    1713      3578002 :                 }
    1714              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    1715      3578002 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    1716      3578002 :                     next_key_size = next_size;
    1717      3578002 :                     if key != next_key {
    1718      3577953 :                         if dup_end_lsn.is_valid() {
    1719            0 :                             // We are writting segment with duplicates:
    1720            0 :                             // place all remaining values of this key in separate segment
    1721            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    1722            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    1723      3577953 :                         }
    1724      3577953 :                         break;
    1725           49 :                     }
    1726           49 :                     key_values_total_size += next_size;
    1727           49 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    1728           49 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    1729           49 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    1730              :                         // Split key between multiple layers: such layer can contain only single key
    1731            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    1732            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    1733              :                         } else {
    1734            0 :                             lsn // start with the first LSN for this key
    1735              :                         };
    1736            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    1737            0 :                         break;
    1738           49 :                     }
    1739              :                 }
    1740              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    1741      3578002 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    1742            0 :                     dup_start_lsn = dup_end_lsn;
    1743            0 :                     dup_end_lsn = lsn_range.end;
    1744      3578002 :                 }
    1745      3578002 :                 if writer.is_some() {
    1746      3577953 :                     let written_size = writer.as_mut().unwrap().size();
    1747      3577953 :                     let contains_hole =
    1748      3577953 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    1749              :                     // check if key cause layer overflow or contains hole...
    1750      3577953 :                     if is_dup_layer
    1751      3577953 :                         || dup_end_lsn.is_valid()
    1752      3577953 :                         || written_size + key_values_total_size > target_file_size
    1753      3577673 :                         || contains_hole
    1754              :                     {
    1755              :                         // ... if so, flush previous layer and prepare to write new one
    1756          280 :                         let (desc, path) = writer
    1757          280 :                             .take()
    1758          280 :                             .unwrap()
    1759          280 :                             .finish(prev_key.unwrap().next(), ctx)
    1760          280 :                             .await
    1761          280 :                             .map_err(CompactionError::Other)?;
    1762          280 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1763          280 :                             .map_err(CompactionError::Other)?;
    1764              : 
    1765          280 :                         new_layers.push(new_delta);
    1766          280 :                         writer = None;
    1767          280 : 
    1768          280 :                         if contains_hole {
    1769            0 :                             // skip hole
    1770            0 :                             next_hole += 1;
    1771          280 :                         }
    1772      3577673 :                     }
    1773           49 :                 }
    1774              :                 // Remember size of key value because at next iteration we will access next item
    1775      3578002 :                 key_values_total_size = next_key_size;
    1776        80076 :             }
    1777      3658078 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    1778            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    1779            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    1780            0 :                 )))
    1781      3658078 :             });
    1782              : 
    1783      3658078 :             if !self.shard_identity.is_key_disposable(&key) {
    1784      3658078 :                 if writer.is_none() {
    1785          329 :                     if self.cancel.is_cancelled() {
    1786              :                         // to be somewhat responsive to cancellation, check for each new layer
    1787            0 :                         return Err(CompactionError::ShuttingDown);
    1788          329 :                     }
    1789              :                     // Create writer if not initiaized yet
    1790          329 :                     writer = Some(
    1791              :                         DeltaLayerWriter::new(
    1792          329 :                             self.conf,
    1793          329 :                             self.timeline_id,
    1794          329 :                             self.tenant_shard_id,
    1795          329 :                             key,
    1796          329 :                             if dup_end_lsn.is_valid() {
    1797              :                                 // this is a layer containing slice of values of the same key
    1798            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    1799            0 :                                 dup_start_lsn..dup_end_lsn
    1800              :                             } else {
    1801          329 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    1802          329 :                                 lsn_range.clone()
    1803              :                             },
    1804          329 :                             ctx,
    1805          329 :                         )
    1806          329 :                         .await
    1807          329 :                         .map_err(CompactionError::Other)?,
    1808              :                     );
    1809              : 
    1810          329 :                     keys = 0;
    1811      3657749 :                 }
    1812              : 
    1813      3658078 :                 writer
    1814      3658078 :                     .as_mut()
    1815      3658078 :                     .unwrap()
    1816      3658078 :                     .put_value(key, lsn, value, ctx)
    1817      3658078 :                     .await
    1818      3658078 :                     .map_err(CompactionError::Other)?;
    1819              :             } else {
    1820            0 :                 let owner = self.shard_identity.get_shard_number(&key);
    1821            0 : 
    1822            0 :                 // This happens after a shard split, when we're compacting an L0 created by our parent shard
    1823            0 :                 debug!("dropping key {key} during compaction (it belongs on shard {owner})");
    1824              :             }
    1825              : 
    1826      3658078 :             if !new_layers.is_empty() {
    1827        19786 :                 fail_point!("after-timeline-compacted-first-L1");
    1828      3638292 :             }
    1829              : 
    1830      3658078 :             prev_key = Some(key);
    1831              :         }
    1832           49 :         if let Some(writer) = writer {
    1833           49 :             let (desc, path) = writer
    1834           49 :                 .finish(prev_key.unwrap().next(), ctx)
    1835           49 :                 .await
    1836           49 :                 .map_err(CompactionError::Other)?;
    1837           49 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1838           49 :                 .map_err(CompactionError::Other)?;
    1839           49 :             new_layers.push(new_delta);
    1840            0 :         }
    1841              : 
    1842              :         // Sync layers
    1843           49 :         if !new_layers.is_empty() {
    1844              :             // Print a warning if the created layer is larger than double the target size
    1845              :             // Add two pages for potential overhead. This should in theory be already
    1846              :             // accounted for in the target calculation, but for very small targets,
    1847              :             // we still might easily hit the limit otherwise.
    1848           49 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    1849          329 :             for layer in new_layers.iter() {
    1850          329 :                 if layer.layer_desc().file_size > warn_limit {
    1851            0 :                     warn!(
    1852              :                         %layer,
    1853            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    1854              :                     );
    1855          329 :                 }
    1856              :             }
    1857              : 
    1858              :             // The writer.finish() above already did the fsync of the inodes.
    1859              :             // We just need to fsync the directory in which these inodes are linked,
    1860              :             // which we know to be the timeline directory.
    1861              :             //
    1862              :             // We use fatal_err() below because the after writer.finish() returns with success,
    1863              :             // the in-memory state of the filesystem already has the layer file in its final place,
    1864              :             // and subsequent pageserver code could think it's durable while it really isn't.
    1865           49 :             let timeline_dir = VirtualFile::open(
    1866           49 :                 &self
    1867           49 :                     .conf
    1868           49 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    1869           49 :                 ctx,
    1870           49 :             )
    1871           49 :             .await
    1872           49 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    1873           49 :             timeline_dir
    1874           49 :                 .sync_all()
    1875           49 :                 .await
    1876           49 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    1877            0 :         }
    1878              : 
    1879           49 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    1880           49 :         stats.new_deltas_count = Some(new_layers.len());
    1881          329 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    1882           49 : 
    1883           49 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    1884           49 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    1885              :         {
    1886           49 :             Ok(stats_json) => {
    1887           49 :                 info!(
    1888            0 :                     stats_json = stats_json.as_str(),
    1889            0 :                     "compact_level0_phase1 stats available"
    1890              :                 )
    1891              :             }
    1892            0 :             Err(e) => {
    1893            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    1894              :             }
    1895              :         }
    1896              : 
    1897              :         // Without this, rustc complains about deltas_to_compact still
    1898              :         // being borrowed when we `.into_iter()` below.
    1899           49 :         drop(all_values_iter);
    1900           49 : 
    1901           49 :         Ok(CompactLevel0Phase1Result {
    1902           49 :             new_layers,
    1903           49 :             deltas_to_compact: deltas_to_compact
    1904           49 :                 .into_iter()
    1905          637 :                 .map(|x| x.drop_eviction_guard())
    1906           49 :                 .collect::<Vec<_>>(),
    1907           49 :             outcome: if fully_compacted {
    1908           49 :                 CompactionOutcome::Done
    1909              :             } else {
    1910            0 :                 CompactionOutcome::Pending
    1911              :             },
    1912              :         })
    1913          691 :     }
    1914              : }
    1915              : 
    1916              : #[derive(Default)]
    1917              : struct CompactLevel0Phase1Result {
    1918              :     new_layers: Vec<ResidentLayer>,
    1919              :     deltas_to_compact: Vec<Layer>,
    1920              :     // Whether we have included all L0 layers, or selected only part of them due to the
    1921              :     // L0 compaction size limit.
    1922              :     outcome: CompactionOutcome,
    1923              : }
    1924              : 
    1925              : #[derive(Default)]
    1926              : struct CompactLevel0Phase1StatsBuilder {
    1927              :     version: Option<u64>,
    1928              :     tenant_id: Option<TenantShardId>,
    1929              :     timeline_id: Option<TimelineId>,
    1930              :     read_lock_acquisition_micros: DurationRecorder,
    1931              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    1932              :     read_lock_held_key_sort_micros: DurationRecorder,
    1933              :     read_lock_held_prerequisites_micros: DurationRecorder,
    1934              :     read_lock_held_compute_holes_micros: DurationRecorder,
    1935              :     read_lock_drop_micros: DurationRecorder,
    1936              :     write_layer_files_micros: DurationRecorder,
    1937              :     level0_deltas_count: Option<usize>,
    1938              :     new_deltas_count: Option<usize>,
    1939              :     new_deltas_size: Option<u64>,
    1940              : }
    1941              : 
    1942              : #[derive(serde::Serialize)]
    1943              : struct CompactLevel0Phase1Stats {
    1944              :     version: u64,
    1945              :     tenant_id: TenantShardId,
    1946              :     timeline_id: TimelineId,
    1947              :     read_lock_acquisition_micros: RecordedDuration,
    1948              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    1949              :     read_lock_held_key_sort_micros: RecordedDuration,
    1950              :     read_lock_held_prerequisites_micros: RecordedDuration,
    1951              :     read_lock_held_compute_holes_micros: RecordedDuration,
    1952              :     read_lock_drop_micros: RecordedDuration,
    1953              :     write_layer_files_micros: RecordedDuration,
    1954              :     level0_deltas_count: usize,
    1955              :     new_deltas_count: usize,
    1956              :     new_deltas_size: u64,
    1957              : }
    1958              : 
    1959              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    1960              :     type Error = anyhow::Error;
    1961              : 
    1962           49 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    1963           49 :         Ok(Self {
    1964           49 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    1965           49 :             tenant_id: value
    1966           49 :                 .tenant_id
    1967           49 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    1968           49 :             timeline_id: value
    1969           49 :                 .timeline_id
    1970           49 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    1971           49 :             read_lock_acquisition_micros: value
    1972           49 :                 .read_lock_acquisition_micros
    1973           49 :                 .into_recorded()
    1974           49 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    1975           49 :             read_lock_held_spawn_blocking_startup_micros: value
    1976           49 :                 .read_lock_held_spawn_blocking_startup_micros
    1977           49 :                 .into_recorded()
    1978           49 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    1979           49 :             read_lock_held_key_sort_micros: value
    1980           49 :                 .read_lock_held_key_sort_micros
    1981           49 :                 .into_recorded()
    1982           49 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    1983           49 :             read_lock_held_prerequisites_micros: value
    1984           49 :                 .read_lock_held_prerequisites_micros
    1985           49 :                 .into_recorded()
    1986           49 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    1987           49 :             read_lock_held_compute_holes_micros: value
    1988           49 :                 .read_lock_held_compute_holes_micros
    1989           49 :                 .into_recorded()
    1990           49 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    1991           49 :             read_lock_drop_micros: value
    1992           49 :                 .read_lock_drop_micros
    1993           49 :                 .into_recorded()
    1994           49 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    1995           49 :             write_layer_files_micros: value
    1996           49 :                 .write_layer_files_micros
    1997           49 :                 .into_recorded()
    1998           49 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    1999           49 :             level0_deltas_count: value
    2000           49 :                 .level0_deltas_count
    2001           49 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    2002           49 :             new_deltas_count: value
    2003           49 :                 .new_deltas_count
    2004           49 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    2005           49 :             new_deltas_size: value
    2006           49 :                 .new_deltas_size
    2007           49 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    2008              :         })
    2009           49 :     }
    2010              : }
    2011              : 
    2012              : impl Timeline {
    2013              :     /// Entry point for new tiered compaction algorithm.
    2014              :     ///
    2015              :     /// All the real work is in the implementation in the pageserver_compaction
    2016              :     /// crate. The code here would apply to any algorithm implemented by the
    2017              :     /// same interface, but tiered is the only one at the moment.
    2018              :     ///
    2019              :     /// TODO: cancellation
    2020            0 :     pub(crate) async fn compact_tiered(
    2021            0 :         self: &Arc<Self>,
    2022            0 :         _cancel: &CancellationToken,
    2023            0 :         ctx: &RequestContext,
    2024            0 :     ) -> Result<(), CompactionError> {
    2025            0 :         let fanout = self.get_compaction_threshold() as u64;
    2026            0 :         let target_file_size = self.get_checkpoint_distance();
    2027              : 
    2028              :         // Find the top of the historical layers
    2029            0 :         let end_lsn = {
    2030            0 :             let guard = self.layers.read().await;
    2031            0 :             let layers = guard.layer_map()?;
    2032              : 
    2033            0 :             let l0_deltas = layers.level0_deltas();
    2034            0 : 
    2035            0 :             // As an optimization, if we find that there are too few L0 layers,
    2036            0 :             // bail out early. We know that the compaction algorithm would do
    2037            0 :             // nothing in that case.
    2038            0 :             if l0_deltas.len() < fanout as usize {
    2039              :                 // doesn't need compacting
    2040            0 :                 return Ok(());
    2041            0 :             }
    2042            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    2043            0 :         };
    2044            0 : 
    2045            0 :         // Is the timeline being deleted?
    2046            0 :         if self.is_stopping() {
    2047            0 :             trace!("Dropping out of compaction on timeline shutdown");
    2048            0 :             return Err(CompactionError::ShuttingDown);
    2049            0 :         }
    2050              : 
    2051            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    2052              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    2053            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    2054            0 : 
    2055            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    2056            0 :             &mut adaptor,
    2057            0 :             end_lsn,
    2058            0 :             target_file_size,
    2059            0 :             fanout,
    2060            0 :             ctx,
    2061            0 :         )
    2062            0 :         .await
    2063              :         // TODO: compact_tiered needs to return CompactionError
    2064            0 :         .map_err(CompactionError::Other)?;
    2065              : 
    2066            0 :         adaptor.flush_updates().await?;
    2067            0 :         Ok(())
    2068            0 :     }
    2069              : 
    2070              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    2071              :     ///
    2072              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    2073              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    2074              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    2075              :     ///
    2076              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    2077              :     ///
    2078              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    2079              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    2080              :     ///
    2081              :     /// The function will produce:
    2082              :     ///
    2083              :     /// ```plain
    2084              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    2085              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    2086              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    2087              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    2088              :     /// ```
    2089              :     ///
    2090              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    2091         1260 :     pub(crate) async fn generate_key_retention(
    2092         1260 :         self: &Arc<Timeline>,
    2093         1260 :         key: Key,
    2094         1260 :         full_history: &[(Key, Lsn, Value)],
    2095         1260 :         horizon: Lsn,
    2096         1260 :         retain_lsn_below_horizon: &[Lsn],
    2097         1260 :         delta_threshold_cnt: usize,
    2098         1260 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    2099         1260 :     ) -> anyhow::Result<KeyHistoryRetention> {
    2100              :         // Pre-checks for the invariants
    2101              : 
    2102         1260 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2103              : 
    2104         1260 :         if debug_mode {
    2105         3060 :             for (log_key, _, _) in full_history {
    2106         1800 :                 assert_eq!(log_key, &key, "mismatched key");
    2107              :             }
    2108         1260 :             for i in 1..full_history.len() {
    2109          540 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    2110          540 :                 if full_history[i - 1].1 == full_history[i].1 {
    2111            0 :                     assert!(
    2112            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    2113            0 :                         "unordered delta/image, or duplicated delta"
    2114              :                     );
    2115          540 :                 }
    2116              :             }
    2117              :             // There was an assertion for no base image that checks if the first
    2118              :             // record in the history is `will_init` before, but it was removed.
    2119              :             // This is explained in the test cases for generate_key_retention.
    2120              :             // Search "incomplete history" for more information.
    2121         2820 :             for lsn in retain_lsn_below_horizon {
    2122         1560 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    2123              :             }
    2124         1260 :             for i in 1..retain_lsn_below_horizon.len() {
    2125          712 :                 assert!(
    2126          712 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    2127            0 :                     "unordered LSN"
    2128              :                 );
    2129              :             }
    2130            0 :         }
    2131         1260 :         let has_ancestor = base_img_from_ancestor.is_some();
    2132              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    2133              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    2134         1260 :         let (mut split_history, lsn_split_points) = {
    2135         1260 :             let mut split_history = Vec::new();
    2136         1260 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    2137         1260 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    2138         2820 :             for lsn in retain_lsn_below_horizon {
    2139         1560 :                 lsn_split_points.push(*lsn);
    2140         1560 :             }
    2141         1260 :             lsn_split_points.push(horizon);
    2142         1260 :             let mut current_idx = 0;
    2143         3060 :             for item @ (_, lsn, _) in full_history {
    2144         2288 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    2145          488 :                     current_idx += 1;
    2146          488 :                 }
    2147         1800 :                 split_history[current_idx].push(item);
    2148              :             }
    2149         1260 :             (split_history, lsn_split_points)
    2150              :         };
    2151              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    2152         5340 :         for split_for_lsn in &mut split_history {
    2153         4080 :             let mut prev_lsn = None;
    2154         4080 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    2155         4080 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    2156         1800 :                 if let Some(prev_lsn) = &prev_lsn {
    2157          236 :                     if *prev_lsn == lsn {
    2158              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    2159              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    2160              :                         // drop this delta and keep the image.
    2161              :                         //
    2162              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    2163              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    2164              :                         // dropped.
    2165              :                         //
    2166              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    2167              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    2168            0 :                         continue;
    2169          236 :                     }
    2170         1564 :                 }
    2171         1800 :                 prev_lsn = Some(lsn);
    2172         1800 :                 new_split_for_lsn.push(record);
    2173              :             }
    2174         4080 :             *split_for_lsn = new_split_for_lsn;
    2175              :         }
    2176              :         // Step 3: generate images when necessary
    2177         1260 :         let mut retention = Vec::with_capacity(split_history.len());
    2178         1260 :         let mut records_since_last_image = 0;
    2179         1260 :         let batch_cnt = split_history.len();
    2180         1260 :         assert!(
    2181         1260 :             batch_cnt >= 2,
    2182            0 :             "should have at least below + above horizon batches"
    2183              :         );
    2184         1260 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    2185         1260 :         if let Some((key, lsn, img)) = base_img_from_ancestor {
    2186           84 :             replay_history.push((key, lsn, Value::Image(img)));
    2187         1176 :         }
    2188              : 
    2189              :         /// Generate debug information for the replay history
    2190            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    2191              :             use std::fmt::Write;
    2192            0 :             let mut output = String::new();
    2193            0 :             if let Some((key, _, _)) = replay_history.first() {
    2194            0 :                 write!(output, "key={} ", key).unwrap();
    2195            0 :                 let mut cnt = 0;
    2196            0 :                 for (_, lsn, val) in replay_history {
    2197            0 :                     if val.is_image() {
    2198            0 :                         write!(output, "i@{} ", lsn).unwrap();
    2199            0 :                     } else if val.will_init() {
    2200            0 :                         write!(output, "di@{} ", lsn).unwrap();
    2201            0 :                     } else {
    2202            0 :                         write!(output, "d@{} ", lsn).unwrap();
    2203            0 :                     }
    2204            0 :                     cnt += 1;
    2205            0 :                     if cnt >= 128 {
    2206            0 :                         write!(output, "... and more").unwrap();
    2207            0 :                         break;
    2208            0 :                     }
    2209              :                 }
    2210            0 :             } else {
    2211            0 :                 write!(output, "<no history>").unwrap();
    2212            0 :             }
    2213            0 :             output
    2214            0 :         }
    2215              : 
    2216            0 :         fn generate_debug_trace(
    2217            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    2218            0 :             full_history: &[(Key, Lsn, Value)],
    2219            0 :             lsns: &[Lsn],
    2220            0 :             horizon: Lsn,
    2221            0 :         ) -> String {
    2222              :             use std::fmt::Write;
    2223            0 :             let mut output = String::new();
    2224            0 :             if let Some(replay_history) = replay_history {
    2225            0 :                 writeln!(
    2226            0 :                     output,
    2227            0 :                     "replay_history: {}",
    2228            0 :                     generate_history_trace(replay_history)
    2229            0 :                 )
    2230            0 :                 .unwrap();
    2231            0 :             } else {
    2232            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    2233            0 :             }
    2234            0 :             writeln!(
    2235            0 :                 output,
    2236            0 :                 "full_history: {}",
    2237            0 :                 generate_history_trace(full_history)
    2238            0 :             )
    2239            0 :             .unwrap();
    2240            0 :             writeln!(
    2241            0 :                 output,
    2242            0 :                 "when processing: [{}] horizon={}",
    2243            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    2244            0 :                 horizon
    2245            0 :             )
    2246            0 :             .unwrap();
    2247            0 :             output
    2248            0 :         }
    2249              : 
    2250         1260 :         let mut key_exists = false;
    2251         4080 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    2252              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    2253         4080 :             records_since_last_image += split_for_lsn.len();
    2254              :             // Whether to produce an image into the final layer files
    2255         4080 :             let produce_image = if i == 0 && !has_ancestor {
    2256              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    2257         1176 :                 true
    2258         2904 :             } else if i == batch_cnt - 1 {
    2259              :                 // Do not generate images for the last batch (above horizon)
    2260         1260 :                 false
    2261         1644 :             } else if records_since_last_image == 0 {
    2262         1288 :                 false
    2263          356 :             } else if records_since_last_image >= delta_threshold_cnt {
    2264              :                 // Generate images when there are too many records
    2265           12 :                 true
    2266              :             } else {
    2267          344 :                 false
    2268              :             };
    2269         4080 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    2270              :             // Only retain the items after the last image record
    2271         5028 :             for idx in (0..replay_history.len()).rev() {
    2272         5028 :                 if replay_history[idx].2.will_init() {
    2273         4080 :                     replay_history = replay_history[idx..].to_vec();
    2274         4080 :                     break;
    2275          948 :                 }
    2276              :             }
    2277         4080 :             if replay_history.is_empty() && !key_exists {
    2278              :                 // The key does not exist at earlier LSN, we can skip this iteration.
    2279            0 :                 retention.push(Vec::new());
    2280            0 :                 continue;
    2281         4080 :             } else {
    2282         4080 :                 key_exists = true;
    2283         4080 :             }
    2284         4080 :             let Some((_, _, val)) = replay_history.first() else {
    2285            0 :                 unreachable!("replay history should not be empty once it exists")
    2286              :             };
    2287         4080 :             if !val.will_init() {
    2288            0 :                 return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
    2289            0 :                     generate_debug_trace(
    2290            0 :                         Some(&replay_history),
    2291            0 :                         full_history,
    2292            0 :                         retain_lsn_below_horizon,
    2293            0 :                         horizon,
    2294            0 :                     )
    2295            0 :                 });
    2296         4080 :             }
    2297              :             // Whether to reconstruct the image. In debug mode, we will generate an image
    2298              :             // at every retain_lsn to ensure data is not corrupted, but we won't put the
    2299              :             // image into the final layer.
    2300         4080 :             let generate_image = produce_image || debug_mode;
    2301         4080 :             if produce_image {
    2302         1188 :                 records_since_last_image = 0;
    2303         2892 :             }
    2304         4080 :             let img_and_lsn = if generate_image {
    2305         4080 :                 let replay_history_for_debug = if debug_mode {
    2306         4080 :                     Some(replay_history.clone())
    2307              :                 } else {
    2308            0 :                     None
    2309              :                 };
    2310         4080 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    2311         4080 :                 let history = if produce_image {
    2312         1188 :                     std::mem::take(&mut replay_history)
    2313              :                 } else {
    2314         2892 :                     replay_history.clone()
    2315              :                 };
    2316         4080 :                 let mut img = None;
    2317         4080 :                 let mut records = Vec::with_capacity(history.len());
    2318         4080 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    2319         4036 :                     img = Some((*lsn, val.clone()));
    2320         4036 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    2321          920 :                         let Value::WalRecord(rec) = val else {
    2322            0 :                             return Err(anyhow::anyhow!(
    2323            0 :                                 "invalid record, first record is image, expect walrecords"
    2324            0 :                             ))
    2325            0 :                             .with_context(|| {
    2326            0 :                                 generate_debug_trace(
    2327            0 :                                     replay_history_for_debug_ref,
    2328            0 :                                     full_history,
    2329            0 :                                     retain_lsn_below_horizon,
    2330            0 :                                     horizon,
    2331            0 :                                 )
    2332            0 :                             });
    2333              :                         };
    2334          920 :                         records.push((lsn, rec));
    2335              :                     }
    2336              :                 } else {
    2337           72 :                     for (_, lsn, val) in history.into_iter() {
    2338           72 :                         let Value::WalRecord(rec) = val else {
    2339            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    2340            0 :                                 .with_context(|| generate_debug_trace(
    2341            0 :                                     replay_history_for_debug_ref,
    2342            0 :                                     full_history,
    2343            0 :                                     retain_lsn_below_horizon,
    2344            0 :                                     horizon,
    2345            0 :                                 ));
    2346              :                         };
    2347           72 :                         records.push((lsn, rec));
    2348              :                     }
    2349              :                 }
    2350         4080 :                 records.reverse();
    2351         4080 :                 let state = ValueReconstructState { img, records };
    2352              :                 // last batch does not generate image so i is always in range, unless we force generate
    2353              :                 // an image during testing
    2354         4080 :                 let request_lsn = if i >= lsn_split_points.len() {
    2355         1260 :                     Lsn::MAX
    2356              :                 } else {
    2357         2820 :                     lsn_split_points[i]
    2358              :                 };
    2359         4080 :                 let img = self.reconstruct_value(key, request_lsn, state).await?;
    2360         4080 :                 Some((request_lsn, img))
    2361              :             } else {
    2362            0 :                 None
    2363              :             };
    2364         4080 :             if produce_image {
    2365         1188 :                 let (request_lsn, img) = img_and_lsn.unwrap();
    2366         1188 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    2367         1188 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    2368         2892 :             } else {
    2369         2892 :                 let deltas = split_for_lsn
    2370         2892 :                     .iter()
    2371         2892 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    2372         2892 :                     .collect_vec();
    2373         2892 :                 retention.push(deltas);
    2374         2892 :             }
    2375              :         }
    2376         1260 :         let mut result = Vec::with_capacity(retention.len());
    2377         1260 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    2378         4080 :         for (idx, logs) in retention.into_iter().enumerate() {
    2379         4080 :             if idx == lsn_split_points.len() {
    2380         1260 :                 return Ok(KeyHistoryRetention {
    2381         1260 :                     below_horizon: result,
    2382         1260 :                     above_horizon: KeyLogAtLsn(logs),
    2383         1260 :                 });
    2384         2820 :             } else {
    2385         2820 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    2386         2820 :             }
    2387              :         }
    2388            0 :         unreachable!("key retention is empty")
    2389         1260 :     }
    2390              : 
    2391              :     /// Check how much space is left on the disk
    2392          104 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    2393          104 :         let tenants_dir = self.conf.tenants_path();
    2394              : 
    2395          104 :         let stat = Statvfs::get(&tenants_dir, None)
    2396          104 :             .context("statvfs failed, presumably directory got unlinked")?;
    2397              : 
    2398          104 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    2399          104 : 
    2400          104 :         Ok(avail_bytes)
    2401          104 :     }
    2402              : 
    2403              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    2404              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    2405              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    2406              :     /// compaction.
    2407          104 :     async fn check_compaction_space(
    2408          104 :         self: &Arc<Self>,
    2409          104 :         layer_selection: &[Layer],
    2410          104 :     ) -> Result<(), CompactionError> {
    2411          104 :         let available_space = self
    2412          104 :             .check_available_space()
    2413          104 :             .await
    2414          104 :             .map_err(CompactionError::Other)?;
    2415          104 :         let mut remote_layer_size = 0;
    2416          104 :         let mut all_layer_size = 0;
    2417          408 :         for layer in layer_selection {
    2418          304 :             let needs_download = layer
    2419          304 :                 .needs_download()
    2420          304 :                 .await
    2421          304 :                 .context("failed to check if layer needs download")
    2422          304 :                 .map_err(CompactionError::Other)?;
    2423          304 :             if needs_download.is_some() {
    2424            0 :                 remote_layer_size += layer.layer_desc().file_size;
    2425          304 :             }
    2426          304 :             all_layer_size += layer.layer_desc().file_size;
    2427              :         }
    2428          104 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    2429          104 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    2430              :         {
    2431            0 :             return Err(CompactionError::Other(anyhow!(
    2432            0 :                 "not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    2433            0 :                 available_space,
    2434            0 :                 allocated_space,
    2435            0 :                 all_layer_size,
    2436            0 :                 remote_layer_size,
    2437            0 :                 all_layer_size + remote_layer_size
    2438            0 :             )));
    2439          104 :         }
    2440          104 :         Ok(())
    2441          104 :     }
    2442              : 
    2443              :     /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
    2444              :     /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
    2445              :     /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
    2446              :     /// here.
    2447          108 :     pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
    2448          108 :         let gc_cutoff_lsn = {
    2449          108 :             let gc_info = self.gc_info.read().unwrap();
    2450          108 :             gc_info.min_cutoff()
    2451          108 :         };
    2452          108 : 
    2453          108 :         // TODO: standby horizon should use leases so we don't really need to consider it here.
    2454          108 :         // let watermark = watermark.min(self.standby_horizon.load());
    2455          108 : 
    2456          108 :         // TODO: ensure the child branches will not use anything below the watermark, or consider
    2457          108 :         // them when computing the watermark.
    2458          108 :         gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
    2459          108 :     }
    2460              : 
    2461              :     /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
    2462              :     /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
    2463              :     /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
    2464              :     /// like a full compaction of the specified keyspace.
    2465            0 :     pub(crate) async fn gc_compaction_split_jobs(
    2466            0 :         self: &Arc<Self>,
    2467            0 :         job: GcCompactJob,
    2468            0 :         sub_compaction_max_job_size_mb: Option<u64>,
    2469            0 :     ) -> Result<Vec<GcCompactJob>, CompactionError> {
    2470            0 :         let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
    2471            0 :             job.compact_lsn_range.end
    2472              :         } else {
    2473            0 :             self.get_gc_compaction_watermark()
    2474              :         };
    2475              : 
    2476            0 :         if compact_below_lsn == Lsn::INVALID {
    2477            0 :             tracing::warn!(
    2478            0 :                 "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    2479              :             );
    2480            0 :             return Ok(vec![]);
    2481            0 :         }
    2482              : 
    2483              :         // Split compaction job to about 4GB each
    2484              :         const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
    2485            0 :         let sub_compaction_max_job_size_mb =
    2486            0 :             sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
    2487            0 : 
    2488            0 :         let mut compact_jobs = Vec::<GcCompactJob>::new();
    2489            0 :         // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
    2490            0 :         // by estimating the amount of files read for a compaction job. We should also partition on LSN.
    2491            0 :         let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
    2492              :         // Truncate the key range to be within user specified compaction range.
    2493            0 :         fn truncate_to(
    2494            0 :             source_start: &Key,
    2495            0 :             source_end: &Key,
    2496            0 :             target_start: &Key,
    2497            0 :             target_end: &Key,
    2498            0 :         ) -> Option<(Key, Key)> {
    2499            0 :             let start = source_start.max(target_start);
    2500            0 :             let end = source_end.min(target_end);
    2501            0 :             if start < end {
    2502            0 :                 Some((*start, *end))
    2503              :             } else {
    2504            0 :                 None
    2505              :             }
    2506            0 :         }
    2507            0 :         let mut split_key_ranges = Vec::new();
    2508            0 :         let ranges = dense_ks
    2509            0 :             .parts
    2510            0 :             .iter()
    2511            0 :             .map(|partition| partition.ranges.iter())
    2512            0 :             .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
    2513            0 :             .flatten()
    2514            0 :             .cloned()
    2515            0 :             .collect_vec();
    2516            0 :         for range in ranges.iter() {
    2517            0 :             let Some((start, end)) = truncate_to(
    2518            0 :                 &range.start,
    2519            0 :                 &range.end,
    2520            0 :                 &job.compact_key_range.start,
    2521            0 :                 &job.compact_key_range.end,
    2522            0 :             ) else {
    2523            0 :                 continue;
    2524              :             };
    2525            0 :             split_key_ranges.push((start, end));
    2526              :         }
    2527            0 :         split_key_ranges.sort();
    2528            0 :         let all_layers = {
    2529            0 :             let guard = self.layers.read().await;
    2530            0 :             let layer_map = guard.layer_map()?;
    2531            0 :             layer_map.iter_historic_layers().collect_vec()
    2532            0 :         };
    2533            0 :         let mut current_start = None;
    2534            0 :         let ranges_num = split_key_ranges.len();
    2535            0 :         for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
    2536            0 :             if current_start.is_none() {
    2537            0 :                 current_start = Some(start);
    2538            0 :             }
    2539            0 :             let start = current_start.unwrap();
    2540            0 :             if start >= end {
    2541              :                 // We have already processed this partition.
    2542            0 :                 continue;
    2543            0 :             }
    2544            0 :             let overlapping_layers = {
    2545            0 :                 let mut desc = Vec::new();
    2546            0 :                 for layer in all_layers.iter() {
    2547            0 :                     if overlaps_with(&layer.get_key_range(), &(start..end))
    2548            0 :                         && layer.get_lsn_range().start <= compact_below_lsn
    2549            0 :                     {
    2550            0 :                         desc.push(layer.clone());
    2551            0 :                     }
    2552              :                 }
    2553            0 :                 desc
    2554            0 :             };
    2555            0 :             let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
    2556            0 :             if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
    2557              :                 // Try to extend the compaction range so that we include at least one full layer file.
    2558            0 :                 let extended_end = overlapping_layers
    2559            0 :                     .iter()
    2560            0 :                     .map(|layer| layer.key_range.end)
    2561            0 :                     .min();
    2562              :                 // It is possible that the search range does not contain any layer files when we reach the end of the loop.
    2563              :                 // In this case, we simply use the specified key range end.
    2564            0 :                 let end = if let Some(extended_end) = extended_end {
    2565            0 :                     extended_end.max(end)
    2566              :                 } else {
    2567            0 :                     end
    2568              :                 };
    2569            0 :                 let end = if ranges_num == idx + 1 {
    2570              :                     // extend the compaction range to the end of the key range if it's the last partition
    2571            0 :                     end.max(job.compact_key_range.end)
    2572              :                 } else {
    2573            0 :                     end
    2574              :                 };
    2575            0 :                 if total_size == 0 && !compact_jobs.is_empty() {
    2576            0 :                     info!(
    2577            0 :                         "splitting compaction job: {}..{}, estimated_size={}, extending the previous job",
    2578              :                         start, end, total_size
    2579              :                     );
    2580            0 :                     compact_jobs.last_mut().unwrap().compact_key_range.end = end;
    2581            0 :                     current_start = Some(end);
    2582              :                 } else {
    2583            0 :                     info!(
    2584            0 :                         "splitting compaction job: {}..{}, estimated_size={}",
    2585              :                         start, end, total_size
    2586              :                     );
    2587            0 :                     compact_jobs.push(GcCompactJob {
    2588            0 :                         dry_run: job.dry_run,
    2589            0 :                         compact_key_range: start..end,
    2590            0 :                         compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
    2591            0 :                     });
    2592            0 :                     current_start = Some(end);
    2593              :                 }
    2594            0 :             }
    2595              :         }
    2596            0 :         Ok(compact_jobs)
    2597            0 :     }
    2598              : 
    2599              :     /// An experimental compaction building block that combines compaction with garbage collection.
    2600              :     ///
    2601              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    2602              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    2603              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    2604              :     /// and create delta layers with all deltas >= gc horizon.
    2605              :     ///
    2606              :     /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
    2607              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    2608              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    2609              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    2610              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    2611              :     /// part of the range.
    2612              :     ///
    2613              :     /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
    2614              :     /// the LSN. Otherwise, it will use the gc cutoff by default.
    2615          108 :     pub(crate) async fn compact_with_gc(
    2616          108 :         self: &Arc<Self>,
    2617          108 :         cancel: &CancellationToken,
    2618          108 :         options: CompactOptions,
    2619          108 :         ctx: &RequestContext,
    2620          108 :     ) -> Result<CompactionOutcome, CompactionError> {
    2621          108 :         let sub_compaction = options.sub_compaction;
    2622          108 :         let job = GcCompactJob::from_compact_options(options.clone());
    2623          108 :         let no_yield = options.flags.contains(CompactFlags::NoYield);
    2624          108 :         if sub_compaction {
    2625            0 :             info!(
    2626            0 :                 "running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
    2627              :             );
    2628            0 :             let jobs = self
    2629            0 :                 .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
    2630            0 :                 .await?;
    2631            0 :             let jobs_len = jobs.len();
    2632            0 :             for (idx, job) in jobs.into_iter().enumerate() {
    2633            0 :                 info!(
    2634            0 :                     "running enhanced gc bottom-most compaction, sub-compaction {}/{}",
    2635            0 :                     idx + 1,
    2636              :                     jobs_len
    2637              :                 );
    2638            0 :                 self.compact_with_gc_inner(cancel, job, ctx, no_yield)
    2639            0 :                     .await?;
    2640              :             }
    2641            0 :             if jobs_len == 0 {
    2642            0 :                 info!("no jobs to run, skipping gc bottom-most compaction");
    2643            0 :             }
    2644            0 :             return Ok(CompactionOutcome::Done);
    2645          108 :         }
    2646          108 :         self.compact_with_gc_inner(cancel, job, ctx, no_yield).await
    2647          108 :     }
    2648              : 
    2649          108 :     async fn compact_with_gc_inner(
    2650          108 :         self: &Arc<Self>,
    2651          108 :         cancel: &CancellationToken,
    2652          108 :         job: GcCompactJob,
    2653          108 :         ctx: &RequestContext,
    2654          108 :         no_yield: bool,
    2655          108 :     ) -> Result<CompactionOutcome, CompactionError> {
    2656          108 :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    2657          108 :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    2658          108 :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    2659          108 : 
    2660          108 :         let timer = Instant::now();
    2661          108 :         let begin_timer = timer;
    2662          108 : 
    2663          108 :         let gc_lock = async {
    2664          108 :             tokio::select! {
    2665          108 :                 guard = self.gc_lock.lock() => Ok(guard),
    2666          108 :                 _ = cancel.cancelled() => Err(CompactionError::ShuttingDown),
    2667              :             }
    2668          108 :         };
    2669              : 
    2670          108 :         let time_acquire_lock = timer.elapsed();
    2671          108 :         let timer = Instant::now();
    2672              : 
    2673          108 :         let gc_lock = crate::timed(
    2674          108 :             gc_lock,
    2675          108 :             "acquires gc lock",
    2676          108 :             std::time::Duration::from_secs(5),
    2677          108 :         )
    2678          108 :         .await?;
    2679              : 
    2680          108 :         let dry_run = job.dry_run;
    2681          108 :         let compact_key_range = job.compact_key_range;
    2682          108 :         let compact_lsn_range = job.compact_lsn_range;
    2683              : 
    2684          108 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2685              : 
    2686          108 :         info!(
    2687            0 :             "running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}",
    2688              :             compact_key_range.start,
    2689              :             compact_key_range.end,
    2690              :             compact_lsn_range.start,
    2691              :             compact_lsn_range.end
    2692              :         );
    2693              : 
    2694          108 :         scopeguard::defer! {
    2695          108 :             info!("done enhanced gc bottom-most compaction");
    2696          108 :         };
    2697          108 : 
    2698          108 :         let mut stat = CompactionStatistics::default();
    2699              : 
    2700              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    2701              :         // The layer selection has the following properties:
    2702              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    2703              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    2704          104 :         let job_desc = {
    2705          108 :             let guard = self.layers.read().await;
    2706          108 :             let layers = guard.layer_map()?;
    2707          108 :             let gc_info = self.gc_info.read().unwrap();
    2708          108 :             let mut retain_lsns_below_horizon = Vec::new();
    2709          108 :             let gc_cutoff = {
    2710              :                 // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
    2711              :                 // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
    2712              :                 // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
    2713              :                 // to get the truth data.
    2714          108 :                 let real_gc_cutoff = self.get_gc_compaction_watermark();
    2715              :                 // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
    2716              :                 // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
    2717              :                 // the real cutoff.
    2718          108 :                 let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
    2719           96 :                     if real_gc_cutoff == Lsn::INVALID {
    2720              :                         // If the gc_cutoff is not generated yet, we should not compact anything.
    2721            0 :                         tracing::warn!(
    2722            0 :                             "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    2723              :                         );
    2724            0 :                         return Ok(CompactionOutcome::Skipped);
    2725           96 :                     }
    2726           96 :                     real_gc_cutoff
    2727              :                 } else {
    2728           12 :                     compact_lsn_range.end
    2729              :                 };
    2730          108 :                 if gc_cutoff > real_gc_cutoff {
    2731            8 :                     warn!(
    2732            0 :                         "provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff",
    2733              :                         gc_cutoff, real_gc_cutoff
    2734              :                     );
    2735            8 :                     gc_cutoff = real_gc_cutoff;
    2736          100 :                 }
    2737          108 :                 gc_cutoff
    2738              :             };
    2739          140 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    2740          140 :                 if lsn < &gc_cutoff {
    2741          140 :                     retain_lsns_below_horizon.push(*lsn);
    2742          140 :                 }
    2743              :             }
    2744          108 :             for lsn in gc_info.leases.keys() {
    2745            0 :                 if lsn < &gc_cutoff {
    2746            0 :                     retain_lsns_below_horizon.push(*lsn);
    2747            0 :                 }
    2748              :             }
    2749          108 :             let mut selected_layers: Vec<Layer> = Vec::new();
    2750          108 :             drop(gc_info);
    2751              :             // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    2752          108 :             let Some(max_layer_lsn) = layers
    2753          108 :                 .iter_historic_layers()
    2754          488 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    2755          416 :                 .map(|desc| desc.get_lsn_range().end)
    2756          108 :                 .max()
    2757              :             else {
    2758            0 :                 info!(
    2759            0 :                     "no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}",
    2760              :                     gc_cutoff
    2761              :                 );
    2762            0 :                 return Ok(CompactionOutcome::Done);
    2763              :             };
    2764              :             // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
    2765              :             // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
    2766              :             // it is a branch.
    2767          108 :             let Some(min_layer_lsn) = layers
    2768          108 :                 .iter_historic_layers()
    2769          488 :                 .filter(|desc| {
    2770          488 :                     if compact_lsn_range.start == Lsn::INVALID {
    2771          396 :                         true // select all layers below if start == Lsn(0)
    2772              :                     } else {
    2773           92 :                         desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
    2774              :                     }
    2775          488 :                 })
    2776          452 :                 .map(|desc| desc.get_lsn_range().start)
    2777          108 :                 .min()
    2778              :             else {
    2779            0 :                 info!(
    2780            0 :                     "no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}",
    2781              :                     compact_lsn_range.end
    2782              :                 );
    2783            0 :                 return Ok(CompactionOutcome::Done);
    2784              :             };
    2785              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    2786              :             // layers to compact.
    2787          108 :             let mut rewrite_layers = Vec::new();
    2788          488 :             for desc in layers.iter_historic_layers() {
    2789          488 :                 if desc.get_lsn_range().end <= max_layer_lsn
    2790          416 :                     && desc.get_lsn_range().start >= min_layer_lsn
    2791          380 :                     && overlaps_with(&desc.get_key_range(), &compact_key_range)
    2792              :                 {
    2793              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    2794              :                     // even if it might contain extra keys
    2795          304 :                     selected_layers.push(guard.get_from_desc(&desc));
    2796          304 :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    2797          304 :                     // to overlap image layers)
    2798          304 :                     if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
    2799            4 :                     {
    2800            4 :                         rewrite_layers.push(desc);
    2801          300 :                     }
    2802          184 :                 }
    2803              :             }
    2804          108 :             if selected_layers.is_empty() {
    2805            4 :                 info!(
    2806            0 :                     "no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}",
    2807              :                     gc_cutoff, compact_key_range.start, compact_key_range.end
    2808              :                 );
    2809            4 :                 return Ok(CompactionOutcome::Done);
    2810          104 :             }
    2811          104 :             retain_lsns_below_horizon.sort();
    2812          104 :             GcCompactionJobDescription {
    2813          104 :                 selected_layers,
    2814          104 :                 gc_cutoff,
    2815          104 :                 retain_lsns_below_horizon,
    2816          104 :                 min_layer_lsn,
    2817          104 :                 max_layer_lsn,
    2818          104 :                 compaction_key_range: compact_key_range,
    2819          104 :                 rewrite_layers,
    2820          104 :             }
    2821              :         };
    2822          104 :         let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
    2823              :             // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
    2824              :             // We use job_desc.min_layer_lsn as if it's the lowest branch point.
    2825           16 :             (true, job_desc.min_layer_lsn)
    2826           88 :         } else if self.ancestor_timeline.is_some() {
    2827              :             // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
    2828              :             // LSN ranges all the way to the ancestor timeline.
    2829            4 :             (true, self.ancestor_lsn)
    2830              :         } else {
    2831           84 :             let res = job_desc
    2832           84 :                 .retain_lsns_below_horizon
    2833           84 :                 .first()
    2834           84 :                 .copied()
    2835           84 :                 .unwrap_or(job_desc.gc_cutoff);
    2836           84 :             if debug_mode {
    2837           84 :                 assert_eq!(
    2838           84 :                     res,
    2839           84 :                     job_desc
    2840           84 :                         .retain_lsns_below_horizon
    2841           84 :                         .iter()
    2842           84 :                         .min()
    2843           84 :                         .copied()
    2844           84 :                         .unwrap_or(job_desc.gc_cutoff)
    2845           84 :                 );
    2846            0 :             }
    2847           84 :             (false, res)
    2848              :         };
    2849          104 :         info!(
    2850            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
    2851            0 :             job_desc.selected_layers.len(),
    2852            0 :             job_desc.rewrite_layers.len(),
    2853              :             job_desc.max_layer_lsn,
    2854              :             job_desc.min_layer_lsn,
    2855              :             job_desc.gc_cutoff,
    2856              :             lowest_retain_lsn,
    2857              :             job_desc.compaction_key_range.start,
    2858              :             job_desc.compaction_key_range.end,
    2859              :             has_data_below,
    2860              :         );
    2861              : 
    2862          104 :         let time_analyze = timer.elapsed();
    2863          104 :         let timer = Instant::now();
    2864              : 
    2865          408 :         for layer in &job_desc.selected_layers {
    2866          304 :             debug!("read layer: {}", layer.layer_desc().key());
    2867              :         }
    2868          108 :         for layer in &job_desc.rewrite_layers {
    2869            4 :             debug!("rewrite layer: {}", layer.key());
    2870              :         }
    2871              : 
    2872          104 :         self.check_compaction_space(&job_desc.selected_layers)
    2873          104 :             .await?;
    2874              : 
    2875              :         // Generate statistics for the compaction
    2876          408 :         for layer in &job_desc.selected_layers {
    2877          304 :             let desc = layer.layer_desc();
    2878          304 :             if desc.is_delta() {
    2879          172 :                 stat.visit_delta_layer(desc.file_size());
    2880          172 :             } else {
    2881          132 :                 stat.visit_image_layer(desc.file_size());
    2882          132 :             }
    2883              :         }
    2884              : 
    2885              :         // Step 1: construct a k-merge iterator over all layers.
    2886              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    2887          104 :         let layer_names = job_desc
    2888          104 :             .selected_layers
    2889          104 :             .iter()
    2890          304 :             .map(|layer| layer.layer_desc().layer_name())
    2891          104 :             .collect_vec();
    2892          104 :         if let Some(err) = check_valid_layermap(&layer_names) {
    2893            0 :             return Err(CompactionError::Other(anyhow!(
    2894            0 :                 "gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss",
    2895            0 :                 err
    2896            0 :             )));
    2897          104 :         }
    2898          104 :         // The maximum LSN we are processing in this compaction loop
    2899          104 :         let end_lsn = job_desc
    2900          104 :             .selected_layers
    2901          104 :             .iter()
    2902          304 :             .map(|l| l.layer_desc().lsn_range.end)
    2903          104 :             .max()
    2904          104 :             .unwrap();
    2905          104 :         let mut delta_layers = Vec::new();
    2906          104 :         let mut image_layers = Vec::new();
    2907          104 :         let mut downloaded_layers = Vec::new();
    2908          104 :         let mut total_downloaded_size = 0;
    2909          104 :         let mut total_layer_size = 0;
    2910          408 :         for layer in &job_desc.selected_layers {
    2911          304 :             if layer
    2912          304 :                 .needs_download()
    2913          304 :                 .await
    2914          304 :                 .context("failed to check if layer needs download")
    2915          304 :                 .map_err(CompactionError::Other)?
    2916          304 :                 .is_some()
    2917            0 :             {
    2918            0 :                 total_downloaded_size += layer.layer_desc().file_size;
    2919          304 :             }
    2920          304 :             total_layer_size += layer.layer_desc().file_size;
    2921          304 :             if cancel.is_cancelled() {
    2922            0 :                 return Err(CompactionError::ShuttingDown);
    2923          304 :             }
    2924          304 :             if !no_yield {
    2925          304 :                 let should_yield = self
    2926          304 :                     .l0_compaction_trigger
    2927          304 :                     .notified()
    2928          304 :                     .now_or_never()
    2929          304 :                     .is_some();
    2930          304 :                 if should_yield {
    2931            0 :                     tracing::info!(
    2932            0 :                         "preempt gc-compaction when downloading layers: too many L0 layers"
    2933              :                     );
    2934            0 :                     return Ok(CompactionOutcome::YieldForL0);
    2935          304 :                 }
    2936            0 :             }
    2937          304 :             let resident_layer = layer
    2938          304 :                 .download_and_keep_resident(ctx)
    2939          304 :                 .await
    2940          304 :                 .context("failed to download and keep resident layer")
    2941          304 :                 .map_err(CompactionError::Other)?;
    2942          304 :             downloaded_layers.push(resident_layer);
    2943              :         }
    2944          104 :         info!(
    2945            0 :             "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
    2946            0 :             total_downloaded_size,
    2947            0 :             total_layer_size,
    2948            0 :             total_downloaded_size as f64 / total_layer_size as f64
    2949              :         );
    2950          408 :         for resident_layer in &downloaded_layers {
    2951          304 :             if resident_layer.layer_desc().is_delta() {
    2952          172 :                 let layer = resident_layer
    2953          172 :                     .get_as_delta(ctx)
    2954          172 :                     .await
    2955          172 :                     .context("failed to get delta layer")
    2956          172 :                     .map_err(CompactionError::Other)?;
    2957          172 :                 delta_layers.push(layer);
    2958              :             } else {
    2959          132 :                 let layer = resident_layer
    2960          132 :                     .get_as_image(ctx)
    2961          132 :                     .await
    2962          132 :                     .context("failed to get image layer")
    2963          132 :                     .map_err(CompactionError::Other)?;
    2964          132 :                 image_layers.push(layer);
    2965              :             }
    2966              :         }
    2967          104 :         let (dense_ks, sparse_ks) = self
    2968          104 :             .collect_gc_compaction_keyspace()
    2969          104 :             .await
    2970          104 :             .context("failed to collect gc compaction keyspace")
    2971          104 :             .map_err(CompactionError::Other)?;
    2972          104 :         let mut merge_iter = FilterIterator::create(
    2973          104 :             MergeIterator::create(&delta_layers, &image_layers, ctx),
    2974          104 :             dense_ks,
    2975          104 :             sparse_ks,
    2976          104 :         )
    2977          104 :         .context("failed to create filter iterator")
    2978          104 :         .map_err(CompactionError::Other)?;
    2979              : 
    2980          104 :         let time_download_layer = timer.elapsed();
    2981          104 :         let timer = Instant::now();
    2982          104 : 
    2983          104 :         // Step 2: Produce images+deltas.
    2984          104 :         let mut accumulated_values = Vec::new();
    2985          104 :         let mut last_key: Option<Key> = None;
    2986              : 
    2987              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    2988              :         // when some condition meet.
    2989          104 :         let mut image_layer_writer = if !has_data_below {
    2990              :             Some(
    2991           84 :                 SplitImageLayerWriter::new(
    2992           84 :                     self.conf,
    2993           84 :                     self.timeline_id,
    2994           84 :                     self.tenant_shard_id,
    2995           84 :                     job_desc.compaction_key_range.start,
    2996           84 :                     lowest_retain_lsn,
    2997           84 :                     self.get_compaction_target_size(),
    2998           84 :                     ctx,
    2999           84 :                 )
    3000           84 :                 .await
    3001           84 :                 .context("failed to create image layer writer")
    3002           84 :                 .map_err(CompactionError::Other)?,
    3003              :             )
    3004              :         } else {
    3005           20 :             None
    3006              :         };
    3007              : 
    3008          104 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    3009          104 :             self.conf,
    3010          104 :             self.timeline_id,
    3011          104 :             self.tenant_shard_id,
    3012          104 :             lowest_retain_lsn..end_lsn,
    3013          104 :             self.get_compaction_target_size(),
    3014          104 :         )
    3015          104 :         .await
    3016          104 :         .context("failed to create delta layer writer")
    3017          104 :         .map_err(CompactionError::Other)?;
    3018              : 
    3019              :         #[derive(Default)]
    3020              :         struct RewritingLayers {
    3021              :             before: Option<DeltaLayerWriter>,
    3022              :             after: Option<DeltaLayerWriter>,
    3023              :         }
    3024          104 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    3025              : 
    3026              :         /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
    3027              :         /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
    3028              :         /// In those cases, we need to pull up data from below the LSN range we're compaction.
    3029              :         ///
    3030              :         /// This function unifies the cases so that later code doesn't have to think about it.
    3031              :         ///
    3032              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    3033              :         /// is needed for reconstruction. This should be fixed in the future.
    3034              :         ///
    3035              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    3036              :         /// images.
    3037         1244 :         async fn get_ancestor_image(
    3038         1244 :             this_tline: &Arc<Timeline>,
    3039         1244 :             key: Key,
    3040         1244 :             ctx: &RequestContext,
    3041         1244 :             has_data_below: bool,
    3042         1244 :             history_lsn_point: Lsn,
    3043         1244 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    3044         1244 :             if !has_data_below {
    3045         1168 :                 return Ok(None);
    3046           76 :             };
    3047              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    3048              :             // as much existing code as possible.
    3049           76 :             let img = this_tline.get(key, history_lsn_point, ctx).await?;
    3050           76 :             Ok(Some((key, history_lsn_point, img)))
    3051         1244 :         }
    3052              : 
    3053              :         // Actually, we can decide not to write to the image layer at all at this point because
    3054              :         // the key and LSN range are determined. However, to keep things simple here, we still
    3055              :         // create this writer, and discard the writer in the end.
    3056              : 
    3057          104 :         let mut keys_processed = 0;
    3058              : 
    3059         1932 :         while let Some(((key, lsn, val), desc)) = merge_iter
    3060         1932 :             .next_with_trace()
    3061         1932 :             .await
    3062         1932 :             .context("failed to get next key-value pair")
    3063         1932 :             .map_err(CompactionError::Other)?
    3064              :         {
    3065         1828 :             if cancel.is_cancelled() {
    3066            0 :                 return Err(CompactionError::ShuttingDown);
    3067         1828 :             }
    3068         1828 : 
    3069         1828 :             if !no_yield {
    3070         1828 :                 keys_processed += 1;
    3071         1828 :                 if keys_processed % 1000 == 0 {
    3072            0 :                     let should_yield = self
    3073            0 :                         .l0_compaction_trigger
    3074            0 :                         .notified()
    3075            0 :                         .now_or_never()
    3076            0 :                         .is_some();
    3077            0 :                     if should_yield {
    3078            0 :                         tracing::info!(
    3079            0 :                             "preempt gc-compaction in the main loop: too many L0 layers"
    3080              :                         );
    3081            0 :                         return Ok(CompactionOutcome::YieldForL0);
    3082            0 :                     }
    3083         1828 :                 }
    3084            0 :             }
    3085         1828 :             if self.shard_identity.is_key_disposable(&key) {
    3086              :                 // If this shard does not need to store this key, simply skip it.
    3087              :                 //
    3088              :                 // This is not handled in the filter iterator because shard is determined by hash.
    3089              :                 // Therefore, it does not give us any performance benefit to do things like skip
    3090              :                 // a whole layer file as handling key spaces (ranges).
    3091            0 :                 if cfg!(debug_assertions) {
    3092            0 :                     let shard = self.shard_identity.shard_index();
    3093            0 :                     let owner = self.shard_identity.get_shard_number(&key);
    3094            0 :                     panic!("key {key} does not belong on shard {shard}, owned by {owner}");
    3095            0 :                 }
    3096            0 :                 continue;
    3097         1828 :             }
    3098         1828 :             if !job_desc.compaction_key_range.contains(&key) {
    3099          128 :                 if !desc.is_delta {
    3100          120 :                     continue;
    3101            8 :                 }
    3102            8 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    3103            8 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    3104            0 :                     if rewriter.before.is_none() {
    3105            0 :                         rewriter.before = Some(
    3106            0 :                             DeltaLayerWriter::new(
    3107            0 :                                 self.conf,
    3108            0 :                                 self.timeline_id,
    3109            0 :                                 self.tenant_shard_id,
    3110            0 :                                 desc.key_range.start,
    3111            0 :                                 desc.lsn_range.clone(),
    3112            0 :                                 ctx,
    3113            0 :                             )
    3114            0 :                             .await
    3115            0 :                             .context("failed to create delta layer writer")
    3116            0 :                             .map_err(CompactionError::Other)?,
    3117              :                         );
    3118            0 :                     }
    3119            0 :                     rewriter.before.as_mut().unwrap()
    3120            8 :                 } else if key >= job_desc.compaction_key_range.end {
    3121            8 :                     if rewriter.after.is_none() {
    3122            4 :                         rewriter.after = Some(
    3123            4 :                             DeltaLayerWriter::new(
    3124            4 :                                 self.conf,
    3125            4 :                                 self.timeline_id,
    3126            4 :                                 self.tenant_shard_id,
    3127            4 :                                 job_desc.compaction_key_range.end,
    3128            4 :                                 desc.lsn_range.clone(),
    3129            4 :                                 ctx,
    3130            4 :                             )
    3131            4 :                             .await
    3132            4 :                             .context("failed to create delta layer writer")
    3133            4 :                             .map_err(CompactionError::Other)?,
    3134              :                         );
    3135            4 :                     }
    3136            8 :                     rewriter.after.as_mut().unwrap()
    3137              :                 } else {
    3138            0 :                     unreachable!()
    3139              :                 };
    3140            8 :                 rewriter
    3141            8 :                     .put_value(key, lsn, val, ctx)
    3142            8 :                     .await
    3143            8 :                     .context("failed to put value")
    3144            8 :                     .map_err(CompactionError::Other)?;
    3145            8 :                 continue;
    3146         1700 :             }
    3147         1700 :             match val {
    3148         1220 :                 Value::Image(_) => stat.visit_image_key(&val),
    3149          480 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    3150              :             }
    3151         1700 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    3152          560 :                 if last_key.is_none() {
    3153          104 :                     last_key = Some(key);
    3154          456 :                 }
    3155          560 :                 accumulated_values.push((key, lsn, val));
    3156              :             } else {
    3157         1140 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    3158         1140 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    3159         1140 :                 let retention = self
    3160         1140 :                     .generate_key_retention(
    3161         1140 :                         *last_key,
    3162         1140 :                         &accumulated_values,
    3163         1140 :                         job_desc.gc_cutoff,
    3164         1140 :                         &job_desc.retain_lsns_below_horizon,
    3165         1140 :                         COMPACTION_DELTA_THRESHOLD,
    3166         1140 :                         get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
    3167         1140 :                             .await
    3168         1140 :                             .context("failed to get ancestor image")
    3169         1140 :                             .map_err(CompactionError::Other)?,
    3170              :                     )
    3171         1140 :                     .await
    3172         1140 :                     .context("failed to generate key retention")
    3173         1140 :                     .map_err(CompactionError::Other)?;
    3174         1140 :                 retention
    3175         1140 :                     .pipe_to(
    3176         1140 :                         *last_key,
    3177         1140 :                         &mut delta_layer_writer,
    3178         1140 :                         image_layer_writer.as_mut(),
    3179         1140 :                         &mut stat,
    3180         1140 :                         ctx,
    3181         1140 :                     )
    3182         1140 :                     .await
    3183         1140 :                     .context("failed to pipe to delta layer writer")
    3184         1140 :                     .map_err(CompactionError::Other)?;
    3185         1140 :                 accumulated_values.clear();
    3186         1140 :                 *last_key = key;
    3187         1140 :                 accumulated_values.push((key, lsn, val));
    3188              :             }
    3189              :         }
    3190              : 
    3191              :         // TODO: move the below part to the loop body
    3192          104 :         let last_key = last_key.expect("no keys produced during compaction");
    3193          104 :         stat.on_unique_key_visited();
    3194              : 
    3195          104 :         let retention = self
    3196          104 :             .generate_key_retention(
    3197          104 :                 last_key,
    3198          104 :                 &accumulated_values,
    3199          104 :                 job_desc.gc_cutoff,
    3200          104 :                 &job_desc.retain_lsns_below_horizon,
    3201          104 :                 COMPACTION_DELTA_THRESHOLD,
    3202          104 :                 get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn)
    3203          104 :                     .await
    3204          104 :                     .context("failed to get ancestor image")
    3205          104 :                     .map_err(CompactionError::Other)?,
    3206              :             )
    3207          104 :             .await
    3208          104 :             .context("failed to generate key retention")
    3209          104 :             .map_err(CompactionError::Other)?;
    3210          104 :         retention
    3211          104 :             .pipe_to(
    3212          104 :                 last_key,
    3213          104 :                 &mut delta_layer_writer,
    3214          104 :                 image_layer_writer.as_mut(),
    3215          104 :                 &mut stat,
    3216          104 :                 ctx,
    3217          104 :             )
    3218          104 :             .await
    3219          104 :             .context("failed to pipe to delta layer writer")
    3220          104 :             .map_err(CompactionError::Other)?;
    3221              :         // end: move the above part to the loop body
    3222              : 
    3223          104 :         let time_main_loop = timer.elapsed();
    3224          104 :         let timer = Instant::now();
    3225          104 : 
    3226          104 :         let mut rewrote_delta_layers = Vec::new();
    3227          108 :         for (key, writers) in delta_layer_rewriters {
    3228            4 :             if let Some(delta_writer_before) = writers.before {
    3229            0 :                 let (desc, path) = delta_writer_before
    3230            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    3231            0 :                     .await
    3232            0 :                     .context("failed to finish delta layer writer")
    3233            0 :                     .map_err(CompactionError::Other)?;
    3234            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3235            0 :                     .context("failed to finish creating delta layer")
    3236            0 :                     .map_err(CompactionError::Other)?;
    3237            0 :                 rewrote_delta_layers.push(layer);
    3238            4 :             }
    3239            4 :             if let Some(delta_writer_after) = writers.after {
    3240            4 :                 let (desc, path) = delta_writer_after
    3241            4 :                     .finish(key.key_range.end, ctx)
    3242            4 :                     .await
    3243            4 :                     .context("failed to finish delta layer writer")
    3244            4 :                     .map_err(CompactionError::Other)?;
    3245            4 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3246            4 :                     .context("failed to finish creating delta layer")
    3247            4 :                     .map_err(CompactionError::Other)?;
    3248            4 :                 rewrote_delta_layers.push(layer);
    3249            0 :             }
    3250              :         }
    3251              : 
    3252          148 :         let discard = |key: &PersistentLayerKey| {
    3253          148 :             let key = key.clone();
    3254          148 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    3255          148 :         };
    3256              : 
    3257          104 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    3258           84 :             if !dry_run {
    3259           76 :                 let end_key = job_desc.compaction_key_range.end;
    3260           76 :                 writer
    3261           76 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    3262           76 :                     .await
    3263           76 :                     .context("failed to finish image layer writer")
    3264           76 :                     .map_err(CompactionError::Other)?
    3265              :             } else {
    3266            8 :                 drop(writer);
    3267            8 :                 Vec::new()
    3268              :             }
    3269              :         } else {
    3270           20 :             Vec::new()
    3271              :         };
    3272              : 
    3273          104 :         let produced_delta_layers = if !dry_run {
    3274           96 :             delta_layer_writer
    3275           96 :                 .finish_with_discard_fn(self, ctx, discard)
    3276           96 :                 .await
    3277           96 :                 .context("failed to finish delta layer writer")
    3278           96 :                 .map_err(CompactionError::Other)?
    3279              :         } else {
    3280            8 :             drop(delta_layer_writer);
    3281            8 :             Vec::new()
    3282              :         };
    3283              : 
    3284              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    3285              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    3286          104 :         let mut compact_to = Vec::new();
    3287          104 :         let mut keep_layers = HashSet::new();
    3288          104 :         let produced_delta_layers_len = produced_delta_layers.len();
    3289          104 :         let produced_image_layers_len = produced_image_layers.len();
    3290          104 : 
    3291          104 :         let layer_selection_by_key = job_desc
    3292          104 :             .selected_layers
    3293          104 :             .iter()
    3294          304 :             .map(|l| (l.layer_desc().key(), l.layer_desc().clone()))
    3295          104 :             .collect::<HashMap<_, _>>();
    3296              : 
    3297          176 :         for action in produced_delta_layers {
    3298           72 :             match action {
    3299           44 :                 BatchWriterResult::Produced(layer) => {
    3300           44 :                     if cfg!(debug_assertions) {
    3301           44 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    3302            0 :                     }
    3303           44 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    3304           44 :                     compact_to.push(layer);
    3305              :                 }
    3306           28 :                 BatchWriterResult::Discarded(l) => {
    3307           28 :                     if cfg!(debug_assertions) {
    3308           28 :                         info!("discarded delta layer: {}", l);
    3309            0 :                     }
    3310           28 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3311           28 :                         stat.discard_delta_layer(layer_desc.file_size());
    3312           28 :                     } else {
    3313            0 :                         tracing::warn!(
    3314            0 :                             "discarded delta layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3315              :                             l
    3316              :                         );
    3317            0 :                         stat.discard_delta_layer(0);
    3318              :                     }
    3319           28 :                     keep_layers.insert(l);
    3320              :                 }
    3321              :             }
    3322              :         }
    3323          108 :         for layer in &rewrote_delta_layers {
    3324            4 :             debug!(
    3325            0 :                 "produced rewritten delta layer: {}",
    3326            0 :                 layer.layer_desc().key()
    3327              :             );
    3328              :             // For now, we include rewritten delta layer size in the "produce_delta_layer". We could
    3329              :             // make it a separate statistics in the future.
    3330            4 :             stat.produce_delta_layer(layer.layer_desc().file_size());
    3331              :         }
    3332          104 :         compact_to.extend(rewrote_delta_layers);
    3333          180 :         for action in produced_image_layers {
    3334           76 :             match action {
    3335           60 :                 BatchWriterResult::Produced(layer) => {
    3336           60 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    3337           60 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    3338           60 :                     compact_to.push(layer);
    3339              :                 }
    3340           16 :                 BatchWriterResult::Discarded(l) => {
    3341           16 :                     debug!("discarded image layer: {}", l);
    3342           16 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3343           16 :                         stat.discard_image_layer(layer_desc.file_size());
    3344           16 :                     } else {
    3345            0 :                         tracing::warn!(
    3346            0 :                             "discarded image layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3347              :                             l
    3348              :                         );
    3349            0 :                         stat.discard_image_layer(0);
    3350              :                     }
    3351           16 :                     keep_layers.insert(l);
    3352              :                 }
    3353              :             }
    3354              :         }
    3355              : 
    3356          104 :         let mut layer_selection = job_desc.selected_layers;
    3357              : 
    3358              :         // Partial compaction might select more data than it processes, e.g., if
    3359              :         // the compaction_key_range only partially overlaps:
    3360              :         //
    3361              :         //         [---compaction_key_range---]
    3362              :         //   [---A----][----B----][----C----][----D----]
    3363              :         //
    3364              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    3365              :         // the compaction key range, so we can always discard them. However, for image
    3366              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    3367              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    3368              :         //
    3369              :         // The created image layers contain whatever is needed from B, C, and from
    3370              :         // `----]` of A, and from  `[---` of D.
    3371              :         //
    3372              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    3373              :         // keep that data.
    3374              :         //
    3375              :         // The solution for now is to keep A and D completely if they are image layers.
    3376              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    3377              :         // is _not_ fully covered by compaction_key_range).
    3378          408 :         for layer in &layer_selection {
    3379          304 :             if !layer.layer_desc().is_delta() {
    3380          132 :                 if !overlaps_with(
    3381          132 :                     &layer.layer_desc().key_range,
    3382          132 :                     &job_desc.compaction_key_range,
    3383          132 :                 ) {
    3384            0 :                     return Err(CompactionError::Other(anyhow!(
    3385            0 :                         "violated constraint: image layer outside of compaction key range"
    3386            0 :                     )));
    3387          132 :                 }
    3388          132 :                 if !fully_contains(
    3389          132 :                     &job_desc.compaction_key_range,
    3390          132 :                     &layer.layer_desc().key_range,
    3391          132 :                 ) {
    3392           16 :                     keep_layers.insert(layer.layer_desc().key());
    3393          116 :                 }
    3394          172 :             }
    3395              :         }
    3396              : 
    3397          304 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    3398          104 : 
    3399          104 :         let time_final_phase = timer.elapsed();
    3400          104 : 
    3401          104 :         stat.time_final_phase_secs = time_final_phase.as_secs_f64();
    3402          104 :         stat.time_main_loop_secs = time_main_loop.as_secs_f64();
    3403          104 :         stat.time_acquire_lock_secs = time_acquire_lock.as_secs_f64();
    3404          104 :         stat.time_download_layer_secs = time_download_layer.as_secs_f64();
    3405          104 :         stat.time_analyze_secs = time_analyze.as_secs_f64();
    3406          104 :         stat.time_total_secs = begin_timer.elapsed().as_secs_f64();
    3407          104 :         stat.finalize();
    3408          104 : 
    3409          104 :         info!(
    3410            0 :             "gc-compaction statistics: {}",
    3411            0 :             serde_json::to_string(&stat)
    3412            0 :                 .context("failed to serialize gc-compaction statistics")
    3413            0 :                 .map_err(CompactionError::Other)?
    3414              :         );
    3415              : 
    3416          104 :         if dry_run {
    3417            8 :             return Ok(CompactionOutcome::Done);
    3418           96 :         }
    3419           96 : 
    3420           96 :         info!(
    3421            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    3422            0 :             produced_delta_layers_len,
    3423            0 :             produced_image_layers_len,
    3424            0 :             keep_layers.len()
    3425              :         );
    3426              : 
    3427              :         // Step 3: Place back to the layer map.
    3428              : 
    3429              :         // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
    3430           96 :         let all_layers = {
    3431           96 :             let guard = self.layers.read().await;
    3432           96 :             let layer_map = guard.layer_map()?;
    3433           96 :             layer_map.iter_historic_layers().collect_vec()
    3434           96 :         };
    3435           96 : 
    3436           96 :         let mut final_layers = all_layers
    3437           96 :             .iter()
    3438          428 :             .map(|layer| layer.layer_name())
    3439           96 :             .collect::<HashSet<_>>();
    3440          304 :         for layer in &layer_selection {
    3441          208 :             final_layers.remove(&layer.layer_desc().layer_name());
    3442          208 :         }
    3443          204 :         for layer in &compact_to {
    3444          108 :             final_layers.insert(layer.layer_desc().layer_name());
    3445          108 :         }
    3446           96 :         let final_layers = final_layers.into_iter().collect_vec();
    3447              : 
    3448              :         // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
    3449              :         // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
    3450              :         // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
    3451           96 :         if let Some(err) = check_valid_layermap(&final_layers) {
    3452            0 :             return Err(CompactionError::Other(anyhow!(
    3453            0 :                 "gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss",
    3454            0 :                 err
    3455            0 :             )));
    3456           96 :         }
    3457              : 
    3458              :         // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
    3459              :         // operate on L1 layers.
    3460              :         {
    3461              :             // Gc-compaction will rewrite the history of a key. This could happen in two ways:
    3462              :             //
    3463              :             // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
    3464              :             // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
    3465              :             // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
    3466              :             // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
    3467              :             // now gets stored in I at the compact LSN.
    3468              :             //
    3469              :             // ---------------                                       ---------------
    3470              :             //   delta1@LSN20                                         image1@LSN20
    3471              :             // ---------------  (read path collects delta@LSN20,  => ---------------  (read path cannot find anything
    3472              :             //   delta1@LSN10    yields)                                               below LSN 20)
    3473              :             // ---------------
    3474              :             //
    3475              :             // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
    3476              :             // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
    3477              :             // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
    3478              :             //
    3479              :             // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
    3480              :             // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
    3481              :             // layer containing 4, yields, and we update the layer map to put the delta layer.
    3482              :             //
    3483              :             // ---------------                                      ---------------
    3484              :             //   delta1@LSN4                                          image1@LSN4
    3485              :             // ---------------  (read path collects delta@LSN4,  => ---------------  (read path collects LSN4 and LSN1,
    3486              :             //  delta1@LSN1-3    yields)                              delta1@LSN1     which is an invalid history)
    3487              :             // ---------------                                      ---------------
    3488              :             //
    3489              :             // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
    3490              :             // and only allow reads to continue after the update is finished.
    3491              : 
    3492           96 :             let update_guard = self.gc_compaction_layer_update_lock.write().await;
    3493              :             // Acquiring the update guard ensures current read operations end and new read operations are blocked.
    3494              :             // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
    3495           96 :             let mut guard = self.layers.write().await;
    3496           96 :             guard
    3497           96 :                 .open_mut()?
    3498           96 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
    3499           96 :             drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
    3500           96 :         };
    3501           96 : 
    3502           96 :         // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
    3503           96 :         // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
    3504           96 :         // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
    3505           96 :         // be batched into `schedule_compaction_update`.
    3506           96 :         let disk_consistent_lsn = self.disk_consistent_lsn.load();
    3507           96 :         self.schedule_uploads(disk_consistent_lsn, None)
    3508           96 :             .context("failed to schedule uploads")
    3509           96 :             .map_err(CompactionError::Other)?;
    3510              :         // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
    3511              :         // of `compact_from`.
    3512           96 :         let compact_from = {
    3513           96 :             let mut compact_from = Vec::new();
    3514           96 :             let mut compact_to_set = HashMap::new();
    3515          204 :             for layer in &compact_to {
    3516          108 :                 compact_to_set.insert(layer.layer_desc().key(), layer);
    3517          108 :             }
    3518          304 :             for layer in &layer_selection {
    3519          208 :                 if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
    3520            0 :                     tracing::info!(
    3521            0 :                         "skipping delete {} because found same layer key at different generation {}",
    3522              :                         layer,
    3523              :                         to
    3524              :                     );
    3525          208 :                 } else {
    3526          208 :                     compact_from.push(layer.clone());
    3527          208 :                 }
    3528              :             }
    3529           96 :             compact_from
    3530           96 :         };
    3531           96 :         self.remote_client
    3532           96 :             .schedule_compaction_update(&compact_from, &compact_to)?;
    3533              : 
    3534           96 :         drop(gc_lock);
    3535           96 : 
    3536           96 :         Ok(CompactionOutcome::Done)
    3537          108 :     }
    3538              : }
    3539              : 
    3540              : struct TimelineAdaptor {
    3541              :     timeline: Arc<Timeline>,
    3542              : 
    3543              :     keyspace: (Lsn, KeySpace),
    3544              : 
    3545              :     new_deltas: Vec<ResidentLayer>,
    3546              :     new_images: Vec<ResidentLayer>,
    3547              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    3548              : }
    3549              : 
    3550              : impl TimelineAdaptor {
    3551            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    3552            0 :         Self {
    3553            0 :             timeline: timeline.clone(),
    3554            0 :             keyspace,
    3555            0 :             new_images: Vec::new(),
    3556            0 :             new_deltas: Vec::new(),
    3557            0 :             layers_to_delete: Vec::new(),
    3558            0 :         }
    3559            0 :     }
    3560              : 
    3561            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    3562            0 :         let layers_to_delete = {
    3563            0 :             let guard = self.timeline.layers.read().await;
    3564            0 :             self.layers_to_delete
    3565            0 :                 .iter()
    3566            0 :                 .map(|x| guard.get_from_desc(x))
    3567            0 :                 .collect::<Vec<Layer>>()
    3568            0 :         };
    3569            0 :         self.timeline
    3570            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    3571            0 :             .await?;
    3572              : 
    3573            0 :         self.timeline
    3574            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    3575              : 
    3576            0 :         self.new_deltas.clear();
    3577            0 :         self.layers_to_delete.clear();
    3578            0 :         Ok(())
    3579            0 :     }
    3580              : }
    3581              : 
    3582              : #[derive(Clone)]
    3583              : struct ResidentDeltaLayer(ResidentLayer);
    3584              : #[derive(Clone)]
    3585              : struct ResidentImageLayer(ResidentLayer);
    3586              : 
    3587              : impl CompactionJobExecutor for TimelineAdaptor {
    3588              :     type Key = pageserver_api::key::Key;
    3589              : 
    3590              :     type Layer = OwnArc<PersistentLayerDesc>;
    3591              :     type DeltaLayer = ResidentDeltaLayer;
    3592              :     type ImageLayer = ResidentImageLayer;
    3593              : 
    3594              :     type RequestContext = crate::context::RequestContext;
    3595              : 
    3596            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    3597            0 :         self.timeline.get_shard_identity()
    3598            0 :     }
    3599              : 
    3600            0 :     async fn get_layers(
    3601            0 :         &mut self,
    3602            0 :         key_range: &Range<Key>,
    3603            0 :         lsn_range: &Range<Lsn>,
    3604            0 :         _ctx: &RequestContext,
    3605            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    3606            0 :         self.flush_updates().await?;
    3607              : 
    3608            0 :         let guard = self.timeline.layers.read().await;
    3609            0 :         let layer_map = guard.layer_map()?;
    3610              : 
    3611            0 :         let result = layer_map
    3612            0 :             .iter_historic_layers()
    3613            0 :             .filter(|l| {
    3614            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    3615            0 :             })
    3616            0 :             .map(OwnArc)
    3617            0 :             .collect();
    3618            0 :         Ok(result)
    3619            0 :     }
    3620              : 
    3621            0 :     async fn get_keyspace(
    3622            0 :         &mut self,
    3623            0 :         key_range: &Range<Key>,
    3624            0 :         lsn: Lsn,
    3625            0 :         _ctx: &RequestContext,
    3626            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    3627            0 :         if lsn == self.keyspace.0 {
    3628            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    3629            0 :                 &self.keyspace.1.ranges,
    3630            0 :                 key_range,
    3631            0 :             ))
    3632              :         } else {
    3633              :             // The current compaction implementation only ever requests the key space
    3634              :             // at the compaction end LSN.
    3635            0 :             anyhow::bail!("keyspace not available for requested lsn");
    3636              :         }
    3637            0 :     }
    3638              : 
    3639            0 :     async fn downcast_delta_layer(
    3640            0 :         &self,
    3641            0 :         layer: &OwnArc<PersistentLayerDesc>,
    3642            0 :         ctx: &RequestContext,
    3643            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    3644            0 :         // this is a lot more complex than a simple downcast...
    3645            0 :         if layer.is_delta() {
    3646            0 :             let l = {
    3647            0 :                 let guard = self.timeline.layers.read().await;
    3648            0 :                 guard.get_from_desc(layer)
    3649              :             };
    3650            0 :             let result = l.download_and_keep_resident(ctx).await?;
    3651              : 
    3652            0 :             Ok(Some(ResidentDeltaLayer(result)))
    3653              :         } else {
    3654            0 :             Ok(None)
    3655              :         }
    3656            0 :     }
    3657              : 
    3658            0 :     async fn create_image(
    3659            0 :         &mut self,
    3660            0 :         lsn: Lsn,
    3661            0 :         key_range: &Range<Key>,
    3662            0 :         ctx: &RequestContext,
    3663            0 :     ) -> anyhow::Result<()> {
    3664            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    3665            0 :     }
    3666              : 
    3667            0 :     async fn create_delta(
    3668            0 :         &mut self,
    3669            0 :         lsn_range: &Range<Lsn>,
    3670            0 :         key_range: &Range<Key>,
    3671            0 :         input_layers: &[ResidentDeltaLayer],
    3672            0 :         ctx: &RequestContext,
    3673            0 :     ) -> anyhow::Result<()> {
    3674            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    3675              : 
    3676            0 :         let mut all_entries = Vec::new();
    3677            0 :         for dl in input_layers.iter() {
    3678            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    3679              :         }
    3680              : 
    3681              :         // The current stdlib sorting implementation is designed in a way where it is
    3682              :         // particularly fast where the slice is made up of sorted sub-ranges.
    3683            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    3684              : 
    3685            0 :         let mut writer = DeltaLayerWriter::new(
    3686            0 :             self.timeline.conf,
    3687            0 :             self.timeline.timeline_id,
    3688            0 :             self.timeline.tenant_shard_id,
    3689            0 :             key_range.start,
    3690            0 :             lsn_range.clone(),
    3691            0 :             ctx,
    3692            0 :         )
    3693            0 :         .await?;
    3694              : 
    3695            0 :         let mut dup_values = 0;
    3696            0 : 
    3697            0 :         // This iterator walks through all key-value pairs from all the layers
    3698            0 :         // we're compacting, in key, LSN order.
    3699            0 :         let mut prev: Option<(Key, Lsn)> = None;
    3700              :         for &DeltaEntry {
    3701            0 :             key, lsn, ref val, ..
    3702            0 :         } in all_entries.iter()
    3703              :         {
    3704            0 :             if prev == Some((key, lsn)) {
    3705              :                 // This is a duplicate. Skip it.
    3706              :                 //
    3707              :                 // It can happen if compaction is interrupted after writing some
    3708              :                 // layers but not all, and we are compacting the range again.
    3709              :                 // The calculations in the algorithm assume that there are no
    3710              :                 // duplicates, so the math on targeted file size is likely off,
    3711              :                 // and we will create smaller files than expected.
    3712            0 :                 dup_values += 1;
    3713            0 :                 continue;
    3714            0 :             }
    3715              : 
    3716            0 :             let value = val.load(ctx).await?;
    3717              : 
    3718            0 :             writer.put_value(key, lsn, value, ctx).await?;
    3719              : 
    3720            0 :             prev = Some((key, lsn));
    3721              :         }
    3722              : 
    3723            0 :         if dup_values > 0 {
    3724            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    3725            0 :         }
    3726              : 
    3727            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    3728            0 :             Err(anyhow::anyhow!(
    3729            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    3730            0 :             ))
    3731            0 :         });
    3732              : 
    3733            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    3734            0 :         let new_delta_layer =
    3735            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    3736              : 
    3737            0 :         self.new_deltas.push(new_delta_layer);
    3738            0 :         Ok(())
    3739            0 :     }
    3740              : 
    3741            0 :     async fn delete_layer(
    3742            0 :         &mut self,
    3743            0 :         layer: &OwnArc<PersistentLayerDesc>,
    3744            0 :         _ctx: &RequestContext,
    3745            0 :     ) -> anyhow::Result<()> {
    3746            0 :         self.layers_to_delete.push(layer.clone().0);
    3747            0 :         Ok(())
    3748            0 :     }
    3749              : }
    3750              : 
    3751              : impl TimelineAdaptor {
    3752            0 :     async fn create_image_impl(
    3753            0 :         &mut self,
    3754            0 :         lsn: Lsn,
    3755            0 :         key_range: &Range<Key>,
    3756            0 :         ctx: &RequestContext,
    3757            0 :     ) -> Result<(), CreateImageLayersError> {
    3758            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    3759              : 
    3760            0 :         let image_layer_writer = ImageLayerWriter::new(
    3761            0 :             self.timeline.conf,
    3762            0 :             self.timeline.timeline_id,
    3763            0 :             self.timeline.tenant_shard_id,
    3764            0 :             key_range,
    3765            0 :             lsn,
    3766            0 :             ctx,
    3767            0 :         )
    3768            0 :         .await?;
    3769              : 
    3770            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    3771            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    3772            0 :                 "failpoint image-layer-writer-fail-before-finish"
    3773            0 :             )))
    3774            0 :         });
    3775              : 
    3776            0 :         let keyspace = KeySpace {
    3777            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    3778              :         };
    3779              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    3780            0 :         let outcome = self
    3781            0 :             .timeline
    3782            0 :             .create_image_layer_for_rel_blocks(
    3783            0 :                 &keyspace,
    3784            0 :                 image_layer_writer,
    3785            0 :                 lsn,
    3786            0 :                 ctx,
    3787            0 :                 key_range.clone(),
    3788            0 :                 IoConcurrency::sequential(),
    3789            0 :             )
    3790            0 :             .await?;
    3791              : 
    3792              :         if let ImageLayerCreationOutcome::Generated {
    3793            0 :             unfinished_image_layer,
    3794            0 :         } = outcome
    3795              :         {
    3796            0 :             let (desc, path) = unfinished_image_layer.finish(ctx).await?;
    3797            0 :             let image_layer =
    3798            0 :                 Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    3799            0 :             self.new_images.push(image_layer);
    3800            0 :         }
    3801              : 
    3802            0 :         timer.stop_and_record();
    3803            0 : 
    3804            0 :         Ok(())
    3805            0 :     }
    3806              : }
    3807              : 
    3808              : impl CompactionRequestContext for crate::context::RequestContext {}
    3809              : 
    3810              : #[derive(Debug, Clone)]
    3811              : pub struct OwnArc<T>(pub Arc<T>);
    3812              : 
    3813              : impl<T> Deref for OwnArc<T> {
    3814              :     type Target = <Arc<T> as Deref>::Target;
    3815            0 :     fn deref(&self) -> &Self::Target {
    3816            0 :         &self.0
    3817            0 :     }
    3818              : }
    3819              : 
    3820              : impl<T> AsRef<T> for OwnArc<T> {
    3821            0 :     fn as_ref(&self) -> &T {
    3822            0 :         self.0.as_ref()
    3823            0 :     }
    3824              : }
    3825              : 
    3826              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    3827            0 :     fn key_range(&self) -> &Range<Key> {
    3828            0 :         &self.key_range
    3829            0 :     }
    3830            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3831            0 :         &self.lsn_range
    3832            0 :     }
    3833            0 :     fn file_size(&self) -> u64 {
    3834            0 :         self.file_size
    3835            0 :     }
    3836            0 :     fn short_id(&self) -> std::string::String {
    3837            0 :         self.as_ref().short_id().to_string()
    3838            0 :     }
    3839            0 :     fn is_delta(&self) -> bool {
    3840            0 :         self.as_ref().is_delta()
    3841            0 :     }
    3842              : }
    3843              : 
    3844              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    3845            0 :     fn key_range(&self) -> &Range<Key> {
    3846            0 :         &self.layer_desc().key_range
    3847            0 :     }
    3848            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3849            0 :         &self.layer_desc().lsn_range
    3850            0 :     }
    3851            0 :     fn file_size(&self) -> u64 {
    3852            0 :         self.layer_desc().file_size
    3853            0 :     }
    3854            0 :     fn short_id(&self) -> std::string::String {
    3855            0 :         self.layer_desc().short_id().to_string()
    3856            0 :     }
    3857            0 :     fn is_delta(&self) -> bool {
    3858            0 :         true
    3859            0 :     }
    3860              : }
    3861              : 
    3862              : use crate::tenant::timeline::DeltaEntry;
    3863              : 
    3864              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    3865            0 :     fn key_range(&self) -> &Range<Key> {
    3866            0 :         &self.0.layer_desc().key_range
    3867            0 :     }
    3868            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3869            0 :         &self.0.layer_desc().lsn_range
    3870            0 :     }
    3871            0 :     fn file_size(&self) -> u64 {
    3872            0 :         self.0.layer_desc().file_size
    3873            0 :     }
    3874            0 :     fn short_id(&self) -> std::string::String {
    3875            0 :         self.0.layer_desc().short_id().to_string()
    3876            0 :     }
    3877            0 :     fn is_delta(&self) -> bool {
    3878            0 :         true
    3879            0 :     }
    3880              : }
    3881              : 
    3882              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    3883              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    3884              : 
    3885            0 :     async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    3886            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    3887            0 :     }
    3888              : }
    3889              : 
    3890              : impl CompactionLayer<Key> for ResidentImageLayer {
    3891            0 :     fn key_range(&self) -> &Range<Key> {
    3892            0 :         &self.0.layer_desc().key_range
    3893            0 :     }
    3894            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3895            0 :         &self.0.layer_desc().lsn_range
    3896            0 :     }
    3897            0 :     fn file_size(&self) -> u64 {
    3898            0 :         self.0.layer_desc().file_size
    3899            0 :     }
    3900            0 :     fn short_id(&self) -> std::string::String {
    3901            0 :         self.0.layer_desc().short_id().to_string()
    3902            0 :     }
    3903            0 :     fn is_delta(&self) -> bool {
    3904            0 :         false
    3905            0 :     }
    3906              : }
    3907              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta