LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: 9ea6db2ee0fa9d49a3b75230199d5aaf7b855d49.info Lines: 49.5 % 2848 1409
Test Date: 2025-07-18 08:04:09 Functions: 42.2 % 185 78

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::cmp::min;
       8              : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
       9              : use std::ops::{Deref, Range};
      10              : use std::sync::Arc;
      11              : use std::time::{Duration, Instant};
      12              : 
      13              : use super::layer_manager::LayerManagerLockHolder;
      14              : use super::{
      15              :     CompactFlags, CompactOptions, CompactionError, CreateImageLayersError, DurationRecorder,
      16              :     GetVectoredError, ImageLayerCreationMode, LastImageLayerCreationStatus, RecordedDuration,
      17              :     Timeline,
      18              : };
      19              : 
      20              : use crate::pgdatadir_mapping::CollectKeySpaceError;
      21              : use crate::tenant::timeline::{DeltaEntry, RepartitionError};
      22              : use crate::walredo::RedoAttemptType;
      23              : use anyhow::{Context, anyhow};
      24              : use bytes::Bytes;
      25              : use enumset::EnumSet;
      26              : use fail::fail_point;
      27              : use futures::FutureExt;
      28              : use itertools::Itertools;
      29              : use once_cell::sync::Lazy;
      30              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
      31              : use pageserver_api::key::{KEY_SIZE, Key};
      32              : use pageserver_api::keyspace::{KeySpace, ShardedRange};
      33              : use pageserver_api::models::{CompactInfoResponse, CompactKeyRange};
      34              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      35              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      36              : use pageserver_compaction::interface::*;
      37              : use serde::Serialize;
      38              : use tokio::sync::{OwnedSemaphorePermit, Semaphore};
      39              : use tokio_util::sync::CancellationToken;
      40              : use tracing::{Instrument, debug, error, info, info_span, trace, warn};
      41              : use utils::critical_timeline;
      42              : use utils::id::TimelineId;
      43              : use utils::lsn::Lsn;
      44              : use wal_decoder::models::record::NeonWalRecord;
      45              : use wal_decoder::models::value::Value;
      46              : 
      47              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      48              : use crate::page_cache;
      49              : use crate::statvfs::Statvfs;
      50              : use crate::tenant::checks::check_valid_layermap;
      51              : use crate::tenant::gc_block::GcBlock;
      52              : use crate::tenant::layer_map::LayerMap;
      53              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      54              : use crate::tenant::remote_timeline_client::index::GcCompactionState;
      55              : use crate::tenant::storage_layer::batch_split_writer::{
      56              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      57              : };
      58              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      59              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      60              : use crate::tenant::storage_layer::{
      61              :     AsLayerDesc, LayerVisibilityHint, PersistentLayerDesc, PersistentLayerKey,
      62              :     ValueReconstructState,
      63              : };
      64              : use crate::tenant::tasks::log_compaction_error;
      65              : use crate::tenant::timeline::{
      66              :     DeltaLayerWriter, ImageLayerCreationOutcome, ImageLayerWriter, IoConcurrency, Layer,
      67              :     ResidentLayer, drop_layer_manager_rlock,
      68              : };
      69              : use crate::tenant::{DeltaLayer, MaybeOffloaded, PageReconstructError};
      70              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      71              : 
      72              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      73              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      74              : 
      75              : /// Ratio of shard-local pages below which we trigger shard ancestor layer rewrites. 0.3 means that
      76              : /// <= 30% of layer pages must belong to the descendant shard to rewrite the layer.
      77              : ///
      78              : /// We choose a value < 0.5 to avoid rewriting all visible layers every time we do a power-of-two
      79              : /// shard split, which gets expensive for large tenants.
      80              : const ANCESTOR_COMPACTION_REWRITE_THRESHOLD: f64 = 0.3;
      81              : 
      82              : #[derive(Default, Debug, Clone, Copy, Hash, PartialEq, Eq, Serialize)]
      83              : pub struct GcCompactionJobId(pub usize);
      84              : 
      85              : impl std::fmt::Display for GcCompactionJobId {
      86            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      87            0 :         write!(f, "{}", self.0)
      88            0 :     }
      89              : }
      90              : 
      91              : pub struct GcCompactionCombinedSettings {
      92              :     pub gc_compaction_enabled: bool,
      93              :     pub gc_compaction_verification: bool,
      94              :     pub gc_compaction_initial_threshold_kb: u64,
      95              :     pub gc_compaction_ratio_percent: u64,
      96              : }
      97              : 
      98              : #[derive(Debug, Clone)]
      99              : pub enum GcCompactionQueueItem {
     100              :     MetaJob {
     101              :         /// Compaction options
     102              :         options: CompactOptions,
     103              :         /// Whether the compaction is triggered automatically (determines whether we need to update L2 LSN)
     104              :         auto: bool,
     105              :     },
     106              :     SubCompactionJob {
     107              :         i: usize,
     108              :         total: usize,
     109              :         options: CompactOptions,
     110              :     },
     111              :     Notify(GcCompactionJobId, Option<Lsn>),
     112              : }
     113              : 
     114              : /// Statistics for gc-compaction meta jobs, which contains several sub compaction jobs.
     115              : #[derive(Debug, Clone, Serialize, Default)]
     116              : pub struct GcCompactionMetaStatistics {
     117              :     /// The total number of sub compaction jobs.
     118              :     pub total_sub_compaction_jobs: usize,
     119              :     /// The total number of sub compaction jobs that failed.
     120              :     pub failed_sub_compaction_jobs: usize,
     121              :     /// The total number of sub compaction jobs that succeeded.
     122              :     pub succeeded_sub_compaction_jobs: usize,
     123              :     /// The layer size before compaction.
     124              :     pub before_compaction_layer_size: u64,
     125              :     /// The layer size after compaction.
     126              :     pub after_compaction_layer_size: u64,
     127              :     /// The start time of the meta job.
     128              :     pub start_time: Option<chrono::DateTime<chrono::Utc>>,
     129              :     /// The end time of the meta job.
     130              :     pub end_time: Option<chrono::DateTime<chrono::Utc>>,
     131              :     /// The duration of the meta job.
     132              :     pub duration_secs: f64,
     133              :     /// The id of the meta job.
     134              :     pub meta_job_id: GcCompactionJobId,
     135              :     /// The LSN below which the layers are compacted, used to compute the statistics.
     136              :     pub below_lsn: Lsn,
     137              :     /// The retention ratio of the meta job (after_compaction_layer_size / before_compaction_layer_size)
     138              :     pub retention_ratio: f64,
     139              : }
     140              : 
     141              : impl GcCompactionMetaStatistics {
     142            0 :     fn finalize(&mut self) {
     143            0 :         let end_time = chrono::Utc::now();
     144            0 :         if let Some(start_time) = self.start_time {
     145            0 :             if end_time > start_time {
     146            0 :                 let delta = end_time - start_time;
     147            0 :                 if let Ok(std_dur) = delta.to_std() {
     148            0 :                     self.duration_secs = std_dur.as_secs_f64();
     149            0 :                 }
     150            0 :             }
     151            0 :         }
     152            0 :         self.retention_ratio = self.after_compaction_layer_size as f64
     153            0 :             / (self.before_compaction_layer_size as f64 + 1.0);
     154            0 :         self.end_time = Some(end_time);
     155            0 :     }
     156              : }
     157              : 
     158              : impl GcCompactionQueueItem {
     159            0 :     pub fn into_compact_info_resp(
     160            0 :         self,
     161            0 :         id: GcCompactionJobId,
     162            0 :         running: bool,
     163            0 :     ) -> Option<CompactInfoResponse> {
     164            0 :         match self {
     165            0 :             GcCompactionQueueItem::MetaJob { options, .. } => Some(CompactInfoResponse {
     166            0 :                 compact_key_range: options.compact_key_range,
     167            0 :                 compact_lsn_range: options.compact_lsn_range,
     168            0 :                 sub_compaction: options.sub_compaction,
     169            0 :                 running,
     170            0 :                 job_id: id.0,
     171            0 :             }),
     172            0 :             GcCompactionQueueItem::SubCompactionJob { options, .. } => Some(CompactInfoResponse {
     173            0 :                 compact_key_range: options.compact_key_range,
     174            0 :                 compact_lsn_range: options.compact_lsn_range,
     175            0 :                 sub_compaction: options.sub_compaction,
     176            0 :                 running,
     177            0 :                 job_id: id.0,
     178            0 :             }),
     179            0 :             GcCompactionQueueItem::Notify(_, _) => None,
     180              :         }
     181            0 :     }
     182              : }
     183              : 
     184              : #[derive(Default)]
     185              : struct GcCompactionGuardItems {
     186              :     notify: Option<tokio::sync::oneshot::Sender<()>>,
     187              :     permit: Option<OwnedSemaphorePermit>,
     188              : }
     189              : 
     190              : struct GcCompactionQueueInner {
     191              :     running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     192              :     queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     193              :     guards: HashMap<GcCompactionJobId, GcCompactionGuardItems>,
     194              :     last_id: GcCompactionJobId,
     195              :     meta_statistics: Option<GcCompactionMetaStatistics>,
     196              : }
     197              : 
     198              : impl GcCompactionQueueInner {
     199            0 :     fn next_id(&mut self) -> GcCompactionJobId {
     200            0 :         let id = self.last_id;
     201            0 :         self.last_id = GcCompactionJobId(id.0 + 1);
     202            0 :         id
     203            0 :     }
     204              : }
     205              : 
     206              : /// A structure to store gc_compaction jobs.
     207              : pub struct GcCompactionQueue {
     208              :     /// All items in the queue, and the currently-running job.
     209              :     inner: std::sync::Mutex<GcCompactionQueueInner>,
     210              :     /// Ensure only one thread is consuming the queue.
     211              :     consumer_lock: tokio::sync::Mutex<()>,
     212              : }
     213              : 
     214            0 : static CONCURRENT_GC_COMPACTION_TASKS: Lazy<Arc<Semaphore>> = Lazy::new(|| {
     215              :     // Only allow one timeline on one pageserver to run gc compaction at a time.
     216            0 :     Arc::new(Semaphore::new(1))
     217            0 : });
     218              : 
     219              : impl GcCompactionQueue {
     220            0 :     pub fn new() -> Self {
     221            0 :         GcCompactionQueue {
     222            0 :             inner: std::sync::Mutex::new(GcCompactionQueueInner {
     223            0 :                 running: None,
     224            0 :                 queued: VecDeque::new(),
     225            0 :                 guards: HashMap::new(),
     226            0 :                 last_id: GcCompactionJobId(0),
     227            0 :                 meta_statistics: None,
     228            0 :             }),
     229            0 :             consumer_lock: tokio::sync::Mutex::new(()),
     230            0 :         }
     231            0 :     }
     232              : 
     233            0 :     pub fn cancel_scheduled(&self) {
     234            0 :         let mut guard = self.inner.lock().unwrap();
     235            0 :         guard.queued.clear();
     236              :         // TODO: if there is a running job, we should keep the gc guard. However, currently, the cancel
     237              :         // API is only used for testing purposes, so we can drop everything here.
     238            0 :         guard.guards.clear();
     239            0 :     }
     240              : 
     241              :     /// Schedule a manual compaction job.
     242            0 :     pub fn schedule_manual_compaction(
     243            0 :         &self,
     244            0 :         options: CompactOptions,
     245            0 :         notify: Option<tokio::sync::oneshot::Sender<()>>,
     246            0 :     ) -> GcCompactionJobId {
     247            0 :         let mut guard = self.inner.lock().unwrap();
     248            0 :         let id = guard.next_id();
     249            0 :         guard.queued.push_back((
     250            0 :             id,
     251            0 :             GcCompactionQueueItem::MetaJob {
     252            0 :                 options,
     253            0 :                 auto: false,
     254            0 :             },
     255            0 :         ));
     256            0 :         guard.guards.entry(id).or_default().notify = notify;
     257            0 :         info!("scheduled compaction job id={}", id);
     258            0 :         id
     259            0 :     }
     260              : 
     261              :     /// Schedule an auto compaction job.
     262            0 :     fn schedule_auto_compaction(
     263            0 :         &self,
     264            0 :         options: CompactOptions,
     265            0 :         permit: OwnedSemaphorePermit,
     266            0 :     ) -> GcCompactionJobId {
     267            0 :         let mut guard = self.inner.lock().unwrap();
     268            0 :         let id = guard.next_id();
     269            0 :         guard.queued.push_back((
     270            0 :             id,
     271            0 :             GcCompactionQueueItem::MetaJob {
     272            0 :                 options,
     273            0 :                 auto: true,
     274            0 :             },
     275            0 :         ));
     276            0 :         guard.guards.entry(id).or_default().permit = Some(permit);
     277            0 :         id
     278            0 :     }
     279              : 
     280              :     /// Trigger an auto compaction.
     281            0 :     pub async fn trigger_auto_compaction(
     282            0 :         &self,
     283            0 :         timeline: &Arc<Timeline>,
     284            0 :     ) -> Result<(), CompactionError> {
     285              :         let GcCompactionCombinedSettings {
     286            0 :             gc_compaction_enabled,
     287            0 :             gc_compaction_initial_threshold_kb,
     288            0 :             gc_compaction_ratio_percent,
     289              :             ..
     290            0 :         } = timeline.get_gc_compaction_settings();
     291            0 :         if !gc_compaction_enabled {
     292            0 :             return Ok(());
     293            0 :         }
     294            0 :         if self.remaining_jobs_num() > 0 {
     295              :             // Only schedule auto compaction when the queue is empty
     296            0 :             return Ok(());
     297            0 :         }
     298            0 :         if timeline.ancestor_timeline().is_some() {
     299              :             // Do not trigger auto compaction for child timelines. We haven't tested
     300              :             // it enough in staging yet.
     301            0 :             return Ok(());
     302            0 :         }
     303            0 :         if timeline.get_gc_compaction_watermark() == Lsn::INVALID {
     304              :             // If the gc watermark is not set, we don't need to trigger auto compaction.
     305              :             // This check is the same as in `gc_compaction_split_jobs` but we don't log
     306              :             // here and we can also skip the computation of the trigger condition earlier.
     307            0 :             return Ok(());
     308            0 :         }
     309              : 
     310            0 :         let Ok(permit) = CONCURRENT_GC_COMPACTION_TASKS.clone().try_acquire_owned() else {
     311              :             // Only allow one compaction run at a time. TODO: As we do `try_acquire_owned`, we cannot ensure
     312              :             // the fairness of the lock across timelines. We should listen for both `acquire` and `l0_compaction_trigger`
     313              :             // to ensure the fairness while avoid starving other tasks.
     314            0 :             return Ok(());
     315              :         };
     316              : 
     317            0 :         let gc_compaction_state = timeline.get_gc_compaction_state();
     318            0 :         let l2_lsn = gc_compaction_state
     319            0 :             .map(|x| x.last_completed_lsn)
     320            0 :             .unwrap_or(Lsn::INVALID);
     321              : 
     322            0 :         let layers = {
     323            0 :             let guard = timeline
     324            0 :                 .layers
     325            0 :                 .read(LayerManagerLockHolder::GetLayerMapInfo)
     326            0 :                 .await;
     327            0 :             let layer_map = guard.layer_map()?;
     328            0 :             layer_map.iter_historic_layers().collect_vec()
     329              :         };
     330            0 :         let mut l2_size: u64 = 0;
     331            0 :         let mut l1_size = 0;
     332            0 :         let gc_cutoff = *timeline.get_applied_gc_cutoff_lsn();
     333            0 :         for layer in layers {
     334            0 :             if layer.lsn_range.start <= l2_lsn {
     335            0 :                 l2_size += layer.file_size();
     336            0 :             } else if layer.lsn_range.start <= gc_cutoff {
     337            0 :                 l1_size += layer.file_size();
     338            0 :             }
     339              :         }
     340              : 
     341            0 :         fn trigger_compaction(
     342            0 :             l1_size: u64,
     343            0 :             l2_size: u64,
     344            0 :             gc_compaction_initial_threshold_kb: u64,
     345            0 :             gc_compaction_ratio_percent: u64,
     346            0 :         ) -> bool {
     347              :             const AUTO_TRIGGER_LIMIT: u64 = 150 * 1024 * 1024 * 1024; // 150GB
     348            0 :             if l1_size + l2_size >= AUTO_TRIGGER_LIMIT {
     349              :                 // Do not auto-trigger when physical size >= 150GB
     350            0 :                 return false;
     351            0 :             }
     352              :             // initial trigger
     353            0 :             if l2_size == 0 && l1_size >= gc_compaction_initial_threshold_kb * 1024 {
     354            0 :                 info!(
     355            0 :                     "trigger auto-compaction because l1_size={} >= gc_compaction_initial_threshold_kb={}",
     356              :                     l1_size, gc_compaction_initial_threshold_kb
     357              :                 );
     358            0 :                 return true;
     359            0 :             }
     360              :             // size ratio trigger
     361            0 :             if l2_size == 0 {
     362            0 :                 return false;
     363            0 :             }
     364            0 :             if l1_size as f64 / l2_size as f64 >= (gc_compaction_ratio_percent as f64 / 100.0) {
     365            0 :                 info!(
     366            0 :                     "trigger auto-compaction because l1_size={} / l2_size={} > gc_compaction_ratio_percent={}",
     367              :                     l1_size, l2_size, gc_compaction_ratio_percent
     368              :                 );
     369            0 :                 return true;
     370            0 :             }
     371            0 :             false
     372            0 :         }
     373              : 
     374            0 :         if trigger_compaction(
     375            0 :             l1_size,
     376            0 :             l2_size,
     377            0 :             gc_compaction_initial_threshold_kb,
     378            0 :             gc_compaction_ratio_percent,
     379              :         ) {
     380            0 :             self.schedule_auto_compaction(
     381              :                 CompactOptions {
     382              :                     flags: {
     383            0 :                         let mut flags = EnumSet::new();
     384            0 :                         flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     385            0 :                         if timeline.get_compaction_l0_first() {
     386            0 :                             flags |= CompactFlags::YieldForL0;
     387            0 :                         }
     388            0 :                         flags
     389              :                     },
     390              :                     sub_compaction: true,
     391              :                     // Only auto-trigger gc-compaction over the data keyspace due to concerns in
     392              :                     // https://github.com/neondatabase/neon/issues/11318.
     393            0 :                     compact_key_range: Some(CompactKeyRange {
     394            0 :                         start: Key::MIN,
     395            0 :                         end: Key::metadata_key_range().start,
     396            0 :                     }),
     397            0 :                     compact_lsn_range: None,
     398            0 :                     sub_compaction_max_job_size_mb: None,
     399              :                     gc_compaction_do_metadata_compaction: false,
     400              :                 },
     401            0 :                 permit,
     402              :             );
     403            0 :             info!(
     404            0 :                 "scheduled auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     405              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     406              :             );
     407              :         } else {
     408            0 :             debug!(
     409            0 :                 "did not trigger auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     410              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     411              :             );
     412              :         }
     413            0 :         Ok(())
     414            0 :     }
     415              : 
     416            0 :     async fn collect_layer_below_lsn(
     417            0 :         &self,
     418            0 :         timeline: &Arc<Timeline>,
     419            0 :         lsn: Lsn,
     420            0 :     ) -> Result<u64, CompactionError> {
     421            0 :         let guard = timeline
     422            0 :             .layers
     423            0 :             .read(LayerManagerLockHolder::GetLayerMapInfo)
     424            0 :             .await;
     425            0 :         let layer_map = guard.layer_map()?;
     426            0 :         let layers = layer_map.iter_historic_layers().collect_vec();
     427            0 :         let mut size = 0;
     428            0 :         for layer in layers {
     429            0 :             if layer.lsn_range.start <= lsn {
     430            0 :                 size += layer.file_size();
     431            0 :             }
     432              :         }
     433            0 :         Ok(size)
     434            0 :     }
     435              : 
     436              :     /// Notify the caller the job has finished and unblock GC.
     437            0 :     fn notify_and_unblock(&self, id: GcCompactionJobId) {
     438            0 :         info!("compaction job id={} finished", id);
     439            0 :         let mut guard = self.inner.lock().unwrap();
     440            0 :         if let Some(items) = guard.guards.remove(&id) {
     441            0 :             if let Some(tx) = items.notify {
     442            0 :                 let _ = tx.send(());
     443            0 :             }
     444            0 :         }
     445            0 :         if let Some(ref meta_statistics) = guard.meta_statistics {
     446            0 :             if meta_statistics.meta_job_id == id {
     447            0 :                 if let Ok(stats) = serde_json::to_string(&meta_statistics) {
     448            0 :                     info!(
     449            0 :                         "gc-compaction meta statistics for job id = {}: {}",
     450              :                         id, stats
     451              :                     );
     452            0 :                 }
     453            0 :             }
     454            0 :         }
     455            0 :     }
     456              : 
     457            0 :     fn clear_running_job(&self) {
     458            0 :         let mut guard = self.inner.lock().unwrap();
     459            0 :         guard.running = None;
     460            0 :     }
     461              : 
     462            0 :     async fn handle_sub_compaction(
     463            0 :         &self,
     464            0 :         id: GcCompactionJobId,
     465            0 :         options: CompactOptions,
     466            0 :         timeline: &Arc<Timeline>,
     467            0 :         auto: bool,
     468            0 :     ) -> Result<(), CompactionError> {
     469            0 :         info!(
     470            0 :             "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     471              :         );
     472            0 :         let res = timeline
     473            0 :             .gc_compaction_split_jobs(
     474            0 :                 GcCompactJob::from_compact_options(options.clone()),
     475            0 :                 options.sub_compaction_max_job_size_mb,
     476            0 :             )
     477            0 :             .await;
     478            0 :         let jobs = match res {
     479            0 :             Ok(jobs) => jobs,
     480            0 :             Err(err) => {
     481            0 :                 warn!("cannot split gc-compaction jobs: {}, unblocked gc", err);
     482            0 :                 self.notify_and_unblock(id);
     483            0 :                 return Err(err);
     484              :             }
     485              :         };
     486            0 :         if jobs.is_empty() {
     487            0 :             info!("no jobs to run, skipping scheduled compaction task");
     488            0 :             self.notify_and_unblock(id);
     489              :         } else {
     490            0 :             let jobs_len = jobs.len();
     491            0 :             let mut pending_tasks = Vec::new();
     492              :             // gc-compaction might pick more layers or fewer layers to compact. The L2 LSN does not need to be accurate.
     493              :             // And therefore, we simply assume the maximum LSN of all jobs is the expected L2 LSN.
     494            0 :             let expected_l2_lsn = jobs
     495            0 :                 .iter()
     496            0 :                 .map(|job| job.compact_lsn_range.end)
     497            0 :                 .max()
     498            0 :                 .unwrap();
     499            0 :             for (i, job) in jobs.into_iter().enumerate() {
     500              :                 // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
     501              :                 // until we do further refactors to allow directly call `compact_with_gc`.
     502            0 :                 let mut flags: EnumSet<CompactFlags> = EnumSet::default();
     503            0 :                 flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     504            0 :                 if job.dry_run {
     505            0 :                     flags |= CompactFlags::DryRun;
     506            0 :                 }
     507            0 :                 if options.flags.contains(CompactFlags::YieldForL0) {
     508            0 :                     flags |= CompactFlags::YieldForL0;
     509            0 :                 }
     510            0 :                 let options = CompactOptions {
     511            0 :                     flags,
     512            0 :                     sub_compaction: false,
     513            0 :                     compact_key_range: Some(job.compact_key_range.into()),
     514            0 :                     compact_lsn_range: Some(job.compact_lsn_range.into()),
     515            0 :                     sub_compaction_max_job_size_mb: None,
     516            0 :                     gc_compaction_do_metadata_compaction: false,
     517            0 :                 };
     518            0 :                 pending_tasks.push(GcCompactionQueueItem::SubCompactionJob {
     519            0 :                     options,
     520            0 :                     i,
     521            0 :                     total: jobs_len,
     522            0 :                 });
     523              :             }
     524              : 
     525            0 :             if !auto {
     526            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, None));
     527            0 :             } else {
     528            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, Some(expected_l2_lsn)));
     529            0 :             }
     530              : 
     531            0 :             let layer_size = self
     532            0 :                 .collect_layer_below_lsn(timeline, expected_l2_lsn)
     533            0 :                 .await?;
     534              : 
     535              :             {
     536            0 :                 let mut guard = self.inner.lock().unwrap();
     537            0 :                 let mut tasks = Vec::new();
     538            0 :                 for task in pending_tasks {
     539            0 :                     let id = guard.next_id();
     540            0 :                     tasks.push((id, task));
     541            0 :                 }
     542            0 :                 tasks.reverse();
     543            0 :                 for item in tasks {
     544            0 :                     guard.queued.push_front(item);
     545            0 :                 }
     546            0 :                 guard.meta_statistics = Some(GcCompactionMetaStatistics {
     547            0 :                     meta_job_id: id,
     548            0 :                     start_time: Some(chrono::Utc::now()),
     549            0 :                     before_compaction_layer_size: layer_size,
     550            0 :                     below_lsn: expected_l2_lsn,
     551            0 :                     total_sub_compaction_jobs: jobs_len,
     552            0 :                     ..Default::default()
     553            0 :                 });
     554              :             }
     555              : 
     556            0 :             info!(
     557            0 :                 "scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs",
     558              :                 jobs_len
     559              :             );
     560              :         }
     561            0 :         Ok(())
     562            0 :     }
     563              : 
     564              :     /// Take a job from the queue and process it. Returns if there are still pending tasks.
     565            0 :     pub async fn iteration(
     566            0 :         &self,
     567            0 :         cancel: &CancellationToken,
     568            0 :         ctx: &RequestContext,
     569            0 :         gc_block: &GcBlock,
     570            0 :         timeline: &Arc<Timeline>,
     571            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     572            0 :         let res = self.iteration_inner(cancel, ctx, gc_block, timeline).await;
     573            0 :         if let Err(err) = &res {
     574            0 :             log_compaction_error(err, None, cancel.is_cancelled(), true);
     575            0 :         }
     576            0 :         match res {
     577            0 :             Ok(res) => Ok(res),
     578            0 :             Err(e) if e.is_cancel() => Err(e),
     579              :             Err(_) => {
     580              :                 // There are some cases where traditional gc might collect some layer
     581              :                 // files causing gc-compaction cannot read the full history of the key.
     582              :                 // This needs to be resolved in the long-term by improving the compaction
     583              :                 // process. For now, let's simply avoid such errors triggering the
     584              :                 // circuit breaker.
     585            0 :                 Ok(CompactionOutcome::Skipped)
     586              :             }
     587              :         }
     588            0 :     }
     589              : 
     590            0 :     async fn iteration_inner(
     591            0 :         &self,
     592            0 :         cancel: &CancellationToken,
     593            0 :         ctx: &RequestContext,
     594            0 :         gc_block: &GcBlock,
     595            0 :         timeline: &Arc<Timeline>,
     596            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     597            0 :         let Ok(_one_op_at_a_time_guard) = self.consumer_lock.try_lock() else {
     598            0 :             return Err(CompactionError::Other(anyhow::anyhow!(
     599            0 :                 "cannot run gc-compaction because another gc-compaction is running. This should not happen because we only call this function from the gc-compaction queue."
     600            0 :             )));
     601              :         };
     602              :         let has_pending_tasks;
     603            0 :         let mut yield_for_l0 = false;
     604            0 :         let Some((id, item)) = ({
     605            0 :             let mut guard = self.inner.lock().unwrap();
     606            0 :             if let Some((id, item)) = guard.queued.pop_front() {
     607            0 :                 guard.running = Some((id, item.clone()));
     608            0 :                 has_pending_tasks = !guard.queued.is_empty();
     609            0 :                 Some((id, item))
     610              :             } else {
     611            0 :                 has_pending_tasks = false;
     612            0 :                 None
     613              :             }
     614              :         }) else {
     615            0 :             self.trigger_auto_compaction(timeline).await?;
     616              :             // Always yield after triggering auto-compaction. Gc-compaction is a low-priority task and we
     617              :             // have not implemented preemption mechanism yet. We always want to yield it to more important
     618              :             // tasks if there is one.
     619            0 :             return Ok(CompactionOutcome::Done);
     620              :         };
     621            0 :         match item {
     622            0 :             GcCompactionQueueItem::MetaJob { options, auto } => {
     623            0 :                 if !options
     624            0 :                     .flags
     625            0 :                     .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     626              :                 {
     627            0 :                     warn!(
     628            0 :                         "ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}",
     629              :                         options
     630              :                     );
     631            0 :                 } else if options.sub_compaction {
     632            0 :                     info!(
     633            0 :                         "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     634              :                     );
     635            0 :                     self.handle_sub_compaction(id, options, timeline, auto)
     636            0 :                         .await?;
     637              :                 } else {
     638              :                     // Auto compaction always enables sub-compaction so we don't need to handle update_l2_lsn
     639              :                     // in this branch.
     640            0 :                     let _gc_guard = match gc_block.start().await {
     641            0 :                         Ok(guard) => guard,
     642            0 :                         Err(e) => {
     643            0 :                             self.notify_and_unblock(id);
     644            0 :                             self.clear_running_job();
     645            0 :                             return Err(CompactionError::Other(anyhow!(
     646            0 :                                 "cannot run gc-compaction because gc is blocked: {}",
     647            0 :                                 e
     648            0 :                             )));
     649              :                         }
     650              :                     };
     651            0 :                     let res = timeline.compact_with_options(cancel, options, ctx).await;
     652            0 :                     let compaction_result = match res {
     653            0 :                         Ok(res) => res,
     654            0 :                         Err(err) => {
     655            0 :                             warn!(%err, "failed to run gc-compaction");
     656            0 :                             self.notify_and_unblock(id);
     657            0 :                             self.clear_running_job();
     658            0 :                             return Err(err);
     659              :                         }
     660              :                     };
     661            0 :                     if compaction_result == CompactionOutcome::YieldForL0 {
     662            0 :                         yield_for_l0 = true;
     663            0 :                     }
     664              :                 }
     665              :             }
     666            0 :             GcCompactionQueueItem::SubCompactionJob { options, i, total } => {
     667              :                 // TODO: error handling, clear the queue if any task fails?
     668            0 :                 let _gc_guard = match gc_block.start().await {
     669            0 :                     Ok(guard) => guard,
     670            0 :                     Err(e) => {
     671            0 :                         self.clear_running_job();
     672            0 :                         return Err(CompactionError::Other(anyhow!(
     673            0 :                             "cannot run gc-compaction because gc is blocked: {}",
     674            0 :                             e
     675            0 :                         )));
     676              :                     }
     677              :                 };
     678            0 :                 info!("running gc-compaction subcompaction job {}/{}", i, total);
     679            0 :                 let res = timeline.compact_with_options(cancel, options, ctx).await;
     680            0 :                 let compaction_result = match res {
     681            0 :                     Ok(res) => res,
     682            0 :                     Err(err) => {
     683            0 :                         warn!(%err, "failed to run gc-compaction subcompaction job");
     684            0 :                         self.clear_running_job();
     685            0 :                         let mut guard = self.inner.lock().unwrap();
     686            0 :                         if let Some(ref mut meta_statistics) = guard.meta_statistics {
     687            0 :                             meta_statistics.failed_sub_compaction_jobs += 1;
     688            0 :                         }
     689            0 :                         return Err(err);
     690              :                     }
     691              :                 };
     692            0 :                 if compaction_result == CompactionOutcome::YieldForL0 {
     693            0 :                     // We will permenantly give up a task if we yield for L0 compaction: the preempted subcompaction job won't be running
     694            0 :                     // again. This ensures that we don't keep doing duplicated work within gc-compaction. Not directly returning here because
     695            0 :                     // we need to clean things up before returning from the function.
     696            0 :                     yield_for_l0 = true;
     697            0 :                 }
     698              :                 {
     699            0 :                     let mut guard = self.inner.lock().unwrap();
     700            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     701            0 :                         meta_statistics.succeeded_sub_compaction_jobs += 1;
     702            0 :                     }
     703              :                 }
     704              :             }
     705            0 :             GcCompactionQueueItem::Notify(id, l2_lsn) => {
     706            0 :                 let below_lsn = {
     707            0 :                     let mut guard = self.inner.lock().unwrap();
     708            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     709            0 :                         meta_statistics.below_lsn
     710              :                     } else {
     711            0 :                         Lsn::INVALID
     712              :                     }
     713              :                 };
     714            0 :                 let layer_size = if below_lsn != Lsn::INVALID {
     715            0 :                     self.collect_layer_below_lsn(timeline, below_lsn).await?
     716              :                 } else {
     717            0 :                     0
     718              :                 };
     719              :                 {
     720            0 :                     let mut guard = self.inner.lock().unwrap();
     721            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     722            0 :                         meta_statistics.after_compaction_layer_size = layer_size;
     723            0 :                         meta_statistics.finalize();
     724            0 :                     }
     725              :                 }
     726            0 :                 self.notify_and_unblock(id);
     727            0 :                 if let Some(l2_lsn) = l2_lsn {
     728            0 :                     let current_l2_lsn = timeline
     729            0 :                         .get_gc_compaction_state()
     730            0 :                         .map(|x| x.last_completed_lsn)
     731            0 :                         .unwrap_or(Lsn::INVALID);
     732            0 :                     if l2_lsn >= current_l2_lsn {
     733            0 :                         info!("l2_lsn updated to {}", l2_lsn);
     734            0 :                         timeline
     735            0 :                             .update_gc_compaction_state(GcCompactionState {
     736            0 :                                 last_completed_lsn: l2_lsn,
     737            0 :                             })
     738            0 :                             .map_err(CompactionError::Other)?;
     739              :                     } else {
     740            0 :                         warn!(
     741            0 :                             "l2_lsn updated to {} but it is less than the current l2_lsn {}",
     742              :                             l2_lsn, current_l2_lsn
     743              :                         );
     744              :                     }
     745            0 :                 }
     746              :             }
     747              :         }
     748            0 :         self.clear_running_job();
     749            0 :         Ok(if yield_for_l0 {
     750            0 :             tracing::info!("give up gc-compaction: yield for L0 compaction");
     751            0 :             CompactionOutcome::YieldForL0
     752            0 :         } else if has_pending_tasks {
     753            0 :             CompactionOutcome::Pending
     754              :         } else {
     755            0 :             CompactionOutcome::Done
     756              :         })
     757            0 :     }
     758              : 
     759              :     #[allow(clippy::type_complexity)]
     760            0 :     pub fn remaining_jobs(
     761            0 :         &self,
     762            0 :     ) -> (
     763            0 :         Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     764            0 :         VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     765            0 :     ) {
     766            0 :         let guard = self.inner.lock().unwrap();
     767            0 :         (guard.running.clone(), guard.queued.clone())
     768            0 :     }
     769              : 
     770            0 :     pub fn remaining_jobs_num(&self) -> usize {
     771            0 :         let guard = self.inner.lock().unwrap();
     772            0 :         guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
     773            0 :     }
     774              : }
     775              : 
     776              : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
     777              : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
     778              : /// called.
     779              : #[derive(Debug, Clone)]
     780              : pub(crate) struct GcCompactJob {
     781              :     pub dry_run: bool,
     782              :     /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
     783              :     /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
     784              :     pub compact_key_range: Range<Key>,
     785              :     /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
     786              :     /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
     787              :     /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
     788              :     /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
     789              :     pub compact_lsn_range: Range<Lsn>,
     790              :     /// See [`CompactOptions::gc_compaction_do_metadata_compaction`].
     791              :     pub do_metadata_compaction: bool,
     792              : }
     793              : 
     794              : impl GcCompactJob {
     795           28 :     pub fn from_compact_options(options: CompactOptions) -> Self {
     796              :         GcCompactJob {
     797           28 :             dry_run: options.flags.contains(CompactFlags::DryRun),
     798           28 :             compact_key_range: options
     799           28 :                 .compact_key_range
     800           28 :                 .map(|x| x.into())
     801           28 :                 .unwrap_or(Key::MIN..Key::MAX),
     802           28 :             compact_lsn_range: options
     803           28 :                 .compact_lsn_range
     804           28 :                 .map(|x| x.into())
     805           28 :                 .unwrap_or(Lsn::INVALID..Lsn::MAX),
     806           28 :             do_metadata_compaction: options.gc_compaction_do_metadata_compaction,
     807              :         }
     808           28 :     }
     809              : }
     810              : 
     811              : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
     812              : /// and contains the exact layers we want to compact.
     813              : pub struct GcCompactionJobDescription {
     814              :     /// All layers to read in the compaction job
     815              :     selected_layers: Vec<Layer>,
     816              :     /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
     817              :     /// keep all deltas <= this LSN or generate an image == this LSN.
     818              :     gc_cutoff: Lsn,
     819              :     /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
     820              :     /// generate an image == this LSN.
     821              :     retain_lsns_below_horizon: Vec<Lsn>,
     822              :     /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
     823              :     /// \>= this LSN will be kept and will not be rewritten.
     824              :     max_layer_lsn: Lsn,
     825              :     /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
     826              :     /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
     827              :     /// k-merge within gc-compaction.
     828              :     min_layer_lsn: Lsn,
     829              :     /// Only compact layers overlapping with this range.
     830              :     compaction_key_range: Range<Key>,
     831              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
     832              :     /// This field is here solely for debugging. The field will not be read once the compaction
     833              :     /// description is generated.
     834              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
     835              : }
     836              : 
     837              : /// The result of bottom-most compaction for a single key at each LSN.
     838              : #[derive(Debug)]
     839              : #[cfg_attr(test, derive(PartialEq))]
     840              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
     841              : 
     842              : /// The result of bottom-most compaction.
     843              : #[derive(Debug)]
     844              : #[cfg_attr(test, derive(PartialEq))]
     845              : pub(crate) struct KeyHistoryRetention {
     846              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
     847              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
     848              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
     849              :     pub(crate) above_horizon: KeyLogAtLsn,
     850              : }
     851              : 
     852              : impl KeyHistoryRetention {
     853              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     854              :     ///
     855              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     856              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     857              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     858              :     /// Then we delete branch @ 0x20.
     859              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     860              :     /// And that wouldnt' change the shape of the layer.
     861              :     ///
     862              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     863              :     ///
     864              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     865           37 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     866           37 :         if dry_run {
     867            0 :             return true;
     868           37 :         }
     869           37 :         if LayerMap::is_l0(&key.key_range, key.is_delta) {
     870              :             // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
     871              :             // We should ignore such layers.
     872            0 :             return true;
     873           37 :         }
     874              :         let layer_generation;
     875              :         {
     876           37 :             let guard = tline.layers.read(LayerManagerLockHolder::Compaction).await;
     877           37 :             if !guard.contains_key(key) {
     878           26 :                 return false;
     879           11 :             }
     880           11 :             layer_generation = guard.get_from_key(key).metadata().generation;
     881              :         }
     882           11 :         if layer_generation == tline.generation {
     883           11 :             info!(
     884              :                 key=%key,
     885              :                 ?layer_generation,
     886            0 :                 "discard layer due to duplicated layer key in the same generation",
     887              :             );
     888           11 :             true
     889              :         } else {
     890            0 :             false
     891              :         }
     892           37 :     }
     893              : 
     894              :     /// Pipe a history of a single key to the writers.
     895              :     ///
     896              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     897              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     898              :     #[allow(clippy::too_many_arguments)]
     899          319 :     async fn pipe_to(
     900          319 :         self,
     901          319 :         key: Key,
     902          319 :         delta_writer: &mut SplitDeltaLayerWriter<'_>,
     903          319 :         mut image_writer: Option<&mut SplitImageLayerWriter<'_>>,
     904          319 :         stat: &mut CompactionStatistics,
     905          319 :         ctx: &RequestContext,
     906          319 :     ) -> anyhow::Result<()> {
     907          319 :         let mut first_batch = true;
     908         1022 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     909          703 :             if first_batch {
     910          319 :                 if logs.len() == 1 && logs[0].1.is_image() {
     911          300 :                     let Value::Image(img) = &logs[0].1 else {
     912            0 :                         unreachable!()
     913              :                     };
     914          300 :                     stat.produce_image_key(img);
     915          300 :                     if let Some(image_writer) = image_writer.as_mut() {
     916          300 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     917              :                     } else {
     918            0 :                         delta_writer
     919            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     920            0 :                             .await?;
     921              :                     }
     922              :                 } else {
     923           33 :                     for (lsn, val) in logs {
     924           14 :                         stat.produce_key(&val);
     925           14 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     926              :                     }
     927              :                 }
     928          319 :                 first_batch = false;
     929              :             } else {
     930          442 :                 for (lsn, val) in logs {
     931           58 :                     stat.produce_key(&val);
     932           58 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     933              :                 }
     934              :             }
     935              :         }
     936          319 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     937          348 :         for (lsn, val) in above_horizon_logs {
     938           29 :             stat.produce_key(&val);
     939           29 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     940              :         }
     941          319 :         Ok(())
     942          319 :     }
     943              : 
     944              :     /// Verify if every key in the retention is readable by replaying the logs.
     945          323 :     async fn verify(
     946          323 :         &self,
     947          323 :         key: Key,
     948          323 :         base_img_from_ancestor: &Option<(Key, Lsn, Bytes)>,
     949          323 :         full_history: &[(Key, Lsn, Value)],
     950          323 :         tline: &Arc<Timeline>,
     951          323 :     ) -> anyhow::Result<()> {
     952              :         // Usually the min_lsn should be the first record but we do a full iteration to be safe.
     953          323 :         let Some(min_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).min() else {
     954              :             // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
     955            0 :             return Ok(());
     956              :         };
     957          323 :         let Some(max_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).max() else {
     958              :             // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
     959            0 :             return Ok(());
     960              :         };
     961          323 :         let mut base_img = base_img_from_ancestor
     962          323 :             .as_ref()
     963          323 :             .map(|(_, lsn, img)| (*lsn, img));
     964          323 :         let mut history = Vec::new();
     965              : 
     966         1027 :         async fn collect_and_verify(
     967         1027 :             key: Key,
     968         1027 :             lsn: Lsn,
     969         1027 :             base_img: &Option<(Lsn, &Bytes)>,
     970         1027 :             history: &[(Lsn, &NeonWalRecord)],
     971         1027 :             tline: &Arc<Timeline>,
     972         1027 :             skip_empty: bool,
     973         1027 :         ) -> anyhow::Result<()> {
     974         1027 :             if base_img.is_none() && history.is_empty() {
     975            0 :                 if skip_empty {
     976            0 :                     return Ok(());
     977            0 :                 }
     978            0 :                 anyhow::bail!("verification failed: key {} has no history at {}", key, lsn);
     979         1027 :             };
     980              : 
     981         1027 :             let mut records = history
     982         1027 :                 .iter()
     983         1027 :                 .map(|(lsn, val)| (*lsn, (*val).clone()))
     984         1027 :                 .collect::<Vec<_>>();
     985              : 
     986              :             // WAL redo requires records in the reverse LSN order
     987         1027 :             records.reverse();
     988         1027 :             let data = ValueReconstructState {
     989         1027 :                 img: base_img.as_ref().map(|(lsn, img)| (*lsn, (*img).clone())),
     990         1027 :                 records,
     991              :             };
     992              : 
     993         1027 :             tline
     994         1027 :                 .reconstruct_value(key, lsn, data, RedoAttemptType::GcCompaction)
     995         1027 :                 .await
     996         1027 :                 .with_context(|| format!("verification failed for key {key} at lsn {lsn}"))?;
     997              : 
     998         1027 :             Ok(())
     999         1027 :         }
    1000              : 
    1001         1036 :         for (retain_lsn, KeyLogAtLsn(logs)) in &self.below_horizon {
    1002         1096 :             for (lsn, val) in logs {
    1003           76 :                 match val {
    1004          307 :                     Value::Image(img) => {
    1005          307 :                         base_img = Some((*lsn, img));
    1006          307 :                         history.clear();
    1007          307 :                     }
    1008           76 :                     Value::WalRecord(rec) if val.will_init() => {
    1009            0 :                         base_img = None;
    1010            0 :                         history.clear();
    1011            0 :                         history.push((*lsn, rec));
    1012            0 :                     }
    1013           76 :                     Value::WalRecord(rec) => {
    1014           76 :                         history.push((*lsn, rec));
    1015           76 :                     }
    1016              :                 }
    1017              :             }
    1018          713 :             if *retain_lsn >= min_lsn {
    1019              :                 // Only verify after the key appears in the full history for the first time.
    1020              : 
    1021              :                 // We don't modify history: in theory, we could replace the history with a single
    1022              :                 // image as in `generate_key_retention` to make redos at later LSNs faster. But we
    1023              :                 // want to verify everything as if they are read from the real layer map.
    1024          699 :                 collect_and_verify(key, *retain_lsn, &base_img, &history, tline, false)
    1025          699 :                     .await
    1026          699 :                     .context("below horizon retain_lsn")?;
    1027           14 :             }
    1028              :         }
    1029              : 
    1030          360 :         for (lsn, val) in &self.above_horizon.0 {
    1031           32 :             match val {
    1032            5 :                 Value::Image(img) => {
    1033              :                     // Above the GC horizon, we verify every time we see an image.
    1034            5 :                     collect_and_verify(key, *lsn, &base_img, &history, tline, true)
    1035            5 :                         .await
    1036            5 :                         .context("above horizon full image")?;
    1037            5 :                     base_img = Some((*lsn, img));
    1038            5 :                     history.clear();
    1039              :                 }
    1040           32 :                 Value::WalRecord(rec) if val.will_init() => {
    1041              :                     // Above the GC horizon, we verify every time we see an init record.
    1042            0 :                     collect_and_verify(key, *lsn, &base_img, &history, tline, true)
    1043            0 :                         .await
    1044            0 :                         .context("above horizon init record")?;
    1045            0 :                     base_img = None;
    1046            0 :                     history.clear();
    1047            0 :                     history.push((*lsn, rec));
    1048              :                 }
    1049           32 :                 Value::WalRecord(rec) => {
    1050           32 :                     history.push((*lsn, rec));
    1051           32 :                 }
    1052              :             }
    1053              :         }
    1054              :         // Ensure the latest record is readable.
    1055          323 :         collect_and_verify(key, max_lsn, &base_img, &history, tline, false)
    1056          323 :             .await
    1057          323 :             .context("latest record")?;
    1058          323 :         Ok(())
    1059          323 :     }
    1060              : }
    1061              : 
    1062              : #[derive(Debug, Serialize, Default)]
    1063              : struct CompactionStatisticsNumSize {
    1064              :     num: u64,
    1065              :     size: u64,
    1066              : }
    1067              : 
    1068              : #[derive(Debug, Serialize, Default)]
    1069              : pub struct CompactionStatistics {
    1070              :     /// Delta layer visited (maybe compressed, physical size)
    1071              :     delta_layer_visited: CompactionStatisticsNumSize,
    1072              :     /// Image layer visited (maybe compressed, physical size)
    1073              :     image_layer_visited: CompactionStatisticsNumSize,
    1074              :     /// Delta layer produced (maybe compressed, physical size)
    1075              :     delta_layer_produced: CompactionStatisticsNumSize,
    1076              :     /// Image layer produced (maybe compressed, physical size)
    1077              :     image_layer_produced: CompactionStatisticsNumSize,
    1078              :     /// Delta layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
    1079              :     delta_layer_discarded: CompactionStatisticsNumSize,
    1080              :     /// Image layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
    1081              :     image_layer_discarded: CompactionStatisticsNumSize,
    1082              :     num_unique_keys_visited: usize,
    1083              :     /// Delta visited (uncompressed, original size)
    1084              :     wal_keys_visited: CompactionStatisticsNumSize,
    1085              :     /// Image visited (uncompressed, original size)
    1086              :     image_keys_visited: CompactionStatisticsNumSize,
    1087              :     /// Delta produced (uncompressed, original size)
    1088              :     wal_produced: CompactionStatisticsNumSize,
    1089              :     /// Image produced (uncompressed, original size)
    1090              :     image_produced: CompactionStatisticsNumSize,
    1091              : 
    1092              :     // Time spent in each phase
    1093              :     time_acquire_lock_secs: f64,
    1094              :     time_analyze_secs: f64,
    1095              :     time_download_layer_secs: f64,
    1096              :     time_to_first_kv_pair_secs: f64,
    1097              :     time_main_loop_secs: f64,
    1098              :     time_final_phase_secs: f64,
    1099              :     time_total_secs: f64,
    1100              : 
    1101              :     // Summary
    1102              :     /// Ratio of the key-value size after/before gc-compaction.
    1103              :     uncompressed_retention_ratio: f64,
    1104              :     /// Ratio of the physical size after/before gc-compaction.
    1105              :     compressed_retention_ratio: f64,
    1106              : }
    1107              : 
    1108              : impl CompactionStatistics {
    1109          534 :     fn estimated_size_of_value(val: &Value) -> usize {
    1110          219 :         match val {
    1111          315 :             Value::Image(img) => img.len(),
    1112            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
    1113          219 :             _ => std::mem::size_of::<NeonWalRecord>(),
    1114              :         }
    1115          534 :     }
    1116          839 :     fn estimated_size_of_key() -> usize {
    1117          839 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
    1118          839 :     }
    1119           44 :     fn visit_delta_layer(&mut self, size: u64) {
    1120           44 :         self.delta_layer_visited.num += 1;
    1121           44 :         self.delta_layer_visited.size += size;
    1122           44 :     }
    1123           35 :     fn visit_image_layer(&mut self, size: u64) {
    1124           35 :         self.image_layer_visited.num += 1;
    1125           35 :         self.image_layer_visited.size += size;
    1126           35 :     }
    1127          320 :     fn on_unique_key_visited(&mut self) {
    1128          320 :         self.num_unique_keys_visited += 1;
    1129          320 :     }
    1130          123 :     fn visit_wal_key(&mut self, val: &Value) {
    1131          123 :         self.wal_keys_visited.num += 1;
    1132          123 :         self.wal_keys_visited.size +=
    1133          123 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1134          123 :     }
    1135          315 :     fn visit_image_key(&mut self, val: &Value) {
    1136          315 :         self.image_keys_visited.num += 1;
    1137          315 :         self.image_keys_visited.size +=
    1138          315 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1139          315 :     }
    1140          101 :     fn produce_key(&mut self, val: &Value) {
    1141          101 :         match val {
    1142            5 :             Value::Image(img) => self.produce_image_key(img),
    1143           96 :             Value::WalRecord(_) => self.produce_wal_key(val),
    1144              :         }
    1145          101 :     }
    1146           96 :     fn produce_wal_key(&mut self, val: &Value) {
    1147           96 :         self.wal_produced.num += 1;
    1148           96 :         self.wal_produced.size +=
    1149           96 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1150           96 :     }
    1151          305 :     fn produce_image_key(&mut self, val: &Bytes) {
    1152          305 :         self.image_produced.num += 1;
    1153          305 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
    1154          305 :     }
    1155            7 :     fn discard_delta_layer(&mut self, original_size: u64) {
    1156            7 :         self.delta_layer_discarded.num += 1;
    1157            7 :         self.delta_layer_discarded.size += original_size;
    1158            7 :     }
    1159            4 :     fn discard_image_layer(&mut self, original_size: u64) {
    1160            4 :         self.image_layer_discarded.num += 1;
    1161            4 :         self.image_layer_discarded.size += original_size;
    1162            4 :     }
    1163           12 :     fn produce_delta_layer(&mut self, size: u64) {
    1164           12 :         self.delta_layer_produced.num += 1;
    1165           12 :         self.delta_layer_produced.size += size;
    1166           12 :     }
    1167           15 :     fn produce_image_layer(&mut self, size: u64) {
    1168           15 :         self.image_layer_produced.num += 1;
    1169           15 :         self.image_layer_produced.size += size;
    1170           15 :     }
    1171           26 :     fn finalize(&mut self) {
    1172           26 :         let original_key_value_size = self.image_keys_visited.size + self.wal_keys_visited.size;
    1173           26 :         let produced_key_value_size = self.image_produced.size + self.wal_produced.size;
    1174           26 :         self.uncompressed_retention_ratio =
    1175           26 :             produced_key_value_size as f64 / (original_key_value_size as f64 + 1.0); // avoid div by 0
    1176           26 :         let original_physical_size = self.image_layer_visited.size + self.delta_layer_visited.size;
    1177           26 :         let produced_physical_size = self.image_layer_produced.size
    1178           26 :             + self.delta_layer_produced.size
    1179           26 :             + self.image_layer_discarded.size
    1180           26 :             + self.delta_layer_discarded.size; // Also include the discarded layers to make the ratio accurate
    1181           26 :         self.compressed_retention_ratio =
    1182           26 :             produced_physical_size as f64 / (original_physical_size as f64 + 1.0); // avoid div by 0
    1183           26 :     }
    1184              : }
    1185              : 
    1186              : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
    1187              : pub enum CompactionOutcome {
    1188              :     #[default]
    1189              :     /// No layers need to be compacted after this round. Compaction doesn't need
    1190              :     /// to be immediately scheduled.
    1191              :     Done,
    1192              :     /// Still has pending layers to be compacted after this round. Ideally, the scheduler
    1193              :     /// should immediately schedule another compaction.
    1194              :     Pending,
    1195              :     /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
    1196              :     /// guaranteed when `compaction_l0_first` is enabled).
    1197              :     YieldForL0,
    1198              :     /// Compaction was skipped, because the timeline is ineligible for compaction.
    1199              :     Skipped,
    1200              : }
    1201              : 
    1202              : impl Timeline {
    1203              :     /// TODO: cancellation
    1204              :     ///
    1205              :     /// Returns whether the compaction has pending tasks.
    1206          192 :     pub(crate) async fn compact_legacy(
    1207          192 :         self: &Arc<Self>,
    1208          192 :         cancel: &CancellationToken,
    1209          192 :         options: CompactOptions,
    1210          192 :         ctx: &RequestContext,
    1211          192 :     ) -> Result<CompactionOutcome, CompactionError> {
    1212          192 :         if options
    1213          192 :             .flags
    1214          192 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
    1215              :         {
    1216            0 :             self.compact_with_gc(cancel, options, ctx).await?;
    1217            0 :             return Ok(CompactionOutcome::Done);
    1218          192 :         }
    1219              : 
    1220          192 :         if options.flags.contains(CompactFlags::DryRun) {
    1221            0 :             return Err(CompactionError::Other(anyhow!(
    1222            0 :                 "dry-run mode is not supported for legacy compaction for now"
    1223            0 :             )));
    1224          192 :         }
    1225              : 
    1226          192 :         if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
    1227              :             // maybe useful in the future? could implement this at some point
    1228            0 :             return Err(CompactionError::Other(anyhow!(
    1229            0 :                 "compaction range is not supported for legacy compaction for now"
    1230            0 :             )));
    1231          192 :         }
    1232              : 
    1233              :         // High level strategy for compaction / image creation:
    1234              :         //
    1235              :         // 1. First, do a L0 compaction to ensure we move the L0
    1236              :         // layers into the historic layer map get flat levels of
    1237              :         // layers. If we did not compact all L0 layers, we will
    1238              :         // prioritize compacting the timeline again and not do
    1239              :         // any of the compactions below.
    1240              :         //
    1241              :         // 2. Then, calculate the desired "partitioning" of the
    1242              :         // currently in-use key space. The goal is to partition the
    1243              :         // key space into roughly fixed-size chunks, but also take into
    1244              :         // account any existing image layers, and try to align the
    1245              :         // chunk boundaries with the existing image layers to avoid
    1246              :         // too much churn. Also try to align chunk boundaries with
    1247              :         // relation boundaries.  In principle, we don't know about
    1248              :         // relation boundaries here, we just deal with key-value
    1249              :         // pairs, and the code in pgdatadir_mapping.rs knows how to
    1250              :         // map relations into key-value pairs. But in practice we know
    1251              :         // that 'field6' is the block number, and the fields 1-5
    1252              :         // identify a relation. This is just an optimization,
    1253              :         // though.
    1254              :         //
    1255              :         // 3. Once we know the partitioning, for each partition,
    1256              :         // decide if it's time to create a new image layer. The
    1257              :         // criteria is: there has been too much "churn" since the last
    1258              :         // image layer? The "churn" is fuzzy concept, it's a
    1259              :         // combination of too many delta files, or too much WAL in
    1260              :         // total in the delta file. Or perhaps: if creating an image
    1261              :         // file would allow to delete some older files.
    1262              :         //
    1263              :         // 4. In the end, if the tenant gets auto-sharded, we will run
    1264              :         // a shard-ancestor compaction.
    1265              : 
    1266              :         // Is the timeline being deleted?
    1267          192 :         if self.is_stopping() {
    1268            0 :             trace!("Dropping out of compaction on timeline shutdown");
    1269            0 :             return Err(CompactionError::new_cancelled());
    1270          192 :         }
    1271              : 
    1272          192 :         let target_file_size = self.get_checkpoint_distance();
    1273              : 
    1274              :         // Define partitioning schema if needed
    1275              : 
    1276              :         // HADRON
    1277          192 :         let force_image_creation_lsn = self.get_force_image_creation_lsn();
    1278              : 
    1279              :         // 1. L0 Compact
    1280          192 :         let l0_outcome = {
    1281          192 :             let timer = self.metrics.compact_time_histo.start_timer();
    1282          192 :             let l0_outcome = self
    1283          192 :                 .compact_level0(
    1284          192 :                     target_file_size,
    1285          192 :                     options.flags.contains(CompactFlags::ForceL0Compaction),
    1286          192 :                     force_image_creation_lsn,
    1287          192 :                     ctx,
    1288          192 :                 )
    1289          192 :                 .await?;
    1290          192 :             timer.stop_and_record();
    1291          192 :             l0_outcome
    1292              :         };
    1293              : 
    1294          192 :         if options.flags.contains(CompactFlags::OnlyL0Compaction) {
    1295            0 :             return Ok(l0_outcome);
    1296          192 :         }
    1297              : 
    1298              :         // Yield if we have pending L0 compaction. The scheduler will do another pass.
    1299          192 :         if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
    1300            0 :             && options.flags.contains(CompactFlags::YieldForL0)
    1301              :         {
    1302            0 :             info!("image/ancestor compaction yielding for L0 compaction");
    1303            0 :             return Ok(CompactionOutcome::YieldForL0);
    1304          192 :         }
    1305              : 
    1306          192 :         let gc_cutoff = *self.applied_gc_cutoff_lsn.read();
    1307          192 :         let l0_l1_boundary_lsn = {
    1308              :             // We do the repartition on the L0-L1 boundary. All data below the boundary
    1309              :             // are compacted by L0 with low read amplification, thus making the `repartition`
    1310              :             // function run fast.
    1311          192 :             let guard = self
    1312          192 :                 .layers
    1313          192 :                 .read(LayerManagerLockHolder::GetLayerMapInfo)
    1314          192 :                 .await;
    1315          192 :             guard
    1316          192 :                 .all_persistent_layers()
    1317          192 :                 .iter()
    1318         1219 :                 .map(|x| {
    1319              :                     // Use the end LSN of delta layers OR the start LSN of image layers.
    1320         1219 :                     if x.is_delta {
    1321         1035 :                         x.lsn_range.end
    1322              :                     } else {
    1323          184 :                         x.lsn_range.start
    1324              :                     }
    1325         1219 :                 })
    1326          192 :                 .max()
    1327              :         };
    1328              : 
    1329          192 :         let (partition_mode, partition_lsn) = if cfg!(test)
    1330            0 :             || cfg!(feature = "testing")
    1331            0 :             || self
    1332            0 :                 .feature_resolver
    1333            0 :                 .evaluate_boolean("image-compaction-boundary")
    1334            0 :                 .is_ok()
    1335              :         {
    1336          192 :             let last_repartition_lsn = self.partitioning.read().1;
    1337          192 :             let lsn = match l0_l1_boundary_lsn {
    1338          192 :                 Some(boundary) => gc_cutoff
    1339          192 :                     .max(boundary)
    1340          192 :                     .max(last_repartition_lsn)
    1341          192 :                     .max(self.initdb_lsn)
    1342          192 :                     .max(self.ancestor_lsn),
    1343            0 :                 None => self.get_last_record_lsn(),
    1344              :             };
    1345          192 :             if lsn <= self.initdb_lsn || lsn <= self.ancestor_lsn {
    1346              :                 // Do not attempt to create image layers below the initdb or ancestor LSN -- no data below it
    1347            0 :                 ("l0_l1_boundary", self.get_last_record_lsn())
    1348              :             } else {
    1349          192 :                 ("l0_l1_boundary", lsn)
    1350              :             }
    1351              :         } else {
    1352            0 :             ("latest_record", self.get_last_record_lsn())
    1353              :         };
    1354              : 
    1355              :         // 2. Repartition and create image layers if necessary
    1356          192 :         match self
    1357          192 :             .repartition(
    1358          192 :                 partition_lsn,
    1359          192 :                 self.get_compaction_target_size(),
    1360          192 :                 options.flags,
    1361          192 :                 ctx,
    1362          192 :             )
    1363          192 :             .await
    1364              :         {
    1365          192 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) if lsn >= gc_cutoff => {
    1366              :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
    1367           80 :                 let image_ctx = RequestContextBuilder::from(ctx)
    1368           80 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
    1369           80 :                     .attached_child();
    1370              : 
    1371           80 :                 let mut partitioning = dense_partitioning;
    1372           80 :                 partitioning
    1373           80 :                     .parts
    1374           80 :                     .extend(sparse_partitioning.into_dense().parts);
    1375              : 
    1376              :                 // 3. Create new image layers for partitions that have been modified "enough".
    1377           80 :                 let mode = if options
    1378           80 :                     .flags
    1379           80 :                     .contains(CompactFlags::ForceImageLayerCreation)
    1380              :                 {
    1381            7 :                     ImageLayerCreationMode::Force
    1382              :                 } else {
    1383           73 :                     ImageLayerCreationMode::Try
    1384              :                 };
    1385           80 :                 let (image_layers, outcome) = self
    1386           80 :                     .create_image_layers(
    1387           80 :                         &partitioning,
    1388           80 :                         lsn,
    1389           80 :                         force_image_creation_lsn,
    1390           80 :                         mode,
    1391           80 :                         &image_ctx,
    1392           80 :                         self.last_image_layer_creation_status
    1393           80 :                             .load()
    1394           80 :                             .as_ref()
    1395           80 :                             .clone(),
    1396           80 :                         options.flags.contains(CompactFlags::YieldForL0),
    1397              :                     )
    1398           80 :                     .instrument(info_span!("create_image_layers", mode = %mode, partition_mode = %partition_mode, lsn = %lsn))
    1399           80 :                     .await
    1400           80 :                     .inspect_err(|err| {
    1401              :                         if let CreateImageLayersError::GetVectoredError(
    1402              :                             GetVectoredError::MissingKey(_),
    1403            0 :                         ) = err
    1404              :                         {
    1405            0 :                             critical_timeline!(
    1406            0 :                                 self.tenant_shard_id,
    1407            0 :                                 self.timeline_id,
    1408            0 :                                 "missing key during compaction: {err:?}"
    1409              :                             );
    1410            0 :                         }
    1411            0 :                     })?;
    1412              : 
    1413           80 :                 self.last_image_layer_creation_status
    1414           80 :                     .store(Arc::new(outcome.clone()));
    1415              : 
    1416           80 :                 self.upload_new_image_layers(image_layers)?;
    1417           80 :                 if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
    1418              :                     // Yield and do not do any other kind of compaction.
    1419            0 :                     info!(
    1420            0 :                         "skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction)."
    1421              :                     );
    1422            0 :                     return Ok(CompactionOutcome::YieldForL0);
    1423           80 :                 }
    1424              :             }
    1425              : 
    1426              :             Ok(_) => {
    1427              :                 // This happens very frequently so we don't want to log it.
    1428          112 :                 debug!("skipping repartitioning due to image compaction LSN being below GC cutoff");
    1429              :             }
    1430              : 
    1431              :             // Suppress errors when cancelled.
    1432              :             //
    1433              :             // Log other errors but continue. Failure to repartition is normal, if the timeline was just created
    1434              :             // as an empty timeline. Also in unit tests, when we use the timeline as a simple
    1435              :             // key-value store, ignoring the datadir layout. Log the error but continue.
    1436              :             //
    1437              :             // TODO:
    1438              :             // 1. shouldn't we return early here if we observe cancellation
    1439              :             // 2. Experiment: can we stop checking self.cancel here?
    1440            0 :             Err(_) if self.cancel.is_cancelled() => {} // TODO: try how we fare removing this branch
    1441            0 :             Err(err) if err.is_cancel() => {}
    1442              :             Err(RepartitionError::CollectKeyspace(
    1443            0 :                 e @ CollectKeySpaceError::Decode(_)
    1444            0 :                 | e @ CollectKeySpaceError::PageRead(
    1445              :                     PageReconstructError::MissingKey(_) | PageReconstructError::WalRedo(_),
    1446              :                 ),
    1447              :             )) => {
    1448              :                 // Alert on critical errors that indicate data corruption.
    1449            0 :                 critical_timeline!(
    1450            0 :                     self.tenant_shard_id,
    1451            0 :                     self.timeline_id,
    1452            0 :                     "could not compact, repartitioning keyspace failed: {e:?}"
    1453              :                 );
    1454              :             }
    1455            0 :             Err(e) => error!(
    1456            0 :                 "could not compact, repartitioning keyspace failed: {:?}",
    1457            0 :                 e.into_anyhow()
    1458              :             ),
    1459              :         };
    1460              : 
    1461          192 :         let partition_count = self.partitioning.read().0.0.parts.len();
    1462              : 
    1463              :         // 4. Shard ancestor compaction
    1464          192 :         if self.get_compaction_shard_ancestor() && self.shard_identity.count >= ShardCount::new(2) {
    1465              :             // Limit the number of layer rewrites to the number of partitions: this means its
    1466              :             // runtime should be comparable to a full round of image layer creations, rather than
    1467              :             // being potentially much longer.
    1468            0 :             let rewrite_max = partition_count;
    1469              : 
    1470            0 :             let outcome = self
    1471            0 :                 .compact_shard_ancestors(
    1472            0 :                     rewrite_max,
    1473            0 :                     options.flags.contains(CompactFlags::YieldForL0),
    1474            0 :                     ctx,
    1475            0 :                 )
    1476            0 :                 .await?;
    1477            0 :             match outcome {
    1478            0 :                 CompactionOutcome::Pending | CompactionOutcome::YieldForL0 => return Ok(outcome),
    1479            0 :                 CompactionOutcome::Done | CompactionOutcome::Skipped => {}
    1480              :             }
    1481          192 :         }
    1482              : 
    1483          192 :         Ok(CompactionOutcome::Done)
    1484          192 :     }
    1485              : 
    1486              :     /* BEGIN_HADRON */
    1487              :     // Get the force image creation LSN based on gc_cutoff_lsn.
    1488              :     // Note that this is an estimation and the workload rate may suddenly change. When that happens,
    1489              :     // the force image creation may be too early or too late, but eventually it should be able to catch up.
    1490          193 :     pub(crate) fn get_force_image_creation_lsn(self: &Arc<Self>) -> Option<Lsn> {
    1491          193 :         let image_creation_period = self.get_image_layer_force_creation_period()?;
    1492            1 :         let current_lsn = self.get_last_record_lsn();
    1493            1 :         let pitr_lsn = self.gc_info.read().unwrap().cutoffs.time?;
    1494            1 :         let pitr_interval = self.get_pitr_interval();
    1495            1 :         if pitr_lsn == Lsn::INVALID || pitr_interval.is_zero() {
    1496            0 :             tracing::warn!(
    1497            0 :                 "pitr LSN/interval not found, skipping force image creation LSN calculation"
    1498              :             );
    1499            0 :             return None;
    1500            1 :         }
    1501              : 
    1502            1 :         let delta_lsn = current_lsn.checked_sub(pitr_lsn).unwrap().0
    1503            1 :             * image_creation_period.as_secs()
    1504            1 :             / pitr_interval.as_secs();
    1505            1 :         let force_image_creation_lsn = current_lsn.checked_sub(delta_lsn).unwrap_or(Lsn(0));
    1506              : 
    1507            1 :         tracing::info!(
    1508            0 :             "Tenant shard {} computed force_image_creation_lsn: {}. Current lsn: {}, image_layer_force_creation_period: {:?}, GC cutoff: {}, PITR interval: {:?}",
    1509            0 :             self.tenant_shard_id,
    1510              :             force_image_creation_lsn,
    1511              :             current_lsn,
    1512              :             image_creation_period,
    1513              :             pitr_lsn,
    1514              :             pitr_interval
    1515              :         );
    1516              : 
    1517            1 :         Some(force_image_creation_lsn)
    1518          193 :     }
    1519              :     /* END_HADRON */
    1520              : 
    1521              :     /// Check for layers that are elegible to be rewritten:
    1522              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
    1523              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
    1524              :     /// - For future use: layers beyond pitr_interval that are in formats we would
    1525              :     ///   rather not maintain compatibility with indefinitely.
    1526              :     ///
    1527              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
    1528              :     /// how much work it will try to do in each compaction pass.
    1529            0 :     async fn compact_shard_ancestors(
    1530            0 :         self: &Arc<Self>,
    1531            0 :         rewrite_max: usize,
    1532            0 :         yield_for_l0: bool,
    1533            0 :         ctx: &RequestContext,
    1534            0 :     ) -> Result<CompactionOutcome, CompactionError> {
    1535            0 :         let mut outcome = CompactionOutcome::Done;
    1536            0 :         let mut drop_layers = Vec::new();
    1537            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
    1538              : 
    1539              :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
    1540              :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
    1541              :         // pitr_interval, for example because a branchpoint references it.
    1542              :         //
    1543              :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
    1544              :         // are rewriting layers.
    1545            0 :         let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
    1546            0 :         let pitr_cutoff = self.gc_info.read().unwrap().cutoffs.time;
    1547              : 
    1548            0 :         let layers = self.layers.read(LayerManagerLockHolder::Compaction).await;
    1549            0 :         let layers_iter = layers.layer_map()?.iter_historic_layers();
    1550            0 :         let (layers_total, mut layers_checked) = (layers_iter.len(), 0);
    1551            0 :         for layer_desc in layers_iter {
    1552            0 :             layers_checked += 1;
    1553            0 :             let layer = layers.get_from_desc(&layer_desc);
    1554            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
    1555              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
    1556            0 :                 continue;
    1557            0 :             }
    1558              : 
    1559              :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
    1560            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
    1561            0 :             let layer_local_page_count = sharded_range.page_count();
    1562            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
    1563            0 :             if layer_local_page_count == 0 {
    1564              :                 // This ancestral layer only covers keys that belong to other shards.
    1565              :                 // We include the full metadata in the log: if we had some critical bug that caused
    1566              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
    1567            0 :                 debug!(%layer, old_metadata=?layer.metadata(),
    1568            0 :                     "dropping layer after shard split, contains no keys for this shard",
    1569              :                 );
    1570              : 
    1571            0 :                 if cfg!(debug_assertions) {
    1572              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
    1573              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
    1574              :                     // should be !is_key_disposable()
    1575              :                     // TODO: exclude sparse keyspace from this check, otherwise it will infinitely loop.
    1576            0 :                     let range = layer_desc.get_key_range();
    1577            0 :                     let mut key = range.start;
    1578            0 :                     while key < range.end {
    1579            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
    1580            0 :                         key = key.next();
    1581              :                     }
    1582            0 :                 }
    1583              : 
    1584            0 :                 drop_layers.push(layer);
    1585            0 :                 continue;
    1586            0 :             } else if layer_local_page_count != u32::MAX
    1587            0 :                 && layer_local_page_count == layer_raw_page_count
    1588              :             {
    1589            0 :                 debug!(%layer,
    1590            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
    1591              :                     layer_local_page_count
    1592              :                 );
    1593            0 :                 continue;
    1594            0 :             }
    1595              : 
    1596              :             // Only rewrite a layer if we can reclaim significant space.
    1597            0 :             if layer_local_page_count != u32::MAX
    1598            0 :                 && layer_local_page_count as f64 / layer_raw_page_count as f64
    1599            0 :                     <= ANCESTOR_COMPACTION_REWRITE_THRESHOLD
    1600              :             {
    1601            0 :                 debug!(%layer,
    1602            0 :                     "layer has a large share of local pages \
    1603            0 :                         ({layer_local_page_count}/{layer_raw_page_count} > \
    1604            0 :                         {ANCESTOR_COMPACTION_REWRITE_THRESHOLD}), not rewriting",
    1605              :                 );
    1606            0 :             }
    1607              : 
    1608              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
    1609              :             // without incurring the I/O cost of a rewrite.
    1610            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
    1611            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
    1612            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
    1613            0 :                 continue;
    1614            0 :             }
    1615              : 
    1616              :             // We do not yet implement rewrite of delta layers.
    1617            0 :             if layer_desc.is_delta() {
    1618            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
    1619            0 :                 continue;
    1620            0 :             }
    1621              : 
    1622              :             // We don't bother rewriting layers that aren't visible, since these won't be needed by
    1623              :             // reads and will likely be garbage collected soon.
    1624            0 :             if layer.visibility() != LayerVisibilityHint::Visible {
    1625            0 :                 debug!(%layer, "Skipping rewrite of invisible layer");
    1626            0 :                 continue;
    1627            0 :             }
    1628              : 
    1629              :             // Only rewrite layers if their generations differ.  This guarantees:
    1630              :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
    1631              :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
    1632            0 :             if layer.metadata().generation == self.generation {
    1633            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
    1634            0 :                 continue;
    1635            0 :             }
    1636              : 
    1637            0 :             if layers_to_rewrite.len() >= rewrite_max {
    1638            0 :                 debug!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
    1639            0 :                     layers_to_rewrite.len()
    1640              :                 );
    1641            0 :                 outcome = CompactionOutcome::Pending;
    1642            0 :                 break;
    1643            0 :             }
    1644              : 
    1645              :             // Fall through: all our conditions for doing a rewrite passed.
    1646            0 :             layers_to_rewrite.push(layer);
    1647              :         }
    1648              : 
    1649              :         // Drop read lock on layer map before we start doing time-consuming I/O.
    1650            0 :         drop(layers);
    1651              : 
    1652              :         // Drop out early if there's nothing to do.
    1653            0 :         if layers_to_rewrite.is_empty() && drop_layers.is_empty() {
    1654            0 :             return Ok(CompactionOutcome::Done);
    1655            0 :         }
    1656              : 
    1657            0 :         info!(
    1658            0 :             "starting shard ancestor compaction, rewriting {} layers and dropping {} layers, \
    1659            0 :                 checked {layers_checked}/{layers_total} layers \
    1660            0 :                 (latest_gc_cutoff={} pitr_cutoff={:?})",
    1661            0 :             layers_to_rewrite.len(),
    1662            0 :             drop_layers.len(),
    1663            0 :             *latest_gc_cutoff,
    1664              :             pitr_cutoff,
    1665              :         );
    1666            0 :         let started = Instant::now();
    1667              : 
    1668            0 :         let mut replace_image_layers = Vec::new();
    1669            0 :         let total = layers_to_rewrite.len();
    1670              : 
    1671            0 :         for (i, layer) in layers_to_rewrite.into_iter().enumerate() {
    1672            0 :             if self.cancel.is_cancelled() {
    1673            0 :                 return Err(CompactionError::new_cancelled());
    1674            0 :             }
    1675              : 
    1676            0 :             info!(layer=%layer, "rewriting layer after shard split: {}/{}", i, total);
    1677              : 
    1678            0 :             let mut image_layer_writer = ImageLayerWriter::new(
    1679            0 :                 self.conf,
    1680            0 :                 self.timeline_id,
    1681            0 :                 self.tenant_shard_id,
    1682            0 :                 &layer.layer_desc().key_range,
    1683            0 :                 layer.layer_desc().image_layer_lsn(),
    1684            0 :                 &self.gate,
    1685            0 :                 self.cancel.clone(),
    1686            0 :                 ctx,
    1687            0 :             )
    1688            0 :             .await
    1689            0 :             .map_err(CompactionError::Other)?;
    1690              : 
    1691              :             // Safety of layer rewrites:
    1692              :             // - We are writing to a different local file path than we are reading from, so the old Layer
    1693              :             //   cannot interfere with the new one.
    1694              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
    1695              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
    1696              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
    1697              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
    1698              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
    1699              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
    1700              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
    1701              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
    1702              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
    1703              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
    1704            0 :             let resident = layer.download_and_keep_resident(ctx).await?;
    1705              : 
    1706            0 :             let keys_written = resident
    1707            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
    1708            0 :                 .await?;
    1709              : 
    1710            0 :             if keys_written > 0 {
    1711            0 :                 let (desc, path) = image_layer_writer
    1712            0 :                     .finish(ctx)
    1713            0 :                     .await
    1714            0 :                     .map_err(CompactionError::Other)?;
    1715            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
    1716            0 :                     .map_err(CompactionError::Other)?;
    1717            0 :                 info!(layer=%new_layer, "rewrote layer, {} -> {} bytes",
    1718            0 :                     layer.metadata().file_size,
    1719            0 :                     new_layer.metadata().file_size);
    1720              : 
    1721            0 :                 replace_image_layers.push((layer, new_layer));
    1722            0 :             } else {
    1723            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
    1724            0 :                 // the layer has no data for us with the ShardedRange check above, but
    1725            0 :                 drop_layers.push(layer);
    1726            0 :             }
    1727              : 
    1728              :             // Yield for L0 compaction if necessary, but make sure we update the layer map below
    1729              :             // with the work we've already done.
    1730            0 :             if yield_for_l0
    1731            0 :                 && self
    1732            0 :                     .l0_compaction_trigger
    1733            0 :                     .notified()
    1734            0 :                     .now_or_never()
    1735            0 :                     .is_some()
    1736              :             {
    1737            0 :                 info!("shard ancestor compaction yielding for L0 compaction");
    1738            0 :                 outcome = CompactionOutcome::YieldForL0;
    1739            0 :                 break;
    1740            0 :             }
    1741              :         }
    1742              : 
    1743            0 :         for layer in &drop_layers {
    1744            0 :             info!(%layer, old_metadata=?layer.metadata(),
    1745            0 :                 "dropping layer after shard split (no keys for this shard)",
    1746              :             );
    1747              :         }
    1748              : 
    1749              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
    1750              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
    1751              :         // to remote index) and be removed. This is inefficient but safe.
    1752            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
    1753              : 
    1754              :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
    1755            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
    1756            0 :             .await?;
    1757              : 
    1758            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
    1759              : 
    1760              :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
    1761              :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
    1762              :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
    1763              :         // load.
    1764            0 :         if outcome != CompactionOutcome::YieldForL0 {
    1765            0 :             info!("shard ancestor compaction waiting for uploads");
    1766            0 :             tokio::select! {
    1767            0 :                 result = self.remote_client.wait_completion() => match result {
    1768            0 :                     Ok(()) => {},
    1769            0 :                     Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
    1770              :                     Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
    1771            0 :                         return Err(CompactionError::new_cancelled());
    1772              :                     }
    1773              :                 },
    1774              :                 // Don't wait if there's L0 compaction to do. We don't need to update the outcome
    1775              :                 // here, because we've already done the actual work.
    1776            0 :                 _ = self.l0_compaction_trigger.notified(), if yield_for_l0 => {},
    1777              :             }
    1778            0 :         }
    1779              : 
    1780            0 :         info!(
    1781            0 :             "shard ancestor compaction done in {:.3}s{}",
    1782            0 :             started.elapsed().as_secs_f64(),
    1783            0 :             match outcome {
    1784              :                 CompactionOutcome::Pending =>
    1785            0 :                     format!(", with pending work (rewrite_max={rewrite_max})"),
    1786            0 :                 CompactionOutcome::YieldForL0 => String::from(", yielding for L0 compaction"),
    1787            0 :                 CompactionOutcome::Skipped | CompactionOutcome::Done => String::new(),
    1788              :             }
    1789              :         );
    1790              : 
    1791            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
    1792              : 
    1793            0 :         Ok(outcome)
    1794            0 :     }
    1795              : 
    1796              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
    1797              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
    1798              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
    1799              :     ///
    1800              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
    1801              :     /// that we know won't be needed for reads.
    1802          123 :     pub(crate) async fn update_layer_visibility(
    1803          123 :         &self,
    1804          123 :     ) -> Result<(), super::layer_manager::Shutdown> {
    1805          123 :         let head_lsn = self.get_last_record_lsn();
    1806              : 
    1807              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
    1808              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
    1809              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
    1810              :         // they will be subject to L0->L1 compaction in the near future.
    1811          123 :         let layer_manager = self
    1812          123 :             .layers
    1813          123 :             .read(LayerManagerLockHolder::GetLayerMapInfo)
    1814          123 :             .await;
    1815          123 :         let layer_map = layer_manager.layer_map()?;
    1816              : 
    1817          123 :         let readable_points = {
    1818          123 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
    1819              : 
    1820          123 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
    1821          124 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
    1822            1 :                 if *is_offloaded == MaybeOffloaded::Yes {
    1823            0 :                     continue;
    1824            1 :                 }
    1825            1 :                 readable_points.push(*child_lsn);
    1826              :             }
    1827          123 :             readable_points.push(head_lsn);
    1828          123 :             readable_points
    1829              :         };
    1830              : 
    1831          123 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
    1832          313 :         for (layer_desc, visibility) in layer_visibility {
    1833          190 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
    1834          190 :             let layer = layer_manager.get_from_desc(&layer_desc);
    1835          190 :             layer.set_visibility(visibility);
    1836          190 :         }
    1837              : 
    1838              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
    1839              :         // avoid assuming that everything at a branch point is visible.
    1840          123 :         drop(covered);
    1841          123 :         Ok(())
    1842          123 :     }
    1843              : 
    1844              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
    1845              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
    1846          192 :     async fn compact_level0(
    1847          192 :         self: &Arc<Self>,
    1848          192 :         target_file_size: u64,
    1849          192 :         force_compaction_ignore_threshold: bool,
    1850          192 :         force_compaction_lsn: Option<Lsn>,
    1851          192 :         ctx: &RequestContext,
    1852          192 :     ) -> Result<CompactionOutcome, CompactionError> {
    1853              :         let CompactLevel0Phase1Result {
    1854          192 :             new_layers,
    1855          192 :             deltas_to_compact,
    1856          192 :             outcome,
    1857              :         } = {
    1858          192 :             let phase1_span = info_span!("compact_level0_phase1");
    1859          192 :             let ctx = ctx.attached_child();
    1860          192 :             let stats = CompactLevel0Phase1StatsBuilder {
    1861          192 :                 version: Some(2),
    1862          192 :                 tenant_id: Some(self.tenant_shard_id),
    1863          192 :                 timeline_id: Some(self.timeline_id),
    1864          192 :                 ..Default::default()
    1865          192 :             };
    1866              : 
    1867          192 :             self.compact_level0_phase1(
    1868          192 :                 stats,
    1869          192 :                 target_file_size,
    1870          192 :                 force_compaction_ignore_threshold,
    1871          192 :                 force_compaction_lsn,
    1872          192 :                 &ctx,
    1873          192 :             )
    1874          192 :             .instrument(phase1_span)
    1875          192 :             .await?
    1876              :         };
    1877              : 
    1878          192 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
    1879              :             // nothing to do
    1880          169 :             return Ok(CompactionOutcome::Done);
    1881           23 :         }
    1882              : 
    1883           23 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
    1884           23 :             .await?;
    1885           23 :         Ok(outcome)
    1886          192 :     }
    1887              : 
    1888              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
    1889          192 :     async fn compact_level0_phase1(
    1890          192 :         self: &Arc<Self>,
    1891          192 :         mut stats: CompactLevel0Phase1StatsBuilder,
    1892          192 :         target_file_size: u64,
    1893          192 :         force_compaction_ignore_threshold: bool,
    1894          192 :         force_compaction_lsn: Option<Lsn>,
    1895          192 :         ctx: &RequestContext,
    1896          192 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
    1897          192 :         let begin = tokio::time::Instant::now();
    1898          192 :         let guard = self.layers.read(LayerManagerLockHolder::Compaction).await;
    1899          192 :         let now = tokio::time::Instant::now();
    1900          192 :         stats.read_lock_acquisition_micros =
    1901          192 :             DurationRecorder::Recorded(RecordedDuration(now - begin), now);
    1902              : 
    1903          192 :         let layers = guard.layer_map()?;
    1904          192 :         let level0_deltas = layers.level0_deltas();
    1905          192 :         stats.level0_deltas_count = Some(level0_deltas.len());
    1906              : 
    1907              :         // Only compact if enough layers have accumulated.
    1908          192 :         let threshold = self.get_compaction_threshold();
    1909          192 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
    1910          179 :             if force_compaction_ignore_threshold {
    1911           12 :                 if !level0_deltas.is_empty() {
    1912           10 :                     info!(
    1913            0 :                         level0_deltas = level0_deltas.len(),
    1914            0 :                         threshold, "too few deltas to compact, but forcing compaction"
    1915              :                     );
    1916              :                 } else {
    1917            2 :                     info!(
    1918            0 :                         level0_deltas = level0_deltas.len(),
    1919            0 :                         threshold, "too few deltas to compact, cannot force compaction"
    1920              :                     );
    1921            2 :                     return Ok(CompactLevel0Phase1Result::default());
    1922              :                 }
    1923              :             } else {
    1924              :                 // HADRON
    1925          167 :                 let min_lsn = level0_deltas
    1926          167 :                     .iter()
    1927          602 :                     .map(|a| a.get_lsn_range().start)
    1928          167 :                     .reduce(min);
    1929          167 :                 if force_compaction_lsn.is_some()
    1930            0 :                     && min_lsn.is_some()
    1931            0 :                     && min_lsn.unwrap() < force_compaction_lsn.unwrap()
    1932              :                 {
    1933            0 :                     info!(
    1934            0 :                         "forcing L0 compaction of {} L0 deltas. Min lsn: {}, force compaction lsn: {}",
    1935            0 :                         level0_deltas.len(),
    1936            0 :                         min_lsn.unwrap(),
    1937            0 :                         force_compaction_lsn.unwrap()
    1938              :                     );
    1939              :                 } else {
    1940          167 :                     debug!(
    1941            0 :                         level0_deltas = level0_deltas.len(),
    1942            0 :                         threshold, "too few deltas to compact"
    1943              :                     );
    1944          167 :                     return Ok(CompactLevel0Phase1Result::default());
    1945              :                 }
    1946              :             }
    1947           13 :         }
    1948              : 
    1949           23 :         let mut level0_deltas = level0_deltas
    1950           23 :             .iter()
    1951          201 :             .map(|x| guard.get_from_desc(x))
    1952           23 :             .collect::<Vec<_>>();
    1953              : 
    1954           23 :         drop_layer_manager_rlock(guard);
    1955              : 
    1956              :         // The is the last LSN that we have seen for L0 compaction in the timeline. This LSN might be updated
    1957              :         // by the time we finish the compaction. So we need to get it here.
    1958           23 :         let l0_last_record_lsn = self.get_last_record_lsn();
    1959              : 
    1960              :         // Gather the files to compact in this iteration.
    1961              :         //
    1962              :         // Start with the oldest Level 0 delta file, and collect any other
    1963              :         // level 0 files that form a contiguous sequence, such that the end
    1964              :         // LSN of previous file matches the start LSN of the next file.
    1965              :         //
    1966              :         // Note that if the files don't form such a sequence, we might
    1967              :         // "compact" just a single file. That's a bit pointless, but it allows
    1968              :         // us to get rid of the level 0 file, and compact the other files on
    1969              :         // the next iteration. This could probably made smarter, but such
    1970              :         // "gaps" in the sequence of level 0 files should only happen in case
    1971              :         // of a crash, partial download from cloud storage, or something like
    1972              :         // that, so it's not a big deal in practice.
    1973          356 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
    1974           23 :         let mut level0_deltas_iter = level0_deltas.iter();
    1975              : 
    1976           23 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
    1977           23 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
    1978           23 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
    1979              : 
    1980              :         // Accumulate the size of layers in `deltas_to_compact`
    1981           23 :         let mut deltas_to_compact_bytes = 0;
    1982              : 
    1983              :         // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
    1984              :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
    1985              :         // work in this function to only operate on this much delta data at once.
    1986              :         //
    1987              :         // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
    1988              :         // the constraint is not respected, we use the larger of the two.
    1989           23 :         let delta_size_limit = std::cmp::max(
    1990           23 :             self.get_compaction_upper_limit(),
    1991           23 :             self.get_compaction_threshold(),
    1992           23 :         ) as u64
    1993           23 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
    1994              : 
    1995           23 :         let mut fully_compacted = true;
    1996              : 
    1997           23 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident(ctx).await?);
    1998          201 :         for l in level0_deltas_iter {
    1999          178 :             let lsn_range = &l.layer_desc().lsn_range;
    2000              : 
    2001          178 :             if lsn_range.start != prev_lsn_end {
    2002            0 :                 break;
    2003          178 :             }
    2004          178 :             deltas_to_compact.push(l.download_and_keep_resident(ctx).await?);
    2005          178 :             deltas_to_compact_bytes += l.metadata().file_size;
    2006          178 :             prev_lsn_end = lsn_range.end;
    2007              : 
    2008          178 :             if deltas_to_compact_bytes >= delta_size_limit {
    2009            0 :                 info!(
    2010            0 :                     l0_deltas_selected = deltas_to_compact.len(),
    2011            0 :                     l0_deltas_total = level0_deltas.len(),
    2012            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
    2013              :                     delta_size_limit
    2014              :                 );
    2015            0 :                 fully_compacted = false;
    2016              : 
    2017              :                 // Proceed with compaction, but only a subset of L0s
    2018            0 :                 break;
    2019          178 :             }
    2020              :         }
    2021           23 :         let lsn_range = Range {
    2022           23 :             start: deltas_to_compact
    2023           23 :                 .first()
    2024           23 :                 .unwrap()
    2025           23 :                 .layer_desc()
    2026           23 :                 .lsn_range
    2027           23 :                 .start,
    2028           23 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
    2029           23 :         };
    2030              : 
    2031           23 :         info!(
    2032            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
    2033              :             lsn_range.start,
    2034              :             lsn_range.end,
    2035            0 :             deltas_to_compact.len(),
    2036            0 :             level0_deltas.len()
    2037              :         );
    2038              : 
    2039          201 :         for l in deltas_to_compact.iter() {
    2040          201 :             info!("compact includes {l}");
    2041              :         }
    2042              : 
    2043              :         // We don't need the original list of layers anymore. Drop it so that
    2044              :         // we don't accidentally use it later in the function.
    2045           23 :         drop(level0_deltas);
    2046              : 
    2047           23 :         stats.compaction_prerequisites_micros = stats.read_lock_acquisition_micros.till_now();
    2048              : 
    2049              :         // TODO: replace with streaming k-merge
    2050           23 :         let all_keys = {
    2051           23 :             let mut all_keys = Vec::new();
    2052          201 :             for l in deltas_to_compact.iter() {
    2053          201 :                 if self.cancel.is_cancelled() {
    2054            0 :                     return Err(CompactionError::new_cancelled());
    2055          201 :                 }
    2056          201 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    2057          201 :                 let keys = delta
    2058          201 :                     .index_entries(ctx)
    2059          201 :                     .await
    2060          201 :                     .map_err(CompactionError::Other)?;
    2061          201 :                 all_keys.extend(keys);
    2062              :             }
    2063              :             // The current stdlib sorting implementation is designed in a way where it is
    2064              :             // particularly fast where the slice is made up of sorted sub-ranges.
    2065      2137916 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    2066           23 :             all_keys
    2067              :         };
    2068              : 
    2069           23 :         stats.read_lock_held_key_sort_micros = stats.compaction_prerequisites_micros.till_now();
    2070              : 
    2071              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
    2072              :         //
    2073              :         // A hole is a key range for which this compaction doesn't have any WAL records.
    2074              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
    2075              :         // cover the hole, but actually don't contain any WAL records for that key range.
    2076              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
    2077              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
    2078              :         //
    2079              :         // The algorithm chooses holes as follows.
    2080              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
    2081              :         // - Filter: min threshold on range length
    2082              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
    2083              :         //
    2084              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
    2085              :         #[derive(PartialEq, Eq)]
    2086              :         struct Hole {
    2087              :             key_range: Range<Key>,
    2088              :             coverage_size: usize,
    2089              :         }
    2090           23 :         let holes: Vec<Hole> = {
    2091              :             use std::cmp::Ordering;
    2092              :             impl Ord for Hole {
    2093            0 :                 fn cmp(&self, other: &Self) -> Ordering {
    2094            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
    2095            0 :                 }
    2096              :             }
    2097              :             impl PartialOrd for Hole {
    2098            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    2099            0 :                     Some(self.cmp(other))
    2100            0 :                 }
    2101              :             }
    2102           23 :             let max_holes = deltas_to_compact.len();
    2103           23 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
    2104           23 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
    2105              :             // min-heap (reserve space for one more element added before eviction)
    2106           23 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
    2107           23 :             let mut prev: Option<Key> = None;
    2108              : 
    2109      1032019 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
    2110      1032019 :                 if let Some(prev_key) = prev {
    2111              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
    2112              :                     // compaction is the gap between data key and metadata keys.
    2113      1031996 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
    2114          281 :                         && !Key::is_metadata_key(&prev_key)
    2115              :                     {
    2116            0 :                         let key_range = prev_key..next_key;
    2117              :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
    2118              :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
    2119              :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
    2120              :                         // That is why it is better to measure size of hole as number of covering image layers.
    2121            0 :                         let coverage_size = {
    2122              :                             // TODO: optimize this with copy-on-write layer map.
    2123            0 :                             let guard = self.layers.read(LayerManagerLockHolder::Compaction).await;
    2124            0 :                             let layers = guard.layer_map()?;
    2125            0 :                             layers.image_coverage(&key_range, l0_last_record_lsn).len()
    2126              :                         };
    2127            0 :                         if coverage_size >= min_hole_coverage_size {
    2128            0 :                             heap.push(Hole {
    2129            0 :                                 key_range,
    2130            0 :                                 coverage_size,
    2131            0 :                             });
    2132            0 :                             if heap.len() > max_holes {
    2133            0 :                                 heap.pop(); // remove smallest hole
    2134            0 :                             }
    2135            0 :                         }
    2136      1031996 :                     }
    2137           23 :                 }
    2138      1032019 :                 prev = Some(next_key.next());
    2139              :             }
    2140           23 :             let mut holes = heap.into_vec();
    2141           23 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
    2142           23 :             holes
    2143              :         };
    2144           23 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
    2145              : 
    2146           23 :         if self.cancel.is_cancelled() {
    2147            0 :             return Err(CompactionError::new_cancelled());
    2148           23 :         }
    2149              : 
    2150           23 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
    2151              : 
    2152              :         // This iterator walks through all key-value pairs from all the layers
    2153              :         // we're compacting, in key, LSN order.
    2154              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
    2155              :         // then the Value::Image is ordered before Value::WalRecord.
    2156           23 :         let mut all_values_iter = {
    2157           23 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
    2158          201 :             for l in deltas_to_compact.iter() {
    2159          201 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    2160          201 :                 deltas.push(l);
    2161              :             }
    2162           23 :             MergeIterator::create_with_options(
    2163           23 :                 &deltas,
    2164           23 :                 &[],
    2165           23 :                 ctx,
    2166           23 :                 1024 * 8192, /* 8 MiB buffer per layer iterator */
    2167              :                 1024,
    2168              :             )
    2169              :         };
    2170              : 
    2171              :         // This iterator walks through all keys and is needed to calculate size used by each key
    2172           23 :         let mut all_keys_iter = all_keys
    2173           23 :             .iter()
    2174      1032019 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
    2175      1031996 :             .coalesce(|mut prev, cur| {
    2176              :                 // Coalesce keys that belong to the same key pair.
    2177              :                 // This ensures that compaction doesn't put them
    2178              :                 // into different layer files.
    2179              :                 // Still limit this by the target file size,
    2180              :                 // so that we keep the size of the files in
    2181              :                 // check.
    2182      1031996 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
    2183        14314 :                     prev.2 += cur.2;
    2184        14314 :                     Ok(prev)
    2185              :                 } else {
    2186      1017682 :                     Err((prev, cur))
    2187              :                 }
    2188      1031996 :             });
    2189              : 
    2190              :         // Merge the contents of all the input delta layers into a new set
    2191              :         // of delta layers, based on the current partitioning.
    2192              :         //
    2193              :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
    2194              :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
    2195              :         // would be too large. In that case, we also split on the LSN dimension.
    2196              :         //
    2197              :         // LSN
    2198              :         //  ^
    2199              :         //  |
    2200              :         //  | +-----------+            +--+--+--+--+
    2201              :         //  | |           |            |  |  |  |  |
    2202              :         //  | +-----------+            |  |  |  |  |
    2203              :         //  | |           |            |  |  |  |  |
    2204              :         //  | +-----------+     ==>    |  |  |  |  |
    2205              :         //  | |           |            |  |  |  |  |
    2206              :         //  | +-----------+            |  |  |  |  |
    2207              :         //  | |           |            |  |  |  |  |
    2208              :         //  | +-----------+            +--+--+--+--+
    2209              :         //  |
    2210              :         //  +--------------> key
    2211              :         //
    2212              :         //
    2213              :         // If one key (X) has a lot of page versions:
    2214              :         //
    2215              :         // LSN
    2216              :         //  ^
    2217              :         //  |                                 (X)
    2218              :         //  | +-----------+            +--+--+--+--+
    2219              :         //  | |           |            |  |  |  |  |
    2220              :         //  | +-----------+            |  |  +--+  |
    2221              :         //  | |           |            |  |  |  |  |
    2222              :         //  | +-----------+     ==>    |  |  |  |  |
    2223              :         //  | |           |            |  |  +--+  |
    2224              :         //  | +-----------+            |  |  |  |  |
    2225              :         //  | |           |            |  |  |  |  |
    2226              :         //  | +-----------+            +--+--+--+--+
    2227              :         //  |
    2228              :         //  +--------------> key
    2229              :         // TODO: this actually divides the layers into fixed-size chunks, not
    2230              :         // based on the partitioning.
    2231              :         //
    2232              :         // TODO: we should also opportunistically materialize and
    2233              :         // garbage collect what we can.
    2234           23 :         let mut new_layers = Vec::new();
    2235           23 :         let mut prev_key: Option<Key> = None;
    2236           23 :         let mut writer: Option<DeltaLayerWriter> = None;
    2237           23 :         let mut key_values_total_size = 0u64;
    2238           23 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    2239           23 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    2240           23 :         let mut next_hole = 0; // index of next hole in holes vector
    2241              : 
    2242           23 :         let mut keys = 0;
    2243              : 
    2244      1032042 :         while let Some((key, lsn, value)) = all_values_iter
    2245      1032042 :             .next()
    2246      1032042 :             .await
    2247      1032042 :             .map_err(CompactionError::Other)?
    2248              :         {
    2249      1032019 :             keys += 1;
    2250              : 
    2251      1032019 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    2252              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    2253              :                 // shuffling an order of million keys per layer, this means we'll check it
    2254              :                 // around tens of times per layer.
    2255            0 :                 return Err(CompactionError::new_cancelled());
    2256      1032019 :             }
    2257              : 
    2258      1032019 :             let same_key = prev_key == Some(key);
    2259              :             // We need to check key boundaries once we reach next key or end of layer with the same key
    2260      1032019 :             if !same_key || lsn == dup_end_lsn {
    2261      1017705 :                 let mut next_key_size = 0u64;
    2262      1017705 :                 let is_dup_layer = dup_end_lsn.is_valid();
    2263      1017705 :                 dup_start_lsn = Lsn::INVALID;
    2264      1017705 :                 if !same_key {
    2265      1017705 :                     dup_end_lsn = Lsn::INVALID;
    2266      1017705 :                 }
    2267              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    2268      1017705 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    2269      1017705 :                     next_key_size = next_size;
    2270      1017705 :                     if key != next_key {
    2271      1017682 :                         if dup_end_lsn.is_valid() {
    2272            0 :                             // We are writting segment with duplicates:
    2273            0 :                             // place all remaining values of this key in separate segment
    2274            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    2275            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    2276      1017682 :                         }
    2277      1017682 :                         break;
    2278           23 :                     }
    2279           23 :                     key_values_total_size += next_size;
    2280              :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    2281              :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    2282           23 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    2283              :                         // Split key between multiple layers: such layer can contain only single key
    2284            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    2285            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    2286              :                         } else {
    2287            0 :                             lsn // start with the first LSN for this key
    2288              :                         };
    2289            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    2290            0 :                         break;
    2291           23 :                     }
    2292              :                 }
    2293              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    2294      1017705 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    2295            0 :                     dup_start_lsn = dup_end_lsn;
    2296            0 :                     dup_end_lsn = lsn_range.end;
    2297      1017705 :                 }
    2298      1017705 :                 if writer.is_some() {
    2299      1017682 :                     let written_size = writer.as_mut().unwrap().size();
    2300      1017682 :                     let contains_hole =
    2301      1017682 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    2302              :                     // check if key cause layer overflow or contains hole...
    2303      1017682 :                     if is_dup_layer
    2304      1017682 :                         || dup_end_lsn.is_valid()
    2305      1017682 :                         || written_size + key_values_total_size > target_file_size
    2306      1017542 :                         || contains_hole
    2307              :                     {
    2308              :                         // ... if so, flush previous layer and prepare to write new one
    2309          140 :                         let (desc, path) = writer
    2310          140 :                             .take()
    2311          140 :                             .unwrap()
    2312          140 :                             .finish(prev_key.unwrap().next(), ctx)
    2313          140 :                             .await
    2314          140 :                             .map_err(CompactionError::Other)?;
    2315          140 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    2316          140 :                             .map_err(CompactionError::Other)?;
    2317              : 
    2318          140 :                         new_layers.push(new_delta);
    2319          140 :                         writer = None;
    2320              : 
    2321          140 :                         if contains_hole {
    2322            0 :                             // skip hole
    2323            0 :                             next_hole += 1;
    2324          140 :                         }
    2325      1017542 :                     }
    2326           23 :                 }
    2327              :                 // Remember size of key value because at next iteration we will access next item
    2328      1017705 :                 key_values_total_size = next_key_size;
    2329        14314 :             }
    2330      1032019 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    2331            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    2332            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    2333            0 :                 )))
    2334            0 :             });
    2335              : 
    2336      1032019 :             if !self.shard_identity.is_key_disposable(&key) {
    2337      1032019 :                 if writer.is_none() {
    2338          163 :                     if self.cancel.is_cancelled() {
    2339              :                         // to be somewhat responsive to cancellation, check for each new layer
    2340            0 :                         return Err(CompactionError::new_cancelled());
    2341          163 :                     }
    2342              :                     // Create writer if not initiaized yet
    2343          163 :                     writer = Some(
    2344          163 :                         DeltaLayerWriter::new(
    2345          163 :                             self.conf,
    2346          163 :                             self.timeline_id,
    2347          163 :                             self.tenant_shard_id,
    2348          163 :                             key,
    2349          163 :                             if dup_end_lsn.is_valid() {
    2350              :                                 // this is a layer containing slice of values of the same key
    2351            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    2352            0 :                                 dup_start_lsn..dup_end_lsn
    2353              :                             } else {
    2354          163 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    2355          163 :                                 lsn_range.clone()
    2356              :                             },
    2357          163 :                             &self.gate,
    2358          163 :                             self.cancel.clone(),
    2359          163 :                             ctx,
    2360              :                         )
    2361          163 :                         .await
    2362          163 :                         .map_err(CompactionError::Other)?,
    2363              :                     );
    2364              : 
    2365          163 :                     keys = 0;
    2366      1031856 :                 }
    2367              : 
    2368      1032019 :                 writer
    2369      1032019 :                     .as_mut()
    2370      1032019 :                     .unwrap()
    2371      1032019 :                     .put_value(key, lsn, value, ctx)
    2372      1032019 :                     .await?;
    2373              :             } else {
    2374            0 :                 let owner = self.shard_identity.get_shard_number(&key);
    2375              : 
    2376              :                 // This happens after a shard split, when we're compacting an L0 created by our parent shard
    2377            0 :                 debug!("dropping key {key} during compaction (it belongs on shard {owner})");
    2378              :             }
    2379              : 
    2380      1032019 :             if !new_layers.is_empty() {
    2381         9893 :                 fail_point!("after-timeline-compacted-first-L1");
    2382      1022126 :             }
    2383              : 
    2384      1032019 :             prev_key = Some(key);
    2385              :         }
    2386           23 :         if let Some(writer) = writer {
    2387           23 :             let (desc, path) = writer
    2388           23 :                 .finish(prev_key.unwrap().next(), ctx)
    2389           23 :                 .await
    2390           23 :                 .map_err(CompactionError::Other)?;
    2391           23 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    2392           23 :                 .map_err(CompactionError::Other)?;
    2393           23 :             new_layers.push(new_delta);
    2394            0 :         }
    2395              : 
    2396              :         // Sync layers
    2397           23 :         if !new_layers.is_empty() {
    2398              :             // Print a warning if the created layer is larger than double the target size
    2399              :             // Add two pages for potential overhead. This should in theory be already
    2400              :             // accounted for in the target calculation, but for very small targets,
    2401              :             // we still might easily hit the limit otherwise.
    2402           23 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    2403          163 :             for layer in new_layers.iter() {
    2404          163 :                 if layer.layer_desc().file_size > warn_limit {
    2405            0 :                     warn!(
    2406              :                         %layer,
    2407            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    2408              :                     );
    2409          163 :                 }
    2410              :             }
    2411              : 
    2412              :             // The writer.finish() above already did the fsync of the inodes.
    2413              :             // We just need to fsync the directory in which these inodes are linked,
    2414              :             // which we know to be the timeline directory.
    2415              :             //
    2416              :             // We use fatal_err() below because the after writer.finish() returns with success,
    2417              :             // the in-memory state of the filesystem already has the layer file in its final place,
    2418              :             // and subsequent pageserver code could think it's durable while it really isn't.
    2419           23 :             let timeline_dir = VirtualFile::open(
    2420           23 :                 &self
    2421           23 :                     .conf
    2422           23 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    2423           23 :                 ctx,
    2424           23 :             )
    2425           23 :             .await
    2426           23 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    2427           23 :             timeline_dir
    2428           23 :                 .sync_all()
    2429           23 :                 .await
    2430           23 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    2431            0 :         }
    2432              : 
    2433           23 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    2434           23 :         stats.new_deltas_count = Some(new_layers.len());
    2435          163 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    2436              : 
    2437           23 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    2438           23 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    2439              :         {
    2440           23 :             Ok(stats_json) => {
    2441           23 :                 info!(
    2442            0 :                     stats_json = stats_json.as_str(),
    2443            0 :                     "compact_level0_phase1 stats available"
    2444              :                 )
    2445              :             }
    2446            0 :             Err(e) => {
    2447            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    2448              :             }
    2449              :         }
    2450              : 
    2451              :         // Without this, rustc complains about deltas_to_compact still
    2452              :         // being borrowed when we `.into_iter()` below.
    2453           23 :         drop(all_values_iter);
    2454              : 
    2455              :         Ok(CompactLevel0Phase1Result {
    2456           23 :             new_layers,
    2457           23 :             deltas_to_compact: deltas_to_compact
    2458           23 :                 .into_iter()
    2459          201 :                 .map(|x| x.drop_eviction_guard())
    2460           23 :                 .collect::<Vec<_>>(),
    2461           23 :             outcome: if fully_compacted {
    2462           23 :                 CompactionOutcome::Done
    2463              :             } else {
    2464            0 :                 CompactionOutcome::Pending
    2465              :             },
    2466              :         })
    2467          192 :     }
    2468              : }
    2469              : 
    2470              : #[derive(Default)]
    2471              : struct CompactLevel0Phase1Result {
    2472              :     new_layers: Vec<ResidentLayer>,
    2473              :     deltas_to_compact: Vec<Layer>,
    2474              :     // Whether we have included all L0 layers, or selected only part of them due to the
    2475              :     // L0 compaction size limit.
    2476              :     outcome: CompactionOutcome,
    2477              : }
    2478              : 
    2479              : #[derive(Default)]
    2480              : struct CompactLevel0Phase1StatsBuilder {
    2481              :     version: Option<u64>,
    2482              :     tenant_id: Option<TenantShardId>,
    2483              :     timeline_id: Option<TimelineId>,
    2484              :     read_lock_acquisition_micros: DurationRecorder,
    2485              :     read_lock_held_key_sort_micros: DurationRecorder,
    2486              :     compaction_prerequisites_micros: DurationRecorder,
    2487              :     read_lock_held_compute_holes_micros: DurationRecorder,
    2488              :     read_lock_drop_micros: DurationRecorder,
    2489              :     write_layer_files_micros: DurationRecorder,
    2490              :     level0_deltas_count: Option<usize>,
    2491              :     new_deltas_count: Option<usize>,
    2492              :     new_deltas_size: Option<u64>,
    2493              : }
    2494              : 
    2495              : #[derive(serde::Serialize)]
    2496              : struct CompactLevel0Phase1Stats {
    2497              :     version: u64,
    2498              :     tenant_id: TenantShardId,
    2499              :     timeline_id: TimelineId,
    2500              :     read_lock_acquisition_micros: RecordedDuration,
    2501              :     read_lock_held_key_sort_micros: RecordedDuration,
    2502              :     compaction_prerequisites_micros: RecordedDuration,
    2503              :     read_lock_held_compute_holes_micros: RecordedDuration,
    2504              :     read_lock_drop_micros: RecordedDuration,
    2505              :     write_layer_files_micros: RecordedDuration,
    2506              :     level0_deltas_count: usize,
    2507              :     new_deltas_count: usize,
    2508              :     new_deltas_size: u64,
    2509              : }
    2510              : 
    2511              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    2512              :     type Error = anyhow::Error;
    2513              : 
    2514           23 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    2515              :         Ok(Self {
    2516           23 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    2517           23 :             tenant_id: value
    2518           23 :                 .tenant_id
    2519           23 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    2520           23 :             timeline_id: value
    2521           23 :                 .timeline_id
    2522           23 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    2523           23 :             read_lock_acquisition_micros: value
    2524           23 :                 .read_lock_acquisition_micros
    2525           23 :                 .into_recorded()
    2526           23 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    2527           23 :             read_lock_held_key_sort_micros: value
    2528           23 :                 .read_lock_held_key_sort_micros
    2529           23 :                 .into_recorded()
    2530           23 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    2531           23 :             compaction_prerequisites_micros: value
    2532           23 :                 .compaction_prerequisites_micros
    2533           23 :                 .into_recorded()
    2534           23 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    2535           23 :             read_lock_held_compute_holes_micros: value
    2536           23 :                 .read_lock_held_compute_holes_micros
    2537           23 :                 .into_recorded()
    2538           23 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    2539           23 :             read_lock_drop_micros: value
    2540           23 :                 .read_lock_drop_micros
    2541           23 :                 .into_recorded()
    2542           23 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    2543           23 :             write_layer_files_micros: value
    2544           23 :                 .write_layer_files_micros
    2545           23 :                 .into_recorded()
    2546           23 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    2547           23 :             level0_deltas_count: value
    2548           23 :                 .level0_deltas_count
    2549           23 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    2550           23 :             new_deltas_count: value
    2551           23 :                 .new_deltas_count
    2552           23 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    2553           23 :             new_deltas_size: value
    2554           23 :                 .new_deltas_size
    2555           23 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    2556              :         })
    2557           23 :     }
    2558              : }
    2559              : 
    2560              : impl Timeline {
    2561              :     /// Entry point for new tiered compaction algorithm.
    2562              :     ///
    2563              :     /// All the real work is in the implementation in the pageserver_compaction
    2564              :     /// crate. The code here would apply to any algorithm implemented by the
    2565              :     /// same interface, but tiered is the only one at the moment.
    2566              :     ///
    2567              :     /// TODO: cancellation
    2568            0 :     pub(crate) async fn compact_tiered(
    2569            0 :         self: &Arc<Self>,
    2570            0 :         _cancel: &CancellationToken,
    2571            0 :         ctx: &RequestContext,
    2572            0 :     ) -> Result<(), CompactionError> {
    2573            0 :         let fanout = self.get_compaction_threshold() as u64;
    2574            0 :         let target_file_size = self.get_checkpoint_distance();
    2575              : 
    2576              :         // Find the top of the historical layers
    2577            0 :         let end_lsn = {
    2578            0 :             let guard = self.layers.read(LayerManagerLockHolder::Compaction).await;
    2579            0 :             let layers = guard.layer_map()?;
    2580              : 
    2581            0 :             let l0_deltas = layers.level0_deltas();
    2582              : 
    2583              :             // As an optimization, if we find that there are too few L0 layers,
    2584              :             // bail out early. We know that the compaction algorithm would do
    2585              :             // nothing in that case.
    2586            0 :             if l0_deltas.len() < fanout as usize {
    2587              :                 // doesn't need compacting
    2588            0 :                 return Ok(());
    2589            0 :             }
    2590            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    2591              :         };
    2592              : 
    2593              :         // Is the timeline being deleted?
    2594            0 :         if self.is_stopping() {
    2595            0 :             trace!("Dropping out of compaction on timeline shutdown");
    2596            0 :             return Err(CompactionError::new_cancelled());
    2597            0 :         }
    2598              : 
    2599            0 :         let (dense_ks, _sparse_ks) = self
    2600            0 :             .collect_keyspace(end_lsn, ctx)
    2601            0 :             .await
    2602            0 :             .map_err(CompactionError::from_collect_keyspace)?;
    2603              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    2604            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    2605              : 
    2606            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    2607            0 :             &mut adaptor,
    2608            0 :             end_lsn,
    2609            0 :             target_file_size,
    2610            0 :             fanout,
    2611            0 :             ctx,
    2612            0 :         )
    2613            0 :         .await
    2614              :         // TODO: compact_tiered needs to return CompactionError
    2615            0 :         .map_err(CompactionError::Other)?;
    2616              : 
    2617            0 :         adaptor.flush_updates().await?;
    2618            0 :         Ok(())
    2619            0 :     }
    2620              : 
    2621              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    2622              :     ///
    2623              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    2624              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    2625              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    2626              :     ///
    2627              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    2628              :     ///
    2629              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    2630              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    2631              :     ///
    2632              :     /// The function will produce:
    2633              :     ///
    2634              :     /// ```plain
    2635              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    2636              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    2637              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    2638              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    2639              :     /// ```
    2640              :     ///
    2641              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    2642              :     #[allow(clippy::too_many_arguments)]
    2643          324 :     pub(crate) async fn generate_key_retention(
    2644          324 :         self: &Arc<Timeline>,
    2645          324 :         key: Key,
    2646          324 :         full_history: &[(Key, Lsn, Value)],
    2647          324 :         horizon: Lsn,
    2648          324 :         retain_lsn_below_horizon: &[Lsn],
    2649          324 :         delta_threshold_cnt: usize,
    2650          324 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    2651          324 :         verification: bool,
    2652          324 :     ) -> anyhow::Result<KeyHistoryRetention> {
    2653              :         // Pre-checks for the invariants
    2654              : 
    2655          324 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2656              : 
    2657          324 :         if debug_mode {
    2658          786 :             for (log_key, _, _) in full_history {
    2659          462 :                 assert_eq!(log_key, &key, "mismatched key");
    2660              :             }
    2661          324 :             for i in 1..full_history.len() {
    2662          138 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    2663          138 :                 if full_history[i - 1].1 == full_history[i].1 {
    2664            0 :                     assert!(
    2665            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    2666            0 :                         "unordered delta/image, or duplicated delta"
    2667              :                     );
    2668          138 :                 }
    2669              :             }
    2670              :             // There was an assertion for no base image that checks if the first
    2671              :             // record in the history is `will_init` before, but it was removed.
    2672              :             // This is explained in the test cases for generate_key_retention.
    2673              :             // Search "incomplete history" for more information.
    2674          714 :             for lsn in retain_lsn_below_horizon {
    2675          390 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    2676              :             }
    2677          324 :             for i in 1..retain_lsn_below_horizon.len() {
    2678          178 :                 assert!(
    2679          178 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    2680            0 :                     "unordered LSN"
    2681              :                 );
    2682              :             }
    2683            0 :         }
    2684          324 :         let has_ancestor = base_img_from_ancestor.is_some();
    2685              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    2686              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    2687          324 :         let (mut split_history, lsn_split_points) = {
    2688          324 :             let mut split_history = Vec::new();
    2689          324 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    2690          324 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    2691          714 :             for lsn in retain_lsn_below_horizon {
    2692          390 :                 lsn_split_points.push(*lsn);
    2693          390 :             }
    2694          324 :             lsn_split_points.push(horizon);
    2695          324 :             let mut current_idx = 0;
    2696          786 :             for item @ (_, lsn, _) in full_history {
    2697          584 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    2698          122 :                     current_idx += 1;
    2699          122 :                 }
    2700          462 :                 split_history[current_idx].push(item);
    2701              :             }
    2702          324 :             (split_history, lsn_split_points)
    2703              :         };
    2704              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    2705         1362 :         for split_for_lsn in &mut split_history {
    2706         1038 :             let mut prev_lsn = None;
    2707         1038 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    2708         1038 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    2709          462 :                 if let Some(prev_lsn) = &prev_lsn {
    2710           62 :                     if *prev_lsn == lsn {
    2711              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    2712              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    2713              :                         // drop this delta and keep the image.
    2714              :                         //
    2715              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    2716              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    2717              :                         // dropped.
    2718              :                         //
    2719              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    2720              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    2721            0 :                         continue;
    2722           62 :                     }
    2723          400 :                 }
    2724          462 :                 prev_lsn = Some(lsn);
    2725          462 :                 new_split_for_lsn.push(record);
    2726              :             }
    2727         1038 :             *split_for_lsn = new_split_for_lsn;
    2728              :         }
    2729              :         // Step 3: generate images when necessary
    2730          324 :         let mut retention = Vec::with_capacity(split_history.len());
    2731          324 :         let mut records_since_last_image = 0;
    2732          324 :         let batch_cnt = split_history.len();
    2733          324 :         assert!(
    2734          324 :             batch_cnt >= 2,
    2735            0 :             "should have at least below + above horizon batches"
    2736              :         );
    2737          324 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    2738          324 :         if let Some((key, lsn, ref img)) = base_img_from_ancestor {
    2739           21 :             replay_history.push((key, lsn, Value::Image(img.clone())));
    2740          303 :         }
    2741              : 
    2742              :         /// Generate debug information for the replay history
    2743            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    2744              :             use std::fmt::Write;
    2745            0 :             let mut output = String::new();
    2746            0 :             if let Some((key, _, _)) = replay_history.first() {
    2747            0 :                 write!(output, "key={key} ").unwrap();
    2748            0 :                 let mut cnt = 0;
    2749            0 :                 for (_, lsn, val) in replay_history {
    2750            0 :                     if val.is_image() {
    2751            0 :                         write!(output, "i@{lsn} ").unwrap();
    2752            0 :                     } else if val.will_init() {
    2753            0 :                         write!(output, "di@{lsn} ").unwrap();
    2754            0 :                     } else {
    2755            0 :                         write!(output, "d@{lsn} ").unwrap();
    2756            0 :                     }
    2757            0 :                     cnt += 1;
    2758            0 :                     if cnt >= 128 {
    2759            0 :                         write!(output, "... and more").unwrap();
    2760            0 :                         break;
    2761            0 :                     }
    2762              :                 }
    2763            0 :             } else {
    2764            0 :                 write!(output, "<no history>").unwrap();
    2765            0 :             }
    2766            0 :             output
    2767            0 :         }
    2768              : 
    2769            0 :         fn generate_debug_trace(
    2770            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    2771            0 :             full_history: &[(Key, Lsn, Value)],
    2772            0 :             lsns: &[Lsn],
    2773            0 :             horizon: Lsn,
    2774            0 :         ) -> String {
    2775              :             use std::fmt::Write;
    2776            0 :             let mut output = String::new();
    2777            0 :             if let Some(replay_history) = replay_history {
    2778            0 :                 writeln!(
    2779            0 :                     output,
    2780            0 :                     "replay_history: {}",
    2781            0 :                     generate_history_trace(replay_history)
    2782            0 :                 )
    2783            0 :                 .unwrap();
    2784            0 :             } else {
    2785            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    2786            0 :             }
    2787            0 :             writeln!(
    2788            0 :                 output,
    2789            0 :                 "full_history: {}",
    2790            0 :                 generate_history_trace(full_history)
    2791              :             )
    2792            0 :             .unwrap();
    2793            0 :             writeln!(
    2794            0 :                 output,
    2795            0 :                 "when processing: [{}] horizon={}",
    2796            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    2797              :                 horizon
    2798              :             )
    2799            0 :             .unwrap();
    2800            0 :             output
    2801            0 :         }
    2802              : 
    2803          324 :         let mut key_exists = false;
    2804         1037 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    2805              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    2806         1037 :             records_since_last_image += split_for_lsn.len();
    2807              :             // Whether to produce an image into the final layer files
    2808         1037 :             let produce_image = if i == 0 && !has_ancestor {
    2809              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    2810          303 :                 true
    2811          734 :             } else if i == batch_cnt - 1 {
    2812              :                 // Do not generate images for the last batch (above horizon)
    2813          323 :                 false
    2814          411 :             } else if records_since_last_image == 0 {
    2815          322 :                 false
    2816           89 :             } else if records_since_last_image >= delta_threshold_cnt {
    2817              :                 // Generate images when there are too many records
    2818            3 :                 true
    2819              :             } else {
    2820           86 :                 false
    2821              :             };
    2822         1037 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    2823              :             // Only retain the items after the last image record
    2824         1277 :             for idx in (0..replay_history.len()).rev() {
    2825         1277 :                 if replay_history[idx].2.will_init() {
    2826         1037 :                     replay_history = replay_history[idx..].to_vec();
    2827         1037 :                     break;
    2828          240 :                 }
    2829              :             }
    2830         1037 :             if replay_history.is_empty() && !key_exists {
    2831              :                 // The key does not exist at earlier LSN, we can skip this iteration.
    2832            0 :                 retention.push(Vec::new());
    2833            0 :                 continue;
    2834         1037 :             } else {
    2835         1037 :                 key_exists = true;
    2836         1037 :             }
    2837         1037 :             let Some((_, _, val)) = replay_history.first() else {
    2838            0 :                 unreachable!("replay history should not be empty once it exists")
    2839              :             };
    2840         1037 :             if !val.will_init() {
    2841            0 :                 return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
    2842            0 :                     generate_debug_trace(
    2843            0 :                         Some(&replay_history),
    2844            0 :                         full_history,
    2845            0 :                         retain_lsn_below_horizon,
    2846            0 :                         horizon,
    2847              :                     )
    2848            0 :                 });
    2849         1037 :             }
    2850              :             // Whether to reconstruct the image. In debug mode, we will generate an image
    2851              :             // at every retain_lsn to ensure data is not corrupted, but we won't put the
    2852              :             // image into the final layer.
    2853         1037 :             let img_and_lsn = if produce_image {
    2854          306 :                 records_since_last_image = 0;
    2855          306 :                 let replay_history_for_debug = if debug_mode {
    2856          306 :                     Some(replay_history.clone())
    2857              :                 } else {
    2858            0 :                     None
    2859              :                 };
    2860          306 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    2861          306 :                 let history = std::mem::take(&mut replay_history);
    2862          306 :                 let mut img = None;
    2863          306 :                 let mut records = Vec::with_capacity(history.len());
    2864          306 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    2865          295 :                     img = Some((*lsn, val.clone()));
    2866          295 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    2867           20 :                         let Value::WalRecord(rec) = val else {
    2868            0 :                             return Err(anyhow::anyhow!(
    2869            0 :                                 "invalid record, first record is image, expect walrecords"
    2870            0 :                             ))
    2871            0 :                             .with_context(|| {
    2872            0 :                                 generate_debug_trace(
    2873            0 :                                     replay_history_for_debug_ref,
    2874            0 :                                     full_history,
    2875            0 :                                     retain_lsn_below_horizon,
    2876            0 :                                     horizon,
    2877              :                                 )
    2878            0 :                             });
    2879              :                         };
    2880           20 :                         records.push((lsn, rec));
    2881              :                     }
    2882              :                 } else {
    2883           18 :                     for (_, lsn, val) in history.into_iter() {
    2884           18 :                         let Value::WalRecord(rec) = val else {
    2885            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    2886            0 :                                 .with_context(|| generate_debug_trace(
    2887            0 :                                     replay_history_for_debug_ref,
    2888            0 :                                     full_history,
    2889            0 :                                     retain_lsn_below_horizon,
    2890            0 :                                     horizon,
    2891              :                                 ));
    2892              :                         };
    2893           18 :                         records.push((lsn, rec));
    2894              :                     }
    2895              :                 }
    2896              :                 // WAL redo requires records in the reverse LSN order
    2897          306 :                 records.reverse();
    2898          306 :                 let state = ValueReconstructState { img, records };
    2899              :                 // last batch does not generate image so i is always in range, unless we force generate
    2900              :                 // an image during testing
    2901          306 :                 let request_lsn = if i >= lsn_split_points.len() {
    2902            0 :                     Lsn::MAX
    2903              :                 } else {
    2904          306 :                     lsn_split_points[i]
    2905              :                 };
    2906          306 :                 let img = self
    2907          306 :                     .reconstruct_value(key, request_lsn, state, RedoAttemptType::GcCompaction)
    2908          306 :                     .await?;
    2909          305 :                 Some((request_lsn, img))
    2910              :             } else {
    2911          731 :                 None
    2912              :             };
    2913         1036 :             if produce_image {
    2914          305 :                 let (request_lsn, img) = img_and_lsn.unwrap();
    2915          305 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    2916          305 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    2917          305 :             } else {
    2918          731 :                 let deltas = split_for_lsn
    2919          731 :                     .iter()
    2920          731 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    2921          731 :                     .collect_vec();
    2922          731 :                 retention.push(deltas);
    2923              :             }
    2924              :         }
    2925          323 :         let mut result = Vec::with_capacity(retention.len());
    2926          323 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    2927         1036 :         for (idx, logs) in retention.into_iter().enumerate() {
    2928         1036 :             if idx == lsn_split_points.len() {
    2929          323 :                 let retention = KeyHistoryRetention {
    2930          323 :                     below_horizon: result,
    2931          323 :                     above_horizon: KeyLogAtLsn(logs),
    2932          323 :                 };
    2933          323 :                 if verification {
    2934          323 :                     retention
    2935          323 :                         .verify(key, &base_img_from_ancestor, full_history, self)
    2936          323 :                         .await?;
    2937            0 :                 }
    2938          323 :                 return Ok(retention);
    2939          713 :             } else {
    2940          713 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    2941          713 :             }
    2942              :         }
    2943            0 :         unreachable!("key retention is empty")
    2944          324 :     }
    2945              : 
    2946              :     /// Check how much space is left on the disk
    2947           27 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    2948           27 :         let tenants_dir = self.conf.tenants_path();
    2949              : 
    2950           27 :         let stat = Statvfs::get(&tenants_dir, None)
    2951           27 :             .context("statvfs failed, presumably directory got unlinked")?;
    2952              : 
    2953           27 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    2954              : 
    2955           27 :         Ok(avail_bytes)
    2956           27 :     }
    2957              : 
    2958              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    2959              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    2960              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    2961              :     /// compaction.
    2962           27 :     async fn check_compaction_space(
    2963           27 :         self: &Arc<Self>,
    2964           27 :         layer_selection: &[Layer],
    2965           27 :     ) -> Result<(), CompactionError> {
    2966           27 :         let available_space = self
    2967           27 :             .check_available_space()
    2968           27 :             .await
    2969           27 :             .map_err(CompactionError::Other)?;
    2970           27 :         let mut remote_layer_size = 0;
    2971           27 :         let mut all_layer_size = 0;
    2972          106 :         for layer in layer_selection {
    2973           79 :             let needs_download = layer
    2974           79 :                 .needs_download()
    2975           79 :                 .await
    2976           79 :                 .context("failed to check if layer needs download")
    2977           79 :                 .map_err(CompactionError::Other)?;
    2978           79 :             if needs_download.is_some() {
    2979            0 :                 remote_layer_size += layer.layer_desc().file_size;
    2980           79 :             }
    2981           79 :             all_layer_size += layer.layer_desc().file_size;
    2982              :         }
    2983           27 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    2984           27 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    2985              :         {
    2986            0 :             return Err(CompactionError::Other(anyhow!(
    2987            0 :                 "not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    2988            0 :                 available_space,
    2989            0 :                 allocated_space,
    2990            0 :                 all_layer_size,
    2991            0 :                 remote_layer_size,
    2992            0 :                 all_layer_size + remote_layer_size
    2993            0 :             )));
    2994           27 :         }
    2995           27 :         Ok(())
    2996           27 :     }
    2997              : 
    2998              :     /// Check to bail out of gc compaction early if it would use too much memory.
    2999           27 :     async fn check_memory_usage(
    3000           27 :         self: &Arc<Self>,
    3001           27 :         layer_selection: &[Layer],
    3002           27 :     ) -> Result<(), CompactionError> {
    3003           27 :         let mut estimated_memory_usage_mb = 0.0;
    3004           27 :         let mut num_image_layers = 0;
    3005           27 :         let mut num_delta_layers = 0;
    3006           27 :         let target_layer_size_bytes = 256 * 1024 * 1024;
    3007          106 :         for layer in layer_selection {
    3008           79 :             let layer_desc = layer.layer_desc();
    3009           79 :             if layer_desc.is_delta() {
    3010           44 :                 // Delta layers at most have 1MB buffer; 3x to make it safe (there're deltas as large as 16KB).
    3011           44 :                 // Scale it by target_layer_size_bytes so that tests can pass (some tests, e.g., `test_pageserver_gc_compaction_preempt
    3012           44 :                 // use 3MB layer size and we need to account for that).
    3013           44 :                 estimated_memory_usage_mb +=
    3014           44 :                     3.0 * (layer_desc.file_size / target_layer_size_bytes) as f64;
    3015           44 :                 num_delta_layers += 1;
    3016           44 :             } else {
    3017           35 :                 // Image layers at most have 1MB buffer but it might be compressed; assume 5x compression ratio.
    3018           35 :                 estimated_memory_usage_mb +=
    3019           35 :                     5.0 * (layer_desc.file_size / target_layer_size_bytes) as f64;
    3020           35 :                 num_image_layers += 1;
    3021           35 :             }
    3022              :         }
    3023           27 :         if estimated_memory_usage_mb > 1024.0 {
    3024            0 :             return Err(CompactionError::Other(anyhow!(
    3025            0 :                 "estimated memory usage is too high: {}MB, giving up compaction; num_image_layers={}, num_delta_layers={}",
    3026            0 :                 estimated_memory_usage_mb,
    3027            0 :                 num_image_layers,
    3028            0 :                 num_delta_layers
    3029            0 :             )));
    3030           27 :         }
    3031           27 :         Ok(())
    3032           27 :     }
    3033              : 
    3034              :     /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
    3035              :     /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
    3036              :     /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
    3037              :     /// here.
    3038           28 :     pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
    3039           28 :         let gc_cutoff_lsn = {
    3040           28 :             let gc_info = self.gc_info.read().unwrap();
    3041           28 :             gc_info.min_cutoff()
    3042              :         };
    3043              : 
    3044              :         // TODO: standby horizon should use leases so we don't really need to consider it here.
    3045              :         // let watermark = watermark.min(self.standby_horizon.load());
    3046              : 
    3047              :         // TODO: ensure the child branches will not use anything below the watermark, or consider
    3048              :         // them when computing the watermark.
    3049           28 :         gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
    3050           28 :     }
    3051              : 
    3052              :     /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
    3053              :     /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
    3054              :     /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
    3055              :     /// like a full compaction of the specified keyspace.
    3056            0 :     pub(crate) async fn gc_compaction_split_jobs(
    3057            0 :         self: &Arc<Self>,
    3058            0 :         job: GcCompactJob,
    3059            0 :         sub_compaction_max_job_size_mb: Option<u64>,
    3060            0 :     ) -> Result<Vec<GcCompactJob>, CompactionError> {
    3061            0 :         let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
    3062            0 :             job.compact_lsn_range.end
    3063              :         } else {
    3064            0 :             self.get_gc_compaction_watermark()
    3065              :         };
    3066              : 
    3067            0 :         if compact_below_lsn == Lsn::INVALID {
    3068            0 :             tracing::warn!(
    3069            0 :                 "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    3070              :             );
    3071            0 :             return Ok(vec![]);
    3072            0 :         }
    3073              : 
    3074              :         // Split compaction job to about 4GB each
    3075              :         const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
    3076            0 :         let sub_compaction_max_job_size_mb =
    3077            0 :             sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
    3078              : 
    3079            0 :         let mut compact_jobs = Vec::<GcCompactJob>::new();
    3080              :         // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
    3081              :         // by estimating the amount of files read for a compaction job. We should also partition on LSN.
    3082            0 :         let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
    3083              :         // Truncate the key range to be within user specified compaction range.
    3084            0 :         fn truncate_to(
    3085            0 :             source_start: &Key,
    3086            0 :             source_end: &Key,
    3087            0 :             target_start: &Key,
    3088            0 :             target_end: &Key,
    3089            0 :         ) -> Option<(Key, Key)> {
    3090            0 :             let start = source_start.max(target_start);
    3091            0 :             let end = source_end.min(target_end);
    3092            0 :             if start < end {
    3093            0 :                 Some((*start, *end))
    3094              :             } else {
    3095            0 :                 None
    3096              :             }
    3097            0 :         }
    3098            0 :         let mut split_key_ranges = Vec::new();
    3099            0 :         let ranges = dense_ks
    3100            0 :             .parts
    3101            0 :             .iter()
    3102            0 :             .map(|partition| partition.ranges.iter())
    3103            0 :             .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
    3104            0 :             .flatten()
    3105            0 :             .cloned()
    3106            0 :             .collect_vec();
    3107            0 :         for range in ranges.iter() {
    3108            0 :             let Some((start, end)) = truncate_to(
    3109            0 :                 &range.start,
    3110            0 :                 &range.end,
    3111            0 :                 &job.compact_key_range.start,
    3112            0 :                 &job.compact_key_range.end,
    3113            0 :             ) else {
    3114            0 :                 continue;
    3115              :             };
    3116            0 :             split_key_ranges.push((start, end));
    3117              :         }
    3118            0 :         split_key_ranges.sort();
    3119            0 :         let all_layers = {
    3120            0 :             let guard = self.layers.read(LayerManagerLockHolder::Compaction).await;
    3121            0 :             let layer_map = guard.layer_map()?;
    3122            0 :             layer_map.iter_historic_layers().collect_vec()
    3123              :         };
    3124            0 :         let mut current_start = None;
    3125            0 :         let ranges_num = split_key_ranges.len();
    3126            0 :         for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
    3127            0 :             if current_start.is_none() {
    3128            0 :                 current_start = Some(start);
    3129            0 :             }
    3130            0 :             let start = current_start.unwrap();
    3131            0 :             if start >= end {
    3132              :                 // We have already processed this partition.
    3133            0 :                 continue;
    3134            0 :             }
    3135            0 :             let overlapping_layers = {
    3136            0 :                 let mut desc = Vec::new();
    3137            0 :                 for layer in all_layers.iter() {
    3138            0 :                     if overlaps_with(&layer.get_key_range(), &(start..end))
    3139            0 :                         && layer.get_lsn_range().start <= compact_below_lsn
    3140            0 :                     {
    3141            0 :                         desc.push(layer.clone());
    3142            0 :                     }
    3143              :                 }
    3144            0 :                 desc
    3145              :             };
    3146            0 :             let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
    3147            0 :             if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
    3148              :                 // Try to extend the compaction range so that we include at least one full layer file.
    3149            0 :                 let extended_end = overlapping_layers
    3150            0 :                     .iter()
    3151            0 :                     .map(|layer| layer.key_range.end)
    3152            0 :                     .min();
    3153              :                 // It is possible that the search range does not contain any layer files when we reach the end of the loop.
    3154              :                 // In this case, we simply use the specified key range end.
    3155            0 :                 let end = if let Some(extended_end) = extended_end {
    3156            0 :                     extended_end.max(end)
    3157              :                 } else {
    3158            0 :                     end
    3159              :                 };
    3160            0 :                 let end = if ranges_num == idx + 1 {
    3161              :                     // extend the compaction range to the end of the key range if it's the last partition
    3162            0 :                     end.max(job.compact_key_range.end)
    3163              :                 } else {
    3164            0 :                     end
    3165              :                 };
    3166            0 :                 if total_size == 0 && !compact_jobs.is_empty() {
    3167            0 :                     info!(
    3168            0 :                         "splitting compaction job: {}..{}, estimated_size={}, extending the previous job",
    3169              :                         start, end, total_size
    3170              :                     );
    3171            0 :                     compact_jobs.last_mut().unwrap().compact_key_range.end = end;
    3172            0 :                     current_start = Some(end);
    3173              :                 } else {
    3174            0 :                     info!(
    3175            0 :                         "splitting compaction job: {}..{}, estimated_size={}",
    3176              :                         start, end, total_size
    3177              :                     );
    3178            0 :                     compact_jobs.push(GcCompactJob {
    3179            0 :                         dry_run: job.dry_run,
    3180            0 :                         compact_key_range: start..end,
    3181            0 :                         compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
    3182            0 :                         do_metadata_compaction: false,
    3183            0 :                     });
    3184            0 :                     current_start = Some(end);
    3185              :                 }
    3186            0 :             }
    3187              :         }
    3188            0 :         Ok(compact_jobs)
    3189            0 :     }
    3190              : 
    3191              :     /// An experimental compaction building block that combines compaction with garbage collection.
    3192              :     ///
    3193              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    3194              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    3195              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    3196              :     /// and create delta layers with all deltas >= gc horizon.
    3197              :     ///
    3198              :     /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
    3199              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    3200              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    3201              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    3202              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    3203              :     /// part of the range.
    3204              :     ///
    3205              :     /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
    3206              :     /// the LSN. Otherwise, it will use the gc cutoff by default.
    3207           28 :     pub(crate) async fn compact_with_gc(
    3208           28 :         self: &Arc<Self>,
    3209           28 :         cancel: &CancellationToken,
    3210           28 :         options: CompactOptions,
    3211           28 :         ctx: &RequestContext,
    3212           28 :     ) -> Result<CompactionOutcome, CompactionError> {
    3213           28 :         let sub_compaction = options.sub_compaction;
    3214           28 :         let job = GcCompactJob::from_compact_options(options.clone());
    3215           28 :         let yield_for_l0 = options.flags.contains(CompactFlags::YieldForL0);
    3216           28 :         if sub_compaction {
    3217            0 :             info!(
    3218            0 :                 "running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
    3219              :             );
    3220            0 :             let jobs = self
    3221            0 :                 .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
    3222            0 :                 .await?;
    3223            0 :             let jobs_len = jobs.len();
    3224            0 :             for (idx, job) in jobs.into_iter().enumerate() {
    3225            0 :                 let sub_compaction_progress = format!("{}/{}", idx + 1, jobs_len);
    3226            0 :                 self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
    3227            0 :                     .instrument(info_span!(
    3228              :                         "sub_compaction",
    3229              :                         sub_compaction_progress = sub_compaction_progress
    3230              :                     ))
    3231            0 :                     .await?;
    3232              :             }
    3233            0 :             if jobs_len == 0 {
    3234            0 :                 info!("no jobs to run, skipping gc bottom-most compaction");
    3235            0 :             }
    3236            0 :             return Ok(CompactionOutcome::Done);
    3237           28 :         }
    3238           28 :         self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
    3239           28 :             .await
    3240           28 :     }
    3241              : 
    3242           28 :     async fn compact_with_gc_inner(
    3243           28 :         self: &Arc<Self>,
    3244           28 :         cancel: &CancellationToken,
    3245           28 :         mut job: GcCompactJob,
    3246           28 :         ctx: &RequestContext,
    3247           28 :         yield_for_l0: bool,
    3248           28 :     ) -> Result<CompactionOutcome, CompactionError> {
    3249              :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    3250              :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    3251              :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    3252              : 
    3253              :         // If the job is not configured to compact the metadata key range, shrink the key range
    3254              :         // to exclude the metadata key range. The check is done by checking if the end of the key range
    3255              :         // is larger than the start of the metadata key range. Note that metadata keys cover the entire
    3256              :         // second half of the keyspace, so it's enough to only check the end of the key range.
    3257           28 :         if !job.do_metadata_compaction
    3258            0 :             && job.compact_key_range.end > Key::metadata_key_range().start
    3259              :         {
    3260            0 :             tracing::info!(
    3261            0 :                 "compaction for metadata key range is not supported yet, overriding compact_key_range from {} to {}",
    3262              :                 job.compact_key_range.end,
    3263            0 :                 Key::metadata_key_range().start
    3264              :             );
    3265              :             // Shrink the key range to exclude the metadata key range.
    3266            0 :             job.compact_key_range.end = Key::metadata_key_range().start;
    3267              : 
    3268              :             // Skip the job if the key range completely lies within the metadata key range.
    3269            0 :             if job.compact_key_range.start >= job.compact_key_range.end {
    3270            0 :                 tracing::info!("compact_key_range is empty, skipping compaction");
    3271            0 :                 return Ok(CompactionOutcome::Done);
    3272            0 :             }
    3273           28 :         }
    3274              : 
    3275           28 :         let timer = Instant::now();
    3276           28 :         let begin_timer = timer;
    3277              : 
    3278           28 :         let gc_lock = async {
    3279           28 :             tokio::select! {
    3280           28 :                 guard = self.gc_lock.lock() => Ok(guard),
    3281           28 :                 _ = cancel.cancelled() => Err(CompactionError::new_cancelled()),
    3282              :             }
    3283           28 :         };
    3284              : 
    3285           28 :         let time_acquire_lock = timer.elapsed();
    3286           28 :         let timer = Instant::now();
    3287              : 
    3288           28 :         let gc_lock = crate::timed(
    3289           28 :             gc_lock,
    3290           28 :             "acquires gc lock",
    3291           28 :             std::time::Duration::from_secs(5),
    3292           28 :         )
    3293           28 :         .await?;
    3294              : 
    3295           28 :         let dry_run = job.dry_run;
    3296           28 :         let compact_key_range = job.compact_key_range;
    3297           28 :         let compact_lsn_range = job.compact_lsn_range;
    3298              : 
    3299           28 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    3300              : 
    3301           28 :         info!(
    3302            0 :             "running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}",
    3303              :             compact_key_range.start,
    3304              :             compact_key_range.end,
    3305              :             compact_lsn_range.start,
    3306              :             compact_lsn_range.end
    3307              :         );
    3308              : 
    3309           28 :         scopeguard::defer! {
    3310              :             info!("done enhanced gc bottom-most compaction");
    3311              :         };
    3312              : 
    3313           28 :         let mut stat = CompactionStatistics::default();
    3314              : 
    3315              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    3316              :         // The layer selection has the following properties:
    3317              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    3318              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    3319           27 :         let job_desc = {
    3320           28 :             let guard = self
    3321           28 :                 .layers
    3322           28 :                 .read(LayerManagerLockHolder::GarbageCollection)
    3323           28 :                 .await;
    3324           28 :             let layers = guard.layer_map()?;
    3325           28 :             let gc_info = self.gc_info.read().unwrap();
    3326           28 :             let mut retain_lsns_below_horizon = Vec::new();
    3327           28 :             let gc_cutoff = {
    3328              :                 // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
    3329              :                 // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
    3330              :                 // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
    3331              :                 // to get the truth data.
    3332           28 :                 let real_gc_cutoff = self.get_gc_compaction_watermark();
    3333              :                 // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
    3334              :                 // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
    3335              :                 // the real cutoff.
    3336           28 :                 let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
    3337           25 :                     if real_gc_cutoff == Lsn::INVALID {
    3338              :                         // If the gc_cutoff is not generated yet, we should not compact anything.
    3339            0 :                         tracing::warn!(
    3340            0 :                             "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    3341              :                         );
    3342            0 :                         return Ok(CompactionOutcome::Skipped);
    3343           25 :                     }
    3344           25 :                     real_gc_cutoff
    3345              :                 } else {
    3346            3 :                     compact_lsn_range.end
    3347              :                 };
    3348           28 :                 if gc_cutoff > real_gc_cutoff {
    3349            2 :                     warn!(
    3350            0 :                         "provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff",
    3351              :                         gc_cutoff, real_gc_cutoff
    3352              :                     );
    3353            2 :                     gc_cutoff = real_gc_cutoff;
    3354           26 :                 }
    3355           28 :                 gc_cutoff
    3356              :             };
    3357           35 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    3358           35 :                 if lsn < &gc_cutoff {
    3359           35 :                     retain_lsns_below_horizon.push(*lsn);
    3360           35 :                 }
    3361              :             }
    3362           28 :             for lsn in gc_info.leases.keys() {
    3363            0 :                 if lsn < &gc_cutoff {
    3364            0 :                     retain_lsns_below_horizon.push(*lsn);
    3365            0 :                 }
    3366              :             }
    3367           28 :             let mut selected_layers: Vec<Layer> = Vec::new();
    3368           28 :             drop(gc_info);
    3369              :             // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    3370           28 :             let Some(max_layer_lsn) = layers
    3371           28 :                 .iter_historic_layers()
    3372          125 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    3373          107 :                 .map(|desc| desc.get_lsn_range().end)
    3374           28 :                 .max()
    3375              :             else {
    3376            0 :                 info!(
    3377            0 :                     "no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}",
    3378              :                     gc_cutoff
    3379              :                 );
    3380            0 :                 return Ok(CompactionOutcome::Done);
    3381              :             };
    3382              :             // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
    3383              :             // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
    3384              :             // it is a branch.
    3385           28 :             let Some(min_layer_lsn) = layers
    3386           28 :                 .iter_historic_layers()
    3387          125 :                 .filter(|desc| {
    3388          125 :                     if compact_lsn_range.start == Lsn::INVALID {
    3389          102 :                         true // select all layers below if start == Lsn(0)
    3390              :                     } else {
    3391           23 :                         desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
    3392              :                     }
    3393          125 :                 })
    3394          116 :                 .map(|desc| desc.get_lsn_range().start)
    3395           28 :                 .min()
    3396              :             else {
    3397            0 :                 info!(
    3398            0 :                     "no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}",
    3399              :                     compact_lsn_range.end
    3400              :                 );
    3401            0 :                 return Ok(CompactionOutcome::Done);
    3402              :             };
    3403              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    3404              :             // layers to compact.
    3405           28 :             let mut rewrite_layers = Vec::new();
    3406          125 :             for desc in layers.iter_historic_layers() {
    3407          125 :                 if desc.get_lsn_range().end <= max_layer_lsn
    3408          107 :                     && desc.get_lsn_range().start >= min_layer_lsn
    3409           98 :                     && overlaps_with(&desc.get_key_range(), &compact_key_range)
    3410              :                 {
    3411              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    3412              :                     // even if it might contain extra keys
    3413           79 :                     selected_layers.push(guard.get_from_desc(&desc));
    3414              :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    3415              :                     // to overlap image layers)
    3416           79 :                     if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
    3417            1 :                     {
    3418            1 :                         rewrite_layers.push(desc);
    3419           78 :                     }
    3420           46 :                 }
    3421              :             }
    3422           28 :             if selected_layers.is_empty() {
    3423            1 :                 info!(
    3424            0 :                     "no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}",
    3425              :                     gc_cutoff, compact_key_range.start, compact_key_range.end
    3426              :                 );
    3427            1 :                 return Ok(CompactionOutcome::Done);
    3428           27 :             }
    3429           27 :             retain_lsns_below_horizon.sort();
    3430           27 :             GcCompactionJobDescription {
    3431           27 :                 selected_layers,
    3432           27 :                 gc_cutoff,
    3433           27 :                 retain_lsns_below_horizon,
    3434           27 :                 min_layer_lsn,
    3435           27 :                 max_layer_lsn,
    3436           27 :                 compaction_key_range: compact_key_range,
    3437           27 :                 rewrite_layers,
    3438           27 :             }
    3439              :         };
    3440           27 :         let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
    3441              :             // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
    3442              :             // We use job_desc.min_layer_lsn as if it's the lowest branch point.
    3443            4 :             (true, job_desc.min_layer_lsn)
    3444           23 :         } else if self.ancestor_timeline.is_some() {
    3445              :             // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
    3446              :             // LSN ranges all the way to the ancestor timeline.
    3447            1 :             (true, self.ancestor_lsn)
    3448              :         } else {
    3449           22 :             let res = job_desc
    3450           22 :                 .retain_lsns_below_horizon
    3451           22 :                 .first()
    3452           22 :                 .copied()
    3453           22 :                 .unwrap_or(job_desc.gc_cutoff);
    3454           22 :             if debug_mode {
    3455           22 :                 assert_eq!(
    3456              :                     res,
    3457           22 :                     job_desc
    3458           22 :                         .retain_lsns_below_horizon
    3459           22 :                         .iter()
    3460           22 :                         .min()
    3461           22 :                         .copied()
    3462           22 :                         .unwrap_or(job_desc.gc_cutoff)
    3463              :                 );
    3464            0 :             }
    3465           22 :             (false, res)
    3466              :         };
    3467              : 
    3468           27 :         let verification = self.get_gc_compaction_settings().gc_compaction_verification;
    3469              : 
    3470           27 :         info!(
    3471            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
    3472            0 :             job_desc.selected_layers.len(),
    3473            0 :             job_desc.rewrite_layers.len(),
    3474              :             job_desc.max_layer_lsn,
    3475              :             job_desc.min_layer_lsn,
    3476              :             job_desc.gc_cutoff,
    3477              :             lowest_retain_lsn,
    3478              :             job_desc.compaction_key_range.start,
    3479              :             job_desc.compaction_key_range.end,
    3480              :             has_data_below,
    3481              :         );
    3482              : 
    3483           27 :         let time_analyze = timer.elapsed();
    3484           27 :         let timer = Instant::now();
    3485              : 
    3486          106 :         for layer in &job_desc.selected_layers {
    3487           79 :             debug!("read layer: {}", layer.layer_desc().key());
    3488              :         }
    3489           28 :         for layer in &job_desc.rewrite_layers {
    3490            1 :             debug!("rewrite layer: {}", layer.key());
    3491              :         }
    3492              : 
    3493           27 :         self.check_compaction_space(&job_desc.selected_layers)
    3494           27 :             .await?;
    3495              : 
    3496           27 :         self.check_memory_usage(&job_desc.selected_layers).await?;
    3497           27 :         if job_desc.selected_layers.len() > 100
    3498            0 :             && job_desc.rewrite_layers.len() as f64 >= job_desc.selected_layers.len() as f64 * 0.7
    3499              :         {
    3500            0 :             return Err(CompactionError::Other(anyhow!(
    3501            0 :                 "too many layers to rewrite: {} / {}, giving up compaction",
    3502            0 :                 job_desc.rewrite_layers.len(),
    3503            0 :                 job_desc.selected_layers.len()
    3504            0 :             )));
    3505           27 :         }
    3506              : 
    3507              :         // Generate statistics for the compaction
    3508          106 :         for layer in &job_desc.selected_layers {
    3509           79 :             let desc = layer.layer_desc();
    3510           79 :             if desc.is_delta() {
    3511           44 :                 stat.visit_delta_layer(desc.file_size());
    3512           44 :             } else {
    3513           35 :                 stat.visit_image_layer(desc.file_size());
    3514           35 :             }
    3515              :         }
    3516              : 
    3517              :         // Step 1: construct a k-merge iterator over all layers.
    3518              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    3519           27 :         let layer_names = job_desc
    3520           27 :             .selected_layers
    3521           27 :             .iter()
    3522           79 :             .map(|layer| layer.layer_desc().layer_name())
    3523           27 :             .collect_vec();
    3524           27 :         if let Some(err) = check_valid_layermap(&layer_names) {
    3525            0 :             return Err(CompactionError::Other(anyhow!(
    3526            0 :                 "gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss",
    3527            0 :                 err
    3528            0 :             )));
    3529           27 :         }
    3530              :         // The maximum LSN we are processing in this compaction loop
    3531           27 :         let end_lsn = job_desc
    3532           27 :             .selected_layers
    3533           27 :             .iter()
    3534           79 :             .map(|l| l.layer_desc().lsn_range.end)
    3535           27 :             .max()
    3536           27 :             .unwrap();
    3537           27 :         let mut delta_layers = Vec::new();
    3538           27 :         let mut image_layers = Vec::new();
    3539           27 :         let mut downloaded_layers = Vec::new();
    3540           27 :         let mut total_downloaded_size = 0;
    3541           27 :         let mut total_layer_size = 0;
    3542          106 :         for layer in &job_desc.selected_layers {
    3543           79 :             if layer
    3544           79 :                 .needs_download()
    3545           79 :                 .await
    3546           79 :                 .context("failed to check if layer needs download")
    3547           79 :                 .map_err(CompactionError::Other)?
    3548           79 :                 .is_some()
    3549            0 :             {
    3550            0 :                 total_downloaded_size += layer.layer_desc().file_size;
    3551           79 :             }
    3552           79 :             total_layer_size += layer.layer_desc().file_size;
    3553           79 :             if cancel.is_cancelled() {
    3554            0 :                 return Err(CompactionError::new_cancelled());
    3555           79 :             }
    3556           79 :             let should_yield = yield_for_l0
    3557            0 :                 && self
    3558            0 :                     .l0_compaction_trigger
    3559            0 :                     .notified()
    3560            0 :                     .now_or_never()
    3561            0 :                     .is_some();
    3562           79 :             if should_yield {
    3563            0 :                 tracing::info!("preempt gc-compaction when downloading layers: too many L0 layers");
    3564            0 :                 return Ok(CompactionOutcome::YieldForL0);
    3565           79 :             }
    3566           79 :             let resident_layer = layer
    3567           79 :                 .download_and_keep_resident(ctx)
    3568           79 :                 .await
    3569           79 :                 .context("failed to download and keep resident layer")
    3570           79 :                 .map_err(CompactionError::Other)?;
    3571           79 :             downloaded_layers.push(resident_layer);
    3572              :         }
    3573           27 :         info!(
    3574            0 :             "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
    3575              :             total_downloaded_size,
    3576              :             total_layer_size,
    3577            0 :             total_downloaded_size as f64 / total_layer_size as f64
    3578              :         );
    3579          106 :         for resident_layer in &downloaded_layers {
    3580           79 :             if resident_layer.layer_desc().is_delta() {
    3581           44 :                 let layer = resident_layer
    3582           44 :                     .get_as_delta(ctx)
    3583           44 :                     .await
    3584           44 :                     .context("failed to get delta layer")
    3585           44 :                     .map_err(CompactionError::Other)?;
    3586           44 :                 delta_layers.push(layer);
    3587              :             } else {
    3588           35 :                 let layer = resident_layer
    3589           35 :                     .get_as_image(ctx)
    3590           35 :                     .await
    3591           35 :                     .context("failed to get image layer")
    3592           35 :                     .map_err(CompactionError::Other)?;
    3593           35 :                 image_layers.push(layer);
    3594              :             }
    3595              :         }
    3596           27 :         let (dense_ks, sparse_ks) = self
    3597           27 :             .collect_gc_compaction_keyspace()
    3598           27 :             .await
    3599           27 :             .context("failed to collect gc compaction keyspace")
    3600           27 :             .map_err(CompactionError::Other)?;
    3601           27 :         let mut merge_iter = FilterIterator::create(
    3602           27 :             MergeIterator::create_with_options(
    3603           27 :                 &delta_layers,
    3604           27 :                 &image_layers,
    3605           27 :                 ctx,
    3606           27 :                 128 * 8192, /* 1MB buffer for each of the inner iterators */
    3607              :                 128,
    3608              :             ),
    3609           27 :             dense_ks,
    3610           27 :             sparse_ks,
    3611              :         )
    3612           27 :         .context("failed to create filter iterator")
    3613           27 :         .map_err(CompactionError::Other)?;
    3614              : 
    3615           27 :         let time_download_layer = timer.elapsed();
    3616           27 :         let mut timer = Instant::now();
    3617              : 
    3618              :         // Step 2: Produce images+deltas.
    3619           27 :         let mut accumulated_values = Vec::new();
    3620           27 :         let mut accumulated_values_estimated_size = 0;
    3621           27 :         let mut last_key: Option<Key> = None;
    3622              : 
    3623              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    3624              :         // when some condition meet.
    3625           27 :         let mut image_layer_writer = if !has_data_below {
    3626           22 :             Some(SplitImageLayerWriter::new(
    3627           22 :                 self.conf,
    3628           22 :                 self.timeline_id,
    3629           22 :                 self.tenant_shard_id,
    3630           22 :                 job_desc.compaction_key_range.start,
    3631           22 :                 lowest_retain_lsn,
    3632           22 :                 self.get_compaction_target_size(),
    3633           22 :                 &self.gate,
    3634           22 :                 self.cancel.clone(),
    3635           22 :             ))
    3636              :         } else {
    3637            5 :             None
    3638              :         };
    3639              : 
    3640           27 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    3641           27 :             self.conf,
    3642           27 :             self.timeline_id,
    3643           27 :             self.tenant_shard_id,
    3644           27 :             lowest_retain_lsn..end_lsn,
    3645           27 :             self.get_compaction_target_size(),
    3646           27 :             &self.gate,
    3647           27 :             self.cancel.clone(),
    3648              :         );
    3649              : 
    3650              :         #[derive(Default)]
    3651              :         struct RewritingLayers {
    3652              :             before: Option<DeltaLayerWriter>,
    3653              :             after: Option<DeltaLayerWriter>,
    3654              :         }
    3655           27 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    3656              : 
    3657              :         /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
    3658              :         /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
    3659              :         /// In those cases, we need to pull up data from below the LSN range we're compaction.
    3660              :         ///
    3661              :         /// This function unifies the cases so that later code doesn't have to think about it.
    3662              :         ///
    3663              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    3664              :         /// is needed for reconstruction. This should be fixed in the future.
    3665              :         ///
    3666              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    3667              :         /// images.
    3668          320 :         async fn get_ancestor_image(
    3669          320 :             this_tline: &Arc<Timeline>,
    3670          320 :             key: Key,
    3671          320 :             ctx: &RequestContext,
    3672          320 :             has_data_below: bool,
    3673          320 :             history_lsn_point: Lsn,
    3674          320 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    3675          320 :             if !has_data_below {
    3676          301 :                 return Ok(None);
    3677           19 :             };
    3678              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    3679              :             // as much existing code as possible.
    3680           19 :             let img = this_tline.get(key, history_lsn_point, ctx).await?;
    3681           19 :             Ok(Some((key, history_lsn_point, img)))
    3682          320 :         }
    3683              : 
    3684              :         // Actually, we can decide not to write to the image layer at all at this point because
    3685              :         // the key and LSN range are determined. However, to keep things simple here, we still
    3686              :         // create this writer, and discard the writer in the end.
    3687           27 :         let mut time_to_first_kv_pair = None;
    3688              : 
    3689          496 :         while let Some(((key, lsn, val), desc)) = merge_iter
    3690          496 :             .next_with_trace()
    3691          496 :             .await
    3692          496 :             .context("failed to get next key-value pair")
    3693          496 :             .map_err(CompactionError::Other)?
    3694              :         {
    3695          470 :             if time_to_first_kv_pair.is_none() {
    3696           27 :                 time_to_first_kv_pair = Some(timer.elapsed());
    3697           27 :                 timer = Instant::now();
    3698          443 :             }
    3699              : 
    3700          470 :             if cancel.is_cancelled() {
    3701            0 :                 return Err(CompactionError::new_cancelled());
    3702          470 :             }
    3703              : 
    3704          470 :             let should_yield = yield_for_l0
    3705            0 :                 && self
    3706            0 :                     .l0_compaction_trigger
    3707            0 :                     .notified()
    3708            0 :                     .now_or_never()
    3709            0 :                     .is_some();
    3710          470 :             if should_yield {
    3711            0 :                 tracing::info!("preempt gc-compaction in the main loop: too many L0 layers");
    3712            0 :                 return Ok(CompactionOutcome::YieldForL0);
    3713          470 :             }
    3714          470 :             if self.shard_identity.is_key_disposable(&key) {
    3715              :                 // If this shard does not need to store this key, simply skip it.
    3716              :                 //
    3717              :                 // This is not handled in the filter iterator because shard is determined by hash.
    3718              :                 // Therefore, it does not give us any performance benefit to do things like skip
    3719              :                 // a whole layer file as handling key spaces (ranges).
    3720            0 :                 if cfg!(debug_assertions) {
    3721            0 :                     let shard = self.shard_identity.shard_index();
    3722            0 :                     let owner = self.shard_identity.get_shard_number(&key);
    3723            0 :                     panic!("key {key} does not belong on shard {shard}, owned by {owner}");
    3724            0 :                 }
    3725            0 :                 continue;
    3726          470 :             }
    3727          470 :             if !job_desc.compaction_key_range.contains(&key) {
    3728           32 :                 if !desc.is_delta {
    3729           30 :                     continue;
    3730            2 :                 }
    3731            2 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    3732            2 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    3733            0 :                     if rewriter.before.is_none() {
    3734            0 :                         rewriter.before = Some(
    3735            0 :                             DeltaLayerWriter::new(
    3736            0 :                                 self.conf,
    3737            0 :                                 self.timeline_id,
    3738            0 :                                 self.tenant_shard_id,
    3739            0 :                                 desc.key_range.start,
    3740            0 :                                 desc.lsn_range.clone(),
    3741            0 :                                 &self.gate,
    3742            0 :                                 self.cancel.clone(),
    3743            0 :                                 ctx,
    3744            0 :                             )
    3745            0 :                             .await
    3746            0 :                             .context("failed to create delta layer writer")
    3747            0 :                             .map_err(CompactionError::Other)?,
    3748              :                         );
    3749            0 :                     }
    3750            0 :                     rewriter.before.as_mut().unwrap()
    3751            2 :                 } else if key >= job_desc.compaction_key_range.end {
    3752            2 :                     if rewriter.after.is_none() {
    3753            1 :                         rewriter.after = Some(
    3754            1 :                             DeltaLayerWriter::new(
    3755            1 :                                 self.conf,
    3756            1 :                                 self.timeline_id,
    3757            1 :                                 self.tenant_shard_id,
    3758            1 :                                 job_desc.compaction_key_range.end,
    3759            1 :                                 desc.lsn_range.clone(),
    3760            1 :                                 &self.gate,
    3761            1 :                                 self.cancel.clone(),
    3762            1 :                                 ctx,
    3763            1 :                             )
    3764            1 :                             .await
    3765            1 :                             .context("failed to create delta layer writer")
    3766            1 :                             .map_err(CompactionError::Other)?,
    3767              :                         );
    3768            1 :                     }
    3769            2 :                     rewriter.after.as_mut().unwrap()
    3770              :                 } else {
    3771            0 :                     unreachable!()
    3772              :                 };
    3773            2 :                 rewriter
    3774            2 :                     .put_value(key, lsn, val, ctx)
    3775            2 :                     .await
    3776            2 :                     .context("failed to put value")
    3777            2 :                     .map_err(CompactionError::Other)?;
    3778            2 :                 continue;
    3779          438 :             }
    3780          438 :             match val {
    3781          315 :                 Value::Image(_) => stat.visit_image_key(&val),
    3782          123 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    3783              :             }
    3784          438 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    3785          144 :                 if last_key.is_none() {
    3786           27 :                     last_key = Some(key);
    3787          117 :                 }
    3788          144 :                 accumulated_values_estimated_size += val.estimated_size();
    3789          144 :                 accumulated_values.push((key, lsn, val));
    3790              : 
    3791              :                 // Accumulated values should never exceed 512MB.
    3792          144 :                 if accumulated_values_estimated_size >= 1024 * 1024 * 512 {
    3793            0 :                     return Err(CompactionError::Other(anyhow!(
    3794            0 :                         "too many values for a single key: {} for key {}, {} items",
    3795            0 :                         accumulated_values_estimated_size,
    3796            0 :                         key,
    3797            0 :                         accumulated_values.len()
    3798            0 :                     )));
    3799          144 :                 }
    3800              :             } else {
    3801          294 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    3802          294 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    3803          294 :                 let retention = self
    3804          294 :                     .generate_key_retention(
    3805          294 :                         *last_key,
    3806          294 :                         &accumulated_values,
    3807          294 :                         job_desc.gc_cutoff,
    3808          294 :                         &job_desc.retain_lsns_below_horizon,
    3809              :                         COMPACTION_DELTA_THRESHOLD,
    3810          294 :                         get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
    3811          294 :                             .await
    3812          294 :                             .context("failed to get ancestor image")
    3813          294 :                             .map_err(CompactionError::Other)?,
    3814          294 :                         verification,
    3815              :                     )
    3816          294 :                     .await
    3817          294 :                     .context("failed to generate key retention")
    3818          294 :                     .map_err(CompactionError::Other)?;
    3819          293 :                 retention
    3820          293 :                     .pipe_to(
    3821          293 :                         *last_key,
    3822          293 :                         &mut delta_layer_writer,
    3823          293 :                         image_layer_writer.as_mut(),
    3824          293 :                         &mut stat,
    3825          293 :                         ctx,
    3826          293 :                     )
    3827          293 :                     .await
    3828          293 :                     .context("failed to pipe to delta layer writer")
    3829          293 :                     .map_err(CompactionError::Other)?;
    3830          293 :                 accumulated_values.clear();
    3831          293 :                 *last_key = key;
    3832          293 :                 accumulated_values_estimated_size = val.estimated_size();
    3833          293 :                 accumulated_values.push((key, lsn, val));
    3834              :             }
    3835              :         }
    3836              : 
    3837              :         // TODO: move the below part to the loop body
    3838           26 :         let Some(last_key) = last_key else {
    3839            0 :             return Err(CompactionError::Other(anyhow!(
    3840            0 :                 "no keys produced during compaction"
    3841            0 :             )));
    3842              :         };
    3843           26 :         stat.on_unique_key_visited();
    3844              : 
    3845           26 :         let retention = self
    3846           26 :             .generate_key_retention(
    3847           26 :                 last_key,
    3848           26 :                 &accumulated_values,
    3849           26 :                 job_desc.gc_cutoff,
    3850           26 :                 &job_desc.retain_lsns_below_horizon,
    3851              :                 COMPACTION_DELTA_THRESHOLD,
    3852           26 :                 get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn)
    3853           26 :                     .await
    3854           26 :                     .context("failed to get ancestor image")
    3855           26 :                     .map_err(CompactionError::Other)?,
    3856           26 :                 verification,
    3857              :             )
    3858           26 :             .await
    3859           26 :             .context("failed to generate key retention")
    3860           26 :             .map_err(CompactionError::Other)?;
    3861           26 :         retention
    3862           26 :             .pipe_to(
    3863           26 :                 last_key,
    3864           26 :                 &mut delta_layer_writer,
    3865           26 :                 image_layer_writer.as_mut(),
    3866           26 :                 &mut stat,
    3867           26 :                 ctx,
    3868           26 :             )
    3869           26 :             .await
    3870           26 :             .context("failed to pipe to delta layer writer")
    3871           26 :             .map_err(CompactionError::Other)?;
    3872              :         // end: move the above part to the loop body
    3873              : 
    3874           26 :         let time_main_loop = timer.elapsed();
    3875           26 :         let timer = Instant::now();
    3876              : 
    3877           26 :         let mut rewrote_delta_layers = Vec::new();
    3878           27 :         for (key, writers) in delta_layer_rewriters {
    3879            1 :             if let Some(delta_writer_before) = writers.before {
    3880            0 :                 let (desc, path) = delta_writer_before
    3881            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    3882            0 :                     .await
    3883            0 :                     .context("failed to finish delta layer writer")
    3884            0 :                     .map_err(CompactionError::Other)?;
    3885            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3886            0 :                     .context("failed to finish creating delta layer")
    3887            0 :                     .map_err(CompactionError::Other)?;
    3888            0 :                 rewrote_delta_layers.push(layer);
    3889            1 :             }
    3890            1 :             if let Some(delta_writer_after) = writers.after {
    3891            1 :                 let (desc, path) = delta_writer_after
    3892            1 :                     .finish(key.key_range.end, ctx)
    3893            1 :                     .await
    3894            1 :                     .context("failed to finish delta layer writer")
    3895            1 :                     .map_err(CompactionError::Other)?;
    3896            1 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3897            1 :                     .context("failed to finish creating delta layer")
    3898            1 :                     .map_err(CompactionError::Other)?;
    3899            1 :                 rewrote_delta_layers.push(layer);
    3900            0 :             }
    3901              :         }
    3902              : 
    3903           37 :         let discard = |key: &PersistentLayerKey| {
    3904           37 :             let key = key.clone();
    3905           37 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    3906           37 :         };
    3907              : 
    3908           26 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    3909           21 :             if !dry_run {
    3910           19 :                 let end_key = job_desc.compaction_key_range.end;
    3911           19 :                 writer
    3912           19 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    3913           19 :                     .await
    3914           19 :                     .context("failed to finish image layer writer")
    3915           19 :                     .map_err(CompactionError::Other)?
    3916              :             } else {
    3917            2 :                 drop(writer);
    3918            2 :                 Vec::new()
    3919              :             }
    3920              :         } else {
    3921            5 :             Vec::new()
    3922              :         };
    3923              : 
    3924           26 :         let produced_delta_layers = if !dry_run {
    3925           24 :             delta_layer_writer
    3926           24 :                 .finish_with_discard_fn(self, ctx, discard)
    3927           24 :                 .await
    3928           24 :                 .context("failed to finish delta layer writer")
    3929           24 :                 .map_err(CompactionError::Other)?
    3930              :         } else {
    3931            2 :             drop(delta_layer_writer);
    3932            2 :             Vec::new()
    3933              :         };
    3934              : 
    3935              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    3936              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    3937           26 :         let mut compact_to = Vec::new();
    3938           26 :         let mut keep_layers = HashSet::new();
    3939           26 :         let produced_delta_layers_len = produced_delta_layers.len();
    3940           26 :         let produced_image_layers_len = produced_image_layers.len();
    3941              : 
    3942           26 :         let layer_selection_by_key = job_desc
    3943           26 :             .selected_layers
    3944           26 :             .iter()
    3945           76 :             .map(|l| (l.layer_desc().key(), l.layer_desc().clone()))
    3946           26 :             .collect::<HashMap<_, _>>();
    3947              : 
    3948           44 :         for action in produced_delta_layers {
    3949           18 :             match action {
    3950           11 :                 BatchWriterResult::Produced(layer) => {
    3951           11 :                     if cfg!(debug_assertions) {
    3952           11 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    3953            0 :                     }
    3954           11 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    3955           11 :                     compact_to.push(layer);
    3956              :                 }
    3957            7 :                 BatchWriterResult::Discarded(l) => {
    3958            7 :                     if cfg!(debug_assertions) {
    3959            7 :                         info!("discarded delta layer: {}", l);
    3960            0 :                     }
    3961            7 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3962            7 :                         stat.discard_delta_layer(layer_desc.file_size());
    3963            7 :                     } else {
    3964            0 :                         tracing::warn!(
    3965            0 :                             "discarded delta layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3966              :                             l
    3967              :                         );
    3968            0 :                         stat.discard_delta_layer(0);
    3969              :                     }
    3970            7 :                     keep_layers.insert(l);
    3971              :                 }
    3972              :             }
    3973              :         }
    3974           27 :         for layer in &rewrote_delta_layers {
    3975            1 :             debug!(
    3976            0 :                 "produced rewritten delta layer: {}",
    3977            0 :                 layer.layer_desc().key()
    3978              :             );
    3979              :             // For now, we include rewritten delta layer size in the "produce_delta_layer". We could
    3980              :             // make it a separate statistics in the future.
    3981            1 :             stat.produce_delta_layer(layer.layer_desc().file_size());
    3982              :         }
    3983           26 :         compact_to.extend(rewrote_delta_layers);
    3984           45 :         for action in produced_image_layers {
    3985           19 :             match action {
    3986           15 :                 BatchWriterResult::Produced(layer) => {
    3987           15 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    3988           15 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    3989           15 :                     compact_to.push(layer);
    3990              :                 }
    3991            4 :                 BatchWriterResult::Discarded(l) => {
    3992            4 :                     debug!("discarded image layer: {}", l);
    3993            4 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3994            4 :                         stat.discard_image_layer(layer_desc.file_size());
    3995            4 :                     } else {
    3996            0 :                         tracing::warn!(
    3997            0 :                             "discarded image layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3998              :                             l
    3999              :                         );
    4000            0 :                         stat.discard_image_layer(0);
    4001              :                     }
    4002            4 :                     keep_layers.insert(l);
    4003              :                 }
    4004              :             }
    4005              :         }
    4006              : 
    4007           26 :         let mut layer_selection = job_desc.selected_layers;
    4008              : 
    4009              :         // Partial compaction might select more data than it processes, e.g., if
    4010              :         // the compaction_key_range only partially overlaps:
    4011              :         //
    4012              :         //         [---compaction_key_range---]
    4013              :         //   [---A----][----B----][----C----][----D----]
    4014              :         //
    4015              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    4016              :         // the compaction key range, so we can always discard them. However, for image
    4017              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    4018              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    4019              :         //
    4020              :         // The created image layers contain whatever is needed from B, C, and from
    4021              :         // `----]` of A, and from  `[---` of D.
    4022              :         //
    4023              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    4024              :         // keep that data.
    4025              :         //
    4026              :         // The solution for now is to keep A and D completely if they are image layers.
    4027              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    4028              :         // is _not_ fully covered by compaction_key_range).
    4029          102 :         for layer in &layer_selection {
    4030           76 :             if !layer.layer_desc().is_delta() {
    4031           33 :                 if !overlaps_with(
    4032           33 :                     &layer.layer_desc().key_range,
    4033           33 :                     &job_desc.compaction_key_range,
    4034           33 :                 ) {
    4035            0 :                     return Err(CompactionError::Other(anyhow!(
    4036            0 :                         "violated constraint: image layer outside of compaction key range"
    4037            0 :                     )));
    4038           33 :                 }
    4039           33 :                 if !fully_contains(
    4040           33 :                     &job_desc.compaction_key_range,
    4041           33 :                     &layer.layer_desc().key_range,
    4042           33 :                 ) {
    4043            4 :                     keep_layers.insert(layer.layer_desc().key());
    4044           29 :                 }
    4045           43 :             }
    4046              :         }
    4047              : 
    4048           76 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    4049              : 
    4050           26 :         let time_final_phase = timer.elapsed();
    4051              : 
    4052           26 :         stat.time_final_phase_secs = time_final_phase.as_secs_f64();
    4053           26 :         stat.time_to_first_kv_pair_secs = time_to_first_kv_pair
    4054           26 :             .unwrap_or(Duration::ZERO)
    4055           26 :             .as_secs_f64();
    4056           26 :         stat.time_main_loop_secs = time_main_loop.as_secs_f64();
    4057           26 :         stat.time_acquire_lock_secs = time_acquire_lock.as_secs_f64();
    4058           26 :         stat.time_download_layer_secs = time_download_layer.as_secs_f64();
    4059           26 :         stat.time_analyze_secs = time_analyze.as_secs_f64();
    4060           26 :         stat.time_total_secs = begin_timer.elapsed().as_secs_f64();
    4061           26 :         stat.finalize();
    4062              : 
    4063           26 :         info!(
    4064            0 :             "gc-compaction statistics: {}",
    4065            0 :             serde_json::to_string(&stat)
    4066            0 :                 .context("failed to serialize gc-compaction statistics")
    4067            0 :                 .map_err(CompactionError::Other)?
    4068              :         );
    4069              : 
    4070           26 :         if dry_run {
    4071            2 :             return Ok(CompactionOutcome::Done);
    4072           24 :         }
    4073              : 
    4074           24 :         info!(
    4075            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    4076              :             produced_delta_layers_len,
    4077              :             produced_image_layers_len,
    4078            0 :             keep_layers.len()
    4079              :         );
    4080              : 
    4081              :         // Step 3: Place back to the layer map.
    4082              : 
    4083              :         // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
    4084           24 :         let all_layers = {
    4085           24 :             let guard = self
    4086           24 :                 .layers
    4087           24 :                 .read(LayerManagerLockHolder::GarbageCollection)
    4088           24 :                 .await;
    4089           24 :             let layer_map = guard.layer_map()?;
    4090           24 :             layer_map.iter_historic_layers().collect_vec()
    4091              :         };
    4092              : 
    4093           24 :         let mut final_layers = all_layers
    4094           24 :             .iter()
    4095          107 :             .map(|layer| layer.layer_name())
    4096           24 :             .collect::<HashSet<_>>();
    4097           76 :         for layer in &layer_selection {
    4098           52 :             final_layers.remove(&layer.layer_desc().layer_name());
    4099           52 :         }
    4100           51 :         for layer in &compact_to {
    4101           27 :             final_layers.insert(layer.layer_desc().layer_name());
    4102           27 :         }
    4103           24 :         let final_layers = final_layers.into_iter().collect_vec();
    4104              : 
    4105              :         // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
    4106              :         // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
    4107              :         // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
    4108           24 :         if let Some(err) = check_valid_layermap(&final_layers) {
    4109            0 :             return Err(CompactionError::Other(anyhow!(
    4110            0 :                 "gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss",
    4111            0 :                 err
    4112            0 :             )));
    4113           24 :         }
    4114              : 
    4115              :         // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
    4116              :         // operate on L1 layers.
    4117              :         {
    4118              :             // Gc-compaction will rewrite the history of a key. This could happen in two ways:
    4119              :             //
    4120              :             // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
    4121              :             // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
    4122              :             // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
    4123              :             // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
    4124              :             // now gets stored in I at the compact LSN.
    4125              :             //
    4126              :             // ---------------                                       ---------------
    4127              :             //   delta1@LSN20                                         image1@LSN20
    4128              :             // ---------------  (read path collects delta@LSN20,  => ---------------  (read path cannot find anything
    4129              :             //   delta1@LSN10    yields)                                               below LSN 20)
    4130              :             // ---------------
    4131              :             //
    4132              :             // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
    4133              :             // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
    4134              :             // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
    4135              :             //
    4136              :             // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
    4137              :             // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
    4138              :             // layer containing 4, yields, and we update the layer map to put the delta layer.
    4139              :             //
    4140              :             // ---------------                                      ---------------
    4141              :             //   delta1@LSN4                                          image1@LSN4
    4142              :             // ---------------  (read path collects delta@LSN4,  => ---------------  (read path collects LSN4 and LSN1,
    4143              :             //  delta1@LSN1-3    yields)                              delta1@LSN1     which is an invalid history)
    4144              :             // ---------------                                      ---------------
    4145              :             //
    4146              :             // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
    4147              :             // and only allow reads to continue after the update is finished.
    4148              : 
    4149           24 :             let update_guard = self.gc_compaction_layer_update_lock.write().await;
    4150              :             // Acquiring the update guard ensures current read operations end and new read operations are blocked.
    4151              :             // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
    4152           24 :             let mut guard = self
    4153           24 :                 .layers
    4154           24 :                 .write(LayerManagerLockHolder::GarbageCollection)
    4155           24 :                 .await;
    4156           24 :             guard
    4157           24 :                 .open_mut()?
    4158           24 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
    4159           24 :             drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
    4160              :         };
    4161              : 
    4162              :         // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
    4163              :         // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
    4164              :         // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
    4165              :         // be batched into `schedule_compaction_update`.
    4166           24 :         let disk_consistent_lsn = self.disk_consistent_lsn.load();
    4167           24 :         self.schedule_uploads(disk_consistent_lsn, None)
    4168           24 :             .context("failed to schedule uploads")
    4169           24 :             .map_err(CompactionError::Other)?;
    4170              :         // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
    4171              :         // of `compact_from`.
    4172           24 :         let compact_from = {
    4173           24 :             let mut compact_from = Vec::new();
    4174           24 :             let mut compact_to_set = HashMap::new();
    4175           51 :             for layer in &compact_to {
    4176           27 :                 compact_to_set.insert(layer.layer_desc().key(), layer);
    4177           27 :             }
    4178           76 :             for layer in &layer_selection {
    4179           52 :                 if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
    4180            0 :                     tracing::info!(
    4181            0 :                         "skipping delete {} because found same layer key at different generation {}",
    4182              :                         layer,
    4183              :                         to
    4184              :                     );
    4185           52 :                 } else {
    4186           52 :                     compact_from.push(layer.clone());
    4187           52 :                 }
    4188              :             }
    4189           24 :             compact_from
    4190              :         };
    4191           24 :         self.remote_client
    4192           24 :             .schedule_compaction_update(&compact_from, &compact_to)?;
    4193              : 
    4194           24 :         drop(gc_lock);
    4195              : 
    4196           24 :         Ok(CompactionOutcome::Done)
    4197           28 :     }
    4198              : }
    4199              : 
    4200              : struct TimelineAdaptor {
    4201              :     timeline: Arc<Timeline>,
    4202              : 
    4203              :     keyspace: (Lsn, KeySpace),
    4204              : 
    4205              :     new_deltas: Vec<ResidentLayer>,
    4206              :     new_images: Vec<ResidentLayer>,
    4207              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    4208              : }
    4209              : 
    4210              : impl TimelineAdaptor {
    4211            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    4212            0 :         Self {
    4213            0 :             timeline: timeline.clone(),
    4214            0 :             keyspace,
    4215            0 :             new_images: Vec::new(),
    4216            0 :             new_deltas: Vec::new(),
    4217            0 :             layers_to_delete: Vec::new(),
    4218            0 :         }
    4219            0 :     }
    4220              : 
    4221            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    4222            0 :         let layers_to_delete = {
    4223            0 :             let guard = self
    4224            0 :                 .timeline
    4225            0 :                 .layers
    4226            0 :                 .read(LayerManagerLockHolder::Compaction)
    4227            0 :                 .await;
    4228            0 :             self.layers_to_delete
    4229            0 :                 .iter()
    4230            0 :                 .map(|x| guard.get_from_desc(x))
    4231            0 :                 .collect::<Vec<Layer>>()
    4232              :         };
    4233            0 :         self.timeline
    4234            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    4235            0 :             .await?;
    4236              : 
    4237            0 :         self.timeline
    4238            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    4239              : 
    4240            0 :         self.new_deltas.clear();
    4241            0 :         self.layers_to_delete.clear();
    4242            0 :         Ok(())
    4243            0 :     }
    4244              : }
    4245              : 
    4246              : #[derive(Clone)]
    4247              : struct ResidentDeltaLayer(ResidentLayer);
    4248              : #[derive(Clone)]
    4249              : struct ResidentImageLayer(ResidentLayer);
    4250              : 
    4251              : impl CompactionJobExecutor for TimelineAdaptor {
    4252              :     type Key = pageserver_api::key::Key;
    4253              : 
    4254              :     type Layer = OwnArc<PersistentLayerDesc>;
    4255              :     type DeltaLayer = ResidentDeltaLayer;
    4256              :     type ImageLayer = ResidentImageLayer;
    4257              : 
    4258              :     type RequestContext = crate::context::RequestContext;
    4259              : 
    4260            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    4261            0 :         self.timeline.get_shard_identity()
    4262            0 :     }
    4263              : 
    4264            0 :     async fn get_layers(
    4265            0 :         &mut self,
    4266            0 :         key_range: &Range<Key>,
    4267            0 :         lsn_range: &Range<Lsn>,
    4268            0 :         _ctx: &RequestContext,
    4269            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    4270            0 :         self.flush_updates().await?;
    4271              : 
    4272            0 :         let guard = self
    4273            0 :             .timeline
    4274            0 :             .layers
    4275            0 :             .read(LayerManagerLockHolder::Compaction)
    4276            0 :             .await;
    4277            0 :         let layer_map = guard.layer_map()?;
    4278              : 
    4279            0 :         let result = layer_map
    4280            0 :             .iter_historic_layers()
    4281            0 :             .filter(|l| {
    4282            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    4283            0 :             })
    4284            0 :             .map(OwnArc)
    4285            0 :             .collect();
    4286            0 :         Ok(result)
    4287            0 :     }
    4288              : 
    4289            0 :     async fn get_keyspace(
    4290            0 :         &mut self,
    4291            0 :         key_range: &Range<Key>,
    4292            0 :         lsn: Lsn,
    4293            0 :         _ctx: &RequestContext,
    4294            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    4295            0 :         if lsn == self.keyspace.0 {
    4296            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    4297            0 :                 &self.keyspace.1.ranges,
    4298            0 :                 key_range,
    4299            0 :             ))
    4300              :         } else {
    4301              :             // The current compaction implementation only ever requests the key space
    4302              :             // at the compaction end LSN.
    4303            0 :             anyhow::bail!("keyspace not available for requested lsn");
    4304              :         }
    4305            0 :     }
    4306              : 
    4307            0 :     async fn downcast_delta_layer(
    4308            0 :         &self,
    4309            0 :         layer: &OwnArc<PersistentLayerDesc>,
    4310            0 :         ctx: &RequestContext,
    4311            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    4312              :         // this is a lot more complex than a simple downcast...
    4313            0 :         if layer.is_delta() {
    4314            0 :             let l = {
    4315            0 :                 let guard = self
    4316            0 :                     .timeline
    4317            0 :                     .layers
    4318            0 :                     .read(LayerManagerLockHolder::Compaction)
    4319            0 :                     .await;
    4320            0 :                 guard.get_from_desc(layer)
    4321              :             };
    4322            0 :             let result = l.download_and_keep_resident(ctx).await?;
    4323              : 
    4324            0 :             Ok(Some(ResidentDeltaLayer(result)))
    4325              :         } else {
    4326            0 :             Ok(None)
    4327              :         }
    4328            0 :     }
    4329              : 
    4330            0 :     async fn create_image(
    4331            0 :         &mut self,
    4332            0 :         lsn: Lsn,
    4333            0 :         key_range: &Range<Key>,
    4334            0 :         ctx: &RequestContext,
    4335            0 :     ) -> anyhow::Result<()> {
    4336            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    4337            0 :     }
    4338              : 
    4339            0 :     async fn create_delta(
    4340            0 :         &mut self,
    4341            0 :         lsn_range: &Range<Lsn>,
    4342            0 :         key_range: &Range<Key>,
    4343            0 :         input_layers: &[ResidentDeltaLayer],
    4344            0 :         ctx: &RequestContext,
    4345            0 :     ) -> anyhow::Result<()> {
    4346            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    4347              : 
    4348            0 :         let mut all_entries = Vec::new();
    4349            0 :         for dl in input_layers.iter() {
    4350            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    4351              :         }
    4352              : 
    4353              :         // The current stdlib sorting implementation is designed in a way where it is
    4354              :         // particularly fast where the slice is made up of sorted sub-ranges.
    4355            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    4356              : 
    4357            0 :         let mut writer = DeltaLayerWriter::new(
    4358            0 :             self.timeline.conf,
    4359            0 :             self.timeline.timeline_id,
    4360            0 :             self.timeline.tenant_shard_id,
    4361            0 :             key_range.start,
    4362            0 :             lsn_range.clone(),
    4363            0 :             &self.timeline.gate,
    4364            0 :             self.timeline.cancel.clone(),
    4365            0 :             ctx,
    4366            0 :         )
    4367            0 :         .await?;
    4368              : 
    4369            0 :         let mut dup_values = 0;
    4370              : 
    4371              :         // This iterator walks through all key-value pairs from all the layers
    4372              :         // we're compacting, in key, LSN order.
    4373            0 :         let mut prev: Option<(Key, Lsn)> = None;
    4374              :         for &DeltaEntry {
    4375            0 :             key, lsn, ref val, ..
    4376            0 :         } in all_entries.iter()
    4377              :         {
    4378            0 :             if prev == Some((key, lsn)) {
    4379              :                 // This is a duplicate. Skip it.
    4380              :                 //
    4381              :                 // It can happen if compaction is interrupted after writing some
    4382              :                 // layers but not all, and we are compacting the range again.
    4383              :                 // The calculations in the algorithm assume that there are no
    4384              :                 // duplicates, so the math on targeted file size is likely off,
    4385              :                 // and we will create smaller files than expected.
    4386            0 :                 dup_values += 1;
    4387            0 :                 continue;
    4388            0 :             }
    4389              : 
    4390            0 :             let value = val.load(ctx).await?;
    4391              : 
    4392            0 :             writer.put_value(key, lsn, value, ctx).await?;
    4393              : 
    4394            0 :             prev = Some((key, lsn));
    4395              :         }
    4396              : 
    4397            0 :         if dup_values > 0 {
    4398            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    4399            0 :         }
    4400              : 
    4401            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    4402            0 :             Err(anyhow::anyhow!(
    4403            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    4404            0 :             ))
    4405            0 :         });
    4406              : 
    4407            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    4408            0 :         let new_delta_layer =
    4409            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    4410              : 
    4411            0 :         self.new_deltas.push(new_delta_layer);
    4412            0 :         Ok(())
    4413            0 :     }
    4414              : 
    4415            0 :     async fn delete_layer(
    4416            0 :         &mut self,
    4417            0 :         layer: &OwnArc<PersistentLayerDesc>,
    4418            0 :         _ctx: &RequestContext,
    4419            0 :     ) -> anyhow::Result<()> {
    4420            0 :         self.layers_to_delete.push(layer.clone().0);
    4421            0 :         Ok(())
    4422            0 :     }
    4423              : }
    4424              : 
    4425              : impl TimelineAdaptor {
    4426            0 :     async fn create_image_impl(
    4427            0 :         &mut self,
    4428            0 :         lsn: Lsn,
    4429            0 :         key_range: &Range<Key>,
    4430            0 :         ctx: &RequestContext,
    4431            0 :     ) -> Result<(), CreateImageLayersError> {
    4432            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    4433              : 
    4434            0 :         let image_layer_writer = ImageLayerWriter::new(
    4435            0 :             self.timeline.conf,
    4436            0 :             self.timeline.timeline_id,
    4437            0 :             self.timeline.tenant_shard_id,
    4438            0 :             key_range,
    4439            0 :             lsn,
    4440            0 :             &self.timeline.gate,
    4441            0 :             self.timeline.cancel.clone(),
    4442            0 :             ctx,
    4443            0 :         )
    4444            0 :         .await
    4445            0 :         .map_err(CreateImageLayersError::Other)?;
    4446              : 
    4447            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    4448            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    4449            0 :                 "failpoint image-layer-writer-fail-before-finish"
    4450            0 :             )))
    4451            0 :         });
    4452              : 
    4453            0 :         let keyspace = KeySpace {
    4454            0 :             ranges: self
    4455            0 :                 .get_keyspace(key_range, lsn, ctx)
    4456            0 :                 .await
    4457            0 :                 .map_err(CreateImageLayersError::Other)?,
    4458              :         };
    4459              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    4460            0 :         let outcome = self
    4461            0 :             .timeline
    4462            0 :             .create_image_layer_for_rel_blocks(
    4463            0 :                 &keyspace,
    4464            0 :                 image_layer_writer,
    4465            0 :                 lsn,
    4466            0 :                 ctx,
    4467            0 :                 key_range.clone(),
    4468            0 :                 IoConcurrency::sequential(),
    4469            0 :                 None,
    4470            0 :             )
    4471            0 :             .await?;
    4472              : 
    4473              :         if let ImageLayerCreationOutcome::Generated {
    4474            0 :             unfinished_image_layer,
    4475            0 :         } = outcome
    4476              :         {
    4477            0 :             let (desc, path) = unfinished_image_layer
    4478            0 :                 .finish(ctx)
    4479            0 :                 .await
    4480            0 :                 .map_err(CreateImageLayersError::Other)?;
    4481            0 :             let image_layer =
    4482            0 :                 Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)
    4483            0 :                     .map_err(CreateImageLayersError::Other)?;
    4484            0 :             self.new_images.push(image_layer);
    4485            0 :         }
    4486              : 
    4487            0 :         timer.stop_and_record();
    4488              : 
    4489            0 :         Ok(())
    4490            0 :     }
    4491              : }
    4492              : 
    4493              : impl CompactionRequestContext for crate::context::RequestContext {}
    4494              : 
    4495              : #[derive(Debug, Clone)]
    4496              : pub struct OwnArc<T>(pub Arc<T>);
    4497              : 
    4498              : impl<T> Deref for OwnArc<T> {
    4499              :     type Target = <Arc<T> as Deref>::Target;
    4500            0 :     fn deref(&self) -> &Self::Target {
    4501            0 :         &self.0
    4502            0 :     }
    4503              : }
    4504              : 
    4505              : impl<T> AsRef<T> for OwnArc<T> {
    4506            0 :     fn as_ref(&self) -> &T {
    4507            0 :         self.0.as_ref()
    4508            0 :     }
    4509              : }
    4510              : 
    4511              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    4512            0 :     fn key_range(&self) -> &Range<Key> {
    4513            0 :         &self.key_range
    4514            0 :     }
    4515            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4516            0 :         &self.lsn_range
    4517            0 :     }
    4518            0 :     fn file_size(&self) -> u64 {
    4519            0 :         self.file_size
    4520            0 :     }
    4521            0 :     fn short_id(&self) -> std::string::String {
    4522            0 :         self.as_ref().short_id().to_string()
    4523            0 :     }
    4524            0 :     fn is_delta(&self) -> bool {
    4525            0 :         self.as_ref().is_delta()
    4526            0 :     }
    4527              : }
    4528              : 
    4529              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    4530            0 :     fn key_range(&self) -> &Range<Key> {
    4531            0 :         &self.layer_desc().key_range
    4532            0 :     }
    4533            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4534            0 :         &self.layer_desc().lsn_range
    4535            0 :     }
    4536            0 :     fn file_size(&self) -> u64 {
    4537            0 :         self.layer_desc().file_size
    4538            0 :     }
    4539            0 :     fn short_id(&self) -> std::string::String {
    4540            0 :         self.layer_desc().short_id().to_string()
    4541            0 :     }
    4542            0 :     fn is_delta(&self) -> bool {
    4543            0 :         true
    4544            0 :     }
    4545              : }
    4546              : 
    4547              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    4548            0 :     fn key_range(&self) -> &Range<Key> {
    4549            0 :         &self.0.layer_desc().key_range
    4550            0 :     }
    4551            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4552            0 :         &self.0.layer_desc().lsn_range
    4553            0 :     }
    4554            0 :     fn file_size(&self) -> u64 {
    4555            0 :         self.0.layer_desc().file_size
    4556            0 :     }
    4557            0 :     fn short_id(&self) -> std::string::String {
    4558            0 :         self.0.layer_desc().short_id().to_string()
    4559            0 :     }
    4560            0 :     fn is_delta(&self) -> bool {
    4561            0 :         true
    4562            0 :     }
    4563              : }
    4564              : 
    4565              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    4566              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    4567              : 
    4568            0 :     async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    4569            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    4570            0 :     }
    4571              : }
    4572              : 
    4573              : impl CompactionLayer<Key> for ResidentImageLayer {
    4574            0 :     fn key_range(&self) -> &Range<Key> {
    4575            0 :         &self.0.layer_desc().key_range
    4576            0 :     }
    4577            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4578            0 :         &self.0.layer_desc().lsn_range
    4579            0 :     }
    4580            0 :     fn file_size(&self) -> u64 {
    4581            0 :         self.0.layer_desc().file_size
    4582            0 :     }
    4583            0 :     fn short_id(&self) -> std::string::String {
    4584            0 :         self.0.layer_desc().short_id().to_string()
    4585            0 :     }
    4586            0 :     fn is_delta(&self) -> bool {
    4587            0 :         false
    4588            0 :     }
    4589              : }
    4590              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta