Line data Source code
1 : pub(crate) mod split_state;
2 : use std::collections::HashMap;
3 : use std::io::Write;
4 : use std::str::FromStr;
5 : use std::sync::Arc;
6 : use std::time::{Duration, Instant};
7 :
8 : use diesel::deserialize::{FromSql, FromSqlRow};
9 : use diesel::expression::AsExpression;
10 : use diesel::pg::Pg;
11 : use diesel::prelude::*;
12 : use diesel::serialize::{IsNull, ToSql};
13 : use diesel_async::async_connection_wrapper::AsyncConnectionWrapper;
14 : use diesel_async::pooled_connection::bb8::Pool;
15 : use diesel_async::pooled_connection::{AsyncDieselConnectionManager, ManagerConfig};
16 : use diesel_async::{AsyncPgConnection, RunQueryDsl};
17 : use diesel_migrations::{EmbeddedMigrations, embed_migrations};
18 : use futures::FutureExt;
19 : use futures::future::BoxFuture;
20 : use itertools::Itertools;
21 : use pageserver_api::controller_api::{
22 : AvailabilityZone, MetadataHealthRecord, NodeLifecycle, NodeSchedulingPolicy, PlacementPolicy,
23 : SCSafekeeperTimelinesResponse, SafekeeperDescribeResponse, ShardSchedulingPolicy,
24 : SkSchedulingPolicy,
25 : };
26 : use pageserver_api::models::{ShardImportStatus, TenantConfig};
27 : use pageserver_api::shard::{
28 : ShardConfigError, ShardCount, ShardIdentity, ShardNumber, ShardStripeSize, TenantShardId,
29 : };
30 : use rustls::client::WebPkiServerVerifier;
31 : use rustls::client::danger::{ServerCertVerified, ServerCertVerifier};
32 : use rustls::crypto::ring;
33 : use safekeeper_api::membership::SafekeeperGeneration;
34 : use scoped_futures::ScopedBoxFuture;
35 : use serde::{Deserialize, Serialize};
36 : use utils::generation::Generation;
37 : use utils::id::{NodeId, TenantId, TimelineId};
38 : use utils::lsn::Lsn;
39 :
40 : use self::split_state::SplitState;
41 : use crate::hadron_queries::HadronSafekeeperRow;
42 : use crate::hadron_queries::PageserverAndSafekeeperConnectionInfo;
43 : use crate::hadron_queries::delete_timeline_safekeepers;
44 : use crate::hadron_queries::execute_safekeeper_list_timelines;
45 : use crate::hadron_queries::execute_sk_upsert;
46 : use crate::hadron_queries::get_pageserver_and_safekeeper_connection_info;
47 : use crate::hadron_queries::idempotently_persist_or_get_existing_timeline_safekeepers;
48 : use crate::hadron_queries::scan_safekeepers_and_scheduled_timelines;
49 : use crate::metrics::{
50 : DatabaseQueryErrorLabelGroup, DatabaseQueryLatencyLabelGroup, METRICS_REGISTRY,
51 : };
52 : use crate::node::Node;
53 : use crate::sk_node::SafeKeeperNode;
54 : use crate::timeline_import::{
55 : TimelineImport, TimelineImportUpdateError, TimelineImportUpdateFollowUp,
56 : };
57 : const MIGRATIONS: EmbeddedMigrations = embed_migrations!("./migrations");
58 :
59 : /// ## What do we store?
60 : ///
61 : /// The storage controller service does not store most of its state durably.
62 : ///
63 : /// The essential things to store durably are:
64 : /// - generation numbers, as these must always advance monotonically to ensure data safety.
65 : /// - Tenant's PlacementPolicy and TenantConfig, as the source of truth for these is something external.
66 : /// - Node's scheduling policies, as the source of truth for these is something external.
67 : ///
68 : /// Other things we store durably as an implementation detail:
69 : /// - Node's host/port: this could be avoided it we made nodes emit a self-registering heartbeat,
70 : /// but it is operationally simpler to make this service the authority for which nodes
71 : /// it talks to.
72 : ///
73 : /// ## Performance/efficiency
74 : ///
75 : /// The storage controller service does not go via the database for most things: there are
76 : /// a couple of places where we must, and where efficiency matters:
77 : /// - Incrementing generation numbers: the Reconciler has to wait for this to complete
78 : /// before it can attach a tenant, so this acts as a bound on how fast things like
79 : /// failover can happen.
80 : /// - Pageserver re-attach: we will increment many shards' generations when this happens,
81 : /// so it is important to avoid e.g. issuing O(N) queries.
82 : ///
83 : /// Database calls relating to nodes have low performance requirements, as they are very rarely
84 : /// updated, and reads of nodes are always from memory, not the database. We only require that
85 : /// we can UPDATE a node's scheduling mode reasonably quickly to mark a bad node offline.
86 : pub struct Persistence {
87 : connection_pool: Pool<AsyncPgConnection>,
88 : }
89 :
90 : #[derive(Copy, Clone)]
91 : pub struct PersistenceConfig {
92 : max_connections: u32,
93 : idle_connection_timeout: Duration,
94 : max_connection_lifetime: Duration,
95 : }
96 :
97 : impl PersistenceConfig {
98 : // If unspecified, use neon.com defaults
99 : //
100 : // The default postgres connection limit is 100. We use up to 99, to leave one free for a human admin under
101 : // normal circumstances. This assumes we have exclusive use of the database cluster to which we connect.
102 : pub const MAX_CONNECTIONS_DEFAULT: u32 = 99;
103 : // We don't want to keep a lot of connections alive: close them down promptly if they aren't being used.
104 : pub const IDLE_CONNECTION_TIMEOUT_DEFAULT: Duration = Duration::from_secs(10);
105 : pub const MAX_CONNECTION_LIFETIME_DEFAULT: Duration = Duration::from_secs(60);
106 :
107 0 : pub fn new(
108 0 : max_connections: Option<u32>,
109 0 : idle_connection_timeout: Option<Duration>,
110 0 : max_connection_lifetime: Option<Duration>,
111 0 : ) -> Self {
112 0 : PersistenceConfig {
113 0 : max_connections: max_connections.unwrap_or(Self::MAX_CONNECTIONS_DEFAULT),
114 0 : idle_connection_timeout: idle_connection_timeout
115 0 : .unwrap_or(Self::IDLE_CONNECTION_TIMEOUT_DEFAULT),
116 0 : max_connection_lifetime: max_connection_lifetime
117 0 : .unwrap_or(Self::MAX_CONNECTION_LIFETIME_DEFAULT),
118 0 : }
119 0 : }
120 : }
121 :
122 : /// Legacy format, for use in JSON compat objects in test environment
123 0 : #[derive(Serialize, Deserialize)]
124 : struct JsonPersistence {
125 : tenants: HashMap<TenantShardId, TenantShardPersistence>,
126 : }
127 :
128 : #[derive(thiserror::Error, Debug)]
129 : pub(crate) enum DatabaseError {
130 : #[error(transparent)]
131 : Query(#[from] diesel::result::Error),
132 : #[error(transparent)]
133 : Connection(#[from] diesel::result::ConnectionError),
134 : #[error(transparent)]
135 : ConnectionPool(#[from] diesel_async::pooled_connection::bb8::RunError),
136 : #[error("Logical error: {0}")]
137 : Logical(String),
138 : #[error("Migration error: {0}")]
139 : Migration(String),
140 : #[error("CAS error: {0}")]
141 : Cas(String),
142 : }
143 :
144 : #[derive(measured::FixedCardinalityLabel, Copy, Clone)]
145 : pub(crate) enum DatabaseOperation {
146 : InsertNode,
147 : UpdateNode,
148 : DeleteNode,
149 : ListNodes,
150 : ListTombstones,
151 : BeginShardSplit,
152 : CompleteShardSplit,
153 : AbortShardSplit,
154 : Detach,
155 : ReAttach,
156 : IncrementGeneration,
157 : TenantGenerations,
158 : ShardGenerations,
159 : ListTenantShards,
160 : LoadTenant,
161 : InsertTenantShards,
162 : UpdateTenantShard,
163 : DeleteTenant,
164 : UpdateTenantConfig,
165 : UpdateMetadataHealth,
166 : ListMetadataHealth,
167 : ListMetadataHealthUnhealthy,
168 : ListMetadataHealthOutdated,
169 : ListSafekeepers,
170 : GetLeader,
171 : UpdateLeader,
172 : SetPreferredAzs,
173 : InsertTimeline,
174 : UpdateTimeline,
175 : UpdateTimelineMembership,
176 : UpdateCplaneNotifiedGeneration,
177 : UpdateSkSetNotifiedGeneration,
178 : GetTimeline,
179 : InsertTimelineReconcile,
180 : RemoveTimelineReconcile,
181 : ListTimelineReconcile,
182 : ListTimelineReconcileStartup,
183 : InsertTimelineImport,
184 : UpdateTimelineImport,
185 : DeleteTimelineImport,
186 : ListTimelineImports,
187 : IsTenantImportingTimeline,
188 : // Brickstore Hadron
189 : UpsertSafeKeeperNode,
190 : LoadSafeKeepersAndEndpoints,
191 : EnsureHadronEndpointTransaction,
192 : DeleteHadronEndpoint,
193 : GetHadronEndpointInfo,
194 : FetchComputeSpec,
195 : GetTenandIdByEndpointId,
196 : GetTenantShardsByEndpointId,
197 : GetComputeNamesByTenantId,
198 : GetOrCreateHadronTimelineSafekeeper,
199 : FetchPageServerAndSafeKeeperConnections,
200 : DeleteHadronTimeline,
201 : ListSafekeeperTimelines,
202 : }
203 :
204 : #[must_use]
205 : pub(crate) enum AbortShardSplitStatus {
206 : /// We aborted the split in the database by reverting to the parent shards
207 : Aborted,
208 : /// The split had already been persisted.
209 : Complete,
210 : }
211 :
212 : pub(crate) type DatabaseResult<T> = Result<T, DatabaseError>;
213 :
214 : /// Some methods can operate on either a whole tenant or a single shard
215 : #[derive(Clone)]
216 : pub(crate) enum TenantFilter {
217 : Tenant(TenantId),
218 : Shard(TenantShardId),
219 : }
220 :
221 : /// Represents the results of looking up generation+pageserver for the shards of a tenant
222 : pub(crate) struct ShardGenerationState {
223 : pub(crate) tenant_shard_id: TenantShardId,
224 : pub(crate) generation: Option<Generation>,
225 : pub(crate) generation_pageserver: Option<NodeId>,
226 : }
227 :
228 : // A generous allowance for how many times we may retry serializable transactions
229 : // before giving up. This is not expected to be hit: it is a defensive measure in case we
230 : // somehow engineer a situation where duelling transactions might otherwise live-lock.
231 : const MAX_RETRIES: usize = 128;
232 :
233 : impl Persistence {
234 : // The default postgres connection limit is 100. We use up to 99, to leave one free for a human admin under
235 : // normal circumstances. This assumes we have exclusive use of the database cluster to which we connect.
236 : pub const MAX_CONNECTIONS: u32 = 99;
237 :
238 0 : pub async fn new(database_url: String, config: PersistenceConfig) -> Self {
239 0 : let mut mgr_config = ManagerConfig::default();
240 0 : mgr_config.custom_setup = Box::new(establish_connection_rustls);
241 :
242 0 : let manager = AsyncDieselConnectionManager::<AsyncPgConnection>::new_with_config(
243 0 : database_url,
244 0 : mgr_config,
245 : );
246 :
247 : // We will use a connection pool: this is primarily to _limit_ our connection count, rather than to optimize time
248 : // to execute queries (database queries are not generally on latency-sensitive paths).
249 0 : let connection_pool = Pool::builder()
250 0 : .max_size(config.max_connections)
251 0 : .max_lifetime(Some(config.max_connection_lifetime))
252 0 : .idle_timeout(Some(config.idle_connection_timeout))
253 0 : // Always keep at least one connection ready to go
254 0 : .min_idle(Some(1))
255 0 : .test_on_check_out(true)
256 0 : .build(manager)
257 0 : .await
258 0 : .expect("Could not build connection pool");
259 :
260 0 : Self { connection_pool }
261 0 : }
262 :
263 : /// A helper for use during startup, where we would like to tolerate concurrent restarts of the
264 : /// database and the storage controller, therefore the database might not be available right away
265 0 : pub async fn await_connection(
266 0 : database_url: &str,
267 0 : timeout: Duration,
268 0 : ) -> Result<(), diesel::ConnectionError> {
269 0 : let started_at = Instant::now();
270 0 : log_postgres_connstr_info(database_url)
271 0 : .map_err(|e| diesel::ConnectionError::InvalidConnectionUrl(e.to_string()))?;
272 : loop {
273 0 : match establish_connection_rustls(database_url).await {
274 : Ok(_) => {
275 0 : tracing::info!("Connected to database.");
276 0 : return Ok(());
277 : }
278 0 : Err(e) => {
279 0 : if started_at.elapsed() > timeout {
280 0 : return Err(e);
281 : } else {
282 0 : tracing::info!("Database not yet available, waiting... ({e})");
283 0 : tokio::time::sleep(Duration::from_millis(100)).await;
284 : }
285 : }
286 : }
287 : }
288 0 : }
289 :
290 : /// Execute the diesel migrations that are built into this binary
291 0 : pub(crate) async fn migration_run(&self) -> DatabaseResult<()> {
292 : use diesel_migrations::{HarnessWithOutput, MigrationHarness};
293 :
294 : // Can't use self.with_conn here as we do spawn_blocking which requires static.
295 0 : let conn = self
296 0 : .connection_pool
297 0 : .dedicated_connection()
298 0 : .await
299 0 : .map_err(|e| DatabaseError::Migration(e.to_string()))?;
300 0 : let mut async_wrapper: AsyncConnectionWrapper<AsyncPgConnection> =
301 0 : AsyncConnectionWrapper::from(conn);
302 0 : tokio::task::spawn_blocking(move || {
303 0 : let mut retry_count = 0;
304 : loop {
305 0 : let result = HarnessWithOutput::write_to_stdout(&mut async_wrapper)
306 0 : .run_pending_migrations(MIGRATIONS)
307 0 : .map(|_| ())
308 0 : .map_err(|e| DatabaseError::Migration(e.to_string()));
309 0 : match result {
310 0 : Ok(r) => break Ok(r),
311 : Err(
312 0 : err @ DatabaseError::Query(diesel::result::Error::DatabaseError(
313 : diesel::result::DatabaseErrorKind::SerializationFailure,
314 : _,
315 : )),
316 : ) => {
317 0 : retry_count += 1;
318 0 : if retry_count > MAX_RETRIES {
319 0 : tracing::error!(
320 0 : "Exceeded max retries on SerializationFailure errors: {err:?}"
321 : );
322 0 : break Err(err);
323 : } else {
324 : // Retry on serialization errors: these are expected, because even though our
325 : // transactions don't fight for the same rows, they will occasionally collide
326 : // on index pages (e.g. increment_generation for unrelated shards can collide)
327 0 : tracing::debug!(
328 0 : "Retrying transaction on serialization failure {err:?}"
329 : );
330 0 : continue;
331 : }
332 : }
333 0 : Err(e) => break Err(e),
334 : }
335 : }
336 0 : })
337 0 : .await
338 0 : .map_err(|e| DatabaseError::Migration(e.to_string()))??;
339 0 : Ok(())
340 0 : }
341 :
342 : /// Wraps `with_conn` in order to collect latency and error metrics
343 0 : async fn with_measured_conn<'a, 'b, F, R>(
344 0 : &self,
345 0 : op: DatabaseOperation,
346 0 : func: F,
347 0 : ) -> DatabaseResult<R>
348 0 : where
349 0 : F: for<'r> Fn(&'r mut AsyncPgConnection) -> ScopedBoxFuture<'b, 'r, DatabaseResult<R>>
350 0 : + Send
351 0 : + std::marker::Sync
352 0 : + 'a,
353 0 : R: Send + 'b,
354 0 : {
355 0 : let latency = &METRICS_REGISTRY
356 0 : .metrics_group
357 0 : .storage_controller_database_query_latency;
358 0 : let _timer = latency.start_timer(DatabaseQueryLatencyLabelGroup { operation: op });
359 :
360 0 : let res = self.with_conn(func).await;
361 :
362 0 : if let Err(err) = &res {
363 0 : let error_counter = &METRICS_REGISTRY
364 0 : .metrics_group
365 0 : .storage_controller_database_query_error;
366 0 : error_counter.inc(DatabaseQueryErrorLabelGroup {
367 0 : error_type: err.error_label(),
368 0 : operation: op,
369 0 : })
370 0 : }
371 :
372 0 : res
373 0 : }
374 :
375 : /// Call the provided function with a Diesel database connection in a retry loop
376 0 : async fn with_conn<'a, 'b, F, R>(&self, func: F) -> DatabaseResult<R>
377 0 : where
378 0 : F: for<'r> Fn(&'r mut AsyncPgConnection) -> ScopedBoxFuture<'b, 'r, DatabaseResult<R>>
379 0 : + Send
380 0 : + std::marker::Sync
381 0 : + 'a,
382 0 : R: Send + 'b,
383 0 : {
384 0 : let mut retry_count = 0;
385 : loop {
386 0 : let mut conn = self.connection_pool.get().await?;
387 0 : match conn
388 0 : .build_transaction()
389 0 : .serializable()
390 0 : .run(|c| func(c))
391 0 : .await
392 : {
393 0 : Ok(r) => break Ok(r),
394 : Err(
395 0 : err @ DatabaseError::Query(diesel::result::Error::DatabaseError(
396 : diesel::result::DatabaseErrorKind::SerializationFailure,
397 : _,
398 : )),
399 : ) => {
400 0 : retry_count += 1;
401 0 : if retry_count > MAX_RETRIES {
402 0 : tracing::error!(
403 0 : "Exceeded max retries on SerializationFailure errors: {err:?}"
404 : );
405 0 : break Err(err);
406 : } else {
407 : // Retry on serialization errors: these are expected, because even though our
408 : // transactions don't fight for the same rows, they will occasionally collide
409 : // on index pages (e.g. increment_generation for unrelated shards can collide)
410 0 : tracing::debug!("Retrying transaction on serialization failure {err:?}");
411 0 : continue;
412 : }
413 : }
414 0 : Err(e) => break Err(e),
415 : }
416 : }
417 0 : }
418 :
419 : /// When a node is first registered, persist it before using it for anything
420 : /// If the provided node_id already exists, it will be error.
421 : /// The common case is when a node marked for deletion wants to register.
422 0 : pub(crate) async fn insert_node(&self, node: &Node) -> DatabaseResult<()> {
423 0 : let np = &node.to_persistent();
424 0 : self.with_measured_conn(DatabaseOperation::InsertNode, move |conn| {
425 0 : Box::pin(async move {
426 0 : diesel::insert_into(crate::schema::nodes::table)
427 0 : .values(np)
428 0 : .execute(conn)
429 0 : .await?;
430 0 : Ok(())
431 0 : })
432 0 : })
433 0 : .await
434 0 : }
435 :
436 : /// At startup, populate the list of nodes which our shards may be placed on
437 0 : pub(crate) async fn list_nodes(&self) -> DatabaseResult<Vec<NodePersistence>> {
438 : use crate::schema::nodes::dsl::*;
439 :
440 0 : let result: Vec<NodePersistence> = self
441 0 : .with_measured_conn(DatabaseOperation::ListNodes, move |conn| {
442 0 : Box::pin(async move {
443 0 : Ok(crate::schema::nodes::table
444 0 : .filter(lifecycle.ne(String::from(NodeLifecycle::Deleted)))
445 0 : .load::<NodePersistence>(conn)
446 0 : .await?)
447 0 : })
448 0 : })
449 0 : .await?;
450 :
451 0 : tracing::info!("list_nodes: loaded {} nodes", result.len());
452 :
453 0 : Ok(result)
454 0 : }
455 :
456 0 : pub(crate) async fn list_tombstones(&self) -> DatabaseResult<Vec<NodePersistence>> {
457 : use crate::schema::nodes::dsl::*;
458 :
459 0 : let result: Vec<NodePersistence> = self
460 0 : .with_measured_conn(DatabaseOperation::ListTombstones, move |conn| {
461 0 : Box::pin(async move {
462 0 : Ok(crate::schema::nodes::table
463 0 : .filter(lifecycle.eq(String::from(NodeLifecycle::Deleted)))
464 0 : .load::<NodePersistence>(conn)
465 0 : .await?)
466 0 : })
467 0 : })
468 0 : .await?;
469 :
470 0 : tracing::info!("list_tombstones: loaded {} nodes", result.len());
471 :
472 0 : Ok(result)
473 0 : }
474 :
475 0 : pub(crate) async fn update_node<V>(
476 0 : &self,
477 0 : input_node_id: NodeId,
478 0 : values: V,
479 0 : ) -> DatabaseResult<()>
480 0 : where
481 0 : V: diesel::AsChangeset<Target = crate::schema::nodes::table> + Clone + Send + Sync,
482 0 : V::Changeset: diesel::query_builder::QueryFragment<diesel::pg::Pg> + Send, // valid Postgres SQL
483 0 : {
484 : use crate::schema::nodes::dsl::*;
485 0 : let updated = self
486 0 : .with_measured_conn(DatabaseOperation::UpdateNode, move |conn| {
487 0 : let values = values.clone();
488 0 : Box::pin(async move {
489 0 : let updated = diesel::update(nodes)
490 0 : .filter(node_id.eq(input_node_id.0 as i64))
491 0 : .filter(lifecycle.ne(String::from(NodeLifecycle::Deleted)))
492 0 : .set(values)
493 0 : .execute(conn)
494 0 : .await?;
495 0 : Ok(updated)
496 0 : })
497 0 : })
498 0 : .await?;
499 :
500 0 : if updated != 1 {
501 0 : Err(DatabaseError::Logical(format!(
502 0 : "Node {node_id:?} not found for update",
503 0 : )))
504 : } else {
505 0 : Ok(())
506 : }
507 0 : }
508 :
509 0 : pub(crate) async fn update_node_scheduling_policy(
510 0 : &self,
511 0 : input_node_id: NodeId,
512 0 : input_scheduling: NodeSchedulingPolicy,
513 0 : ) -> DatabaseResult<()> {
514 : use crate::schema::nodes::dsl::*;
515 0 : self.update_node(
516 0 : input_node_id,
517 0 : scheduling_policy.eq(String::from(input_scheduling)),
518 0 : )
519 0 : .await
520 0 : }
521 :
522 0 : pub(crate) async fn update_node_on_registration(
523 0 : &self,
524 0 : input_node_id: NodeId,
525 0 : input_https_port: Option<u16>,
526 0 : ) -> DatabaseResult<()> {
527 : use crate::schema::nodes::dsl::*;
528 0 : self.update_node(
529 0 : input_node_id,
530 0 : listen_https_port.eq(input_https_port.map(|x| x as i32)),
531 : )
532 0 : .await
533 0 : }
534 :
535 : /// Tombstone is a special state where the node is not deleted from the database,
536 : /// but it is not available for usage.
537 : /// The main reason for it is to prevent the flaky node to register.
538 0 : pub(crate) async fn set_tombstone(&self, del_node_id: NodeId) -> DatabaseResult<()> {
539 : use crate::schema::nodes::dsl::*;
540 0 : self.update_node(
541 0 : del_node_id,
542 0 : lifecycle.eq(String::from(NodeLifecycle::Deleted)),
543 0 : )
544 0 : .await
545 0 : }
546 :
547 0 : pub(crate) async fn delete_node(&self, del_node_id: NodeId) -> DatabaseResult<()> {
548 : use crate::schema::nodes::dsl::*;
549 0 : self.with_measured_conn(DatabaseOperation::DeleteNode, move |conn| {
550 0 : Box::pin(async move {
551 : // You can hard delete a node only if it has a tombstone.
552 : // So we need to check if the node has lifecycle set to deleted.
553 0 : let node_to_delete = nodes
554 0 : .filter(node_id.eq(del_node_id.0 as i64))
555 0 : .first::<NodePersistence>(conn)
556 0 : .await
557 0 : .optional()?;
558 :
559 0 : if let Some(np) = node_to_delete {
560 0 : let lc = NodeLifecycle::from_str(&np.lifecycle).map_err(|e| {
561 0 : DatabaseError::Logical(format!(
562 0 : "Node {del_node_id} has invalid lifecycle: {e}"
563 0 : ))
564 0 : })?;
565 :
566 0 : if lc != NodeLifecycle::Deleted {
567 0 : return Err(DatabaseError::Logical(format!(
568 0 : "Node {del_node_id} was not soft deleted before, cannot hard delete it"
569 0 : )));
570 0 : }
571 :
572 0 : diesel::delete(nodes)
573 0 : .filter(node_id.eq(del_node_id.0 as i64))
574 0 : .execute(conn)
575 0 : .await?;
576 0 : }
577 :
578 0 : Ok(())
579 0 : })
580 0 : })
581 0 : .await
582 0 : }
583 :
584 : /// At startup, load the high level state for shards, such as their config + policy. This will
585 : /// be enriched at runtime with state discovered on pageservers.
586 : ///
587 : /// We exclude shards configured to be detached. During startup, if we see any attached locations
588 : /// for such shards, they will automatically be detached as 'orphans'.
589 0 : pub(crate) async fn load_active_tenant_shards(
590 0 : &self,
591 0 : ) -> DatabaseResult<Vec<TenantShardPersistence>> {
592 : use crate::schema::tenant_shards::dsl::*;
593 0 : self.with_measured_conn(DatabaseOperation::ListTenantShards, move |conn| {
594 0 : Box::pin(async move {
595 0 : let query = tenant_shards.filter(
596 0 : placement_policy.ne(serde_json::to_string(&PlacementPolicy::Detached).unwrap()),
597 : );
598 0 : let result = query.load::<TenantShardPersistence>(conn).await?;
599 :
600 0 : Ok(result)
601 0 : })
602 0 : })
603 0 : .await
604 0 : }
605 :
606 : /// When restoring a previously detached tenant into memory, load it from the database
607 0 : pub(crate) async fn load_tenant(
608 0 : &self,
609 0 : filter_tenant_id: TenantId,
610 0 : ) -> DatabaseResult<Vec<TenantShardPersistence>> {
611 : use crate::schema::tenant_shards::dsl::*;
612 0 : self.with_measured_conn(DatabaseOperation::LoadTenant, move |conn| {
613 0 : Box::pin(async move {
614 0 : let query = tenant_shards.filter(tenant_id.eq(filter_tenant_id.to_string()));
615 0 : let result = query.load::<TenantShardPersistence>(conn).await?;
616 :
617 0 : Ok(result)
618 0 : })
619 0 : })
620 0 : .await
621 0 : }
622 :
623 : /// Tenants must be persisted before we schedule them for the first time. This enables us
624 : /// to correctly retain generation monotonicity, and the externally provided placement policy & config.
625 0 : pub(crate) async fn insert_tenant_shards(
626 0 : &self,
627 0 : shards: Vec<TenantShardPersistence>,
628 0 : ) -> DatabaseResult<()> {
629 : use crate::schema::{metadata_health, tenant_shards};
630 :
631 0 : let now = chrono::Utc::now();
632 :
633 0 : let metadata_health_records = shards
634 0 : .iter()
635 0 : .map(|t| MetadataHealthPersistence {
636 0 : tenant_id: t.tenant_id.clone(),
637 0 : shard_number: t.shard_number,
638 0 : shard_count: t.shard_count,
639 : healthy: true,
640 0 : last_scrubbed_at: now,
641 0 : })
642 0 : .collect::<Vec<_>>();
643 :
644 0 : let shards = &shards;
645 0 : let metadata_health_records = &metadata_health_records;
646 0 : self.with_measured_conn(DatabaseOperation::InsertTenantShards, move |conn| {
647 0 : Box::pin(async move {
648 0 : diesel::insert_into(tenant_shards::table)
649 0 : .values(shards)
650 0 : .execute(conn)
651 0 : .await?;
652 :
653 0 : diesel::insert_into(metadata_health::table)
654 0 : .values(metadata_health_records)
655 0 : .execute(conn)
656 0 : .await?;
657 0 : Ok(())
658 0 : })
659 0 : })
660 0 : .await
661 0 : }
662 :
663 : /// Ordering: call this _after_ deleting the tenant on pageservers, but _before_ dropping state for
664 : /// the tenant from memory on this server.
665 0 : pub(crate) async fn delete_tenant(&self, del_tenant_id: TenantId) -> DatabaseResult<()> {
666 : use crate::schema::tenant_shards::dsl::*;
667 0 : self.with_measured_conn(DatabaseOperation::DeleteTenant, move |conn| {
668 0 : Box::pin(async move {
669 : // `metadata_health` status (if exists) is also deleted based on the cascade behavior.
670 0 : diesel::delete(tenant_shards)
671 0 : .filter(tenant_id.eq(del_tenant_id.to_string()))
672 0 : .execute(conn)
673 0 : .await?;
674 0 : Ok(())
675 0 : })
676 0 : })
677 0 : .await
678 0 : }
679 :
680 : /// When a tenant invokes the /re-attach API, this function is responsible for doing an efficient
681 : /// batched increment of the generations of all tenants whose generation_pageserver is equal to
682 : /// the node that called /re-attach.
683 : #[tracing::instrument(skip_all, fields(node_id))]
684 : pub(crate) async fn re_attach(
685 : &self,
686 : input_node_id: NodeId,
687 : ) -> DatabaseResult<HashMap<TenantShardId, Generation>> {
688 : use crate::schema::nodes::dsl::{scheduling_policy, *};
689 : use crate::schema::tenant_shards::dsl::*;
690 : let updated = self
691 0 : .with_measured_conn(DatabaseOperation::ReAttach, move |conn| {
692 0 : Box::pin(async move {
693 0 : let node: Option<NodePersistence> = nodes
694 0 : .filter(node_id.eq(input_node_id.0 as i64))
695 0 : .first::<NodePersistence>(conn)
696 0 : .await
697 0 : .optional()?;
698 :
699 : // Check if the node is not marked as deleted
700 0 : match node {
701 0 : Some(node) if matches!(NodeLifecycle::from_str(&node.lifecycle), Ok(NodeLifecycle::Deleted)) => {
702 0 : return Err(DatabaseError::Logical(format!(
703 0 : "Node {input_node_id} is marked as deleted, re-attach is not allowed"
704 0 : )));
705 : }
706 0 : _ => {
707 0 : // go through
708 0 : }
709 : };
710 :
711 0 : let rows_updated = diesel::update(tenant_shards)
712 0 : .filter(generation_pageserver.eq(input_node_id.0 as i64))
713 0 : .set(generation.eq(generation + 1))
714 0 : .execute(conn)
715 0 : .await?;
716 :
717 0 : tracing::info!("Incremented {} tenants' generations", rows_updated);
718 :
719 : // TODO: UPDATE+SELECT in one query
720 :
721 0 : let updated = tenant_shards
722 0 : .filter(generation_pageserver.eq(input_node_id.0 as i64))
723 0 : .select(TenantShardPersistence::as_select())
724 0 : .load(conn)
725 0 : .await?;
726 :
727 0 : if let Some(node) = node {
728 0 : let old_scheduling_policy =
729 0 : NodeSchedulingPolicy::from_str(&node.scheduling_policy).unwrap();
730 0 : let new_scheduling_policy = match old_scheduling_policy {
731 0 : NodeSchedulingPolicy::Active => NodeSchedulingPolicy::Active,
732 0 : NodeSchedulingPolicy::PauseForRestart => NodeSchedulingPolicy::Active,
733 0 : NodeSchedulingPolicy::Draining => NodeSchedulingPolicy::Active,
734 0 : NodeSchedulingPolicy::Filling => NodeSchedulingPolicy::Active,
735 0 : NodeSchedulingPolicy::Pause => NodeSchedulingPolicy::Pause,
736 0 : NodeSchedulingPolicy::Deleting => NodeSchedulingPolicy::Pause,
737 : };
738 0 : diesel::update(nodes)
739 0 : .filter(node_id.eq(input_node_id.0 as i64))
740 0 : .set(scheduling_policy.eq(String::from(new_scheduling_policy)))
741 0 : .execute(conn)
742 0 : .await?;
743 0 : }
744 :
745 0 : Ok(updated)
746 0 : })
747 0 : })
748 : .await?;
749 :
750 : let mut result = HashMap::new();
751 : for tsp in updated {
752 : let tenant_shard_id = TenantShardId {
753 : tenant_id: TenantId::from_str(tsp.tenant_id.as_str())
754 0 : .map_err(|e| DatabaseError::Logical(format!("Malformed tenant id: {e}")))?,
755 : shard_number: ShardNumber(tsp.shard_number as u8),
756 : shard_count: ShardCount::new(tsp.shard_count as u8),
757 : };
758 :
759 : let Some(g) = tsp.generation else {
760 : // If the generation_pageserver column was non-NULL, then the generation column should also be non-NULL:
761 : // we only set generation_pageserver when setting generation.
762 : return Err(DatabaseError::Logical(
763 : "Generation should always be set after incrementing".to_string(),
764 : ));
765 : };
766 : result.insert(tenant_shard_id, Generation::new(g as u32));
767 : }
768 :
769 : Ok(result)
770 : }
771 :
772 : /// Reconciler calls this immediately before attaching to a new pageserver, to acquire a unique, monotonically
773 : /// advancing generation number. We also store the NodeId for which the generation was issued, so that in
774 : /// [`Self::re_attach`] we can do a bulk UPDATE on the generations for that node.
775 0 : pub(crate) async fn increment_generation(
776 0 : &self,
777 0 : tenant_shard_id: TenantShardId,
778 0 : node_id: NodeId,
779 0 : ) -> anyhow::Result<Generation> {
780 : use crate::schema::tenant_shards::dsl::*;
781 0 : let updated = self
782 0 : .with_measured_conn(DatabaseOperation::IncrementGeneration, move |conn| {
783 0 : Box::pin(async move {
784 0 : let updated = diesel::update(tenant_shards)
785 0 : .filter(tenant_id.eq(tenant_shard_id.tenant_id.to_string()))
786 0 : .filter(shard_number.eq(tenant_shard_id.shard_number.0 as i32))
787 0 : .filter(shard_count.eq(tenant_shard_id.shard_count.literal() as i32))
788 0 : .set((
789 0 : generation.eq(generation + 1),
790 0 : generation_pageserver.eq(node_id.0 as i64),
791 0 : ))
792 0 : // TODO: only returning() the generation column
793 0 : .returning(TenantShardPersistence::as_returning())
794 0 : .get_result(conn)
795 0 : .await?;
796 :
797 0 : Ok(updated)
798 0 : })
799 0 : })
800 0 : .await?;
801 :
802 : // Generation is always non-null in the rseult: if the generation column had been NULL, then we
803 : // should have experienced an SQL Confilict error while executing a query that tries to increment it.
804 0 : debug_assert!(updated.generation.is_some());
805 0 : let Some(g) = updated.generation else {
806 0 : return Err(DatabaseError::Logical(
807 0 : "Generation should always be set after incrementing".to_string(),
808 0 : )
809 0 : .into());
810 : };
811 :
812 0 : Ok(Generation::new(g as u32))
813 0 : }
814 :
815 : /// When we want to call out to the running shards for a tenant, e.g. during timeline CRUD operations,
816 : /// we need to know where the shard is attached, _and_ the generation, so that we can re-check the generation
817 : /// afterwards to confirm that our timeline CRUD operation is truly persistent (it must have happened in the
818 : /// latest generation)
819 : ///
820 : /// If the tenant doesn't exist, an empty vector is returned.
821 : ///
822 : /// Output is sorted by shard number
823 0 : pub(crate) async fn tenant_generations(
824 0 : &self,
825 0 : filter_tenant_id: TenantId,
826 0 : ) -> Result<Vec<ShardGenerationState>, DatabaseError> {
827 : use crate::schema::tenant_shards::dsl::*;
828 0 : let rows = self
829 0 : .with_measured_conn(DatabaseOperation::TenantGenerations, move |conn| {
830 0 : Box::pin(async move {
831 0 : let result = tenant_shards
832 0 : .filter(tenant_id.eq(filter_tenant_id.to_string()))
833 0 : .select(TenantShardPersistence::as_select())
834 0 : .order(shard_number)
835 0 : .load(conn)
836 0 : .await?;
837 0 : Ok(result)
838 0 : })
839 0 : })
840 0 : .await?;
841 :
842 0 : Ok(rows
843 0 : .into_iter()
844 0 : .map(|p| ShardGenerationState {
845 0 : tenant_shard_id: p
846 0 : .get_tenant_shard_id()
847 0 : .expect("Corrupt tenant shard id in database"),
848 0 : generation: p.generation.map(|g| Generation::new(g as u32)),
849 0 : generation_pageserver: p.generation_pageserver.map(|n| NodeId(n as u64)),
850 0 : })
851 0 : .collect())
852 0 : }
853 :
854 : /// Read the generation number of specific tenant shards
855 : ///
856 : /// Output is unsorted. Output may not include values for all inputs, if they are missing in the database.
857 0 : pub(crate) async fn shard_generations(
858 0 : &self,
859 0 : mut tenant_shard_ids: impl Iterator<Item = &TenantShardId>,
860 0 : ) -> Result<Vec<(TenantShardId, Option<Generation>)>, DatabaseError> {
861 0 : let mut rows = Vec::with_capacity(tenant_shard_ids.size_hint().0);
862 :
863 : // We will chunk our input to avoid composing arbitrarily long `IN` clauses. Typically we are
864 : // called with a single digit number of IDs, but in principle we could be called with tens
865 : // of thousands (all the shards on one pageserver) from the generation validation API.
866 : loop {
867 : // A modest hardcoded chunk size to handle typical cases in a single query but never generate particularly
868 : // large query strings.
869 0 : let chunk_ids = tenant_shard_ids.by_ref().take(32);
870 :
871 : // Compose a comma separated list of tuples for matching on (tenant_id, shard_number, shard_count)
872 0 : let in_clause = chunk_ids
873 0 : .map(|tsid| {
874 0 : format!(
875 0 : "('{}', {}, {})",
876 : tsid.tenant_id, tsid.shard_number.0, tsid.shard_count.0
877 : )
878 0 : })
879 0 : .join(",");
880 :
881 : // We are done when our iterator gives us nothing to filter on
882 0 : if in_clause.is_empty() {
883 0 : break;
884 0 : }
885 :
886 0 : let in_clause = &in_clause;
887 0 : let chunk_rows = self
888 0 : .with_measured_conn(DatabaseOperation::ShardGenerations, move |conn| {
889 0 : Box::pin(async move {
890 : // diesel doesn't support multi-column IN queries, so we compose raw SQL. No escaping is required because
891 : // the inputs are strongly typed and cannot carry any user-supplied raw string content.
892 0 : let result : Vec<TenantShardPersistence> = diesel::sql_query(
893 0 : format!("SELECT * from tenant_shards where (tenant_id, shard_number, shard_count) in ({in_clause});").as_str()
894 0 : ).load(conn).await?;
895 :
896 0 : Ok(result)
897 0 : })
898 0 : })
899 0 : .await?;
900 0 : rows.extend(chunk_rows.into_iter())
901 : }
902 :
903 0 : Ok(rows
904 0 : .into_iter()
905 0 : .map(|tsp| {
906 : (
907 0 : tsp.get_tenant_shard_id()
908 0 : .expect("Bad tenant ID in database"),
909 0 : tsp.generation.map(|g| Generation::new(g as u32)),
910 : )
911 0 : })
912 0 : .collect())
913 0 : }
914 :
915 : #[allow(non_local_definitions)]
916 : /// For use when updating a persistent property of a tenant, such as its config or placement_policy.
917 : ///
918 : /// Do not use this for settting generation, unless in the special onboarding code path (/location_config)
919 : /// API: use [`Self::increment_generation`] instead. Setting the generation via this route is a one-time thing
920 : /// that we only do the first time a tenant is set to an attached policy via /location_config.
921 0 : pub(crate) async fn update_tenant_shard(
922 0 : &self,
923 0 : tenant: TenantFilter,
924 0 : input_placement_policy: Option<PlacementPolicy>,
925 0 : input_config: Option<TenantConfig>,
926 0 : input_generation: Option<Generation>,
927 0 : input_scheduling_policy: Option<ShardSchedulingPolicy>,
928 0 : ) -> DatabaseResult<()> {
929 : use crate::schema::tenant_shards::dsl::*;
930 :
931 0 : let tenant = &tenant;
932 0 : let input_placement_policy = &input_placement_policy;
933 0 : let input_config = &input_config;
934 0 : let input_generation = &input_generation;
935 0 : let input_scheduling_policy = &input_scheduling_policy;
936 0 : self.with_measured_conn(DatabaseOperation::UpdateTenantShard, move |conn| {
937 0 : Box::pin(async move {
938 0 : let query = match tenant {
939 0 : TenantFilter::Shard(tenant_shard_id) => diesel::update(tenant_shards)
940 0 : .filter(tenant_id.eq(tenant_shard_id.tenant_id.to_string()))
941 0 : .filter(shard_number.eq(tenant_shard_id.shard_number.0 as i32))
942 0 : .filter(shard_count.eq(tenant_shard_id.shard_count.literal() as i32))
943 0 : .into_boxed(),
944 0 : TenantFilter::Tenant(input_tenant_id) => diesel::update(tenant_shards)
945 0 : .filter(tenant_id.eq(input_tenant_id.to_string()))
946 0 : .into_boxed(),
947 : };
948 :
949 : // Clear generation_pageserver if we are moving into a state where we won't have
950 : // any attached pageservers.
951 0 : let input_generation_pageserver = match input_placement_policy {
952 0 : None | Some(PlacementPolicy::Attached(_)) => None,
953 0 : Some(PlacementPolicy::Detached | PlacementPolicy::Secondary) => Some(None),
954 : };
955 :
956 : #[derive(AsChangeset)]
957 : #[diesel(table_name = crate::schema::tenant_shards)]
958 : struct ShardUpdate {
959 : generation: Option<i32>,
960 : placement_policy: Option<String>,
961 : config: Option<String>,
962 : scheduling_policy: Option<String>,
963 : generation_pageserver: Option<Option<i64>>,
964 : }
965 :
966 0 : let update = ShardUpdate {
967 0 : generation: input_generation.map(|g| g.into().unwrap() as i32),
968 0 : placement_policy: input_placement_policy
969 0 : .as_ref()
970 0 : .map(|p| serde_json::to_string(&p).unwrap()),
971 0 : config: input_config
972 0 : .as_ref()
973 0 : .map(|c| serde_json::to_string(&c).unwrap()),
974 0 : scheduling_policy: input_scheduling_policy
975 0 : .map(|p| serde_json::to_string(&p).unwrap()),
976 0 : generation_pageserver: input_generation_pageserver,
977 : };
978 :
979 0 : query.set(update).execute(conn).await?;
980 :
981 0 : Ok(())
982 0 : })
983 0 : })
984 0 : .await?;
985 :
986 0 : Ok(())
987 0 : }
988 :
989 : /// Note that passing None for a shard clears the preferred AZ (rather than leaving it unmodified)
990 0 : pub(crate) async fn set_tenant_shard_preferred_azs(
991 0 : &self,
992 0 : preferred_azs: Vec<(TenantShardId, Option<AvailabilityZone>)>,
993 0 : ) -> DatabaseResult<Vec<(TenantShardId, Option<AvailabilityZone>)>> {
994 : use crate::schema::tenant_shards::dsl::*;
995 :
996 0 : let preferred_azs = preferred_azs.as_slice();
997 0 : self.with_measured_conn(DatabaseOperation::SetPreferredAzs, move |conn| {
998 0 : Box::pin(async move {
999 0 : let mut shards_updated = Vec::default();
1000 :
1001 0 : for (tenant_shard_id, preferred_az) in preferred_azs.iter() {
1002 0 : let updated = diesel::update(tenant_shards)
1003 0 : .filter(tenant_id.eq(tenant_shard_id.tenant_id.to_string()))
1004 0 : .filter(shard_number.eq(tenant_shard_id.shard_number.0 as i32))
1005 0 : .filter(shard_count.eq(tenant_shard_id.shard_count.literal() as i32))
1006 0 : .set(preferred_az_id.eq(preferred_az.as_ref().map(|az| az.0.clone())))
1007 0 : .execute(conn)
1008 0 : .await?;
1009 :
1010 0 : if updated == 1 {
1011 0 : shards_updated.push((*tenant_shard_id, preferred_az.clone()));
1012 0 : }
1013 : }
1014 :
1015 0 : Ok(shards_updated)
1016 0 : })
1017 0 : })
1018 0 : .await
1019 0 : }
1020 :
1021 0 : pub(crate) async fn detach(&self, tenant_shard_id: TenantShardId) -> anyhow::Result<()> {
1022 : use crate::schema::tenant_shards::dsl::*;
1023 0 : self.with_measured_conn(DatabaseOperation::Detach, move |conn| {
1024 0 : Box::pin(async move {
1025 0 : let updated = diesel::update(tenant_shards)
1026 0 : .filter(tenant_id.eq(tenant_shard_id.tenant_id.to_string()))
1027 0 : .filter(shard_number.eq(tenant_shard_id.shard_number.0 as i32))
1028 0 : .filter(shard_count.eq(tenant_shard_id.shard_count.literal() as i32))
1029 0 : .set((
1030 0 : generation_pageserver.eq(Option::<i64>::None),
1031 0 : placement_policy
1032 0 : .eq(serde_json::to_string(&PlacementPolicy::Detached).unwrap()),
1033 0 : ))
1034 0 : .execute(conn)
1035 0 : .await?;
1036 :
1037 0 : Ok(updated)
1038 0 : })
1039 0 : })
1040 0 : .await?;
1041 :
1042 0 : Ok(())
1043 0 : }
1044 :
1045 : // When we start shard splitting, we must durably mark the tenant so that
1046 : // on restart, we know that we must go through recovery.
1047 : //
1048 : // We create the child shards here, so that they will be available for increment_generation calls
1049 : // if some pageserver holding a child shard needs to restart before the overall tenant split is complete.
1050 0 : pub(crate) async fn begin_shard_split(
1051 0 : &self,
1052 0 : old_shard_count: ShardCount,
1053 0 : split_tenant_id: TenantId,
1054 0 : parent_to_children: Vec<(TenantShardId, Vec<TenantShardPersistence>)>,
1055 0 : ) -> DatabaseResult<()> {
1056 : use crate::schema::tenant_shards::dsl::*;
1057 0 : let parent_to_children = parent_to_children.as_slice();
1058 0 : self.with_measured_conn(DatabaseOperation::BeginShardSplit, move |conn| {
1059 0 : Box::pin(async move {
1060 : // Mark parent shards as splitting
1061 :
1062 0 : let updated = diesel::update(tenant_shards)
1063 0 : .filter(tenant_id.eq(split_tenant_id.to_string()))
1064 0 : .filter(shard_count.eq(old_shard_count.literal() as i32))
1065 0 : .set((splitting.eq(1),))
1066 0 : .execute(conn).await?;
1067 0 : if u8::try_from(updated)
1068 0 : .map_err(|_| DatabaseError::Logical(
1069 0 : format!("Overflow existing shard count {updated} while splitting"))
1070 0 : )? != old_shard_count.count() {
1071 : // Perhaps a deletion or another split raced with this attempt to split, mutating
1072 : // the parent shards that we intend to split. In this case the split request should fail.
1073 0 : return Err(DatabaseError::Logical(
1074 0 : format!("Unexpected existing shard count {updated} when preparing tenant for split (expected {})", old_shard_count.count())
1075 0 : ));
1076 0 : }
1077 :
1078 : // FIXME: spurious clone to sidestep closure move rules
1079 0 : let parent_to_children = parent_to_children.to_vec();
1080 :
1081 : // Insert child shards
1082 0 : for (parent_shard_id, children) in parent_to_children {
1083 0 : let mut parent = crate::schema::tenant_shards::table
1084 0 : .filter(tenant_id.eq(parent_shard_id.tenant_id.to_string()))
1085 0 : .filter(shard_number.eq(parent_shard_id.shard_number.0 as i32))
1086 0 : .filter(shard_count.eq(parent_shard_id.shard_count.literal() as i32))
1087 0 : .load::<TenantShardPersistence>(conn).await?;
1088 0 : let parent = if parent.len() != 1 {
1089 0 : return Err(DatabaseError::Logical(format!(
1090 0 : "Parent shard {parent_shard_id} not found"
1091 0 : )));
1092 : } else {
1093 0 : parent.pop().unwrap()
1094 : };
1095 0 : for mut shard in children {
1096 : // Carry the parent's generation into the child
1097 0 : shard.generation = parent.generation;
1098 :
1099 0 : debug_assert!(shard.splitting == SplitState::Splitting);
1100 0 : diesel::insert_into(tenant_shards)
1101 0 : .values(shard)
1102 0 : .execute(conn).await?;
1103 : }
1104 : }
1105 :
1106 0 : Ok(())
1107 0 : })
1108 0 : })
1109 0 : .await
1110 0 : }
1111 :
1112 : // When we finish shard splitting, we must atomically clean up the old shards
1113 : // and insert the new shards, and clear the splitting marker.
1114 0 : pub(crate) async fn complete_shard_split(
1115 0 : &self,
1116 0 : split_tenant_id: TenantId,
1117 0 : old_shard_count: ShardCount,
1118 0 : new_shard_count: ShardCount,
1119 0 : ) -> DatabaseResult<()> {
1120 : use crate::schema::tenant_shards::dsl::*;
1121 0 : self.with_measured_conn(DatabaseOperation::CompleteShardSplit, move |conn| {
1122 0 : Box::pin(async move {
1123 : // Sanity: child shards must still exist, as we're deleting parent shards
1124 0 : let child_shards_query = tenant_shards
1125 0 : .filter(tenant_id.eq(split_tenant_id.to_string()))
1126 0 : .filter(shard_count.eq(new_shard_count.literal() as i32));
1127 0 : let child_shards = child_shards_query
1128 0 : .load::<TenantShardPersistence>(conn)
1129 0 : .await?;
1130 0 : if child_shards.len() != new_shard_count.count() as usize {
1131 0 : return Err(DatabaseError::Logical(format!(
1132 0 : "Unexpected child shard count {} while completing split to \
1133 0 : count {new_shard_count:?} on tenant {split_tenant_id}",
1134 0 : child_shards.len()
1135 0 : )));
1136 0 : }
1137 :
1138 : // Drop parent shards
1139 0 : diesel::delete(tenant_shards)
1140 0 : .filter(tenant_id.eq(split_tenant_id.to_string()))
1141 0 : .filter(shard_count.eq(old_shard_count.literal() as i32))
1142 0 : .execute(conn)
1143 0 : .await?;
1144 :
1145 : // Clear sharding flag
1146 0 : let updated = diesel::update(tenant_shards)
1147 0 : .filter(tenant_id.eq(split_tenant_id.to_string()))
1148 0 : .filter(shard_count.eq(new_shard_count.literal() as i32))
1149 0 : .set((splitting.eq(0),))
1150 0 : .execute(conn)
1151 0 : .await?;
1152 0 : assert!(updated == new_shard_count.count() as usize);
1153 :
1154 0 : Ok(())
1155 0 : })
1156 0 : })
1157 0 : .await
1158 0 : }
1159 :
1160 : /// Used when the remote part of a shard split failed: we will revert the database state to have only
1161 : /// the parent shards, with SplitState::Idle.
1162 0 : pub(crate) async fn abort_shard_split(
1163 0 : &self,
1164 0 : split_tenant_id: TenantId,
1165 0 : new_shard_count: ShardCount,
1166 0 : ) -> DatabaseResult<AbortShardSplitStatus> {
1167 : use crate::schema::tenant_shards::dsl::*;
1168 0 : self.with_measured_conn(DatabaseOperation::AbortShardSplit, move |conn| {
1169 0 : Box::pin(async move {
1170 : // Clear the splitting state on parent shards
1171 0 : let updated = diesel::update(tenant_shards)
1172 0 : .filter(tenant_id.eq(split_tenant_id.to_string()))
1173 0 : .filter(shard_count.ne(new_shard_count.literal() as i32))
1174 0 : .set((splitting.eq(0),))
1175 0 : .execute(conn)
1176 0 : .await?;
1177 :
1178 : // Parent shards are already gone: we cannot abort.
1179 0 : if updated == 0 {
1180 0 : return Ok(AbortShardSplitStatus::Complete);
1181 0 : }
1182 :
1183 : // Sanity check: if parent shards were present, their cardinality should
1184 : // be less than the number of child shards.
1185 0 : if updated >= new_shard_count.count() as usize {
1186 0 : return Err(DatabaseError::Logical(format!(
1187 0 : "Unexpected parent shard count {updated} while aborting split to \
1188 0 : count {new_shard_count:?} on tenant {split_tenant_id}"
1189 0 : )));
1190 0 : }
1191 :
1192 : // Erase child shards
1193 0 : diesel::delete(tenant_shards)
1194 0 : .filter(tenant_id.eq(split_tenant_id.to_string()))
1195 0 : .filter(shard_count.eq(new_shard_count.literal() as i32))
1196 0 : .execute(conn)
1197 0 : .await?;
1198 :
1199 0 : Ok(AbortShardSplitStatus::Aborted)
1200 0 : })
1201 0 : })
1202 0 : .await
1203 0 : }
1204 :
1205 : /// Stores all the latest metadata health updates durably. Updates existing entry on conflict.
1206 : ///
1207 : /// **Correctness:** `metadata_health_updates` should all belong the tenant shards managed by the storage controller.
1208 : #[allow(dead_code)]
1209 0 : pub(crate) async fn update_metadata_health_records(
1210 0 : &self,
1211 0 : healthy_records: Vec<MetadataHealthPersistence>,
1212 0 : unhealthy_records: Vec<MetadataHealthPersistence>,
1213 0 : now: chrono::DateTime<chrono::Utc>,
1214 0 : ) -> DatabaseResult<()> {
1215 : use crate::schema::metadata_health::dsl::*;
1216 :
1217 0 : let healthy_records = healthy_records.as_slice();
1218 0 : let unhealthy_records = unhealthy_records.as_slice();
1219 0 : self.with_measured_conn(DatabaseOperation::UpdateMetadataHealth, move |conn| {
1220 0 : Box::pin(async move {
1221 0 : diesel::insert_into(metadata_health)
1222 0 : .values(healthy_records)
1223 0 : .on_conflict((tenant_id, shard_number, shard_count))
1224 0 : .do_update()
1225 0 : .set((healthy.eq(true), last_scrubbed_at.eq(now)))
1226 0 : .execute(conn)
1227 0 : .await?;
1228 :
1229 0 : diesel::insert_into(metadata_health)
1230 0 : .values(unhealthy_records)
1231 0 : .on_conflict((tenant_id, shard_number, shard_count))
1232 0 : .do_update()
1233 0 : .set((healthy.eq(false), last_scrubbed_at.eq(now)))
1234 0 : .execute(conn)
1235 0 : .await?;
1236 0 : Ok(())
1237 0 : })
1238 0 : })
1239 0 : .await
1240 0 : }
1241 :
1242 : /// Lists all the metadata health records.
1243 : #[allow(dead_code)]
1244 0 : pub(crate) async fn list_metadata_health_records(
1245 0 : &self,
1246 0 : ) -> DatabaseResult<Vec<MetadataHealthPersistence>> {
1247 0 : self.with_measured_conn(DatabaseOperation::ListMetadataHealth, move |conn| {
1248 0 : Box::pin(async {
1249 0 : Ok(crate::schema::metadata_health::table
1250 0 : .load::<MetadataHealthPersistence>(conn)
1251 0 : .await?)
1252 0 : })
1253 0 : })
1254 0 : .await
1255 0 : }
1256 :
1257 : /// Lists all the metadata health records that is unhealthy.
1258 : #[allow(dead_code)]
1259 0 : pub(crate) async fn list_unhealthy_metadata_health_records(
1260 0 : &self,
1261 0 : ) -> DatabaseResult<Vec<MetadataHealthPersistence>> {
1262 : use crate::schema::metadata_health::dsl::*;
1263 0 : self.with_measured_conn(
1264 0 : DatabaseOperation::ListMetadataHealthUnhealthy,
1265 0 : move |conn| {
1266 0 : Box::pin(async {
1267 : DatabaseResult::Ok(
1268 0 : crate::schema::metadata_health::table
1269 0 : .filter(healthy.eq(false))
1270 0 : .load::<MetadataHealthPersistence>(conn)
1271 0 : .await?,
1272 : )
1273 0 : })
1274 0 : },
1275 : )
1276 0 : .await
1277 0 : }
1278 :
1279 : /// Lists all the metadata health records that have not been updated since an `earlier` time.
1280 : #[allow(dead_code)]
1281 0 : pub(crate) async fn list_outdated_metadata_health_records(
1282 0 : &self,
1283 0 : earlier: chrono::DateTime<chrono::Utc>,
1284 0 : ) -> DatabaseResult<Vec<MetadataHealthPersistence>> {
1285 : use crate::schema::metadata_health::dsl::*;
1286 :
1287 0 : self.with_measured_conn(DatabaseOperation::ListMetadataHealthOutdated, move |conn| {
1288 0 : Box::pin(async move {
1289 0 : let query = metadata_health.filter(last_scrubbed_at.lt(earlier));
1290 0 : let res = query.load::<MetadataHealthPersistence>(conn).await?;
1291 :
1292 0 : Ok(res)
1293 0 : })
1294 0 : })
1295 0 : .await
1296 0 : }
1297 :
1298 : /// Get the current entry from the `leader` table if one exists.
1299 : /// It is an error for the table to contain more than one entry.
1300 0 : pub(crate) async fn get_leader(&self) -> DatabaseResult<Option<ControllerPersistence>> {
1301 0 : let mut leader: Vec<ControllerPersistence> = self
1302 0 : .with_measured_conn(DatabaseOperation::GetLeader, move |conn| {
1303 0 : Box::pin(async move {
1304 0 : Ok(crate::schema::controllers::table
1305 0 : .load::<ControllerPersistence>(conn)
1306 0 : .await?)
1307 0 : })
1308 0 : })
1309 0 : .await?;
1310 :
1311 0 : if leader.len() > 1 {
1312 0 : return Err(DatabaseError::Logical(format!(
1313 0 : "More than one entry present in the leader table: {leader:?}"
1314 0 : )));
1315 0 : }
1316 :
1317 0 : Ok(leader.pop())
1318 0 : }
1319 :
1320 : /// Update the new leader with compare-exchange semantics. If `prev` does not
1321 : /// match the current leader entry, then the update is treated as a failure.
1322 : /// When `prev` is not specified, the update is forced.
1323 0 : pub(crate) async fn update_leader(
1324 0 : &self,
1325 0 : prev: Option<ControllerPersistence>,
1326 0 : new: ControllerPersistence,
1327 0 : ) -> DatabaseResult<()> {
1328 : use crate::schema::controllers::dsl::*;
1329 :
1330 0 : let updated = self
1331 0 : .with_measured_conn(DatabaseOperation::UpdateLeader, move |conn| {
1332 0 : let prev = prev.clone();
1333 0 : let new = new.clone();
1334 0 : Box::pin(async move {
1335 0 : let updated = match &prev {
1336 0 : Some(prev) => {
1337 0 : diesel::update(controllers)
1338 0 : .filter(address.eq(prev.address.clone()))
1339 0 : .filter(started_at.eq(prev.started_at))
1340 0 : .set((
1341 0 : address.eq(new.address.clone()),
1342 0 : started_at.eq(new.started_at),
1343 0 : ))
1344 0 : .execute(conn)
1345 0 : .await?
1346 : }
1347 : None => {
1348 0 : diesel::insert_into(controllers)
1349 0 : .values(new.clone())
1350 0 : .execute(conn)
1351 0 : .await?
1352 : }
1353 : };
1354 :
1355 0 : Ok(updated)
1356 0 : })
1357 0 : })
1358 0 : .await?;
1359 :
1360 0 : if updated == 0 {
1361 0 : return Err(DatabaseError::Logical(
1362 0 : "Leader table update failed".to_string(),
1363 0 : ));
1364 0 : }
1365 :
1366 0 : Ok(())
1367 0 : }
1368 :
1369 : /// At startup, populate the list of nodes which our shards may be placed on
1370 0 : pub(crate) async fn list_safekeepers(&self) -> DatabaseResult<Vec<SafekeeperPersistence>> {
1371 0 : let safekeepers: Vec<SafekeeperPersistence> = self
1372 0 : .with_measured_conn(DatabaseOperation::ListNodes, move |conn| {
1373 0 : Box::pin(async move {
1374 0 : Ok(crate::schema::safekeepers::table
1375 0 : .load::<SafekeeperPersistence>(conn)
1376 0 : .await?)
1377 0 : })
1378 0 : })
1379 0 : .await?;
1380 :
1381 0 : tracing::info!("list_safekeepers: loaded {} nodes", safekeepers.len());
1382 :
1383 0 : Ok(safekeepers)
1384 0 : }
1385 :
1386 0 : pub(crate) async fn safekeeper_upsert(
1387 0 : &self,
1388 0 : record: SafekeeperUpsert,
1389 0 : ) -> Result<(), DatabaseError> {
1390 : use crate::schema::safekeepers::dsl::*;
1391 :
1392 0 : self.with_conn(move |conn| {
1393 0 : let record = record.clone();
1394 0 : Box::pin(async move {
1395 0 : let bind = record
1396 0 : .as_insert_or_update()
1397 0 : .map_err(|e| DatabaseError::Logical(format!("{e}")))?;
1398 :
1399 0 : let inserted_updated = diesel::insert_into(safekeepers)
1400 0 : .values(&bind)
1401 0 : .on_conflict(id)
1402 0 : .do_update()
1403 0 : .set(&bind)
1404 0 : .execute(conn)
1405 0 : .await?;
1406 :
1407 0 : if inserted_updated != 1 {
1408 0 : return Err(DatabaseError::Logical(format!(
1409 0 : "unexpected number of rows ({inserted_updated})"
1410 0 : )));
1411 0 : }
1412 :
1413 0 : Ok(())
1414 0 : })
1415 0 : })
1416 0 : .await
1417 0 : }
1418 :
1419 0 : pub(crate) async fn set_safekeeper_scheduling_policy(
1420 0 : &self,
1421 0 : id_: i64,
1422 0 : scheduling_policy_: SkSchedulingPolicy,
1423 0 : ) -> Result<(), DatabaseError> {
1424 : use crate::schema::safekeepers::dsl::*;
1425 :
1426 0 : self.with_conn(move |conn| {
1427 0 : Box::pin(async move {
1428 : #[derive(Insertable, AsChangeset)]
1429 : #[diesel(table_name = crate::schema::safekeepers)]
1430 : struct UpdateSkSchedulingPolicy<'a> {
1431 : id: i64,
1432 : scheduling_policy: &'a str,
1433 : }
1434 0 : let scheduling_policy_ = String::from(scheduling_policy_);
1435 :
1436 0 : let rows_affected = diesel::update(safekeepers.filter(id.eq(id_)))
1437 0 : .set(scheduling_policy.eq(scheduling_policy_))
1438 0 : .execute(conn)
1439 0 : .await?;
1440 :
1441 0 : if rows_affected != 1 {
1442 0 : return Err(DatabaseError::Logical(format!(
1443 0 : "unexpected number of rows ({rows_affected})",
1444 0 : )));
1445 0 : }
1446 :
1447 0 : Ok(())
1448 0 : })
1449 0 : })
1450 0 : .await
1451 0 : }
1452 :
1453 : /// Activate the given safekeeper, ensuring that there is no TOCTOU.
1454 : /// Returns `Some` if the safekeeper has indeed been activating (or already active). Other states return `None`.
1455 0 : pub(crate) async fn activate_safekeeper(&self, id_: i64) -> Result<Option<()>, DatabaseError> {
1456 : use crate::schema::safekeepers::dsl::*;
1457 :
1458 0 : self.with_conn(move |conn| {
1459 0 : Box::pin(async move {
1460 : #[derive(Insertable, AsChangeset)]
1461 : #[diesel(table_name = crate::schema::safekeepers)]
1462 : struct UpdateSkSchedulingPolicy<'a> {
1463 : id: i64,
1464 : scheduling_policy: &'a str,
1465 : }
1466 0 : let scheduling_policy_active = String::from(SkSchedulingPolicy::Active);
1467 0 : let scheduling_policy_activating = String::from(SkSchedulingPolicy::Activating);
1468 :
1469 0 : let rows_affected = diesel::update(
1470 0 : safekeepers.filter(id.eq(id_)).filter(
1471 0 : scheduling_policy
1472 0 : .eq(scheduling_policy_activating)
1473 0 : .or(scheduling_policy.eq(&scheduling_policy_active)),
1474 0 : ),
1475 0 : )
1476 0 : .set(scheduling_policy.eq(&scheduling_policy_active))
1477 0 : .execute(conn)
1478 0 : .await?;
1479 :
1480 0 : if rows_affected == 0 {
1481 0 : return Ok(Some(()));
1482 0 : }
1483 0 : if rows_affected != 1 {
1484 0 : return Err(DatabaseError::Logical(format!(
1485 0 : "unexpected number of rows ({rows_affected})",
1486 0 : )));
1487 0 : }
1488 :
1489 0 : Ok(Some(()))
1490 0 : })
1491 0 : })
1492 0 : .await
1493 0 : }
1494 :
1495 : /// Persist timeline. Returns if the timeline was newly inserted. If it wasn't, we haven't done any writes.
1496 0 : pub(crate) async fn insert_timeline(&self, entry: TimelinePersistence) -> DatabaseResult<bool> {
1497 : use crate::schema::timelines;
1498 :
1499 0 : let entry = &entry;
1500 0 : self.with_measured_conn(DatabaseOperation::InsertTimeline, move |conn| {
1501 0 : Box::pin(async move {
1502 0 : let inserted_updated = diesel::insert_into(timelines::table)
1503 0 : .values(entry)
1504 0 : .on_conflict((timelines::tenant_id, timelines::timeline_id))
1505 0 : .do_nothing()
1506 0 : .execute(conn)
1507 0 : .await?;
1508 :
1509 0 : match inserted_updated {
1510 0 : 0 => Ok(false),
1511 0 : 1 => Ok(true),
1512 0 : _ => Err(DatabaseError::Logical(format!(
1513 0 : "unexpected number of rows ({inserted_updated})"
1514 0 : ))),
1515 : }
1516 0 : })
1517 0 : })
1518 0 : .await
1519 0 : }
1520 :
1521 : /// Update an already present timeline.
1522 : /// VERY UNSAFE FUNCTION: this overrides in-progress migrations. Don't use this unless neccessary.
1523 0 : pub(crate) async fn update_timeline_unsafe(
1524 0 : &self,
1525 0 : entry: TimelineUpdate,
1526 0 : ) -> DatabaseResult<bool> {
1527 : use crate::schema::timelines;
1528 :
1529 0 : let entry = &entry;
1530 0 : self.with_measured_conn(DatabaseOperation::UpdateTimeline, move |conn| {
1531 0 : Box::pin(async move {
1532 0 : let inserted_updated = diesel::update(timelines::table)
1533 0 : .filter(timelines::tenant_id.eq(&entry.tenant_id))
1534 0 : .filter(timelines::timeline_id.eq(&entry.timeline_id))
1535 0 : .set(entry)
1536 0 : .execute(conn)
1537 0 : .await?;
1538 :
1539 0 : match inserted_updated {
1540 0 : 0 => Ok(false),
1541 0 : 1 => Ok(true),
1542 0 : _ => Err(DatabaseError::Logical(format!(
1543 0 : "unexpected number of rows ({inserted_updated})"
1544 0 : ))),
1545 : }
1546 0 : })
1547 0 : })
1548 0 : .await
1549 0 : }
1550 :
1551 : /// Update timeline membership configuration in the database.
1552 : /// Perform a compare-and-swap (CAS) operation on the timeline's generation.
1553 : /// The `new_generation` must be the next (+1) generation after the one in the database.
1554 : /// Also inserts reconcile_requests to safekeeper_timeline_pending_ops table in the same
1555 : /// transaction.
1556 0 : pub(crate) async fn update_timeline_membership(
1557 0 : &self,
1558 0 : tenant_id: TenantId,
1559 0 : timeline_id: TimelineId,
1560 0 : new_generation: SafekeeperGeneration,
1561 0 : sk_set: &[NodeId],
1562 0 : new_sk_set: Option<&[NodeId]>,
1563 0 : reconcile_requests: &[TimelinePendingOpPersistence],
1564 0 : ) -> DatabaseResult<()> {
1565 : use crate::schema::safekeeper_timeline_pending_ops as stpo;
1566 : use crate::schema::timelines;
1567 : use diesel::query_dsl::methods::FilterDsl;
1568 :
1569 0 : let prev_generation = new_generation.previous().unwrap();
1570 :
1571 0 : let tenant_id = &tenant_id;
1572 0 : let timeline_id = &timeline_id;
1573 0 : self.with_measured_conn(DatabaseOperation::UpdateTimelineMembership, move |conn| {
1574 0 : Box::pin(async move {
1575 0 : let updated = diesel::update(timelines::table)
1576 0 : .filter(timelines::tenant_id.eq(&tenant_id.to_string()))
1577 0 : .filter(timelines::timeline_id.eq(&timeline_id.to_string()))
1578 0 : .filter(timelines::generation.eq(prev_generation.into_inner() as i32))
1579 0 : .set((
1580 0 : timelines::generation.eq(new_generation.into_inner() as i32),
1581 0 : timelines::sk_set
1582 0 : .eq(sk_set.iter().map(|id| id.0 as i64).collect::<Vec<_>>()),
1583 0 : timelines::new_sk_set.eq(new_sk_set
1584 0 : .map(|set| set.iter().map(|id| id.0 as i64).collect::<Vec<_>>())),
1585 : ))
1586 0 : .execute(conn)
1587 0 : .await?;
1588 :
1589 0 : match updated {
1590 : 0 => {
1591 : // TODO(diko): It makes sense to select the current generation
1592 : // and include it in the error message for better debuggability.
1593 0 : return Err(DatabaseError::Cas(
1594 0 : "Failed to update membership configuration".to_string(),
1595 0 : ));
1596 : }
1597 0 : 1 => {}
1598 : _ => {
1599 0 : return Err(DatabaseError::Logical(format!(
1600 0 : "unexpected number of rows ({updated})"
1601 0 : )));
1602 : }
1603 : };
1604 :
1605 0 : for req in reconcile_requests {
1606 0 : let inserted_updated = diesel::insert_into(stpo::table)
1607 0 : .values(req)
1608 0 : .on_conflict((stpo::tenant_id, stpo::timeline_id, stpo::sk_id))
1609 0 : .do_update()
1610 0 : .set(req)
1611 0 : .filter(stpo::generation.lt(req.generation))
1612 0 : .execute(conn)
1613 0 : .await?;
1614 :
1615 0 : if inserted_updated > 1 {
1616 0 : return Err(DatabaseError::Logical(format!(
1617 0 : "unexpected number of rows ({inserted_updated})"
1618 0 : )));
1619 0 : }
1620 : }
1621 :
1622 0 : Ok(())
1623 0 : })
1624 0 : })
1625 0 : .await
1626 0 : }
1627 :
1628 : /// Update the cplane notified generation for a timeline.
1629 : /// Perform a compare-and-swap (CAS) operation on the timeline's cplane notified generation.
1630 : /// The update will fail if the specified generation is less than the cplane notified generation
1631 : /// in the database.
1632 0 : pub(crate) async fn update_cplane_notified_generation(
1633 0 : &self,
1634 0 : tenant_id: TenantId,
1635 0 : timeline_id: TimelineId,
1636 0 : generation: SafekeeperGeneration,
1637 0 : ) -> DatabaseResult<()> {
1638 : use crate::schema::timelines::dsl;
1639 :
1640 0 : let tenant_id = &tenant_id;
1641 0 : let timeline_id = &timeline_id;
1642 0 : self.with_measured_conn(
1643 0 : DatabaseOperation::UpdateCplaneNotifiedGeneration,
1644 0 : move |conn| {
1645 0 : Box::pin(async move {
1646 0 : let updated = diesel::update(dsl::timelines)
1647 0 : .filter(dsl::tenant_id.eq(&tenant_id.to_string()))
1648 0 : .filter(dsl::timeline_id.eq(&timeline_id.to_string()))
1649 0 : .filter(dsl::cplane_notified_generation.le(generation.into_inner() as i32))
1650 0 : .set(dsl::cplane_notified_generation.eq(generation.into_inner() as i32))
1651 0 : .execute(conn)
1652 0 : .await?;
1653 :
1654 0 : match updated {
1655 0 : 0 => Err(DatabaseError::Cas(
1656 0 : "Failed to update cplane notified generation".to_string(),
1657 0 : )),
1658 0 : 1 => Ok(()),
1659 0 : _ => Err(DatabaseError::Logical(format!(
1660 0 : "unexpected number of rows ({updated})"
1661 0 : ))),
1662 : }
1663 0 : })
1664 0 : },
1665 : )
1666 0 : .await
1667 0 : }
1668 :
1669 : /// Update the sk set notified generation for a timeline.
1670 : /// Perform a compare-and-swap (CAS) operation on the timeline's sk set notified generation.
1671 : /// The update will fail if the specified generation is less than the sk set notified generation
1672 : /// in the database.
1673 0 : pub(crate) async fn update_sk_set_notified_generation(
1674 0 : &self,
1675 0 : tenant_id: TenantId,
1676 0 : timeline_id: TimelineId,
1677 0 : generation: SafekeeperGeneration,
1678 0 : ) -> DatabaseResult<()> {
1679 : use crate::schema::timelines::dsl;
1680 :
1681 0 : let tenant_id = &tenant_id;
1682 0 : let timeline_id = &timeline_id;
1683 0 : self.with_measured_conn(
1684 0 : DatabaseOperation::UpdateSkSetNotifiedGeneration,
1685 0 : move |conn| {
1686 0 : Box::pin(async move {
1687 0 : let updated = diesel::update(dsl::timelines)
1688 0 : .filter(dsl::tenant_id.eq(&tenant_id.to_string()))
1689 0 : .filter(dsl::timeline_id.eq(&timeline_id.to_string()))
1690 0 : .filter(dsl::sk_set_notified_generation.le(generation.into_inner() as i32))
1691 0 : .set(dsl::sk_set_notified_generation.eq(generation.into_inner() as i32))
1692 0 : .execute(conn)
1693 0 : .await?;
1694 :
1695 0 : match updated {
1696 0 : 0 => Err(DatabaseError::Cas(
1697 0 : "Failed to update sk set notified generation".to_string(),
1698 0 : )),
1699 0 : 1 => Ok(()),
1700 0 : _ => Err(DatabaseError::Logical(format!(
1701 0 : "unexpected number of rows ({updated})"
1702 0 : ))),
1703 : }
1704 0 : })
1705 0 : },
1706 : )
1707 0 : .await
1708 0 : }
1709 :
1710 : /// Load timeline from db. Returns `None` if not present.
1711 0 : pub(crate) async fn get_timeline(
1712 0 : &self,
1713 0 : tenant_id: TenantId,
1714 0 : timeline_id: TimelineId,
1715 0 : ) -> DatabaseResult<Option<TimelinePersistence>> {
1716 : use crate::schema::timelines::dsl;
1717 :
1718 0 : let tenant_id = &tenant_id;
1719 0 : let timeline_id = &timeline_id;
1720 0 : let timeline_from_db = self
1721 0 : .with_measured_conn(DatabaseOperation::GetTimeline, move |conn| {
1722 0 : Box::pin(async move {
1723 0 : let mut from_db: Vec<TimelineFromDb> = dsl::timelines
1724 0 : .filter(
1725 0 : dsl::tenant_id
1726 0 : .eq(&tenant_id.to_string())
1727 0 : .and(dsl::timeline_id.eq(&timeline_id.to_string())),
1728 0 : )
1729 0 : .load(conn)
1730 0 : .await?;
1731 0 : if from_db.is_empty() {
1732 0 : return Ok(None);
1733 0 : }
1734 0 : if from_db.len() != 1 {
1735 0 : return Err(DatabaseError::Logical(format!(
1736 0 : "unexpected number of rows ({})",
1737 0 : from_db.len()
1738 0 : )));
1739 0 : }
1740 :
1741 0 : Ok(Some(from_db.pop().unwrap().into_persistence()))
1742 0 : })
1743 0 : })
1744 0 : .await?;
1745 :
1746 0 : Ok(timeline_from_db)
1747 0 : }
1748 :
1749 : /// Set `delete_at` for the given timeline
1750 0 : pub(crate) async fn timeline_set_deleted_at(
1751 0 : &self,
1752 0 : tenant_id: TenantId,
1753 0 : timeline_id: TimelineId,
1754 0 : ) -> DatabaseResult<()> {
1755 : use crate::schema::timelines;
1756 :
1757 0 : let deletion_time = chrono::Local::now().to_utc();
1758 0 : self.with_measured_conn(DatabaseOperation::InsertTimeline, move |conn| {
1759 0 : Box::pin(async move {
1760 0 : let updated = diesel::update(timelines::table)
1761 0 : .filter(timelines::tenant_id.eq(tenant_id.to_string()))
1762 0 : .filter(timelines::timeline_id.eq(timeline_id.to_string()))
1763 0 : .set(timelines::deleted_at.eq(Some(deletion_time)))
1764 0 : .execute(conn)
1765 0 : .await?;
1766 :
1767 0 : match updated {
1768 0 : 0 => Ok(()),
1769 0 : 1 => Ok(()),
1770 0 : _ => Err(DatabaseError::Logical(format!(
1771 0 : "unexpected number of rows ({updated})"
1772 0 : ))),
1773 : }
1774 0 : })
1775 0 : })
1776 0 : .await
1777 0 : }
1778 :
1779 : /// Load timeline from db. Returns `None` if not present.
1780 : ///
1781 : /// Only works if `deleted_at` is set, so you should call [`Self::timeline_set_deleted_at`] before.
1782 0 : pub(crate) async fn delete_timeline(
1783 0 : &self,
1784 0 : tenant_id: TenantId,
1785 0 : timeline_id: TimelineId,
1786 0 : ) -> DatabaseResult<()> {
1787 : use crate::schema::timelines::dsl;
1788 :
1789 0 : let tenant_id = &tenant_id;
1790 0 : let timeline_id = &timeline_id;
1791 0 : self.with_measured_conn(DatabaseOperation::GetTimeline, move |conn| {
1792 0 : Box::pin(async move {
1793 0 : diesel::delete(dsl::timelines)
1794 0 : .filter(dsl::tenant_id.eq(&tenant_id.to_string()))
1795 0 : .filter(dsl::timeline_id.eq(&timeline_id.to_string()))
1796 0 : .filter(dsl::deleted_at.is_not_null())
1797 0 : .execute(conn)
1798 0 : .await?;
1799 0 : Ok(())
1800 0 : })
1801 0 : })
1802 0 : .await?;
1803 :
1804 0 : Ok(())
1805 0 : }
1806 :
1807 : /// Loads a list of all timelines from database.
1808 0 : pub(crate) async fn list_timelines_for_tenant(
1809 0 : &self,
1810 0 : tenant_id: TenantId,
1811 0 : ) -> DatabaseResult<Vec<TimelinePersistence>> {
1812 : use crate::schema::timelines::dsl;
1813 :
1814 0 : let tenant_id = &tenant_id;
1815 0 : let timelines = self
1816 0 : .with_measured_conn(DatabaseOperation::GetTimeline, move |conn| {
1817 0 : Box::pin(async move {
1818 0 : let timelines: Vec<TimelineFromDb> = dsl::timelines
1819 0 : .filter(dsl::tenant_id.eq(&tenant_id.to_string()))
1820 0 : .load(conn)
1821 0 : .await?;
1822 0 : Ok(timelines)
1823 0 : })
1824 0 : })
1825 0 : .await?;
1826 :
1827 0 : let timelines = timelines
1828 0 : .into_iter()
1829 0 : .map(TimelineFromDb::into_persistence)
1830 0 : .collect();
1831 0 : Ok(timelines)
1832 0 : }
1833 :
1834 : /// Persist pending op. Returns if it was newly inserted. If it wasn't, we haven't done any writes.
1835 0 : pub(crate) async fn insert_pending_op(
1836 0 : &self,
1837 0 : entry: TimelinePendingOpPersistence,
1838 0 : ) -> DatabaseResult<bool> {
1839 : use crate::schema::safekeeper_timeline_pending_ops as skpo;
1840 : // This overrides the `filter` fn used in other functions, so contain the mayhem via a function-local use
1841 : use diesel::query_dsl::methods::FilterDsl;
1842 :
1843 0 : let entry = &entry;
1844 0 : self.with_measured_conn(DatabaseOperation::InsertTimelineReconcile, move |conn| {
1845 0 : Box::pin(async move {
1846 : // For simplicity it makes sense to keep only the last operation
1847 : // per (tenant, timeline, sk) tuple: if we migrated a timeline
1848 : // from node and adding it back it is not necessary to remove
1849 : // data on it. Hence, generation is not part of primary key and
1850 : // we override any rows with lower generations here.
1851 0 : let inserted_updated = diesel::insert_into(skpo::table)
1852 0 : .values(entry)
1853 0 : .on_conflict((skpo::tenant_id, skpo::timeline_id, skpo::sk_id))
1854 0 : .do_update()
1855 0 : .set(entry)
1856 0 : .filter(skpo::generation.lt(entry.generation))
1857 0 : .execute(conn)
1858 0 : .await?;
1859 :
1860 0 : match inserted_updated {
1861 0 : 0 => Ok(false),
1862 0 : 1 => Ok(true),
1863 0 : _ => Err(DatabaseError::Logical(format!(
1864 0 : "unexpected number of rows ({inserted_updated})"
1865 0 : ))),
1866 : }
1867 0 : })
1868 0 : })
1869 0 : .await
1870 0 : }
1871 : /// Remove persisted pending op.
1872 0 : pub(crate) async fn remove_pending_op(
1873 0 : &self,
1874 0 : tenant_id: TenantId,
1875 0 : timeline_id: Option<TimelineId>,
1876 0 : sk_id: NodeId,
1877 0 : generation: u32,
1878 0 : ) -> DatabaseResult<()> {
1879 : use crate::schema::safekeeper_timeline_pending_ops::dsl;
1880 :
1881 0 : let tenant_id = &tenant_id;
1882 0 : let timeline_id = &timeline_id;
1883 0 : self.with_measured_conn(DatabaseOperation::RemoveTimelineReconcile, move |conn| {
1884 0 : let timeline_id_str = timeline_id.map(|tid| tid.to_string()).unwrap_or_default();
1885 0 : Box::pin(async move {
1886 0 : diesel::delete(dsl::safekeeper_timeline_pending_ops)
1887 0 : .filter(dsl::tenant_id.eq(tenant_id.to_string()))
1888 0 : .filter(dsl::timeline_id.eq(timeline_id_str))
1889 0 : .filter(dsl::sk_id.eq(sk_id.0 as i64))
1890 0 : .filter(dsl::generation.eq(generation as i32))
1891 0 : .execute(conn)
1892 0 : .await?;
1893 0 : Ok(())
1894 0 : })
1895 0 : })
1896 0 : .await
1897 0 : }
1898 :
1899 : /// Load pending operations from db, joined together with timeline data.
1900 0 : pub(crate) async fn list_pending_ops_with_timelines(
1901 0 : &self,
1902 0 : ) -> DatabaseResult<Vec<(TimelinePendingOpPersistence, Option<TimelinePersistence>)>> {
1903 : use crate::schema::safekeeper_timeline_pending_ops::dsl;
1904 : use crate::schema::timelines;
1905 :
1906 0 : let timeline_from_db = self
1907 0 : .with_measured_conn(
1908 0 : DatabaseOperation::ListTimelineReconcileStartup,
1909 0 : move |conn| {
1910 0 : Box::pin(async move {
1911 0 : let from_db: Vec<(TimelinePendingOpPersistence, Option<TimelineFromDb>)> =
1912 0 : dsl::safekeeper_timeline_pending_ops
1913 0 : .left_join(
1914 0 : timelines::table.on(timelines::tenant_id
1915 0 : .eq(dsl::tenant_id)
1916 0 : .and(timelines::timeline_id.eq(dsl::timeline_id))),
1917 0 : )
1918 0 : .select((
1919 0 : TimelinePendingOpPersistence::as_select(),
1920 0 : Option::<TimelineFromDb>::as_select(),
1921 0 : ))
1922 0 : .load(conn)
1923 0 : .await?;
1924 0 : Ok(from_db)
1925 0 : })
1926 0 : },
1927 : )
1928 0 : .await?;
1929 :
1930 0 : Ok(timeline_from_db
1931 0 : .into_iter()
1932 0 : .map(|(op, tl_opt)| (op, tl_opt.map(|tl_opt| tl_opt.into_persistence())))
1933 0 : .collect())
1934 0 : }
1935 : /// List pending operations for a given timeline (including tenant-global ones)
1936 0 : pub(crate) async fn list_pending_ops_for_timeline(
1937 0 : &self,
1938 0 : tenant_id: TenantId,
1939 0 : timeline_id: TimelineId,
1940 0 : ) -> DatabaseResult<Vec<TimelinePendingOpPersistence>> {
1941 : use crate::schema::safekeeper_timeline_pending_ops::dsl;
1942 :
1943 0 : let timelines_from_db = self
1944 0 : .with_measured_conn(DatabaseOperation::ListTimelineReconcile, move |conn| {
1945 0 : Box::pin(async move {
1946 0 : let from_db: Vec<TimelinePendingOpPersistence> =
1947 0 : dsl::safekeeper_timeline_pending_ops
1948 0 : .filter(dsl::tenant_id.eq(tenant_id.to_string()))
1949 0 : .filter(
1950 0 : dsl::timeline_id
1951 0 : .eq(timeline_id.to_string())
1952 0 : .or(dsl::timeline_id.eq("")),
1953 0 : )
1954 0 : .load(conn)
1955 0 : .await?;
1956 0 : Ok(from_db)
1957 0 : })
1958 0 : })
1959 0 : .await?;
1960 :
1961 0 : Ok(timelines_from_db)
1962 0 : }
1963 :
1964 : /// Delete all pending ops for the given timeline.
1965 : ///
1966 : /// Use this only at timeline deletion, otherwise use generation based APIs
1967 0 : pub(crate) async fn remove_pending_ops_for_timeline(
1968 0 : &self,
1969 0 : tenant_id: TenantId,
1970 0 : timeline_id: Option<TimelineId>,
1971 0 : ) -> DatabaseResult<()> {
1972 : use crate::schema::safekeeper_timeline_pending_ops::dsl;
1973 :
1974 0 : let tenant_id = &tenant_id;
1975 0 : let timeline_id = &timeline_id;
1976 0 : self.with_measured_conn(DatabaseOperation::RemoveTimelineReconcile, move |conn| {
1977 0 : let timeline_id_str = timeline_id.map(|tid| tid.to_string()).unwrap_or_default();
1978 0 : Box::pin(async move {
1979 0 : diesel::delete(dsl::safekeeper_timeline_pending_ops)
1980 0 : .filter(dsl::tenant_id.eq(tenant_id.to_string()))
1981 0 : .filter(dsl::timeline_id.eq(timeline_id_str))
1982 0 : .execute(conn)
1983 0 : .await?;
1984 0 : Ok(())
1985 0 : })
1986 0 : })
1987 0 : .await?;
1988 :
1989 0 : Ok(())
1990 0 : }
1991 :
1992 0 : pub(crate) async fn insert_timeline_import(
1993 0 : &self,
1994 0 : import: TimelineImportPersistence,
1995 0 : ) -> DatabaseResult<bool> {
1996 0 : self.with_measured_conn(DatabaseOperation::InsertTimelineImport, move |conn| {
1997 0 : Box::pin({
1998 0 : let import = import.clone();
1999 0 : async move {
2000 0 : let inserted = diesel::insert_into(crate::schema::timeline_imports::table)
2001 0 : .values(import)
2002 0 : .execute(conn)
2003 0 : .await?;
2004 0 : Ok(inserted == 1)
2005 0 : }
2006 : })
2007 0 : })
2008 0 : .await
2009 0 : }
2010 :
2011 0 : pub(crate) async fn list_timeline_imports(&self) -> DatabaseResult<Vec<TimelineImport>> {
2012 : use crate::schema::timeline_imports::dsl;
2013 0 : let persistent = self
2014 0 : .with_measured_conn(DatabaseOperation::ListTimelineImports, move |conn| {
2015 0 : Box::pin(async move {
2016 0 : let from_db: Vec<TimelineImportPersistence> =
2017 0 : dsl::timeline_imports.load(conn).await?;
2018 0 : Ok(from_db)
2019 0 : })
2020 0 : })
2021 0 : .await?;
2022 :
2023 0 : let imports: Result<Vec<TimelineImport>, _> = persistent
2024 0 : .into_iter()
2025 0 : .map(TimelineImport::from_persistent)
2026 0 : .collect();
2027 0 : match imports {
2028 0 : Ok(ok) => Ok(ok.into_iter().collect()),
2029 0 : Err(err) => Err(DatabaseError::Logical(format!(
2030 0 : "failed to deserialize import: {err}"
2031 0 : ))),
2032 : }
2033 0 : }
2034 :
2035 0 : pub(crate) async fn get_timeline_import(
2036 0 : &self,
2037 0 : tenant_id: TenantId,
2038 0 : timeline_id: TimelineId,
2039 0 : ) -> DatabaseResult<Option<TimelineImport>> {
2040 : use crate::schema::timeline_imports::dsl;
2041 0 : let persistent_import = self
2042 0 : .with_measured_conn(DatabaseOperation::ListTimelineImports, move |conn| {
2043 0 : Box::pin(async move {
2044 0 : let mut from_db: Vec<TimelineImportPersistence> = dsl::timeline_imports
2045 0 : .filter(dsl::tenant_id.eq(tenant_id.to_string()))
2046 0 : .filter(dsl::timeline_id.eq(timeline_id.to_string()))
2047 0 : .load(conn)
2048 0 : .await?;
2049 :
2050 0 : if from_db.len() > 1 {
2051 0 : return Err(DatabaseError::Logical(format!(
2052 0 : "unexpected number of rows ({})",
2053 0 : from_db.len()
2054 0 : )));
2055 0 : }
2056 :
2057 0 : Ok(from_db.pop())
2058 0 : })
2059 0 : })
2060 0 : .await?;
2061 :
2062 0 : persistent_import
2063 0 : .map(TimelineImport::from_persistent)
2064 0 : .transpose()
2065 0 : .map_err(|err| DatabaseError::Logical(format!("failed to deserialize import: {err}")))
2066 0 : }
2067 :
2068 0 : pub(crate) async fn delete_timeline_import(
2069 0 : &self,
2070 0 : tenant_id: TenantId,
2071 0 : timeline_id: TimelineId,
2072 0 : ) -> DatabaseResult<()> {
2073 : use crate::schema::timeline_imports::dsl;
2074 :
2075 0 : self.with_measured_conn(DatabaseOperation::DeleteTimelineImport, move |conn| {
2076 0 : Box::pin(async move {
2077 0 : diesel::delete(crate::schema::timeline_imports::table)
2078 0 : .filter(
2079 0 : dsl::tenant_id
2080 0 : .eq(tenant_id.to_string())
2081 0 : .and(dsl::timeline_id.eq(timeline_id.to_string())),
2082 0 : )
2083 0 : .execute(conn)
2084 0 : .await?;
2085 :
2086 0 : Ok(())
2087 0 : })
2088 0 : })
2089 0 : .await
2090 0 : }
2091 :
2092 : /// Idempotently update the status of one shard for an ongoing timeline import
2093 : ///
2094 : /// If the update was persisted to the database, then the current state of the
2095 : /// import is returned to the caller. In case of logical errors a bespoke
2096 : /// [`TimelineImportUpdateError`] instance is returned. Other database errors
2097 : /// are covered by the outer [`DatabaseError`].
2098 0 : pub(crate) async fn update_timeline_import(
2099 0 : &self,
2100 0 : tenant_shard_id: TenantShardId,
2101 0 : timeline_id: TimelineId,
2102 0 : shard_status: ShardImportStatus,
2103 0 : ) -> DatabaseResult<Result<Option<TimelineImport>, TimelineImportUpdateError>> {
2104 : use crate::schema::timeline_imports::dsl;
2105 :
2106 0 : self.with_measured_conn(DatabaseOperation::UpdateTimelineImport, move |conn| {
2107 0 : Box::pin({
2108 0 : let shard_status = shard_status.clone();
2109 0 : async move {
2110 : // Load the current state from the database
2111 0 : let mut from_db: Vec<TimelineImportPersistence> = dsl::timeline_imports
2112 0 : .filter(
2113 0 : dsl::tenant_id
2114 0 : .eq(tenant_shard_id.tenant_id.to_string())
2115 0 : .and(dsl::timeline_id.eq(timeline_id.to_string())),
2116 0 : )
2117 0 : .load(conn)
2118 0 : .await?;
2119 :
2120 0 : assert!(from_db.len() <= 1);
2121 :
2122 0 : let mut status = match from_db.pop() {
2123 0 : Some(some) => TimelineImport::from_persistent(some).unwrap(),
2124 : None => {
2125 0 : return Ok(Err(TimelineImportUpdateError::ImportNotFound {
2126 0 : tenant_id: tenant_shard_id.tenant_id,
2127 0 : timeline_id,
2128 0 : }));
2129 : }
2130 : };
2131 :
2132 : // Perform the update in-memory
2133 0 : let follow_up = match status.update(tenant_shard_id.to_index(), shard_status) {
2134 0 : Ok(ok) => ok,
2135 0 : Err(err) => {
2136 0 : return Ok(Err(err));
2137 : }
2138 : };
2139 :
2140 0 : let new_persistent = status.to_persistent();
2141 :
2142 : // Write back if required (in the same transaction)
2143 0 : match follow_up {
2144 : TimelineImportUpdateFollowUp::Persist => {
2145 0 : let updated = diesel::update(dsl::timeline_imports)
2146 0 : .filter(
2147 0 : dsl::tenant_id
2148 0 : .eq(tenant_shard_id.tenant_id.to_string())
2149 0 : .and(dsl::timeline_id.eq(timeline_id.to_string())),
2150 0 : )
2151 0 : .set(dsl::shard_statuses.eq(new_persistent.shard_statuses))
2152 0 : .execute(conn)
2153 0 : .await?;
2154 :
2155 0 : if updated != 1 {
2156 0 : return Ok(Err(TimelineImportUpdateError::ImportNotFound {
2157 0 : tenant_id: tenant_shard_id.tenant_id,
2158 0 : timeline_id,
2159 0 : }));
2160 0 : }
2161 :
2162 0 : Ok(Ok(Some(status)))
2163 : }
2164 0 : TimelineImportUpdateFollowUp::None => Ok(Ok(None)),
2165 : }
2166 0 : }
2167 : })
2168 0 : })
2169 0 : .await
2170 0 : }
2171 :
2172 0 : pub(crate) async fn is_tenant_importing_timeline(
2173 0 : &self,
2174 0 : tenant_id: TenantId,
2175 0 : ) -> DatabaseResult<bool> {
2176 : use crate::schema::timeline_imports::dsl;
2177 0 : self.with_measured_conn(DatabaseOperation::IsTenantImportingTimeline, move |conn| {
2178 0 : Box::pin(async move {
2179 0 : let imports: i64 = dsl::timeline_imports
2180 0 : .filter(dsl::tenant_id.eq(tenant_id.to_string()))
2181 0 : .count()
2182 0 : .get_result(conn)
2183 0 : .await?;
2184 :
2185 0 : Ok(imports > 0)
2186 0 : })
2187 0 : })
2188 0 : .await
2189 0 : }
2190 :
2191 : ////////////////////////////////////////////////////////////////
2192 : //////////////////////// Hadron methods ////////////////////////
2193 : //////////////////////// (Brickstore) //////////////////////////
2194 : ////////////////////////////////////////////////////////////////
2195 :
2196 : /// Upsert a SafeKeeper node.
2197 : #[allow(unused)]
2198 0 : pub(crate) async fn upsert_sk_node(&self, sk_node: &SafeKeeperNode) -> DatabaseResult<()> {
2199 0 : let sk_row = sk_node.to_database_row();
2200 0 : self.with_measured_conn(DatabaseOperation::UpsertSafeKeeperNode, move |conn| {
2201 : // Incantation to make the borrow checker happy
2202 0 : let sk_row_clone = sk_row.clone();
2203 0 : Box::pin(async move { execute_sk_upsert(conn, sk_row_clone).await })
2204 0 : })
2205 0 : .await
2206 0 : }
2207 :
2208 : /// Load all Safe Keeper nodes and their scheduled endpoints from the database. This method is called at startup to
2209 : /// populate the SafeKeeperScheduler.
2210 : #[allow(unused)]
2211 0 : pub(crate) async fn load_safekeeper_scheduling_data(
2212 0 : &self,
2213 0 : ) -> DatabaseResult<HashMap<NodeId, SafeKeeperNode>> {
2214 0 : let sk_nodes: HashMap<NodeId, SafeKeeperNode> = self
2215 0 : .with_measured_conn(
2216 0 : DatabaseOperation::LoadSafeKeepersAndEndpoints,
2217 0 : move |conn| {
2218 : // Retrieve all Safe Keeper nodes from the hadron_safekeepers table, and all timelines (grouped by
2219 : // safe keeper IDs) from the hadron_timeline_safekeepers table.
2220 0 : Box::pin(async move { scan_safekeepers_and_scheduled_timelines(conn).await })
2221 0 : },
2222 : )
2223 0 : .await?;
2224 :
2225 0 : tracing::info!(
2226 0 : "load_safekeepers_and_endpoints: loaded {} safekeepers",
2227 0 : sk_nodes.len()
2228 : );
2229 :
2230 0 : Ok(sk_nodes)
2231 0 : }
2232 :
2233 : #[allow(unused)]
2234 0 : pub(crate) async fn get_or_assign_safekeepers_to_timeline(
2235 0 : &self,
2236 0 : timeline_id: TimelineId,
2237 0 : safekeepers: Vec<NodeId>,
2238 0 : ) -> DatabaseResult<Vec<NodeId>> {
2239 0 : self.with_measured_conn(
2240 0 : DatabaseOperation::GetOrCreateHadronTimelineSafekeeper,
2241 0 : move |conn| {
2242 0 : let safekeepers_clone = safekeepers.clone();
2243 0 : Box::pin(async move {
2244 0 : idempotently_persist_or_get_existing_timeline_safekeepers(
2245 0 : conn,
2246 0 : timeline_id,
2247 0 : &safekeepers_clone,
2248 0 : )
2249 0 : .await
2250 0 : })
2251 0 : },
2252 : )
2253 0 : .await
2254 0 : }
2255 :
2256 : #[allow(unused)]
2257 0 : pub(crate) async fn delete_hadron_timeline_safekeepers(
2258 0 : &self,
2259 0 : timeline_id: TimelineId,
2260 0 : ) -> DatabaseResult<()> {
2261 0 : self.with_measured_conn(DatabaseOperation::DeleteHadronTimeline, move |conn| {
2262 0 : Box::pin(async move {
2263 0 : delete_timeline_safekeepers(conn, timeline_id).await?;
2264 0 : Ok(())
2265 0 : })
2266 0 : })
2267 0 : .await
2268 0 : }
2269 :
2270 : #[allow(unused)]
2271 0 : pub(crate) async fn get_pageserver_and_safekeepers(
2272 0 : &self,
2273 0 : tenant_id: TenantId,
2274 0 : timeline_id: TimelineId,
2275 0 : ) -> DatabaseResult<PageserverAndSafekeeperConnectionInfo> {
2276 0 : self.with_measured_conn(
2277 0 : DatabaseOperation::FetchPageServerAndSafeKeeperConnections,
2278 0 : move |conn| {
2279 0 : Box::pin(async move {
2280 0 : get_pageserver_and_safekeeper_connection_info(conn, tenant_id, timeline_id)
2281 0 : .await
2282 0 : })
2283 0 : },
2284 : )
2285 0 : .await
2286 0 : }
2287 :
2288 : #[allow(unused)]
2289 0 : pub(crate) async fn list_hadron_safekeepers(&self) -> DatabaseResult<Vec<HadronSafekeeperRow>> {
2290 0 : let safekeepers: Vec<HadronSafekeeperRow> = self
2291 0 : .with_measured_conn(DatabaseOperation::ListNodes, move |conn| {
2292 0 : Box::pin(async move {
2293 0 : Ok(crate::schema::hadron_safekeepers::table
2294 0 : .load::<HadronSafekeeperRow>(conn)
2295 0 : .await?)
2296 0 : })
2297 0 : })
2298 0 : .await?;
2299 :
2300 0 : tracing::info!(
2301 0 : "list_hadron_safekeepers: loaded {} nodes",
2302 0 : safekeepers.len()
2303 : );
2304 :
2305 0 : Ok(safekeepers)
2306 0 : }
2307 :
2308 : #[allow(unused)]
2309 0 : pub(crate) async fn safekeeper_list_timelines(
2310 0 : &self,
2311 0 : id: i64,
2312 0 : ) -> DatabaseResult<SCSafekeeperTimelinesResponse> {
2313 0 : self.with_measured_conn(DatabaseOperation::ListSafekeeperTimelines, move |conn| {
2314 0 : Box::pin(async move { execute_safekeeper_list_timelines(conn, id).await })
2315 0 : })
2316 0 : .await
2317 0 : }
2318 : }
2319 :
2320 0 : pub(crate) fn load_certs() -> anyhow::Result<Arc<rustls::RootCertStore>> {
2321 0 : let der_certs = rustls_native_certs::load_native_certs();
2322 :
2323 0 : if !der_certs.errors.is_empty() {
2324 0 : anyhow::bail!("could not parse certificates: {:?}", der_certs.errors);
2325 0 : }
2326 :
2327 0 : let mut store = rustls::RootCertStore::empty();
2328 0 : store.add_parsable_certificates(der_certs.certs);
2329 0 : Ok(Arc::new(store))
2330 0 : }
2331 :
2332 : #[derive(Debug)]
2333 : /// A verifier that accepts all certificates (but logs an error still)
2334 : struct AcceptAll(Arc<WebPkiServerVerifier>);
2335 : impl ServerCertVerifier for AcceptAll {
2336 0 : fn verify_server_cert(
2337 0 : &self,
2338 0 : end_entity: &rustls::pki_types::CertificateDer<'_>,
2339 0 : intermediates: &[rustls::pki_types::CertificateDer<'_>],
2340 0 : server_name: &rustls::pki_types::ServerName<'_>,
2341 0 : ocsp_response: &[u8],
2342 0 : now: rustls::pki_types::UnixTime,
2343 0 : ) -> Result<ServerCertVerified, rustls::Error> {
2344 0 : let r =
2345 0 : self.0
2346 0 : .verify_server_cert(end_entity, intermediates, server_name, ocsp_response, now);
2347 0 : if let Err(err) = r {
2348 0 : tracing::info!(
2349 : ?server_name,
2350 0 : "ignoring db connection TLS validation error: {err:?}"
2351 : );
2352 0 : return Ok(ServerCertVerified::assertion());
2353 0 : }
2354 0 : r
2355 0 : }
2356 0 : fn verify_tls12_signature(
2357 0 : &self,
2358 0 : message: &[u8],
2359 0 : cert: &rustls::pki_types::CertificateDer<'_>,
2360 0 : dss: &rustls::DigitallySignedStruct,
2361 0 : ) -> Result<rustls::client::danger::HandshakeSignatureValid, rustls::Error> {
2362 0 : self.0.verify_tls12_signature(message, cert, dss)
2363 0 : }
2364 0 : fn verify_tls13_signature(
2365 0 : &self,
2366 0 : message: &[u8],
2367 0 : cert: &rustls::pki_types::CertificateDer<'_>,
2368 0 : dss: &rustls::DigitallySignedStruct,
2369 0 : ) -> Result<rustls::client::danger::HandshakeSignatureValid, rustls::Error> {
2370 0 : self.0.verify_tls13_signature(message, cert, dss)
2371 0 : }
2372 0 : fn supported_verify_schemes(&self) -> Vec<rustls::SignatureScheme> {
2373 0 : self.0.supported_verify_schemes()
2374 0 : }
2375 : }
2376 :
2377 : /// Loads the root certificates and constructs a client config suitable for connecting.
2378 : /// This function is blocking.
2379 0 : fn client_config_with_root_certs() -> anyhow::Result<rustls::ClientConfig> {
2380 0 : let client_config =
2381 0 : rustls::ClientConfig::builder_with_provider(Arc::new(ring::default_provider()))
2382 0 : .with_safe_default_protocol_versions()
2383 0 : .expect("ring should support the default protocol versions");
2384 : static DO_CERT_CHECKS: std::sync::OnceLock<bool> = std::sync::OnceLock::new();
2385 0 : let do_cert_checks =
2386 0 : DO_CERT_CHECKS.get_or_init(|| std::env::var("STORCON_DB_CERT_CHECKS").is_ok());
2387 0 : Ok(if *do_cert_checks {
2388 0 : client_config
2389 0 : .with_root_certificates(load_certs()?)
2390 0 : .with_no_client_auth()
2391 : } else {
2392 0 : let verifier = AcceptAll(
2393 0 : WebPkiServerVerifier::builder_with_provider(
2394 0 : load_certs()?,
2395 0 : Arc::new(ring::default_provider()),
2396 : )
2397 0 : .build()?,
2398 : );
2399 0 : client_config
2400 0 : .dangerous()
2401 0 : .with_custom_certificate_verifier(Arc::new(verifier))
2402 0 : .with_no_client_auth()
2403 : })
2404 0 : }
2405 :
2406 : // Hadron's implementation of establish_connection_rustls which avoids hogging the tokio executor thread during
2407 : // CPU-intensive operations in postgres connection and session establishments.
2408 : // Compared to the original implementation this function performs the following tasks using spawn_blocking to avoid
2409 : // hogging the tokio executor thread:
2410 : // 1. Parsing and decoding root certificates during rustls client config setup.
2411 : // 2. The tokio_postgres::connect() call, which performs the TLS handshake and the postgres password authentication.
2412 0 : fn establish_connection_rustls(config: &str) -> BoxFuture<ConnectionResult<AsyncPgConnection>> {
2413 0 : let fut = async move {
2414 : // We first set up the way we want rustls to work.
2415 0 : let rustls_config = tokio::task::spawn_blocking(client_config_with_root_certs)
2416 0 : .await
2417 0 : .map_err(|e| {
2418 0 : ConnectionError::BadConnection(format!(
2419 0 : "Error in spawn_blocking client_config_with_root_certs: {e}"
2420 0 : ))
2421 0 : })
2422 0 : .and_then(|r| {
2423 0 : r.map_err(|e| {
2424 0 : ConnectionError::BadConnection(format!(
2425 0 : "Error in client_config_with_root_certs: {e}"
2426 0 : ))
2427 0 : })
2428 0 : })?;
2429 :
2430 0 : let tls = tokio_postgres_rustls::MakeRustlsConnect::new(rustls_config);
2431 :
2432 : // Perform the expensive TLS handshake and SCRAM SHA calculations in a blocking task
2433 0 : let task_owned_config = config.to_owned();
2434 0 : let (client, conn) = tokio::task::spawn_blocking(move || {
2435 0 : tokio::runtime::Handle::current()
2436 0 : .block_on(async { tokio_postgres::connect(&task_owned_config, tls).await })
2437 0 : })
2438 0 : .await
2439 0 : .map_err(|e| {
2440 0 : ConnectionError::BadConnection(format!(
2441 0 : "Error in spawn_blocking tokio_postgres::connect: {e}"
2442 0 : ))
2443 0 : })
2444 0 : .and_then(|r| r.map_err(|e| ConnectionError::BadConnection(e.to_string())))?;
2445 :
2446 0 : AsyncPgConnection::try_from_client_and_connection(client, conn).await
2447 0 : };
2448 0 : fut.boxed()
2449 0 : }
2450 :
2451 : #[cfg_attr(test, test)]
2452 1 : fn test_config_debug_censors_password() {
2453 1 : let has_pw =
2454 1 : "host=/var/lib/postgresql,localhost port=1234 user=specialuser password='NOT ALLOWED TAG'";
2455 1 : let has_pw_cfg = has_pw.parse::<tokio_postgres::Config>().unwrap();
2456 1 : assert!(format!("{has_pw_cfg:?}").contains("specialuser"));
2457 : // Ensure that the password is not leaked by the debug impl
2458 1 : assert!(!format!("{has_pw_cfg:?}").contains("NOT ALLOWED TAG"));
2459 1 : }
2460 :
2461 0 : fn log_postgres_connstr_info(config_str: &str) -> anyhow::Result<()> {
2462 0 : let config = config_str
2463 0 : .parse::<tokio_postgres::Config>()
2464 0 : .map_err(|_e| anyhow::anyhow!("Couldn't parse config str"))?;
2465 : // We use debug formatting here, and use a unit test to ensure that we don't leak the password.
2466 : // To make extra sure the test gets ran, run it every time the function is called
2467 : // (this is rather cold code, we can afford it).
2468 : #[cfg(not(test))]
2469 0 : test_config_debug_censors_password();
2470 0 : tracing::info!("database connection config: {config:?}");
2471 0 : Ok(())
2472 0 : }
2473 :
2474 : /// Parts of [`crate::tenant_shard::TenantShard`] that are stored durably
2475 : #[derive(
2476 0 : QueryableByName, Queryable, Selectable, Insertable, Serialize, Deserialize, Clone, Eq, PartialEq,
2477 : )]
2478 : #[diesel(table_name = crate::schema::tenant_shards)]
2479 : pub(crate) struct TenantShardPersistence {
2480 : #[serde(default)]
2481 : pub(crate) tenant_id: String,
2482 : #[serde(default)]
2483 : pub(crate) shard_number: i32,
2484 : #[serde(default)]
2485 : pub(crate) shard_count: i32,
2486 : #[serde(default)]
2487 : pub(crate) shard_stripe_size: i32,
2488 :
2489 : // Latest generation number: next time we attach, increment this
2490 : // and use the incremented number when attaching.
2491 : //
2492 : // Generation is only None when first onboarding a tenant, where it may
2493 : // be in PlacementPolicy::Secondary and therefore have no valid generation state.
2494 : pub(crate) generation: Option<i32>,
2495 :
2496 : // Currently attached pageserver
2497 : #[serde(rename = "pageserver")]
2498 : pub(crate) generation_pageserver: Option<i64>,
2499 :
2500 : #[serde(default)]
2501 : pub(crate) placement_policy: String,
2502 : #[serde(default)]
2503 : pub(crate) splitting: SplitState,
2504 : #[serde(default)]
2505 : pub(crate) config: String,
2506 : #[serde(default)]
2507 : pub(crate) scheduling_policy: String,
2508 :
2509 : // Hint that we should attempt to schedule this tenant shard the given
2510 : // availability zone in order to minimise the chances of cross-AZ communication
2511 : // with compute.
2512 : pub(crate) preferred_az_id: Option<String>,
2513 : }
2514 :
2515 : impl TenantShardPersistence {
2516 0 : fn get_shard_count(&self) -> Result<ShardCount, ShardConfigError> {
2517 0 : self.shard_count
2518 0 : .try_into()
2519 0 : .map(ShardCount)
2520 0 : .map_err(|_| ShardConfigError::InvalidCount)
2521 0 : }
2522 :
2523 0 : fn get_shard_number(&self) -> Result<ShardNumber, ShardConfigError> {
2524 0 : self.shard_number
2525 0 : .try_into()
2526 0 : .map(ShardNumber)
2527 0 : .map_err(|_| ShardConfigError::InvalidNumber)
2528 0 : }
2529 :
2530 0 : fn get_stripe_size(&self) -> Result<ShardStripeSize, ShardConfigError> {
2531 0 : self.shard_stripe_size
2532 0 : .try_into()
2533 0 : .map(ShardStripeSize)
2534 0 : .map_err(|_| ShardConfigError::InvalidStripeSize)
2535 0 : }
2536 :
2537 0 : pub(crate) fn get_shard_identity(&self) -> Result<ShardIdentity, ShardConfigError> {
2538 0 : if self.shard_count == 0 {
2539 : // NB: carry over the stripe size from the persisted record, to avoid consistency check
2540 : // failures if the persisted value differs from the default stripe size. The stripe size
2541 : // doesn't really matter for unsharded tenants anyway.
2542 0 : Ok(ShardIdentity::unsharded_with_stripe_size(
2543 0 : self.get_stripe_size()?,
2544 : ))
2545 : } else {
2546 0 : Ok(ShardIdentity::new(
2547 0 : self.get_shard_number()?,
2548 0 : self.get_shard_count()?,
2549 0 : self.get_stripe_size()?,
2550 0 : )?)
2551 : }
2552 0 : }
2553 :
2554 0 : pub(crate) fn get_tenant_shard_id(&self) -> anyhow::Result<TenantShardId> {
2555 : Ok(TenantShardId {
2556 0 : tenant_id: TenantId::from_str(self.tenant_id.as_str())?,
2557 0 : shard_number: self.get_shard_number()?,
2558 0 : shard_count: self.get_shard_count()?,
2559 : })
2560 0 : }
2561 : }
2562 :
2563 : /// Parts of [`crate::node::Node`] that are stored durably
2564 0 : #[derive(Serialize, Deserialize, Queryable, Selectable, Insertable, Eq, PartialEq)]
2565 : #[diesel(table_name = crate::schema::nodes)]
2566 : pub(crate) struct NodePersistence {
2567 : pub(crate) node_id: i64,
2568 : pub(crate) scheduling_policy: String,
2569 : pub(crate) listen_http_addr: String,
2570 : pub(crate) listen_http_port: i32,
2571 : pub(crate) listen_pg_addr: String,
2572 : pub(crate) listen_pg_port: i32,
2573 : pub(crate) availability_zone_id: String,
2574 : pub(crate) listen_https_port: Option<i32>,
2575 : pub(crate) lifecycle: String,
2576 : pub(crate) listen_grpc_addr: Option<String>,
2577 : pub(crate) listen_grpc_port: Option<i32>,
2578 : }
2579 :
2580 : /// Tenant metadata health status that are stored durably.
2581 0 : #[derive(Queryable, Selectable, Insertable, Serialize, Deserialize, Clone, Eq, PartialEq)]
2582 : #[diesel(table_name = crate::schema::metadata_health)]
2583 : pub(crate) struct MetadataHealthPersistence {
2584 : #[serde(default)]
2585 : pub(crate) tenant_id: String,
2586 : #[serde(default)]
2587 : pub(crate) shard_number: i32,
2588 : #[serde(default)]
2589 : pub(crate) shard_count: i32,
2590 :
2591 : pub(crate) healthy: bool,
2592 : pub(crate) last_scrubbed_at: chrono::DateTime<chrono::Utc>,
2593 : }
2594 :
2595 : impl MetadataHealthPersistence {
2596 0 : pub fn new(
2597 0 : tenant_shard_id: TenantShardId,
2598 0 : healthy: bool,
2599 0 : last_scrubbed_at: chrono::DateTime<chrono::Utc>,
2600 0 : ) -> Self {
2601 0 : let tenant_id = tenant_shard_id.tenant_id.to_string();
2602 0 : let shard_number = tenant_shard_id.shard_number.0 as i32;
2603 0 : let shard_count = tenant_shard_id.shard_count.literal() as i32;
2604 :
2605 0 : MetadataHealthPersistence {
2606 0 : tenant_id,
2607 0 : shard_number,
2608 0 : shard_count,
2609 0 : healthy,
2610 0 : last_scrubbed_at,
2611 0 : }
2612 0 : }
2613 :
2614 : #[allow(dead_code)]
2615 0 : pub(crate) fn get_tenant_shard_id(&self) -> Result<TenantShardId, hex::FromHexError> {
2616 : Ok(TenantShardId {
2617 0 : tenant_id: TenantId::from_str(self.tenant_id.as_str())?,
2618 0 : shard_number: ShardNumber(self.shard_number as u8),
2619 0 : shard_count: ShardCount::new(self.shard_count as u8),
2620 : })
2621 0 : }
2622 : }
2623 :
2624 : impl From<MetadataHealthPersistence> for MetadataHealthRecord {
2625 0 : fn from(value: MetadataHealthPersistence) -> Self {
2626 0 : MetadataHealthRecord {
2627 0 : tenant_shard_id: value
2628 0 : .get_tenant_shard_id()
2629 0 : .expect("stored tenant id should be valid"),
2630 0 : healthy: value.healthy,
2631 0 : last_scrubbed_at: value.last_scrubbed_at,
2632 0 : }
2633 0 : }
2634 : }
2635 :
2636 : #[derive(
2637 0 : Serialize, Deserialize, Queryable, Selectable, Insertable, Eq, PartialEq, Debug, Clone,
2638 : )]
2639 : #[diesel(table_name = crate::schema::controllers)]
2640 : pub(crate) struct ControllerPersistence {
2641 : pub(crate) address: String,
2642 : pub(crate) started_at: chrono::DateTime<chrono::Utc>,
2643 : }
2644 :
2645 : // What we store in the database
2646 0 : #[derive(Serialize, Deserialize, Queryable, Selectable, Eq, PartialEq, Debug, Clone)]
2647 : #[diesel(table_name = crate::schema::safekeepers)]
2648 : pub(crate) struct SafekeeperPersistence {
2649 : pub(crate) id: i64,
2650 : pub(crate) region_id: String,
2651 : /// 1 is special, it means just created (not currently posted to storcon).
2652 : /// Zero or negative is not really expected.
2653 : /// Otherwise the number from `release-$(number_of_commits_on_branch)` tag.
2654 : pub(crate) version: i64,
2655 : pub(crate) host: String,
2656 : pub(crate) port: i32,
2657 : pub(crate) http_port: i32,
2658 : pub(crate) availability_zone_id: String,
2659 : pub(crate) scheduling_policy: SkSchedulingPolicyFromSql,
2660 : pub(crate) https_port: Option<i32>,
2661 : }
2662 :
2663 : /// Wrapper struct around [`SkSchedulingPolicy`] because both it and [`FromSql`] are from foreign crates,
2664 : /// and we don't want to make [`safekeeper_api`] depend on [`diesel`].
2665 0 : #[derive(Serialize, Deserialize, FromSqlRow, Eq, PartialEq, Debug, Copy, Clone)]
2666 : pub(crate) struct SkSchedulingPolicyFromSql(pub(crate) SkSchedulingPolicy);
2667 :
2668 : impl From<SkSchedulingPolicy> for SkSchedulingPolicyFromSql {
2669 0 : fn from(value: SkSchedulingPolicy) -> Self {
2670 0 : SkSchedulingPolicyFromSql(value)
2671 0 : }
2672 : }
2673 :
2674 : impl FromSql<diesel::sql_types::VarChar, Pg> for SkSchedulingPolicyFromSql {
2675 0 : fn from_sql(
2676 0 : bytes: <Pg as diesel::backend::Backend>::RawValue<'_>,
2677 0 : ) -> diesel::deserialize::Result<Self> {
2678 0 : let bytes = bytes.as_bytes();
2679 0 : match core::str::from_utf8(bytes) {
2680 0 : Ok(s) => match SkSchedulingPolicy::from_str(s) {
2681 0 : Ok(policy) => Ok(SkSchedulingPolicyFromSql(policy)),
2682 0 : Err(e) => Err(format!("can't parse: {e}").into()),
2683 : },
2684 0 : Err(e) => Err(format!("invalid UTF-8 for scheduling policy: {e}").into()),
2685 : }
2686 0 : }
2687 : }
2688 :
2689 : impl SafekeeperPersistence {
2690 0 : pub(crate) fn from_upsert(
2691 0 : upsert: SafekeeperUpsert,
2692 0 : scheduling_policy: SkSchedulingPolicy,
2693 0 : ) -> Self {
2694 0 : crate::persistence::SafekeeperPersistence {
2695 0 : id: upsert.id,
2696 0 : region_id: upsert.region_id,
2697 0 : version: upsert.version,
2698 0 : host: upsert.host,
2699 0 : port: upsert.port,
2700 0 : http_port: upsert.http_port,
2701 0 : https_port: upsert.https_port,
2702 0 : availability_zone_id: upsert.availability_zone_id,
2703 0 : scheduling_policy: SkSchedulingPolicyFromSql(scheduling_policy),
2704 0 : }
2705 0 : }
2706 0 : pub(crate) fn as_describe_response(&self) -> Result<SafekeeperDescribeResponse, DatabaseError> {
2707 0 : Ok(SafekeeperDescribeResponse {
2708 0 : id: NodeId(self.id as u64),
2709 0 : region_id: self.region_id.clone(),
2710 0 : version: self.version,
2711 0 : host: self.host.clone(),
2712 0 : port: self.port,
2713 0 : http_port: self.http_port,
2714 0 : https_port: self.https_port,
2715 0 : availability_zone_id: self.availability_zone_id.clone(),
2716 0 : scheduling_policy: self.scheduling_policy.0,
2717 0 : })
2718 0 : }
2719 : }
2720 :
2721 : /// What we expect from the upsert http api
2722 0 : #[derive(Serialize, Deserialize, Eq, PartialEq, Debug, Clone)]
2723 : pub(crate) struct SafekeeperUpsert {
2724 : pub(crate) id: i64,
2725 : pub(crate) region_id: String,
2726 : /// 1 is special, it means just created (not currently posted to storcon).
2727 : /// Zero or negative is not really expected.
2728 : /// Otherwise the number from `release-$(number_of_commits_on_branch)` tag.
2729 : pub(crate) version: i64,
2730 : pub(crate) host: String,
2731 : pub(crate) port: i32,
2732 : /// The active flag will not be stored in the database and will be ignored.
2733 : pub(crate) active: Option<bool>,
2734 : pub(crate) http_port: i32,
2735 : pub(crate) https_port: Option<i32>,
2736 : pub(crate) availability_zone_id: String,
2737 : }
2738 :
2739 : impl SafekeeperUpsert {
2740 0 : fn as_insert_or_update(&self) -> anyhow::Result<InsertUpdateSafekeeper<'_>> {
2741 0 : if self.version < 0 {
2742 0 : anyhow::bail!("negative version: {}", self.version);
2743 0 : }
2744 0 : Ok(InsertUpdateSafekeeper {
2745 0 : id: self.id,
2746 0 : region_id: &self.region_id,
2747 0 : version: self.version,
2748 0 : host: &self.host,
2749 0 : port: self.port,
2750 0 : http_port: self.http_port,
2751 0 : https_port: self.https_port,
2752 0 : availability_zone_id: &self.availability_zone_id,
2753 0 : // None means a wish to not update this column. We expose abilities to update it via other means.
2754 0 : scheduling_policy: None,
2755 0 : })
2756 0 : }
2757 : }
2758 :
2759 : #[derive(Insertable, AsChangeset)]
2760 : #[diesel(table_name = crate::schema::safekeepers)]
2761 : struct InsertUpdateSafekeeper<'a> {
2762 : id: i64,
2763 : region_id: &'a str,
2764 : version: i64,
2765 : host: &'a str,
2766 : port: i32,
2767 : http_port: i32,
2768 : https_port: Option<i32>,
2769 : availability_zone_id: &'a str,
2770 : scheduling_policy: Option<&'a str>,
2771 : }
2772 :
2773 0 : #[derive(Serialize, Deserialize, FromSqlRow, AsExpression, Eq, PartialEq, Debug, Copy, Clone)]
2774 : #[diesel(sql_type = crate::schema::sql_types::PgLsn)]
2775 : pub(crate) struct LsnWrapper(pub(crate) Lsn);
2776 :
2777 : impl From<Lsn> for LsnWrapper {
2778 0 : fn from(value: Lsn) -> Self {
2779 0 : LsnWrapper(value)
2780 0 : }
2781 : }
2782 :
2783 : impl FromSql<crate::schema::sql_types::PgLsn, Pg> for LsnWrapper {
2784 0 : fn from_sql(
2785 0 : bytes: <Pg as diesel::backend::Backend>::RawValue<'_>,
2786 0 : ) -> diesel::deserialize::Result<Self> {
2787 0 : let byte_arr: diesel::deserialize::Result<[u8; 8]> = bytes
2788 0 : .as_bytes()
2789 0 : .try_into()
2790 0 : .map_err(|_| "Can't obtain lsn from sql".into());
2791 0 : Ok(LsnWrapper(Lsn(u64::from_be_bytes(byte_arr?))))
2792 0 : }
2793 : }
2794 :
2795 : impl ToSql<crate::schema::sql_types::PgLsn, Pg> for LsnWrapper {
2796 0 : fn to_sql<'b>(
2797 0 : &'b self,
2798 0 : out: &mut diesel::serialize::Output<'b, '_, Pg>,
2799 0 : ) -> diesel::serialize::Result {
2800 0 : out.write_all(&u64::to_be_bytes(self.0.0))
2801 0 : .map(|_| IsNull::No)
2802 0 : .map_err(Into::into)
2803 0 : }
2804 : }
2805 :
2806 : #[derive(Insertable, AsChangeset, Clone)]
2807 : #[diesel(table_name = crate::schema::timelines)]
2808 : pub(crate) struct TimelinePersistence {
2809 : pub(crate) tenant_id: String,
2810 : pub(crate) timeline_id: String,
2811 : pub(crate) start_lsn: LsnWrapper,
2812 : pub(crate) generation: i32,
2813 : pub(crate) sk_set: Vec<i64>,
2814 : pub(crate) new_sk_set: Option<Vec<i64>>,
2815 : pub(crate) cplane_notified_generation: i32,
2816 : pub(crate) deleted_at: Option<chrono::DateTime<chrono::Utc>>,
2817 : pub(crate) sk_set_notified_generation: i32,
2818 : }
2819 :
2820 : /// This is separate from [TimelinePersistence] only because postgres allows NULLs
2821 : /// in arrays and there is no way to forbid that at schema level. Hence diesel
2822 : /// wants `sk_set` to be `Vec<Option<i64>>` instead of `Vec<i64>` for
2823 : /// Queryable/Selectable. It does however allow insertions without redundant
2824 : /// Option(s), so [TimelinePersistence] doesn't have them.
2825 0 : #[derive(Queryable, Selectable)]
2826 : #[diesel(table_name = crate::schema::timelines)]
2827 : pub(crate) struct TimelineFromDb {
2828 : pub(crate) tenant_id: String,
2829 : pub(crate) timeline_id: String,
2830 : pub(crate) start_lsn: LsnWrapper,
2831 : pub(crate) generation: i32,
2832 : pub(crate) sk_set: Vec<Option<i64>>,
2833 : pub(crate) new_sk_set: Option<Vec<Option<i64>>>,
2834 : pub(crate) cplane_notified_generation: i32,
2835 : pub(crate) deleted_at: Option<chrono::DateTime<chrono::Utc>>,
2836 : pub(crate) sk_set_notified_generation: i32,
2837 : }
2838 :
2839 : impl TimelineFromDb {
2840 0 : fn into_persistence(self) -> TimelinePersistence {
2841 : // We should never encounter null entries in the sets, but we need to filter them out.
2842 : // There is no way to forbid this in the schema that diesel recognizes (to our knowledge).
2843 0 : let sk_set = self.sk_set.into_iter().flatten().collect::<Vec<_>>();
2844 0 : let new_sk_set = self
2845 0 : .new_sk_set
2846 0 : .map(|s| s.into_iter().flatten().collect::<Vec<_>>());
2847 0 : TimelinePersistence {
2848 0 : tenant_id: self.tenant_id,
2849 0 : timeline_id: self.timeline_id,
2850 0 : start_lsn: self.start_lsn,
2851 0 : generation: self.generation,
2852 0 : sk_set,
2853 0 : new_sk_set,
2854 0 : cplane_notified_generation: self.cplane_notified_generation,
2855 0 : deleted_at: self.deleted_at,
2856 0 : sk_set_notified_generation: self.sk_set_notified_generation,
2857 0 : }
2858 0 : }
2859 : }
2860 :
2861 : // This is separate from TimelinePersistence because we don't want to touch generation and deleted_at values for the update.
2862 : #[derive(AsChangeset)]
2863 : #[diesel(table_name = crate::schema::timelines)]
2864 : #[diesel(treat_none_as_null = true)]
2865 : pub(crate) struct TimelineUpdate {
2866 : pub(crate) tenant_id: String,
2867 : pub(crate) timeline_id: String,
2868 : pub(crate) start_lsn: LsnWrapper,
2869 : pub(crate) sk_set: Vec<i64>,
2870 : pub(crate) new_sk_set: Option<Vec<i64>>,
2871 : }
2872 :
2873 0 : #[derive(Insertable, AsChangeset, Queryable, Selectable, Clone)]
2874 : #[diesel(table_name = crate::schema::safekeeper_timeline_pending_ops)]
2875 : pub(crate) struct TimelinePendingOpPersistence {
2876 : pub(crate) sk_id: i64,
2877 : pub(crate) tenant_id: String,
2878 : pub(crate) timeline_id: String,
2879 : pub(crate) generation: i32,
2880 : pub(crate) op_kind: SafekeeperTimelineOpKind,
2881 : }
2882 :
2883 0 : #[derive(Serialize, Deserialize, FromSqlRow, AsExpression, Eq, PartialEq, Debug, Copy, Clone)]
2884 : #[diesel(sql_type = diesel::sql_types::VarChar)]
2885 : pub(crate) enum SafekeeperTimelineOpKind {
2886 : Pull,
2887 : Exclude,
2888 : Delete,
2889 : }
2890 :
2891 : impl FromSql<diesel::sql_types::VarChar, Pg> for SafekeeperTimelineOpKind {
2892 0 : fn from_sql(
2893 0 : bytes: <Pg as diesel::backend::Backend>::RawValue<'_>,
2894 0 : ) -> diesel::deserialize::Result<Self> {
2895 0 : let bytes = bytes.as_bytes();
2896 0 : match core::str::from_utf8(bytes) {
2897 0 : Ok(s) => match s {
2898 0 : "pull" => Ok(SafekeeperTimelineOpKind::Pull),
2899 0 : "exclude" => Ok(SafekeeperTimelineOpKind::Exclude),
2900 0 : "delete" => Ok(SafekeeperTimelineOpKind::Delete),
2901 0 : _ => Err(format!("can't parse: {s}").into()),
2902 : },
2903 0 : Err(e) => Err(format!("invalid UTF-8 for op_kind: {e}").into()),
2904 : }
2905 0 : }
2906 : }
2907 :
2908 : impl ToSql<diesel::sql_types::VarChar, Pg> for SafekeeperTimelineOpKind {
2909 0 : fn to_sql<'b>(
2910 0 : &'b self,
2911 0 : out: &mut diesel::serialize::Output<'b, '_, Pg>,
2912 0 : ) -> diesel::serialize::Result {
2913 0 : let kind_str = match self {
2914 0 : SafekeeperTimelineOpKind::Pull => "pull",
2915 0 : SafekeeperTimelineOpKind::Exclude => "exclude",
2916 0 : SafekeeperTimelineOpKind::Delete => "delete",
2917 : };
2918 0 : out.write_all(kind_str.as_bytes())
2919 0 : .map(|_| IsNull::No)
2920 0 : .map_err(Into::into)
2921 0 : }
2922 : }
2923 :
2924 0 : #[derive(Serialize, Deserialize, Queryable, Selectable, Insertable, Eq, PartialEq, Clone)]
2925 : #[diesel(table_name = crate::schema::timeline_imports)]
2926 : pub(crate) struct TimelineImportPersistence {
2927 : pub(crate) tenant_id: String,
2928 : pub(crate) timeline_id: String,
2929 : pub(crate) shard_statuses: serde_json::Value,
2930 : }
|