LCOV - code coverage report
Current view: top level - pageserver/src/tenant - vectored_blob_io.rs (source / functions) Coverage Total Hit
Test: 792183ae0ef4f1f8b22e9ac7e8748740ab73f873.info Lines: 99.0 % 309 306
Test Date: 2024-06-26 01:04:33 Functions: 100.0 % 23 23

            Line data    Source code
       1              : //!
       2              : //! Utilities for vectored reading of variable-sized "blobs".
       3              : //!
       4              : //! The "blob" api is an abstraction on top of the "block" api,
       5              : //! with the main difference being that blobs do not have a fixed
       6              : //! size (each blob is prefixed with 1 or 4 byte length field)
       7              : //!
       8              : //! The vectored apis provided in this module allow for planning
       9              : //! and executing disk IO which covers multiple blobs.
      10              : //!
      11              : //! Reads are planned with [`VectoredReadPlanner`] which will coalesce
      12              : //! adjacent blocks into a single disk IO request and exectuted by
      13              : //! [`VectoredBlobReader`] which does all the required offset juggling
      14              : //! and returns a buffer housing all the blobs and a list of offsets.
      15              : //!
      16              : //! Note that the vectored blob api does *not* go through the page cache.
      17              : 
      18              : use std::collections::BTreeMap;
      19              : use std::num::NonZeroUsize;
      20              : 
      21              : use bytes::BytesMut;
      22              : use pageserver_api::key::Key;
      23              : use utils::lsn::Lsn;
      24              : use utils::vec_map::VecMap;
      25              : 
      26              : use crate::context::RequestContext;
      27              : use crate::virtual_file::VirtualFile;
      28              : 
      29              : #[derive(Copy, Clone, Debug, PartialEq, Eq)]
      30              : pub struct MaxVectoredReadBytes(pub NonZeroUsize);
      31              : 
      32              : /// Metadata bundled with the start and end offset of a blob.
      33              : #[derive(Copy, Clone, Debug)]
      34              : pub struct BlobMeta {
      35              :     pub key: Key,
      36              :     pub lsn: Lsn,
      37              : }
      38              : 
      39              : /// Blob offsets into [`VectoredBlobsBuf::buf`]
      40              : pub struct VectoredBlob {
      41              :     pub start: usize,
      42              :     pub end: usize,
      43              :     pub meta: BlobMeta,
      44              : }
      45              : 
      46              : /// Return type of [`VectoredBlobReader::read_blobs`]
      47              : pub struct VectoredBlobsBuf {
      48              :     /// Buffer for all blobs in this read
      49              :     pub buf: BytesMut,
      50              :     /// Offsets into the buffer and metadata for all blobs in this read
      51              :     pub blobs: Vec<VectoredBlob>,
      52              : }
      53              : 
      54              : /// Description of one disk read for multiple blobs.
      55              : /// Used as the argument form [`VectoredBlobReader::read_blobs`]
      56              : #[derive(Debug)]
      57              : pub struct VectoredRead {
      58              :     pub start: u64,
      59              :     pub end: u64,
      60              :     /// Starting offsets and metadata for each blob in this read
      61              :     pub blobs_at: VecMap<u64, BlobMeta>,
      62              : }
      63              : 
      64              : impl VectoredRead {
      65       230604 :     pub(crate) fn size(&self) -> usize {
      66       230604 :         (self.end - self.start) as usize
      67       230604 :     }
      68              : }
      69              : 
      70              : #[derive(Eq, PartialEq)]
      71              : pub(crate) enum VectoredReadExtended {
      72              :     Yes,
      73              :     No,
      74              : }
      75              : 
      76              : pub(crate) struct VectoredReadBuilder {
      77              :     start: u64,
      78              :     end: u64,
      79              :     blobs_at: VecMap<u64, BlobMeta>,
      80              :     max_read_size: Option<usize>,
      81              : }
      82              : 
      83              : impl VectoredReadBuilder {
      84              :     /// Start building a new vectored read.
      85              :     ///
      86              :     /// Note that by design, this does not check against reading more than `max_read_size` to
      87              :     /// support reading larger blobs than the configuration value. The builder will be single use
      88              :     /// however after that.
      89        57588 :     pub(crate) fn new(
      90        57588 :         start_offset: u64,
      91        57588 :         end_offset: u64,
      92        57588 :         meta: BlobMeta,
      93        57588 :         max_read_size: Option<usize>,
      94        57588 :     ) -> Self {
      95        57588 :         let mut blobs_at = VecMap::default();
      96        57588 :         blobs_at
      97        57588 :             .append(start_offset, meta)
      98        57588 :             .expect("First insertion always succeeds");
      99        57588 : 
     100        57588 :         Self {
     101        57588 :             start: start_offset,
     102        57588 :             end: end_offset,
     103        57588 :             blobs_at,
     104        57588 :             max_read_size,
     105        57588 :         }
     106        57588 :     }
     107              : 
     108              :     /// Attempt to extend the current read with a new blob if the start
     109              :     /// offset matches with the current end of the vectored read
     110              :     /// and the resuting size is below the max read size
     111       366934 :     pub(crate) fn extend(&mut self, start: u64, end: u64, meta: BlobMeta) -> VectoredReadExtended {
     112       366934 :         tracing::trace!(start, end, "trying to extend");
     113       366934 :         let size = (end - start) as usize;
     114       366934 :         if self.end == start && {
     115       348070 :             if let Some(max_read_size) = self.max_read_size {
     116       338742 :                 self.size() + size <= max_read_size
     117              :             } else {
     118         9328 :                 true
     119              :             }
     120              :         } {
     121       328704 :             self.end = end;
     122       328704 :             self.blobs_at
     123       328704 :                 .append(start, meta)
     124       328704 :                 .expect("LSNs are ordered within vectored reads");
     125       328704 : 
     126       328704 :             return VectoredReadExtended::Yes;
     127        38230 :         }
     128        38230 : 
     129        38230 :         VectoredReadExtended::No
     130       366934 :     }
     131              : 
     132       338742 :     pub(crate) fn size(&self) -> usize {
     133       338742 :         (self.end - self.start) as usize
     134       338742 :     }
     135              : 
     136        57588 :     pub(crate) fn build(self) -> VectoredRead {
     137        57588 :         VectoredRead {
     138        57588 :             start: self.start,
     139        57588 :             end: self.end,
     140        57588 :             blobs_at: self.blobs_at,
     141        57588 :         }
     142        57588 :     }
     143              : }
     144              : 
     145              : #[derive(Copy, Clone, Debug)]
     146              : pub enum BlobFlag {
     147              :     None,
     148              :     Ignore,
     149              :     ReplaceAll,
     150              : }
     151              : 
     152              : /// Planner for vectored blob reads.
     153              : ///
     154              : /// Blob offsets are received via [`VectoredReadPlanner::handle`]
     155              : /// and coalesced into disk reads.
     156              : ///
     157              : /// The implementation is very simple:
     158              : /// * Collect all blob offsets in an ordered structure
     159              : /// * Iterate over the collected blobs and coalesce them into reads at the end
     160              : pub struct VectoredReadPlanner {
     161              :     // Track all the blob offsets. Start offsets must be ordered.
     162              :     blobs: BTreeMap<Key, Vec<(Lsn, u64, u64)>>,
     163              :     // Arguments for previous blob passed into [`VectoredReadPlanner::handle`]
     164              :     prev: Option<(Key, Lsn, u64, BlobFlag)>,
     165              : 
     166              :     max_read_size: Option<usize>,
     167              : }
     168              : 
     169              : impl VectoredReadPlanner {
     170          442 :     pub fn new(max_read_size: usize) -> Self {
     171          442 :         Self {
     172          442 :             blobs: BTreeMap::new(),
     173          442 :             prev: None,
     174          442 :             max_read_size: Some(max_read_size),
     175          442 :         }
     176          442 :     }
     177              : 
     178              :     /// This function should *only* be used if the caller has a way to control the limit. e.g., in [`StreamingVectoredReadPlanner`],
     179              :     /// it uses the vectored read planner to avoid duplicated logic on handling blob start/end, while expecting the vectored
     180              :     /// read planner to give a single read to a continuous range of bytes in the image layer. Therefore, it does not need the
     181              :     /// code path to split reads into chunks of `max_read_size`, and controls the read size itself.
     182              :     #[cfg(test)]
     183        19054 :     pub(crate) fn new_caller_controlled_max_limit() -> Self {
     184        19054 :         Self {
     185        19054 :             blobs: BTreeMap::new(),
     186        19054 :             prev: None,
     187        19054 :             max_read_size: None,
     188        19054 :         }
     189        19054 :     }
     190              : 
     191              :     /// Include a new blob in the read plan.
     192              :     ///
     193              :     /// This function is called from a B-Tree index visitor (see `DeltaLayerInner::plan_reads`
     194              :     /// and `ImageLayerInner::plan_reads`). Said visitor wants to collect blob offsets for all
     195              :     /// keys in a given keyspace. This function must be called for each key in the desired
     196              :     /// keyspace (monotonically continuous). [`Self::handle_range_end`] must
     197              :     /// be called after every range in the offset.
     198              :     ///
     199              :     /// In the event that keys are skipped, the behaviour is undefined and can lead to an
     200              :     /// incorrect read plan. We can end up asserting, erroring in wal redo or returning
     201              :     /// incorrect data to the user.
     202              :     ///
     203              :     /// The `flag` argument has two interesting values:
     204              :     /// * [`BlobFlag::ReplaceAll`]: The blob for this key should replace all existing blobs.
     205              :     /// This is used for WAL records that `will_init`.
     206              :     /// * [`BlobFlag::Ignore`]: This blob should not be included in the read. This happens
     207              :     /// if the blob is cached.
     208      1234159 :     pub fn handle(&mut self, key: Key, lsn: Lsn, offset: u64, flag: BlobFlag) {
     209              :         // Implementation note: internally lag behind by one blob such that
     210              :         // we have a start and end offset when initialising [`VectoredRead`]
     211      1234159 :         let (prev_key, prev_lsn, prev_offset, prev_flag) = match self.prev {
     212              :             None => {
     213        26179 :                 self.prev = Some((key, lsn, offset, flag));
     214        26179 :                 return;
     215              :             }
     216      1207980 :             Some(prev) => prev,
     217      1207980 :         };
     218      1207980 : 
     219      1207980 :         self.add_blob(prev_key, prev_lsn, prev_offset, offset, prev_flag);
     220      1207980 : 
     221      1207980 :         self.prev = Some((key, lsn, offset, flag));
     222      1234159 :     }
     223              : 
     224        83434 :     pub fn handle_range_end(&mut self, offset: u64) {
     225        83434 :         if let Some((prev_key, prev_lsn, prev_offset, prev_flag)) = self.prev {
     226        26151 :             self.add_blob(prev_key, prev_lsn, prev_offset, offset, prev_flag);
     227        57283 :         }
     228              : 
     229        83434 :         self.prev = None;
     230        83434 :     }
     231              : 
     232      1234131 :     fn add_blob(&mut self, key: Key, lsn: Lsn, start_offset: u64, end_offset: u64, flag: BlobFlag) {
     233      1234131 :         match flag {
     234       358080 :             BlobFlag::None => {
     235       358080 :                 let blobs_for_key = self.blobs.entry(key).or_default();
     236       358080 :                 blobs_for_key.push((lsn, start_offset, end_offset));
     237       358080 :             }
     238        58533 :             BlobFlag::ReplaceAll => {
     239        58533 :                 let blobs_for_key = self.blobs.entry(key).or_default();
     240        58533 :                 blobs_for_key.clear();
     241        58533 :                 blobs_for_key.push((lsn, start_offset, end_offset));
     242        58533 :             }
     243       817518 :             BlobFlag::Ignore => {}
     244              :         }
     245      1234131 :     }
     246              : 
     247        19384 :     pub fn finish(self) -> Vec<VectoredRead> {
     248        19384 :         let mut current_read_builder: Option<VectoredReadBuilder> = None;
     249        19384 :         let mut reads = Vec::new();
     250              : 
     251       354604 :         for (key, blobs_for_key) in self.blobs {
     252       721480 :             for (lsn, start_offset, end_offset) in blobs_for_key {
     253       386260 :                 let extended = match &mut current_read_builder {
     254       366912 :                     Some(read_builder) => {
     255       366912 :                         read_builder.extend(start_offset, end_offset, BlobMeta { key, lsn })
     256              :                     }
     257        19348 :                     None => VectoredReadExtended::No,
     258              :                 };
     259              : 
     260       386260 :                 if extended == VectoredReadExtended::No {
     261        57572 :                     let next_read_builder = VectoredReadBuilder::new(
     262        57572 :                         start_offset,
     263        57572 :                         end_offset,
     264        57572 :                         BlobMeta { key, lsn },
     265        57572 :                         self.max_read_size,
     266        57572 :                     );
     267        57572 : 
     268        57572 :                     let prev_read_builder = current_read_builder.replace(next_read_builder);
     269              : 
     270              :                     // `current_read_builder` is None in the first iteration of the outer loop
     271        57572 :                     if let Some(read_builder) = prev_read_builder {
     272        38224 :                         reads.push(read_builder.build());
     273        38224 :                     }
     274       328688 :                 }
     275              :             }
     276              :         }
     277              : 
     278        19384 :         if let Some(read_builder) = current_read_builder {
     279        19348 :             reads.push(read_builder.build());
     280        19348 :         }
     281              : 
     282        19384 :         reads
     283        19384 :     }
     284              : }
     285              : 
     286              : /// Disk reader for vectored blob spans (does not go through the page cache)
     287              : pub struct VectoredBlobReader<'a> {
     288              :     file: &'a VirtualFile,
     289              : }
     290              : 
     291              : impl<'a> VectoredBlobReader<'a> {
     292        19394 :     pub fn new(file: &'a VirtualFile) -> Self {
     293        19394 :         Self { file }
     294        19394 :     }
     295              : 
     296              :     /// Read the requested blobs into the buffer.
     297              :     ///
     298              :     /// We have to deal with the fact that blobs are not fixed size.
     299              :     /// Each blob is prefixed by a size header.
     300              :     ///
     301              :     /// The success return value is a struct which contains the buffer
     302              :     /// filled from disk and a list of offsets at which each blob lies
     303              :     /// in the buffer.
     304        57566 :     pub async fn read_blobs(
     305        57566 :         &self,
     306        57566 :         read: &VectoredRead,
     307        57566 :         buf: BytesMut,
     308        57566 :         ctx: &RequestContext,
     309        57566 :     ) -> Result<VectoredBlobsBuf, std::io::Error> {
     310        57566 :         assert!(read.size() > 0);
     311        57566 :         assert!(
     312        57566 :             read.size() <= buf.capacity(),
     313            0 :             "{} > {}",
     314            0 :             read.size(),
     315            0 :             buf.capacity()
     316              :         );
     317        57566 :         let buf = self
     318        57566 :             .file
     319        57566 :             .read_exact_at_n(buf, read.start, read.size(), ctx)
     320        29218 :             .await?;
     321              : 
     322        57566 :         let blobs_at = read.blobs_at.as_slice();
     323        57566 :         let start_offset = blobs_at.first().expect("VectoredRead is never empty").0;
     324        57566 : 
     325        57566 :         let mut metas = Vec::with_capacity(blobs_at.len());
     326        57566 : 
     327        57566 :         // Blobs in `read` only provide their starting offset. The end offset
     328        57566 :         // of a blob is implicit: the start of the next blob if one exists
     329        57566 :         // or the end of the read.
     330        57566 :         let pairs = blobs_at.iter().zip(
     331        57566 :             blobs_at
     332        57566 :                 .iter()
     333        57566 :                 .map(Some)
     334        57566 :                 .skip(1)
     335        57566 :                 .chain(std::iter::once(None)),
     336        57566 :         );
     337              : 
     338       443806 :         for ((offset, meta), next) in pairs {
     339       386240 :             let offset_in_buf = offset - start_offset;
     340       386240 :             let first_len_byte = buf[offset_in_buf as usize];
     341              : 
     342              :             // Each blob is prefixed by a header containing it's size.
     343              :             // Extract the size and skip that header to find the start of the data.
     344              :             // The size can be 1 or 4 bytes. The most significant bit is 0 in the
     345              :             // 1 byte case and 1 in the 4 byte case.
     346       386240 :             let (size_length, blob_size) = if first_len_byte < 0x80 {
     347       352622 :                 (1, first_len_byte as u64)
     348              :             } else {
     349        33618 :                 let mut blob_size_buf = [0u8; 4];
     350        33618 :                 let offset_in_buf = offset_in_buf as usize;
     351        33618 : 
     352        33618 :                 blob_size_buf.copy_from_slice(&buf[offset_in_buf..offset_in_buf + 4]);
     353        33618 :                 blob_size_buf[0] &= 0x7f;
     354        33618 :                 (4, u32::from_be_bytes(blob_size_buf) as u64)
     355              :             };
     356              : 
     357       386240 :             let start = offset_in_buf + size_length;
     358       386240 :             let end = match next {
     359       328674 :                 Some((next_blob_start_offset, _)) => next_blob_start_offset - start_offset,
     360        57566 :                 None => start + blob_size,
     361              :             };
     362              : 
     363       386240 :             assert_eq!(end - start, blob_size);
     364              : 
     365       386240 :             metas.push(VectoredBlob {
     366       386240 :                 start: start as usize,
     367       386240 :                 end: end as usize,
     368       386240 :                 meta: *meta,
     369       386240 :             })
     370              :         }
     371              : 
     372        57566 :         Ok(VectoredBlobsBuf { buf, blobs: metas })
     373        57566 :     }
     374              : }
     375              : 
     376              : /// Read planner used in [`crate::tenant::storage_layer::image_layer::ImageLayerIterator`]. It provides a streaming API for
     377              : /// getting read blobs. It returns a batch when `handle` gets called and when the current key would exceed the read_size and
     378              : /// max_cnt constraints. Underlying it uses [`VectoredReadPlanner`].
     379              : #[cfg(test)]
     380              : pub struct StreamingVectoredReadPlanner {
     381              :     planner: VectoredReadPlanner,
     382              :     /// Max read size per batch
     383              :     max_read_size: u64,
     384              :     /// Max item count per batch
     385              :     max_cnt: usize,
     386              :     /// The first offset of this batch
     387              :     this_batch_first_offset: Option<u64>,
     388              :     /// Size of the current batch
     389              :     cnt: usize,
     390              : }
     391              : 
     392              : #[cfg(test)]
     393              : impl StreamingVectoredReadPlanner {
     394          112 :     pub fn new(max_read_size: u64, max_cnt: usize) -> Self {
     395          112 :         assert!(max_cnt > 0);
     396          112 :         assert!(max_read_size > 0);
     397          112 :         Self {
     398          112 :             // We want to have exactly one read syscall (plus several others for index lookup) for each `next_batch` call.
     399          112 :             // Therefore, we enforce `self.max_read_size` by ourselves instead of using the VectoredReadPlanner's capability,
     400          112 :             // to avoid splitting into two I/Os.
     401          112 :             planner: VectoredReadPlanner::new_caller_controlled_max_limit(),
     402          112 :             max_cnt,
     403          112 :             max_read_size,
     404          112 :             this_batch_first_offset: None,
     405          112 :             cnt: 0,
     406          112 :         }
     407          112 :     }
     408              : 
     409        18942 :     fn emit(&mut self, this_batch_first_offset: u64) -> VectoredRead {
     410        18942 :         let planner = std::mem::replace(
     411        18942 :             &mut self.planner,
     412        18942 :             VectoredReadPlanner::new_caller_controlled_max_limit(),
     413        18942 :         );
     414        18942 :         self.this_batch_first_offset = Some(this_batch_first_offset);
     415        18942 :         self.cnt = 1;
     416        18942 :         let mut batch = planner.finish();
     417        18942 :         assert_eq!(batch.len(), 1, "should have exactly one read batch");
     418        18942 :         batch.pop().unwrap()
     419        18942 :     }
     420              : 
     421        28298 :     pub fn handle(
     422        28298 :         &mut self,
     423        28298 :         key: Key,
     424        28298 :         lsn: Lsn,
     425        28298 :         offset: u64,
     426        28298 :         flag: BlobFlag,
     427        28298 :     ) -> Option<VectoredRead> {
     428        28298 :         if let Some(begin_offset) = self.this_batch_first_offset {
     429              :             // Each batch will have at least one item b/c `self.this_batch_first_offset` is set
     430              :             // after one item gets processed
     431        28242 :             if offset - begin_offset > self.max_read_size {
     432        14028 :                 self.planner.handle_range_end(offset); // End the current batch with the offset
     433        14028 :                 let batch = self.emit(offset); // Produce a batch
     434        14028 :                 self.planner.handle(key, lsn, offset, flag); // Add this key to the next batch
     435        14028 :                 return Some(batch);
     436        14214 :             }
     437              :         } else {
     438           56 :             self.this_batch_first_offset = Some(offset)
     439              :         }
     440        14270 :         if self.cnt >= self.max_cnt {
     441         4886 :             self.planner.handle_range_end(offset); // End the current batch with the offset
     442         4886 :             let batch = self.emit(offset); // Produce a batch
     443         4886 :             self.planner.handle(key, lsn, offset, flag); // Add this key to the next batch
     444         4886 :             return Some(batch);
     445         9384 :         }
     446         9384 :         self.planner.handle(key, lsn, offset, flag); // Add this key to the current batch
     447         9384 :         self.cnt += 1;
     448         9384 :         None
     449        28298 :     }
     450              : 
     451           28 :     pub fn handle_range_end(&mut self, offset: u64) -> VectoredRead {
     452           28 :         self.planner.handle_range_end(offset);
     453           28 :         self.emit(offset)
     454           28 :     }
     455              : }
     456              : 
     457              : #[cfg(test)]
     458              : mod tests {
     459              :     use super::*;
     460              : 
     461           16 :     fn validate_read(read: &VectoredRead, offset_range: &[(Key, Lsn, u64, BlobFlag)]) {
     462           16 :         assert_eq!(read.start, offset_range.first().unwrap().2);
     463              : 
     464           24 :         let expected_offsets_in_read: Vec<_> = offset_range.iter().map(|o| o.2).collect();
     465           16 : 
     466           16 :         let offsets_in_read: Vec<_> = read
     467           16 :             .blobs_at
     468           16 :             .as_slice()
     469           16 :             .iter()
     470           24 :             .map(|(offset, _)| *offset)
     471           16 :             .collect();
     472           16 : 
     473           16 :         assert_eq!(expected_offsets_in_read, offsets_in_read);
     474           16 :     }
     475              : 
     476              :     #[test]
     477            2 :     fn planner_max_read_size_test() {
     478            2 :         let max_read_size = 128 * 1024;
     479            2 :         let key = Key::MIN;
     480            2 :         let lsn = Lsn(0);
     481            2 : 
     482            2 :         let blob_descriptions = vec![
     483            2 :             (key, lsn, 0, BlobFlag::None),
     484            2 :             (key, lsn, 32 * 1024, BlobFlag::None),
     485            2 :             (key, lsn, 96 * 1024, BlobFlag::None), // Last in read 1
     486            2 :             (key, lsn, 128 * 1024, BlobFlag::None), // Last in read 2
     487            2 :             (key, lsn, 198 * 1024, BlobFlag::None), // Last in read 3
     488            2 :             (key, lsn, 268 * 1024, BlobFlag::None), // Last in read 4
     489            2 :             (key, lsn, 396 * 1024, BlobFlag::None), // Last in read 5
     490            2 :             (key, lsn, 652 * 1024, BlobFlag::None), // Last in read 6
     491            2 :         ];
     492            2 : 
     493            2 :         let ranges = [
     494            2 :             &blob_descriptions[0..3],
     495            2 :             &blob_descriptions[3..4],
     496            2 :             &blob_descriptions[4..5],
     497            2 :             &blob_descriptions[5..6],
     498            2 :             &blob_descriptions[6..7],
     499            2 :             &blob_descriptions[7..],
     500            2 :         ];
     501            2 : 
     502            2 :         let mut planner = VectoredReadPlanner::new(max_read_size);
     503           16 :         for (key, lsn, offset, flag) in blob_descriptions.clone() {
     504           16 :             planner.handle(key, lsn, offset, flag);
     505           16 :         }
     506              : 
     507            2 :         planner.handle_range_end(652 * 1024);
     508            2 : 
     509            2 :         let reads = planner.finish();
     510            2 :         assert_eq!(reads.len(), 6);
     511              : 
     512           12 :         for (idx, read) in reads.iter().enumerate() {
     513           12 :             validate_read(read, ranges[idx]);
     514           12 :         }
     515            2 :     }
     516              : 
     517              :     #[test]
     518            2 :     fn planner_replacement_test() {
     519            2 :         let max_read_size = 128 * 1024;
     520            2 :         let first_key = Key::MIN;
     521            2 :         let second_key = first_key.next();
     522            2 :         let lsn = Lsn(0);
     523            2 : 
     524            2 :         let blob_descriptions = vec![
     525            2 :             (first_key, lsn, 0, BlobFlag::None),    // First in read 1
     526            2 :             (first_key, lsn, 1024, BlobFlag::None), // Last in read 1
     527            2 :             (second_key, lsn, 2 * 1024, BlobFlag::ReplaceAll),
     528            2 :             (second_key, lsn, 3 * 1024, BlobFlag::None),
     529            2 :             (second_key, lsn, 4 * 1024, BlobFlag::ReplaceAll), // First in read 2
     530            2 :             (second_key, lsn, 5 * 1024, BlobFlag::None),       // Last in read 2
     531            2 :         ];
     532            2 : 
     533            2 :         let ranges = [&blob_descriptions[0..2], &blob_descriptions[4..]];
     534            2 : 
     535            2 :         let mut planner = VectoredReadPlanner::new(max_read_size);
     536           12 :         for (key, lsn, offset, flag) in blob_descriptions.clone() {
     537           12 :             planner.handle(key, lsn, offset, flag);
     538           12 :         }
     539              : 
     540            2 :         planner.handle_range_end(6 * 1024);
     541            2 : 
     542            2 :         let reads = planner.finish();
     543            2 :         assert_eq!(reads.len(), 2);
     544              : 
     545            4 :         for (idx, read) in reads.iter().enumerate() {
     546            4 :             validate_read(read, ranges[idx]);
     547            4 :         }
     548            2 :     }
     549              : }
        

Generated by: LCOV version 2.1-beta