LCOV - code coverage report
Current view: top level - pageserver/src/tenant - timeline.rs (source / functions) Coverage Total Hit
Test: 6a14b070dc6eeeeb359cfa8817925ac37a02fab4.info Lines: 62.9 % 4302 2707
Test Date: 2025-03-31 22:46:13 Functions: 59.8 % 356 213

            Line data    Source code
       1              : pub(crate) mod analysis;
       2              : pub(crate) mod compaction;
       3              : pub mod delete;
       4              : pub(crate) mod detach_ancestor;
       5              : mod eviction_task;
       6              : pub(crate) mod handle;
       7              : mod heatmap_layers_downloader;
       8              : pub(crate) mod import_pgdata;
       9              : mod init;
      10              : pub mod layer_manager;
      11              : pub(crate) mod logical_size;
      12              : pub mod offload;
      13              : pub mod span;
      14              : pub mod uninit;
      15              : mod walreceiver;
      16              : 
      17              : use std::array;
      18              : use std::cmp::{max, min};
      19              : use std::collections::btree_map::Entry;
      20              : use std::collections::{BTreeMap, HashMap, HashSet};
      21              : use std::ops::{ControlFlow, Deref, Range};
      22              : use std::sync::atomic::{AtomicBool, AtomicU64, Ordering as AtomicOrdering};
      23              : use std::sync::{Arc, Mutex, OnceLock, RwLock, Weak};
      24              : use std::time::{Duration, Instant, SystemTime};
      25              : 
      26              : use anyhow::{Context, Result, anyhow, bail, ensure};
      27              : use arc_swap::{ArcSwap, ArcSwapOption};
      28              : use bytes::Bytes;
      29              : use camino::Utf8Path;
      30              : use chrono::{DateTime, Utc};
      31              : use compaction::{CompactionOutcome, GcCompactionCombinedSettings};
      32              : use enumset::EnumSet;
      33              : use fail::fail_point;
      34              : use futures::stream::FuturesUnordered;
      35              : use futures::{FutureExt, StreamExt};
      36              : use handle::ShardTimelineId;
      37              : use layer_manager::Shutdown;
      38              : use offload::OffloadError;
      39              : use once_cell::sync::Lazy;
      40              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_PITR_INTERVAL;
      41              : use pageserver_api::key::{
      42              :     KEY_SIZE, Key, METADATA_KEY_BEGIN_PREFIX, METADATA_KEY_END_PREFIX, NON_INHERITED_RANGE,
      43              :     SPARSE_RANGE,
      44              : };
      45              : use pageserver_api::keyspace::{KeySpaceAccum, KeySpaceRandomAccum, SparseKeyPartitioning};
      46              : use pageserver_api::models::{
      47              :     CompactKeyRange, CompactLsnRange, CompactionAlgorithm, CompactionAlgorithmSettings,
      48              :     DetachBehavior, DownloadRemoteLayersTaskInfo, DownloadRemoteLayersTaskSpawnRequest,
      49              :     EvictionPolicy, InMemoryLayerInfo, LayerMapInfo, LsnLease, PageTraceEvent, RelSizeMigration,
      50              :     TimelineState,
      51              : };
      52              : use pageserver_api::reltag::{BlockNumber, RelTag};
      53              : use pageserver_api::shard::{ShardIdentity, ShardIndex, ShardNumber, TenantShardId};
      54              : #[cfg(test)]
      55              : use pageserver_api::value::Value;
      56              : use postgres_connection::PgConnectionConfig;
      57              : use postgres_ffi::v14::xlog_utils;
      58              : use postgres_ffi::{WAL_SEGMENT_SIZE, to_pg_timestamp};
      59              : use rand::Rng;
      60              : use remote_storage::DownloadError;
      61              : use serde_with::serde_as;
      62              : use storage_broker::BrokerClientChannel;
      63              : use tokio::runtime::Handle;
      64              : use tokio::sync::mpsc::Sender;
      65              : use tokio::sync::{Notify, oneshot, watch};
      66              : use tokio_util::sync::CancellationToken;
      67              : use tracing::*;
      68              : use utils::generation::Generation;
      69              : use utils::guard_arc_swap::GuardArcSwap;
      70              : use utils::id::TimelineId;
      71              : use utils::logging::{MonitorSlowFutureCallback, monitor_slow_future};
      72              : use utils::lsn::{AtomicLsn, Lsn, RecordLsn};
      73              : use utils::postgres_client::PostgresClientProtocol;
      74              : use utils::rate_limit::RateLimit;
      75              : use utils::seqwait::SeqWait;
      76              : use utils::simple_rcu::{Rcu, RcuReadGuard};
      77              : use utils::sync::gate::{Gate, GateGuard};
      78              : use utils::{completion, critical, fs_ext, pausable_failpoint};
      79              : use wal_decoder::serialized_batch::{SerializedValueBatch, ValueMeta};
      80              : 
      81              : use self::delete::DeleteTimelineFlow;
      82              : pub(super) use self::eviction_task::EvictionTaskTenantState;
      83              : use self::eviction_task::EvictionTaskTimelineState;
      84              : use self::layer_manager::LayerManager;
      85              : use self::logical_size::LogicalSize;
      86              : use self::walreceiver::{WalReceiver, WalReceiverConf};
      87              : use super::remote_timeline_client::RemoteTimelineClient;
      88              : use super::remote_timeline_client::index::{GcCompactionState, IndexPart};
      89              : use super::secondary::heatmap::HeatMapLayer;
      90              : use super::storage_layer::{LayerFringe, LayerVisibilityHint, ReadableLayer};
      91              : use super::tasks::log_compaction_error;
      92              : use super::upload_queue::NotInitialized;
      93              : use super::{
      94              :     AttachedTenantConf, GcError, HeatMapTimeline, MaybeOffloaded,
      95              :     debug_assert_current_span_has_tenant_and_timeline_id,
      96              : };
      97              : use crate::aux_file::AuxFileSizeEstimator;
      98              : use crate::config::PageServerConf;
      99              : use crate::context::{DownloadBehavior, RequestContext};
     100              : use crate::disk_usage_eviction_task::{DiskUsageEvictionInfo, EvictionCandidate, finite_f32};
     101              : use crate::keyspace::{KeyPartitioning, KeySpace};
     102              : use crate::l0_flush::{self, L0FlushGlobalState};
     103              : use crate::metrics::{
     104              :     DELTAS_PER_READ_GLOBAL, LAYERS_PER_READ_AMORTIZED_GLOBAL, LAYERS_PER_READ_BATCH_GLOBAL,
     105              :     LAYERS_PER_READ_GLOBAL, ScanLatencyOngoingRecording, TimelineMetrics,
     106              : };
     107              : use crate::page_service::TenantManagerTypes;
     108              : use crate::pgdatadir_mapping::{
     109              :     CalculateLogicalSizeError, CollectKeySpaceError, DirectoryKind, LsnForTimestamp,
     110              :     MAX_AUX_FILE_V2_DELTAS, MetricsUpdate,
     111              : };
     112              : use crate::task_mgr::TaskKind;
     113              : use crate::tenant::config::AttachmentMode;
     114              : use crate::tenant::gc_result::GcResult;
     115              : use crate::tenant::layer_map::{LayerMap, SearchResult};
     116              : use crate::tenant::metadata::TimelineMetadata;
     117              : use crate::tenant::storage_layer::delta_layer::DeltaEntry;
     118              : use crate::tenant::storage_layer::inmemory_layer::IndexEntry;
     119              : use crate::tenant::storage_layer::{
     120              :     AsLayerDesc, BatchLayerWriter, DeltaLayerWriter, EvictionError, ImageLayerName,
     121              :     ImageLayerWriter, InMemoryLayer, IoConcurrency, Layer, LayerAccessStatsReset, LayerName,
     122              :     PersistentLayerDesc, PersistentLayerKey, ResidentLayer, ValueReconstructSituation,
     123              :     ValueReconstructState, ValuesReconstructState,
     124              : };
     125              : use crate::tenant::tasks::BackgroundLoopKind;
     126              : use crate::tenant::timeline::logical_size::CurrentLogicalSize;
     127              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
     128              : use crate::walingest::WalLagCooldown;
     129              : use crate::{ZERO_PAGE, task_mgr, walredo};
     130              : 
     131              : #[derive(Debug, PartialEq, Eq, Clone, Copy)]
     132              : pub(crate) enum FlushLoopState {
     133              :     NotStarted,
     134              :     Running {
     135              :         #[cfg(test)]
     136              :         expect_initdb_optimization: bool,
     137              :         #[cfg(test)]
     138              :         initdb_optimization_count: usize,
     139              :     },
     140              :     Exited,
     141              : }
     142              : 
     143              : #[derive(Debug, Copy, Clone, PartialEq, Eq)]
     144              : pub enum ImageLayerCreationMode {
     145              :     /// Try to create image layers based on `time_for_new_image_layer`. Used in compaction code path.
     146              :     Try,
     147              :     /// Force creating the image layers if possible. For now, no image layers will be created
     148              :     /// for metadata keys. Used in compaction code path with force flag enabled.
     149              :     Force,
     150              :     /// Initial ingestion of the data, and no data should be dropped in this function. This
     151              :     /// means that no metadata keys should be included in the partitions. Used in flush frozen layer
     152              :     /// code path.
     153              :     Initial,
     154              : }
     155              : 
     156              : #[derive(Clone, Debug, Default)]
     157              : pub enum LastImageLayerCreationStatus {
     158              :     Incomplete {
     159              :         /// The last key of the partition (exclusive) that was processed in the last
     160              :         /// image layer creation attempt. We will continue from this key in the next
     161              :         /// attempt.
     162              :         last_key: Key,
     163              :     },
     164              :     Complete,
     165              :     #[default]
     166              :     Initial,
     167              : }
     168              : 
     169              : impl std::fmt::Display for ImageLayerCreationMode {
     170         1146 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     171         1146 :         write!(f, "{:?}", self)
     172         1146 :     }
     173              : }
     174              : 
     175              : /// Temporary function for immutable storage state refactor, ensures we are dropping mutex guard instead of other things.
     176              : /// Can be removed after all refactors are done.
     177           56 : fn drop_rlock<T>(rlock: tokio::sync::RwLockReadGuard<T>) {
     178           56 :     drop(rlock)
     179           56 : }
     180              : 
     181              : /// Temporary function for immutable storage state refactor, ensures we are dropping mutex guard instead of other things.
     182              : /// Can be removed after all refactors are done.
     183         1202 : fn drop_wlock<T>(rlock: tokio::sync::RwLockWriteGuard<'_, T>) {
     184         1202 :     drop(rlock)
     185         1202 : }
     186              : 
     187              : /// The outward-facing resources required to build a Timeline
     188              : pub struct TimelineResources {
     189              :     pub remote_client: RemoteTimelineClient,
     190              :     pub pagestream_throttle: Arc<crate::tenant::throttle::Throttle>,
     191              :     pub pagestream_throttle_metrics: Arc<crate::metrics::tenant_throttling::Pagestream>,
     192              :     pub l0_compaction_trigger: Arc<Notify>,
     193              :     pub l0_flush_global_state: l0_flush::L0FlushGlobalState,
     194              : }
     195              : 
     196              : /// The relation size cache caches relation sizes at the end of the timeline. It speeds up WAL
     197              : /// ingestion considerably, because WAL ingestion needs to check on most records if the record
     198              : /// implicitly extends the relation.  At startup, `complete_as_of` is initialized to the current end
     199              : /// of the timeline (disk_consistent_lsn).  It's used on reads of relation sizes to check if the
     200              : /// value can be used to also update the cache, see [`Timeline::update_cached_rel_size`].
     201              : pub(crate) struct RelSizeCache {
     202              :     pub(crate) complete_as_of: Lsn,
     203              :     pub(crate) map: HashMap<RelTag, (Lsn, BlockNumber)>,
     204              : }
     205              : 
     206              : pub struct Timeline {
     207              :     pub(crate) conf: &'static PageServerConf,
     208              :     tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
     209              : 
     210              :     myself: Weak<Self>,
     211              : 
     212              :     pub(crate) tenant_shard_id: TenantShardId,
     213              :     pub timeline_id: TimelineId,
     214              : 
     215              :     /// The generation of the tenant that instantiated us: this is used for safety when writing remote objects.
     216              :     /// Never changes for the lifetime of this [`Timeline`] object.
     217              :     ///
     218              :     /// This duplicates the generation stored in LocationConf, but that structure is mutable:
     219              :     /// this copy enforces the invariant that generatio doesn't change during a Tenant's lifetime.
     220              :     pub(crate) generation: Generation,
     221              : 
     222              :     /// The detailed sharding information from our parent Tenant.  This enables us to map keys
     223              :     /// to shards, and is constant through the lifetime of this Timeline.
     224              :     shard_identity: ShardIdentity,
     225              : 
     226              :     pub pg_version: u32,
     227              : 
     228              :     /// The tuple has two elements.
     229              :     /// 1. `LayerFileManager` keeps track of the various physical representations of the layer files (inmem, local, remote).
     230              :     /// 2. `LayerMap`, the acceleration data structure for `get_reconstruct_data`.
     231              :     ///
     232              :     /// `LayerMap` maps out the `(PAGE,LSN) / (KEY,LSN)` space, which is composed of `(KeyRange, LsnRange)` rectangles.
     233              :     /// We describe these rectangles through the `PersistentLayerDesc` struct.
     234              :     ///
     235              :     /// When we want to reconstruct a page, we first find the `PersistentLayerDesc`'s that we need for page reconstruction,
     236              :     /// using `LayerMap`. Then, we use `LayerFileManager` to get the `PersistentLayer`'s that correspond to the
     237              :     /// `PersistentLayerDesc`'s.
     238              :     ///
     239              :     /// Hence, it's important to keep things coherent. The `LayerFileManager` must always have an entry for all
     240              :     /// `PersistentLayerDesc`'s in the `LayerMap`. If it doesn't, `LayerFileManager::get_from_desc` will panic at
     241              :     /// runtime, e.g., during page reconstruction.
     242              :     ///
     243              :     /// In the future, we'll be able to split up the tuple of LayerMap and `LayerFileManager`,
     244              :     /// so that e.g. on-demand-download/eviction, and layer spreading, can operate just on `LayerFileManager`.
     245              :     pub(crate) layers: tokio::sync::RwLock<LayerManager>,
     246              : 
     247              :     last_freeze_at: AtomicLsn,
     248              :     // Atomic would be more appropriate here.
     249              :     last_freeze_ts: RwLock<Instant>,
     250              : 
     251              :     pub(crate) standby_horizon: AtomicLsn,
     252              : 
     253              :     // WAL redo manager. `None` only for broken tenants.
     254              :     walredo_mgr: Option<Arc<super::WalRedoManager>>,
     255              : 
     256              :     /// Remote storage client.
     257              :     /// See [`remote_timeline_client`](super::remote_timeline_client) module comment for details.
     258              :     pub(crate) remote_client: Arc<RemoteTimelineClient>,
     259              : 
     260              :     // What page versions do we hold in the repository? If we get a
     261              :     // request > last_record_lsn, we need to wait until we receive all
     262              :     // the WAL up to the request. The SeqWait provides functions for
     263              :     // that. TODO: If we get a request for an old LSN, such that the
     264              :     // versions have already been garbage collected away, we should
     265              :     // throw an error, but we don't track that currently.
     266              :     //
     267              :     // last_record_lsn.load().last points to the end of last processed WAL record.
     268              :     //
     269              :     // We also remember the starting point of the previous record in
     270              :     // 'last_record_lsn.load().prev'. It's used to set the xl_prev pointer of the
     271              :     // first WAL record when the node is started up. But here, we just
     272              :     // keep track of it.
     273              :     last_record_lsn: SeqWait<RecordLsn, Lsn>,
     274              : 
     275              :     // All WAL records have been processed and stored durably on files on
     276              :     // local disk, up to this LSN. On crash and restart, we need to re-process
     277              :     // the WAL starting from this point.
     278              :     //
     279              :     // Some later WAL records might have been processed and also flushed to disk
     280              :     // already, so don't be surprised to see some, but there's no guarantee on
     281              :     // them yet.
     282              :     disk_consistent_lsn: AtomicLsn,
     283              : 
     284              :     // Parent timeline that this timeline was branched from, and the LSN
     285              :     // of the branch point.
     286              :     ancestor_timeline: Option<Arc<Timeline>>,
     287              :     ancestor_lsn: Lsn,
     288              : 
     289              :     // The LSN of gc-compaction that was last applied to this timeline.
     290              :     gc_compaction_state: ArcSwap<Option<GcCompactionState>>,
     291              : 
     292              :     pub(crate) metrics: Arc<TimelineMetrics>,
     293              : 
     294              :     // `Timeline` doesn't write these metrics itself, but it manages the lifetime.  Code
     295              :     // in `crate::page_service` writes these metrics.
     296              :     pub(crate) query_metrics: crate::metrics::SmgrQueryTimePerTimeline,
     297              : 
     298              :     directory_metrics_inited: [AtomicBool; DirectoryKind::KINDS_NUM],
     299              :     directory_metrics: [AtomicU64; DirectoryKind::KINDS_NUM],
     300              : 
     301              :     /// Ensures layers aren't frozen by checkpointer between
     302              :     /// [`Timeline::get_layer_for_write`] and layer reads.
     303              :     /// Locked automatically by [`TimelineWriter`] and checkpointer.
     304              :     /// Must always be acquired before the layer map/individual layer lock
     305              :     /// to avoid deadlock.
     306              :     ///
     307              :     /// The state is cleared upon freezing.
     308              :     write_lock: tokio::sync::Mutex<Option<TimelineWriterState>>,
     309              : 
     310              :     /// Used to avoid multiple `flush_loop` tasks running
     311              :     pub(super) flush_loop_state: Mutex<FlushLoopState>,
     312              : 
     313              :     /// layer_flush_start_tx can be used to wake up the layer-flushing task.
     314              :     /// - The u64 value is a counter, incremented every time a new flush cycle is requested.
     315              :     ///   The flush cycle counter is sent back on the layer_flush_done channel when
     316              :     ///   the flush finishes. You can use that to wait for the flush to finish.
     317              :     /// - The LSN is updated to max() of its current value and the latest disk_consistent_lsn
     318              :     ///   read by whoever sends an update
     319              :     layer_flush_start_tx: tokio::sync::watch::Sender<(u64, Lsn)>,
     320              :     /// to be notified when layer flushing has finished, subscribe to the layer_flush_done channel
     321              :     layer_flush_done_tx: tokio::sync::watch::Sender<(u64, Result<(), FlushLayerError>)>,
     322              : 
     323              :     // The LSN at which we have executed GC: whereas [`Self::gc_info`] records the LSN at which
     324              :     // we _intend_ to GC (i.e. the PITR cutoff), this LSN records where we actually last did it.
     325              :     // Because PITR interval is mutable, it's possible for this LSN to be earlier or later than
     326              :     // the planned GC cutoff.
     327              :     pub applied_gc_cutoff_lsn: Rcu<Lsn>,
     328              : 
     329              :     pub(crate) gc_compaction_layer_update_lock: tokio::sync::RwLock<()>,
     330              : 
     331              :     // List of child timelines and their branch points. This is needed to avoid
     332              :     // garbage collecting data that is still needed by the child timelines.
     333              :     pub(crate) gc_info: std::sync::RwLock<GcInfo>,
     334              : 
     335              :     pub(crate) last_image_layer_creation_status: ArcSwap<LastImageLayerCreationStatus>,
     336              : 
     337              :     // It may change across major versions so for simplicity
     338              :     // keep it after running initdb for a timeline.
     339              :     // It is needed in checks when we want to error on some operations
     340              :     // when they are requested for pre-initdb lsn.
     341              :     // It can be unified with latest_gc_cutoff_lsn under some "first_valid_lsn",
     342              :     // though let's keep them both for better error visibility.
     343              :     pub initdb_lsn: Lsn,
     344              : 
     345              :     /// The repartitioning result. Allows a single writer and multiple readers.
     346              :     pub(crate) partitioning: GuardArcSwap<((KeyPartitioning, SparseKeyPartitioning), Lsn)>,
     347              : 
     348              :     /// Configuration: how often should the partitioning be recalculated.
     349              :     repartition_threshold: u64,
     350              : 
     351              :     last_image_layer_creation_check_at: AtomicLsn,
     352              :     last_image_layer_creation_check_instant: std::sync::Mutex<Option<Instant>>,
     353              : 
     354              :     /// Current logical size of the "datadir", at the last LSN.
     355              :     current_logical_size: LogicalSize,
     356              : 
     357              :     /// Information about the last processed message by the WAL receiver,
     358              :     /// or None if WAL receiver has not received anything for this timeline
     359              :     /// yet.
     360              :     pub last_received_wal: Mutex<Option<WalReceiverInfo>>,
     361              :     pub walreceiver: Mutex<Option<WalReceiver>>,
     362              : 
     363              :     /// Relation size cache
     364              :     pub(crate) rel_size_cache: RwLock<RelSizeCache>,
     365              : 
     366              :     download_all_remote_layers_task_info: RwLock<Option<DownloadRemoteLayersTaskInfo>>,
     367              : 
     368              :     state: watch::Sender<TimelineState>,
     369              : 
     370              :     /// Prevent two tasks from deleting the timeline at the same time. If held, the
     371              :     /// timeline is being deleted. If 'true', the timeline has already been deleted.
     372              :     pub delete_progress: TimelineDeleteProgress,
     373              : 
     374              :     eviction_task_timeline_state: tokio::sync::Mutex<EvictionTaskTimelineState>,
     375              : 
     376              :     /// Load or creation time information about the disk_consistent_lsn and when the loading
     377              :     /// happened. Used for consumption metrics.
     378              :     pub(crate) loaded_at: (Lsn, SystemTime),
     379              : 
     380              :     /// Gate to prevent shutdown completing while I/O is still happening to this timeline's data
     381              :     pub(crate) gate: Gate,
     382              : 
     383              :     /// Cancellation token scoped to this timeline: anything doing long-running work relating
     384              :     /// to the timeline should drop out when this token fires.
     385              :     pub(crate) cancel: CancellationToken,
     386              : 
     387              :     /// Make sure we only have one running compaction at a time in tests.
     388              :     ///
     389              :     /// Must only be taken in two places:
     390              :     /// - [`Timeline::compact`] (this file)
     391              :     /// - [`delete::delete_local_timeline_directory`]
     392              :     ///
     393              :     /// Timeline deletion will acquire both compaction and gc locks in whatever order.
     394              :     compaction_lock: tokio::sync::Mutex<()>,
     395              : 
     396              :     /// If true, the last compaction failed.
     397              :     compaction_failed: AtomicBool,
     398              : 
     399              :     /// Notifies the tenant compaction loop that there is pending L0 compaction work.
     400              :     l0_compaction_trigger: Arc<Notify>,
     401              : 
     402              :     /// Make sure we only have one running gc at a time.
     403              :     ///
     404              :     /// Must only be taken in two places:
     405              :     /// - [`Timeline::gc`] (this file)
     406              :     /// - [`delete::delete_local_timeline_directory`]
     407              :     ///
     408              :     /// Timeline deletion will acquire both compaction and gc locks in whatever order.
     409              :     gc_lock: tokio::sync::Mutex<()>,
     410              : 
     411              :     /// Cloned from [`super::Tenant::pagestream_throttle`] on construction.
     412              :     pub(crate) pagestream_throttle: Arc<crate::tenant::throttle::Throttle>,
     413              : 
     414              :     /// Size estimator for aux file v2
     415              :     pub(crate) aux_file_size_estimator: AuxFileSizeEstimator,
     416              : 
     417              :     /// Some test cases directly place keys into the timeline without actually modifying the directory
     418              :     /// keys (i.e., DB_DIR). The test cases creating such keys will put the keyspaces here, so that
     419              :     /// these keys won't get garbage-collected during compaction/GC. This field only modifies the dense
     420              :     /// keyspace return value of `collect_keyspace`. For sparse keyspaces, use AUX keys for testing, and
     421              :     /// in the future, add `extra_test_sparse_keyspace` if necessary.
     422              :     #[cfg(test)]
     423              :     pub(crate) extra_test_dense_keyspace: ArcSwap<KeySpace>,
     424              : 
     425              :     pub(crate) l0_flush_global_state: L0FlushGlobalState,
     426              : 
     427              :     pub(crate) handles: handle::PerTimelineState<TenantManagerTypes>,
     428              : 
     429              :     pub(crate) attach_wal_lag_cooldown: Arc<OnceLock<WalLagCooldown>>,
     430              : 
     431              :     /// Cf. [`crate::tenant::CreateTimelineIdempotency`].
     432              :     pub(crate) create_idempotency: crate::tenant::CreateTimelineIdempotency,
     433              : 
     434              :     /// If Some, collects GetPage metadata for an ongoing PageTrace.
     435              :     pub(crate) page_trace: ArcSwapOption<Sender<PageTraceEvent>>,
     436              : 
     437              :     pub(super) previous_heatmap: ArcSwapOption<PreviousHeatmap>,
     438              : 
     439              :     /// May host a background Tokio task which downloads all the layers from the current
     440              :     /// heatmap on demand.
     441              :     heatmap_layers_downloader: Mutex<Option<heatmap_layers_downloader::HeatmapLayersDownloader>>,
     442              : 
     443              :     pub(crate) rel_size_v2_status: ArcSwapOption<RelSizeMigration>,
     444              : 
     445              :     wait_lsn_log_slow: tokio::sync::Semaphore,
     446              : }
     447              : 
     448              : pub(crate) enum PreviousHeatmap {
     449              :     Active {
     450              :         heatmap: HeatMapTimeline,
     451              :         read_at: std::time::Instant,
     452              :         // End LSN covered by the heatmap if known
     453              :         end_lsn: Option<Lsn>,
     454              :     },
     455              :     Obsolete,
     456              : }
     457              : 
     458              : pub type TimelineDeleteProgress = Arc<tokio::sync::Mutex<DeleteTimelineFlow>>;
     459              : 
     460              : pub struct WalReceiverInfo {
     461              :     pub wal_source_connconf: PgConnectionConfig,
     462              :     pub last_received_msg_lsn: Lsn,
     463              :     pub last_received_msg_ts: u128,
     464              : }
     465              : 
     466              : /// Information about how much history needs to be retained, needed by
     467              : /// Garbage Collection.
     468              : #[derive(Default)]
     469              : pub(crate) struct GcInfo {
     470              :     /// Specific LSNs that are needed.
     471              :     ///
     472              :     /// Currently, this includes all points where child branches have
     473              :     /// been forked off from. In the future, could also include
     474              :     /// explicit user-defined snapshot points.
     475              :     pub(crate) retain_lsns: Vec<(Lsn, TimelineId, MaybeOffloaded)>,
     476              : 
     477              :     /// The cutoff coordinates, which are combined by selecting the minimum.
     478              :     pub(crate) cutoffs: GcCutoffs,
     479              : 
     480              :     /// Leases granted to particular LSNs.
     481              :     pub(crate) leases: BTreeMap<Lsn, LsnLease>,
     482              : 
     483              :     /// Whether our branch point is within our ancestor's PITR interval (for cost estimation)
     484              :     pub(crate) within_ancestor_pitr: bool,
     485              : }
     486              : 
     487              : impl GcInfo {
     488          600 :     pub(crate) fn min_cutoff(&self) -> Lsn {
     489          600 :         self.cutoffs.select_min()
     490          600 :     }
     491              : 
     492          464 :     pub(super) fn insert_child(
     493          464 :         &mut self,
     494          464 :         child_id: TimelineId,
     495          464 :         child_lsn: Lsn,
     496          464 :         is_offloaded: MaybeOffloaded,
     497          464 :     ) {
     498          464 :         self.retain_lsns.push((child_lsn, child_id, is_offloaded));
     499          464 :         self.retain_lsns.sort_by_key(|i| i.0);
     500          464 :     }
     501              : 
     502            8 :     pub(super) fn remove_child_maybe_offloaded(
     503            8 :         &mut self,
     504            8 :         child_id: TimelineId,
     505            8 :         maybe_offloaded: MaybeOffloaded,
     506            8 :     ) -> bool {
     507            8 :         // Remove at most one element. Needed for correctness if there is two live `Timeline` objects referencing
     508            8 :         // the same timeline. Shouldn't but maybe can occur when Arc's live longer than intended.
     509            8 :         let mut removed = false;
     510           12 :         self.retain_lsns.retain(|i| {
     511           12 :             if removed {
     512            4 :                 return true;
     513            8 :             }
     514            8 :             let remove = i.1 == child_id && i.2 == maybe_offloaded;
     515            8 :             removed |= remove;
     516            8 :             !remove
     517           12 :         });
     518            8 :         removed
     519            8 :     }
     520              : 
     521            8 :     pub(super) fn remove_child_not_offloaded(&mut self, child_id: TimelineId) -> bool {
     522            8 :         self.remove_child_maybe_offloaded(child_id, MaybeOffloaded::No)
     523            8 :     }
     524              : 
     525            0 :     pub(super) fn remove_child_offloaded(&mut self, child_id: TimelineId) -> bool {
     526            0 :         self.remove_child_maybe_offloaded(child_id, MaybeOffloaded::Yes)
     527            0 :     }
     528          464 :     pub(crate) fn lsn_covered_by_lease(&self, lsn: Lsn) -> bool {
     529          464 :         self.leases.contains_key(&lsn)
     530          464 :     }
     531              : }
     532              : 
     533              : /// The `GcInfo` component describing which Lsns need to be retained.  Functionally, this
     534              : /// is a single number (the oldest LSN which we must retain), but it internally distinguishes
     535              : /// between time-based and space-based retention for observability and consumption metrics purposes.
     536              : #[derive(Debug, Clone)]
     537              : pub(crate) struct GcCutoffs {
     538              :     /// Calculated from the [`pageserver_api::models::TenantConfig::gc_horizon`], this LSN indicates how much
     539              :     /// history we must keep to retain a specified number of bytes of WAL.
     540              :     pub(crate) space: Lsn,
     541              : 
     542              :     /// Calculated from [`pageserver_api::models::TenantConfig::pitr_interval`], this LSN indicates how much
     543              :     /// history we must keep to enable reading back at least the PITR interval duration.
     544              :     pub(crate) time: Lsn,
     545              : }
     546              : 
     547              : impl Default for GcCutoffs {
     548          904 :     fn default() -> Self {
     549          904 :         Self {
     550          904 :             space: Lsn::INVALID,
     551          904 :             time: Lsn::INVALID,
     552          904 :         }
     553          904 :     }
     554              : }
     555              : 
     556              : impl GcCutoffs {
     557          600 :     fn select_min(&self) -> Lsn {
     558          600 :         std::cmp::min(self.space, self.time)
     559          600 :     }
     560              : }
     561              : 
     562              : pub(crate) struct TimelineVisitOutcome {
     563              :     completed_keyspace: KeySpace,
     564              :     image_covered_keyspace: KeySpace,
     565              : }
     566              : 
     567              : /// An error happened in a get() operation.
     568              : #[derive(thiserror::Error, Debug)]
     569              : pub(crate) enum PageReconstructError {
     570              :     #[error(transparent)]
     571              :     Other(anyhow::Error),
     572              : 
     573              :     #[error("Ancestor LSN wait error: {0}")]
     574              :     AncestorLsnTimeout(WaitLsnError),
     575              : 
     576              :     #[error("timeline shutting down")]
     577              :     Cancelled,
     578              : 
     579              :     /// An error happened replaying WAL records
     580              :     #[error(transparent)]
     581              :     WalRedo(anyhow::Error),
     582              : 
     583              :     #[error("{0}")]
     584              :     MissingKey(MissingKeyError),
     585              : }
     586              : 
     587              : impl From<anyhow::Error> for PageReconstructError {
     588            0 :     fn from(value: anyhow::Error) -> Self {
     589            0 :         // with walingest.rs many PageReconstructError are wrapped in as anyhow::Error
     590            0 :         match value.downcast::<PageReconstructError>() {
     591            0 :             Ok(pre) => pre,
     592            0 :             Err(other) => PageReconstructError::Other(other),
     593              :         }
     594            0 :     }
     595              : }
     596              : 
     597              : impl From<utils::bin_ser::DeserializeError> for PageReconstructError {
     598            0 :     fn from(value: utils::bin_ser::DeserializeError) -> Self {
     599            0 :         PageReconstructError::Other(anyhow::Error::new(value).context("deserialization failure"))
     600            0 :     }
     601              : }
     602              : 
     603              : impl From<layer_manager::Shutdown> for PageReconstructError {
     604            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     605            0 :         PageReconstructError::Cancelled
     606            0 :     }
     607              : }
     608              : 
     609              : impl GetVectoredError {
     610              :     #[cfg(test)]
     611           12 :     pub(crate) fn is_missing_key_error(&self) -> bool {
     612           12 :         matches!(self, Self::MissingKey(_))
     613           12 :     }
     614              : }
     615              : 
     616              : impl From<layer_manager::Shutdown> for GetVectoredError {
     617            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     618            0 :         GetVectoredError::Cancelled
     619            0 :     }
     620              : }
     621              : 
     622              : /// A layer identifier when used in the [`ReadPath`] structure. This enum is for observability purposes
     623              : /// only and not used by the "real read path".
     624              : pub enum ReadPathLayerId {
     625              :     PersistentLayer(PersistentLayerKey),
     626              :     InMemoryLayer(Range<Lsn>),
     627              : }
     628              : 
     629              : impl std::fmt::Display for ReadPathLayerId {
     630            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     631            0 :         match self {
     632            0 :             ReadPathLayerId::PersistentLayer(key) => write!(f, "{}", key),
     633            0 :             ReadPathLayerId::InMemoryLayer(range) => {
     634            0 :                 write!(f, "in-mem {}..{}", range.start, range.end)
     635              :             }
     636              :         }
     637            0 :     }
     638              : }
     639              : pub struct ReadPath {
     640              :     keyspace: KeySpace,
     641              :     lsn: Lsn,
     642              :     path: Vec<(ReadPathLayerId, KeySpace, Range<Lsn>)>,
     643              : }
     644              : 
     645              : impl ReadPath {
     646      1255489 :     pub fn new(keyspace: KeySpace, lsn: Lsn) -> Self {
     647      1255489 :         Self {
     648      1255489 :             keyspace,
     649      1255489 :             lsn,
     650      1255489 :             path: Vec::new(),
     651      1255489 :         }
     652      1255489 :     }
     653              : 
     654      1693798 :     pub fn record_layer_visit(
     655      1693798 :         &mut self,
     656      1693798 :         layer_to_read: &ReadableLayer,
     657      1693798 :         keyspace_to_read: &KeySpace,
     658      1693798 :         lsn_range: &Range<Lsn>,
     659      1693798 :     ) {
     660      1693798 :         let id = match layer_to_read {
     661       480305 :             ReadableLayer::PersistentLayer(layer) => {
     662       480305 :                 ReadPathLayerId::PersistentLayer(layer.layer_desc().key())
     663              :             }
     664      1213493 :             ReadableLayer::InMemoryLayer(layer) => {
     665      1213493 :                 ReadPathLayerId::InMemoryLayer(layer.get_lsn_range())
     666              :             }
     667              :         };
     668      1693798 :         self.path
     669      1693798 :             .push((id, keyspace_to_read.clone(), lsn_range.clone()));
     670      1693798 :     }
     671              : }
     672              : 
     673              : impl std::fmt::Display for ReadPath {
     674            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     675            0 :         writeln!(f, "Read path for {} at lsn {}:", self.keyspace, self.lsn)?;
     676            0 :         for (idx, (layer_id, keyspace, lsn_range)) in self.path.iter().enumerate() {
     677            0 :             writeln!(
     678            0 :                 f,
     679            0 :                 "{}: {} {}..{} {}",
     680            0 :                 idx, layer_id, lsn_range.start, lsn_range.end, keyspace
     681            0 :             )?;
     682              :         }
     683            0 :         Ok(())
     684            0 :     }
     685              : }
     686              : 
     687              : #[derive(thiserror::Error)]
     688              : pub struct MissingKeyError {
     689              :     key: Key,
     690              :     shard: ShardNumber,
     691              :     cont_lsn: Lsn,
     692              :     request_lsn: Lsn,
     693              :     ancestor_lsn: Option<Lsn>,
     694              :     /// Debug information about the read path if there's an error
     695              :     read_path: Option<ReadPath>,
     696              :     backtrace: Option<std::backtrace::Backtrace>,
     697              : }
     698              : 
     699              : impl std::fmt::Debug for MissingKeyError {
     700            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     701            0 :         write!(f, "{}", self)
     702            0 :     }
     703              : }
     704              : 
     705              : impl std::fmt::Display for MissingKeyError {
     706            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     707            0 :         write!(
     708            0 :             f,
     709            0 :             "could not find data for key {} (shard {:?}) at LSN {}, request LSN {}",
     710            0 :             self.key, self.shard, self.cont_lsn, self.request_lsn
     711            0 :         )?;
     712              : 
     713            0 :         if let Some(ref ancestor_lsn) = self.ancestor_lsn {
     714            0 :             write!(f, ", ancestor {}", ancestor_lsn)?;
     715            0 :         }
     716              : 
     717            0 :         if let Some(ref read_path) = self.read_path {
     718            0 :             write!(f, "\n{}", read_path)?;
     719            0 :         }
     720              : 
     721            0 :         if let Some(ref backtrace) = self.backtrace {
     722            0 :             write!(f, "\n{}", backtrace)?;
     723            0 :         }
     724              : 
     725            0 :         Ok(())
     726            0 :     }
     727              : }
     728              : 
     729              : impl PageReconstructError {
     730              :     /// Returns true if this error indicates a tenant/timeline shutdown alike situation
     731            0 :     pub(crate) fn is_stopping(&self) -> bool {
     732              :         use PageReconstructError::*;
     733            0 :         match self {
     734            0 :             Cancelled => true,
     735            0 :             Other(_) | AncestorLsnTimeout(_) | WalRedo(_) | MissingKey(_) => false,
     736              :         }
     737            0 :     }
     738              : }
     739              : 
     740              : #[derive(thiserror::Error, Debug)]
     741              : pub(crate) enum CreateImageLayersError {
     742              :     #[error("timeline shutting down")]
     743              :     Cancelled,
     744              : 
     745              :     #[error("read failed")]
     746              :     GetVectoredError(#[source] GetVectoredError),
     747              : 
     748              :     #[error("reconstruction failed")]
     749              :     PageReconstructError(#[source] PageReconstructError),
     750              : 
     751              :     #[error(transparent)]
     752              :     Other(#[from] anyhow::Error),
     753              : }
     754              : 
     755              : impl From<layer_manager::Shutdown> for CreateImageLayersError {
     756            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     757            0 :         CreateImageLayersError::Cancelled
     758            0 :     }
     759              : }
     760              : 
     761              : #[derive(thiserror::Error, Debug, Clone)]
     762              : pub(crate) enum FlushLayerError {
     763              :     /// Timeline cancellation token was cancelled
     764              :     #[error("timeline shutting down")]
     765              :     Cancelled,
     766              : 
     767              :     /// We tried to flush a layer while the Timeline is in an unexpected state
     768              :     #[error("cannot flush frozen layers when flush_loop is not running, state is {0:?}")]
     769              :     NotRunning(FlushLoopState),
     770              : 
     771              :     // Arc<> the following non-clonable error types: we must be Clone-able because the flush error is propagated from the flush
     772              :     // loop via a watch channel, where we can only borrow it.
     773              :     #[error("create image layers (shared)")]
     774              :     CreateImageLayersError(Arc<CreateImageLayersError>),
     775              : 
     776              :     #[error("other (shared)")]
     777              :     Other(#[from] Arc<anyhow::Error>),
     778              : }
     779              : 
     780              : impl FlushLayerError {
     781              :     // When crossing from generic anyhow errors to this error type, we explicitly check
     782              :     // for timeline cancellation to avoid logging inoffensive shutdown errors as warn/err.
     783            0 :     fn from_anyhow(timeline: &Timeline, err: anyhow::Error) -> Self {
     784            0 :         let cancelled = timeline.cancel.is_cancelled()
     785              :             // The upload queue might have been shut down before the official cancellation of the timeline.
     786            0 :             || err
     787            0 :                 .downcast_ref::<NotInitialized>()
     788            0 :                 .map(NotInitialized::is_stopping)
     789            0 :                 .unwrap_or_default();
     790            0 :         if cancelled {
     791            0 :             Self::Cancelled
     792              :         } else {
     793            0 :             Self::Other(Arc::new(err))
     794              :         }
     795            0 :     }
     796              : }
     797              : 
     798              : impl From<layer_manager::Shutdown> for FlushLayerError {
     799            0 :     fn from(_: layer_manager::Shutdown) -> Self {
     800            0 :         FlushLayerError::Cancelled
     801            0 :     }
     802              : }
     803              : 
     804              : #[derive(thiserror::Error, Debug)]
     805              : pub(crate) enum GetVectoredError {
     806              :     #[error("timeline shutting down")]
     807              :     Cancelled,
     808              : 
     809              :     #[error("requested too many keys: {0} > {}", Timeline::MAX_GET_VECTORED_KEYS)]
     810              :     Oversized(u64),
     811              : 
     812              :     #[error("requested at invalid LSN: {0}")]
     813              :     InvalidLsn(Lsn),
     814              : 
     815              :     #[error("requested key not found: {0}")]
     816              :     MissingKey(MissingKeyError),
     817              : 
     818              :     #[error("ancestry walk")]
     819              :     GetReadyAncestorError(#[source] GetReadyAncestorError),
     820              : 
     821              :     #[error(transparent)]
     822              :     Other(#[from] anyhow::Error),
     823              : }
     824              : 
     825              : impl From<GetReadyAncestorError> for GetVectoredError {
     826            4 :     fn from(value: GetReadyAncestorError) -> Self {
     827              :         use GetReadyAncestorError::*;
     828            4 :         match value {
     829            0 :             Cancelled => GetVectoredError::Cancelled,
     830              :             AncestorLsnTimeout(_) | BadState { .. } => {
     831            4 :                 GetVectoredError::GetReadyAncestorError(value)
     832              :             }
     833              :         }
     834            4 :     }
     835              : }
     836              : 
     837              : #[derive(thiserror::Error, Debug)]
     838              : pub(crate) enum GetReadyAncestorError {
     839              :     #[error("ancestor LSN wait error")]
     840              :     AncestorLsnTimeout(#[from] WaitLsnError),
     841              : 
     842              :     #[error("bad state on timeline {timeline_id}: {state:?}")]
     843              :     BadState {
     844              :         timeline_id: TimelineId,
     845              :         state: TimelineState,
     846              :     },
     847              : 
     848              :     #[error("cancelled")]
     849              :     Cancelled,
     850              : }
     851              : 
     852              : #[derive(Clone, Copy)]
     853              : pub enum LogicalSizeCalculationCause {
     854              :     Initial,
     855              :     ConsumptionMetricsSyntheticSize,
     856              :     EvictionTaskImitation,
     857              :     TenantSizeHandler,
     858              : }
     859              : 
     860              : pub enum GetLogicalSizePriority {
     861              :     User,
     862              :     Background,
     863              : }
     864              : 
     865            0 : #[derive(Debug, enumset::EnumSetType)]
     866              : pub(crate) enum CompactFlags {
     867              :     ForceRepartition,
     868              :     ForceImageLayerCreation,
     869              :     ForceL0Compaction,
     870              :     OnlyL0Compaction,
     871              :     EnhancedGcBottomMostCompaction,
     872              :     DryRun,
     873              :     /// Disables compaction yielding e.g. due to high L0 count. This is set e.g. when requesting
     874              :     /// compaction via HTTP API.
     875              :     NoYield,
     876              : }
     877              : 
     878              : #[serde_with::serde_as]
     879            0 : #[derive(Debug, Clone, serde::Deserialize)]
     880              : pub(crate) struct CompactRequest {
     881              :     pub compact_key_range: Option<CompactKeyRange>,
     882              :     pub compact_lsn_range: Option<CompactLsnRange>,
     883              :     /// Whether the compaction job should be scheduled.
     884              :     #[serde(default)]
     885              :     pub scheduled: bool,
     886              :     /// Whether the compaction job should be split across key ranges.
     887              :     #[serde(default)]
     888              :     pub sub_compaction: bool,
     889              :     /// Max job size for each subcompaction job.
     890              :     pub sub_compaction_max_job_size_mb: Option<u64>,
     891              : }
     892              : 
     893              : #[derive(Debug, Clone, Default)]
     894              : pub(crate) struct CompactOptions {
     895              :     pub flags: EnumSet<CompactFlags>,
     896              :     /// If set, the compaction will only compact the key range specified by this option.
     897              :     /// This option is only used by GC compaction. For the full explanation, see [`compaction::GcCompactJob`].
     898              :     pub compact_key_range: Option<CompactKeyRange>,
     899              :     /// If set, the compaction will only compact the LSN within this value.
     900              :     /// This option is only used by GC compaction. For the full explanation, see [`compaction::GcCompactJob`].
     901              :     pub compact_lsn_range: Option<CompactLsnRange>,
     902              :     /// Enable sub-compaction (split compaction job across key ranges).
     903              :     /// This option is only used by GC compaction.
     904              :     pub sub_compaction: bool,
     905              :     /// Set job size for the GC compaction.
     906              :     /// This option is only used by GC compaction.
     907              :     pub sub_compaction_max_job_size_mb: Option<u64>,
     908              : }
     909              : 
     910              : impl std::fmt::Debug for Timeline {
     911            0 :     fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
     912            0 :         write!(f, "Timeline<{}>", self.timeline_id)
     913            0 :     }
     914              : }
     915              : 
     916              : #[derive(thiserror::Error, Debug)]
     917              : pub(crate) enum WaitLsnError {
     918              :     // Called on a timeline which is shutting down
     919              :     #[error("Shutdown")]
     920              :     Shutdown,
     921              : 
     922              :     // Called on an timeline not in active state or shutting down
     923              :     #[error("Bad timeline state: {0:?}")]
     924              :     BadState(TimelineState),
     925              : 
     926              :     // Timeout expired while waiting for LSN to catch up with goal.
     927              :     #[error("{0}")]
     928              :     Timeout(String),
     929              : }
     930              : 
     931              : // The impls below achieve cancellation mapping for errors.
     932              : // Perhaps there's a way of achieving this with less cruft.
     933              : 
     934              : impl From<CreateImageLayersError> for CompactionError {
     935            0 :     fn from(e: CreateImageLayersError) -> Self {
     936            0 :         match e {
     937            0 :             CreateImageLayersError::Cancelled => CompactionError::ShuttingDown,
     938            0 :             CreateImageLayersError::Other(e) => {
     939            0 :                 CompactionError::Other(e.context("create image layers"))
     940              :             }
     941            0 :             _ => CompactionError::Other(e.into()),
     942              :         }
     943            0 :     }
     944              : }
     945              : 
     946              : impl From<CreateImageLayersError> for FlushLayerError {
     947            0 :     fn from(e: CreateImageLayersError) -> Self {
     948            0 :         match e {
     949            0 :             CreateImageLayersError::Cancelled => FlushLayerError::Cancelled,
     950            0 :             any => FlushLayerError::CreateImageLayersError(Arc::new(any)),
     951              :         }
     952            0 :     }
     953              : }
     954              : 
     955              : impl From<PageReconstructError> for CreateImageLayersError {
     956            0 :     fn from(e: PageReconstructError) -> Self {
     957            0 :         match e {
     958            0 :             PageReconstructError::Cancelled => CreateImageLayersError::Cancelled,
     959            0 :             _ => CreateImageLayersError::PageReconstructError(e),
     960              :         }
     961            0 :     }
     962              : }
     963              : 
     964              : impl From<GetVectoredError> for CreateImageLayersError {
     965            0 :     fn from(e: GetVectoredError) -> Self {
     966            0 :         match e {
     967            0 :             GetVectoredError::Cancelled => CreateImageLayersError::Cancelled,
     968            0 :             _ => CreateImageLayersError::GetVectoredError(e),
     969              :         }
     970            0 :     }
     971              : }
     972              : 
     973              : impl From<GetVectoredError> for PageReconstructError {
     974           12 :     fn from(e: GetVectoredError) -> Self {
     975           12 :         match e {
     976            0 :             GetVectoredError::Cancelled => PageReconstructError::Cancelled,
     977            0 :             GetVectoredError::InvalidLsn(_) => PageReconstructError::Other(anyhow!("Invalid LSN")),
     978            0 :             err @ GetVectoredError::Oversized(_) => PageReconstructError::Other(err.into()),
     979            8 :             GetVectoredError::MissingKey(err) => PageReconstructError::MissingKey(err),
     980            4 :             GetVectoredError::GetReadyAncestorError(err) => PageReconstructError::from(err),
     981            0 :             GetVectoredError::Other(err) => PageReconstructError::Other(err),
     982              :         }
     983           12 :     }
     984              : }
     985              : 
     986              : impl From<GetReadyAncestorError> for PageReconstructError {
     987            4 :     fn from(e: GetReadyAncestorError) -> Self {
     988              :         use GetReadyAncestorError::*;
     989            4 :         match e {
     990            0 :             AncestorLsnTimeout(wait_err) => PageReconstructError::AncestorLsnTimeout(wait_err),
     991            4 :             bad_state @ BadState { .. } => PageReconstructError::Other(anyhow::anyhow!(bad_state)),
     992            0 :             Cancelled => PageReconstructError::Cancelled,
     993              :         }
     994            4 :     }
     995              : }
     996              : 
     997              : pub(crate) enum WaitLsnTimeout {
     998              :     Custom(Duration),
     999              :     // Use the [`PageServerConf::wait_lsn_timeout`] default
    1000              :     Default,
    1001              : }
    1002              : 
    1003              : pub(crate) enum WaitLsnWaiter<'a> {
    1004              :     Timeline(&'a Timeline),
    1005              :     Tenant,
    1006              :     PageService,
    1007              :     HttpEndpoint,
    1008              : }
    1009              : 
    1010              : /// Argument to [`Timeline::shutdown`].
    1011              : #[derive(Debug, Clone, Copy)]
    1012              : pub(crate) enum ShutdownMode {
    1013              :     /// Graceful shutdown, may do a lot of I/O as we flush any open layers to disk and then
    1014              :     /// also to remote storage.  This method can easily take multiple seconds for a busy timeline.
    1015              :     ///
    1016              :     /// While we are flushing, we continue to accept read I/O for LSNs ingested before
    1017              :     /// the call to [`Timeline::shutdown`].
    1018              :     FreezeAndFlush,
    1019              :     /// Only flush the layers to the remote storage without freezing any open layers. Flush the deletion
    1020              :     /// queue. This is the mode used by ancestor detach and any other operations that reloads a tenant
    1021              :     /// but not increasing the generation number. Note that this mode cannot be used at tenant shutdown,
    1022              :     /// as flushing the deletion queue at that time will cause shutdown-in-progress errors.
    1023              :     Reload,
    1024              :     /// Shut down immediately, without waiting for any open layers to flush.
    1025              :     Hard,
    1026              : }
    1027              : 
    1028              : enum ImageLayerCreationOutcome {
    1029              :     /// We generated an image layer
    1030              :     Generated {
    1031              :         unfinished_image_layer: ImageLayerWriter,
    1032              :     },
    1033              :     /// The key range is empty
    1034              :     Empty,
    1035              :     /// (Only used in metadata image layer creation), after reading the metadata keys, we decide to skip
    1036              :     /// the image layer creation.
    1037              :     Skip,
    1038              : }
    1039              : 
    1040              : /// Public interface functions
    1041              : impl Timeline {
    1042              :     /// Get the LSN where this branch was created
    1043            8 :     pub(crate) fn get_ancestor_lsn(&self) -> Lsn {
    1044            8 :         self.ancestor_lsn
    1045            8 :     }
    1046              : 
    1047              :     /// Get the ancestor's timeline id
    1048           24 :     pub(crate) fn get_ancestor_timeline_id(&self) -> Option<TimelineId> {
    1049           24 :         self.ancestor_timeline
    1050           24 :             .as_ref()
    1051           24 :             .map(|ancestor| ancestor.timeline_id)
    1052           24 :     }
    1053              : 
    1054              :     /// Get the ancestor timeline
    1055            4 :     pub(crate) fn ancestor_timeline(&self) -> Option<&Arc<Timeline>> {
    1056            4 :         self.ancestor_timeline.as_ref()
    1057            4 :     }
    1058              : 
    1059              :     /// Get the bytes written since the PITR cutoff on this branch, and
    1060              :     /// whether this branch's ancestor_lsn is within its parent's PITR.
    1061            0 :     pub(crate) fn get_pitr_history_stats(&self) -> (u64, bool) {
    1062            0 :         let gc_info = self.gc_info.read().unwrap();
    1063            0 :         let history = self
    1064            0 :             .get_last_record_lsn()
    1065            0 :             .checked_sub(gc_info.cutoffs.time)
    1066            0 :             .unwrap_or(Lsn(0))
    1067            0 :             .0;
    1068            0 :         (history, gc_info.within_ancestor_pitr)
    1069            0 :     }
    1070              : 
    1071              :     /// Read timeline's GC cutoff: this is the LSN at which GC has started to happen
    1072      1710531 :     pub(crate) fn get_applied_gc_cutoff_lsn(&self) -> RcuReadGuard<Lsn> {
    1073      1710531 :         self.applied_gc_cutoff_lsn.read()
    1074      1710531 :     }
    1075              : 
    1076              :     /// Read timeline's planned GC cutoff: this is the logical end of history that users
    1077              :     /// are allowed to read (based on configured PITR), even if physically we have more history.
    1078            0 :     pub(crate) fn get_gc_cutoff_lsn(&self) -> Lsn {
    1079            0 :         self.gc_info.read().unwrap().cutoffs.time
    1080            0 :     }
    1081              : 
    1082              :     /// Look up given page version.
    1083              :     ///
    1084              :     /// If a remote layer file is needed, it is downloaded as part of this
    1085              :     /// call.
    1086              :     ///
    1087              :     /// This method enforces [`Self::pagestream_throttle`] internally.
    1088              :     ///
    1089              :     /// NOTE: It is considered an error to 'get' a key that doesn't exist. The
    1090              :     /// abstraction above this needs to store suitable metadata to track what
    1091              :     /// data exists with what keys, in separate metadata entries. If a
    1092              :     /// non-existent key is requested, we may incorrectly return a value from
    1093              :     /// an ancestor branch, for example, or waste a lot of cycles chasing the
    1094              :     /// non-existing key.
    1095              :     ///
    1096              :     /// # Cancel-Safety
    1097              :     ///
    1098              :     /// This method is cancellation-safe.
    1099              :     #[inline(always)]
    1100      1215313 :     pub(crate) async fn get(
    1101      1215313 :         &self,
    1102      1215313 :         key: Key,
    1103      1215313 :         lsn: Lsn,
    1104      1215313 :         ctx: &RequestContext,
    1105      1215313 :     ) -> Result<Bytes, PageReconstructError> {
    1106      1215313 :         if !lsn.is_valid() {
    1107            0 :             return Err(PageReconstructError::Other(anyhow::anyhow!("Invalid LSN")));
    1108      1215313 :         }
    1109      1215313 : 
    1110      1215313 :         // This check is debug-only because of the cost of hashing, and because it's a double-check: we
    1111      1215313 :         // already checked the key against the shard_identity when looking up the Timeline from
    1112      1215313 :         // page_service.
    1113      1215313 :         debug_assert!(!self.shard_identity.is_key_disposable(&key));
    1114              : 
    1115      1215313 :         let keyspace = KeySpace {
    1116      1215313 :             ranges: vec![key..key.next()],
    1117      1215313 :         };
    1118      1215313 : 
    1119      1215313 :         let mut reconstruct_state = ValuesReconstructState::new(IoConcurrency::sequential());
    1120              : 
    1121      1215313 :         let vectored_res = self
    1122      1215313 :             .get_vectored_impl(keyspace.clone(), lsn, &mut reconstruct_state, ctx)
    1123      1215313 :             .await;
    1124              : 
    1125      1215313 :         let key_value = vectored_res?.pop_first();
    1126      1215301 :         match key_value {
    1127      1215277 :             Some((got_key, value)) => {
    1128      1215277 :                 if got_key != key {
    1129            0 :                     error!(
    1130            0 :                         "Expected {}, but singular vectored get returned {}",
    1131              :                         key, got_key
    1132              :                     );
    1133            0 :                     Err(PageReconstructError::Other(anyhow!(
    1134            0 :                         "Singular vectored get returned wrong key"
    1135            0 :                     )))
    1136              :                 } else {
    1137      1215277 :                     value
    1138              :                 }
    1139              :             }
    1140           24 :             None => Err(PageReconstructError::MissingKey(MissingKeyError {
    1141           24 :                 key,
    1142           24 :                 shard: self.shard_identity.get_shard_number(&key),
    1143           24 :                 cont_lsn: Lsn(0),
    1144           24 :                 request_lsn: lsn,
    1145           24 :                 ancestor_lsn: None,
    1146           24 :                 backtrace: None,
    1147           24 :                 read_path: None,
    1148           24 :             })),
    1149              :         }
    1150      1215313 :     }
    1151              : 
    1152              :     pub(crate) const MAX_GET_VECTORED_KEYS: u64 = 32;
    1153              :     pub(crate) const LAYERS_VISITED_WARN_THRESHOLD: u32 = 100;
    1154              : 
    1155              :     /// Look up multiple page versions at a given LSN
    1156              :     ///
    1157              :     /// This naive implementation will be replaced with a more efficient one
    1158              :     /// which actually vectorizes the read path.
    1159        39432 :     pub(crate) async fn get_vectored(
    1160        39432 :         &self,
    1161        39432 :         keyspace: KeySpace,
    1162        39432 :         lsn: Lsn,
    1163        39432 :         io_concurrency: super::storage_layer::IoConcurrency,
    1164        39432 :         ctx: &RequestContext,
    1165        39432 :     ) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
    1166        39432 :         if !lsn.is_valid() {
    1167            0 :             return Err(GetVectoredError::InvalidLsn(lsn));
    1168        39432 :         }
    1169        39432 : 
    1170        39432 :         let key_count = keyspace.total_raw_size().try_into().unwrap();
    1171        39432 :         if key_count > Timeline::MAX_GET_VECTORED_KEYS {
    1172            0 :             return Err(GetVectoredError::Oversized(key_count));
    1173        39432 :         }
    1174              : 
    1175        78864 :         for range in &keyspace.ranges {
    1176        39432 :             let mut key = range.start;
    1177        79380 :             while key != range.end {
    1178        39948 :                 assert!(!self.shard_identity.is_key_disposable(&key));
    1179        39948 :                 key = key.next();
    1180              :             }
    1181              :         }
    1182              : 
    1183        39432 :         trace!(
    1184            0 :             "get vectored request for {:?}@{} from task kind {:?}",
    1185            0 :             keyspace,
    1186            0 :             lsn,
    1187            0 :             ctx.task_kind(),
    1188              :         );
    1189              : 
    1190        39432 :         let start = crate::metrics::GET_VECTORED_LATENCY
    1191        39432 :             .for_task_kind(ctx.task_kind())
    1192        39432 :             .map(|metric| (metric, Instant::now()));
    1193              : 
    1194        39432 :         let res = self
    1195        39432 :             .get_vectored_impl(
    1196        39432 :                 keyspace.clone(),
    1197        39432 :                 lsn,
    1198        39432 :                 &mut ValuesReconstructState::new(io_concurrency),
    1199        39432 :                 ctx,
    1200        39432 :             )
    1201        39432 :             .await;
    1202              : 
    1203        39432 :         if let Some((metric, start)) = start {
    1204            0 :             let elapsed = start.elapsed();
    1205            0 :             metric.observe(elapsed.as_secs_f64());
    1206        39432 :         }
    1207              : 
    1208        39432 :         res
    1209        39432 :     }
    1210              : 
    1211              :     /// Scan the keyspace and return all existing key-values in the keyspace. This currently uses vectored
    1212              :     /// get underlying. Normal vectored get would throw an error when a key in the keyspace is not found
    1213              :     /// during the search, but for the scan interface, it returns all existing key-value pairs, and does
    1214              :     /// not expect each single key in the key space will be found. The semantics is closer to the RocksDB
    1215              :     /// scan iterator interface. We could optimize this interface later to avoid some checks in the vectored
    1216              :     /// get path to maintain and split the probing and to-be-probe keyspace. We also need to ensure that
    1217              :     /// the scan operation will not cause OOM in the future.
    1218           24 :     pub(crate) async fn scan(
    1219           24 :         &self,
    1220           24 :         keyspace: KeySpace,
    1221           24 :         lsn: Lsn,
    1222           24 :         ctx: &RequestContext,
    1223           24 :         io_concurrency: super::storage_layer::IoConcurrency,
    1224           24 :     ) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
    1225           24 :         if !lsn.is_valid() {
    1226            0 :             return Err(GetVectoredError::InvalidLsn(lsn));
    1227           24 :         }
    1228           24 : 
    1229           24 :         trace!(
    1230            0 :             "key-value scan request for {:?}@{} from task kind {:?}",
    1231            0 :             keyspace,
    1232            0 :             lsn,
    1233            0 :             ctx.task_kind()
    1234              :         );
    1235              : 
    1236              :         // We should generalize this into Keyspace::contains in the future.
    1237           48 :         for range in &keyspace.ranges {
    1238           24 :             if range.start.field1 < METADATA_KEY_BEGIN_PREFIX
    1239           24 :                 || range.end.field1 > METADATA_KEY_END_PREFIX
    1240              :             {
    1241            0 :                 return Err(GetVectoredError::Other(anyhow::anyhow!(
    1242            0 :                     "only metadata keyspace can be scanned"
    1243            0 :                 )));
    1244           24 :             }
    1245              :         }
    1246              : 
    1247           24 :         let start = crate::metrics::SCAN_LATENCY
    1248           24 :             .for_task_kind(ctx.task_kind())
    1249           24 :             .map(ScanLatencyOngoingRecording::start_recording);
    1250              : 
    1251           24 :         let vectored_res = self
    1252           24 :             .get_vectored_impl(
    1253           24 :                 keyspace.clone(),
    1254           24 :                 lsn,
    1255           24 :                 &mut ValuesReconstructState::new(io_concurrency),
    1256           24 :                 ctx,
    1257           24 :             )
    1258           24 :             .await;
    1259              : 
    1260           24 :         if let Some(recording) = start {
    1261            0 :             recording.observe();
    1262           24 :         }
    1263              : 
    1264           24 :         vectored_res
    1265           24 :     }
    1266              : 
    1267      1255489 :     pub(super) async fn get_vectored_impl(
    1268      1255489 :         &self,
    1269      1255489 :         keyspace: KeySpace,
    1270      1255489 :         lsn: Lsn,
    1271      1255489 :         reconstruct_state: &mut ValuesReconstructState,
    1272      1255489 :         ctx: &RequestContext,
    1273      1255489 :     ) -> Result<BTreeMap<Key, Result<Bytes, PageReconstructError>>, GetVectoredError> {
    1274      1255489 :         let read_path = if self.conf.enable_read_path_debugging || ctx.read_path_debug() {
    1275      1255489 :             Some(ReadPath::new(keyspace.clone(), lsn))
    1276              :         } else {
    1277            0 :             None
    1278              :         };
    1279      1255489 :         reconstruct_state.read_path = read_path;
    1280              : 
    1281      1255489 :         let traversal_res: Result<(), _> = self
    1282      1255489 :             .get_vectored_reconstruct_data(keyspace.clone(), lsn, reconstruct_state, ctx)
    1283      1255489 :             .await;
    1284      1255489 :         if let Err(err) = traversal_res {
    1285              :             // Wait for all the spawned IOs to complete.
    1286              :             // See comments on `spawn_io` inside `storage_layer` for more details.
    1287           32 :             let mut collect_futs = std::mem::take(&mut reconstruct_state.keys)
    1288           32 :                 .into_values()
    1289           32 :                 .map(|state| state.collect_pending_ios())
    1290           32 :                 .collect::<FuturesUnordered<_>>();
    1291           32 :             while collect_futs.next().await.is_some() {}
    1292           32 :             return Err(err);
    1293      1255457 :         };
    1294      1255457 : 
    1295      1255457 :         let layers_visited = reconstruct_state.get_layers_visited();
    1296      1255457 : 
    1297      1255457 :         let futs = FuturesUnordered::new();
    1298      1336161 :         for (key, state) in std::mem::take(&mut reconstruct_state.keys) {
    1299      1336161 :             futs.push({
    1300      1336161 :                 let walredo_self = self.myself.upgrade().expect("&self method holds the arc");
    1301      1336161 :                 async move {
    1302      1336161 :                     assert_eq!(state.situation, ValueReconstructSituation::Complete);
    1303              : 
    1304      1336161 :                     let converted = match state.collect_pending_ios().await {
    1305      1336161 :                         Ok(ok) => ok,
    1306            0 :                         Err(err) => {
    1307            0 :                             return (key, Err(err));
    1308              :                         }
    1309              :                     };
    1310      1336161 :                     DELTAS_PER_READ_GLOBAL.observe(converted.num_deltas() as f64);
    1311      1336161 : 
    1312      1336161 :                     // The walredo module expects the records to be descending in terms of Lsn.
    1313      1336161 :                     // And we submit the IOs in that order, so, there shuold be no need to sort here.
    1314      1336161 :                     debug_assert!(
    1315      1336161 :                         converted
    1316      1336161 :                             .records
    1317      1336161 :                             .is_sorted_by_key(|(lsn, _)| std::cmp::Reverse(*lsn)),
    1318            0 :                         "{converted:?}"
    1319              :                     );
    1320              : 
    1321              :                     (
    1322      1336161 :                         key,
    1323      1336161 :                         walredo_self.reconstruct_value(key, lsn, converted).await,
    1324              :                     )
    1325      1336161 :                 }
    1326      1336161 :             });
    1327      1336161 :         }
    1328              : 
    1329      1255457 :         let results = futs
    1330      1255457 :             .collect::<BTreeMap<Key, Result<Bytes, PageReconstructError>>>()
    1331      1255457 :             .await;
    1332              : 
    1333              :         // For aux file keys (v1 or v2) the vectored read path does not return an error
    1334              :         // when they're missing. Instead they are omitted from the resulting btree
    1335              :         // (this is a requirement, not a bug). Skip updating the metric in these cases
    1336              :         // to avoid infinite results.
    1337      1255457 :         if !results.is_empty() {
    1338      1254965 :             if layers_visited >= Self::LAYERS_VISITED_WARN_THRESHOLD {
    1339            0 :                 static LOG_PACER: Lazy<Mutex<RateLimit>> =
    1340            0 :                     Lazy::new(|| Mutex::new(RateLimit::new(Duration::from_secs(60))));
    1341            0 :                 LOG_PACER.lock().unwrap().call(|| {
    1342            0 :                     let num_keys = keyspace.total_raw_size();
    1343            0 :                     let num_pages = results.len();
    1344            0 :                     tracing::info!(
    1345            0 :                       shard_id = %self.tenant_shard_id.shard_slug(),
    1346            0 :                       lsn = %lsn,
    1347            0 :                       "Vectored read for {keyspace} visited {layers_visited} layers. Returned {num_pages}/{num_keys} pages.",
    1348              :                     );
    1349            0 :                 });
    1350      1254965 :             }
    1351              : 
    1352              :             // Records the number of layers visited in a few different ways:
    1353              :             //
    1354              :             // * LAYERS_PER_READ: all layers count towards every read in the batch, because each
    1355              :             //   layer directly affects its observed latency.
    1356              :             //
    1357              :             // * LAYERS_PER_READ_BATCH: all layers count towards each batch, to get the per-batch
    1358              :             //   layer visits and access cost.
    1359              :             //
    1360              :             // * LAYERS_PER_READ_AMORTIZED: the average layer count per read, to get the amortized
    1361              :             //   read amplification after batching.
    1362      1254965 :             let layers_visited = layers_visited as f64;
    1363      1254965 :             let avg_layers_visited = layers_visited / results.len() as f64;
    1364      1254965 :             LAYERS_PER_READ_BATCH_GLOBAL.observe(layers_visited);
    1365      2591126 :             for _ in &results {
    1366      1336161 :                 self.metrics.layers_per_read.observe(layers_visited);
    1367      1336161 :                 LAYERS_PER_READ_GLOBAL.observe(layers_visited);
    1368      1336161 :                 LAYERS_PER_READ_AMORTIZED_GLOBAL.observe(avg_layers_visited);
    1369      1336161 :             }
    1370          492 :         }
    1371              : 
    1372      1255457 :         Ok(results)
    1373      1255489 :     }
    1374              : 
    1375              :     /// Get last or prev record separately. Same as get_last_record_rlsn().last/prev.
    1376       548920 :     pub(crate) fn get_last_record_lsn(&self) -> Lsn {
    1377       548920 :         self.last_record_lsn.load().last
    1378       548920 :     }
    1379              : 
    1380            0 :     pub(crate) fn get_prev_record_lsn(&self) -> Lsn {
    1381            0 :         self.last_record_lsn.load().prev
    1382            0 :     }
    1383              : 
    1384              :     /// Atomically get both last and prev.
    1385          456 :     pub(crate) fn get_last_record_rlsn(&self) -> RecordLsn {
    1386          456 :         self.last_record_lsn.load()
    1387          456 :     }
    1388              : 
    1389              :     /// Subscribe to callers of wait_lsn(). The value of the channel is None if there are no
    1390              :     /// wait_lsn() calls in progress, and Some(Lsn) if there is an active waiter for wait_lsn().
    1391            0 :     pub(crate) fn subscribe_for_wait_lsn_updates(&self) -> watch::Receiver<Option<Lsn>> {
    1392            0 :         self.last_record_lsn.status_receiver()
    1393            0 :     }
    1394              : 
    1395          896 :     pub(crate) fn get_disk_consistent_lsn(&self) -> Lsn {
    1396          896 :         self.disk_consistent_lsn.load()
    1397          896 :     }
    1398              : 
    1399              :     /// remote_consistent_lsn from the perspective of the tenant's current generation,
    1400              :     /// not validated with control plane yet.
    1401              :     /// See [`Self::get_remote_consistent_lsn_visible`].
    1402            0 :     pub(crate) fn get_remote_consistent_lsn_projected(&self) -> Option<Lsn> {
    1403            0 :         self.remote_client.remote_consistent_lsn_projected()
    1404            0 :     }
    1405              : 
    1406              :     /// remote_consistent_lsn which the tenant is guaranteed not to go backward from,
    1407              :     /// i.e. a value of remote_consistent_lsn_projected which has undergone
    1408              :     /// generation validation in the deletion queue.
    1409            0 :     pub(crate) fn get_remote_consistent_lsn_visible(&self) -> Option<Lsn> {
    1410            0 :         self.remote_client.remote_consistent_lsn_visible()
    1411            0 :     }
    1412              : 
    1413              :     /// The sum of the file size of all historic layers in the layer map.
    1414              :     /// This method makes no distinction between local and remote layers.
    1415              :     /// Hence, the result **does not represent local filesystem usage**.
    1416            0 :     pub(crate) async fn layer_size_sum(&self) -> u64 {
    1417            0 :         let guard = self.layers.read().await;
    1418            0 :         guard.layer_size_sum()
    1419            0 :     }
    1420              : 
    1421            0 :     pub(crate) fn resident_physical_size(&self) -> u64 {
    1422            0 :         self.metrics.resident_physical_size_get()
    1423            0 :     }
    1424              : 
    1425            0 :     pub(crate) fn get_directory_metrics(&self) -> [u64; DirectoryKind::KINDS_NUM] {
    1426            0 :         array::from_fn(|idx| self.directory_metrics[idx].load(AtomicOrdering::Relaxed))
    1427            0 :     }
    1428              : 
    1429              :     ///
    1430              :     /// Wait until WAL has been received and processed up to this LSN.
    1431              :     ///
    1432              :     /// You should call this before any of the other get_* or list_* functions. Calling
    1433              :     /// those functions with an LSN that has been processed yet is an error.
    1434              :     ///
    1435       454438 :     pub(crate) async fn wait_lsn(
    1436       454438 :         &self,
    1437       454438 :         lsn: Lsn,
    1438       454438 :         who_is_waiting: WaitLsnWaiter<'_>,
    1439       454438 :         timeout: WaitLsnTimeout,
    1440       454438 :         ctx: &RequestContext, /* Prepare for use by cancellation */
    1441       454438 :     ) -> Result<(), WaitLsnError> {
    1442       454438 :         let state = self.current_state();
    1443       454438 :         if self.cancel.is_cancelled() || matches!(state, TimelineState::Stopping) {
    1444            0 :             return Err(WaitLsnError::Shutdown);
    1445       454438 :         } else if !matches!(state, TimelineState::Active) {
    1446            0 :             return Err(WaitLsnError::BadState(state));
    1447       454438 :         }
    1448       454438 : 
    1449       454438 :         if cfg!(debug_assertions) {
    1450       454438 :             match ctx.task_kind() {
    1451              :                 TaskKind::WalReceiverManager
    1452              :                 | TaskKind::WalReceiverConnectionHandler
    1453              :                 | TaskKind::WalReceiverConnectionPoller => {
    1454            0 :                     let is_myself = match who_is_waiting {
    1455            0 :                         WaitLsnWaiter::Timeline(waiter) => {
    1456            0 :                             Weak::ptr_eq(&waiter.myself, &self.myself)
    1457              :                         }
    1458              :                         WaitLsnWaiter::Tenant
    1459              :                         | WaitLsnWaiter::PageService
    1460            0 :                         | WaitLsnWaiter::HttpEndpoint => unreachable!(
    1461            0 :                             "tenant or page_service context are not expected to have task kind {:?}",
    1462            0 :                             ctx.task_kind()
    1463            0 :                         ),
    1464              :                     };
    1465            0 :                     if is_myself {
    1466            0 :                         if let Err(current) = self.last_record_lsn.would_wait_for(lsn) {
    1467              :                             // walingest is the only one that can advance last_record_lsn; it should make sure to never reach here
    1468            0 :                             panic!(
    1469            0 :                                 "this timeline's walingest task is calling wait_lsn({lsn}) but we only have last_record_lsn={current}; would deadlock"
    1470            0 :                             );
    1471            0 :                         }
    1472            0 :                     } else {
    1473            0 :                         // if another  timeline's  is waiting for us, there's no deadlock risk because
    1474            0 :                         // our walreceiver task can make progress independent of theirs
    1475            0 :                     }
    1476              :                 }
    1477       454438 :                 _ => {}
    1478              :             }
    1479            0 :         }
    1480              : 
    1481       454438 :         let timeout = match timeout {
    1482            0 :             WaitLsnTimeout::Custom(t) => t,
    1483       454438 :             WaitLsnTimeout::Default => self.conf.wait_lsn_timeout,
    1484              :         };
    1485              : 
    1486       454438 :         let timer = crate::metrics::WAIT_LSN_TIME.start_timer();
    1487       454438 :         let start_finish_counterpair_guard = self.metrics.wait_lsn_start_finish_counterpair.guard();
    1488       454438 : 
    1489       454438 :         let wait_for_timeout = self.last_record_lsn.wait_for_timeout(lsn, timeout);
    1490       454438 :         let wait_for_timeout = std::pin::pin!(wait_for_timeout);
    1491       454438 :         // Use threshold of 1 because even 1 second of wait for ingest is very much abnormal.
    1492       454438 :         let log_slow_threshold = Duration::from_secs(1);
    1493       454438 :         // Use period of 10 to avoid flooding logs during an outage that affects all timelines.
    1494       454438 :         let log_slow_period = Duration::from_secs(10);
    1495       454438 :         let mut logging_permit = None;
    1496       454438 :         let wait_for_timeout = monitor_slow_future(
    1497       454438 :             log_slow_threshold,
    1498       454438 :             log_slow_period,
    1499       454438 :             wait_for_timeout,
    1500       454438 :             |MonitorSlowFutureCallback {
    1501              :                  ready,
    1502              :                  is_slow,
    1503              :                  elapsed_total,
    1504              :                  elapsed_since_last_callback,
    1505       454438 :              }| {
    1506       454438 :                 self.metrics
    1507       454438 :                     .wait_lsn_in_progress_micros
    1508       454438 :                     .inc_by(u64::try_from(elapsed_since_last_callback.as_micros()).unwrap());
    1509       454438 :                 if !is_slow {
    1510       454438 :                     return;
    1511            0 :                 }
    1512            0 :                 // It's slow, see if we should log it.
    1513            0 :                 // (We limit the logging to one per invocation per timeline to avoid excessive
    1514            0 :                 // logging during an extended broker / networking outage that affects all timelines.)
    1515            0 :                 if logging_permit.is_none() {
    1516            0 :                     logging_permit = self.wait_lsn_log_slow.try_acquire().ok();
    1517            0 :                 }
    1518            0 :                 if logging_permit.is_none() {
    1519            0 :                     return;
    1520            0 :                 }
    1521            0 :                 // We log it.
    1522            0 :                 if ready {
    1523            0 :                     info!(
    1524            0 :                         "slow wait_lsn completed after {:.3}s",
    1525            0 :                         elapsed_total.as_secs_f64()
    1526              :                     );
    1527              :                 } else {
    1528            0 :                     info!(
    1529            0 :                         "slow wait_lsn still running for {:.3}s",
    1530            0 :                         elapsed_total.as_secs_f64()
    1531              :                     );
    1532              :                 }
    1533       454438 :             },
    1534       454438 :         );
    1535       454438 :         let res = wait_for_timeout.await;
    1536              :         // don't count the time spent waiting for lock below, and also in walreceiver.status(), towards the wait_lsn_time_histo
    1537       454438 :         drop(logging_permit);
    1538       454438 :         drop(start_finish_counterpair_guard);
    1539       454438 :         drop(timer);
    1540       454438 :         match res {
    1541       454438 :             Ok(()) => Ok(()),
    1542            0 :             Err(e) => {
    1543              :                 use utils::seqwait::SeqWaitError::*;
    1544            0 :                 match e {
    1545            0 :                     Shutdown => Err(WaitLsnError::Shutdown),
    1546              :                     Timeout => {
    1547            0 :                         let walreceiver_status = self.walreceiver_status();
    1548            0 :                         Err(WaitLsnError::Timeout(format!(
    1549            0 :                             "Timed out while waiting for WAL record at LSN {} to arrive, last_record_lsn {} disk consistent LSN={}, WalReceiver status: {}",
    1550            0 :                             lsn,
    1551            0 :                             self.get_last_record_lsn(),
    1552            0 :                             self.get_disk_consistent_lsn(),
    1553            0 :                             walreceiver_status,
    1554            0 :                         )))
    1555              :                     }
    1556              :                 }
    1557              :             }
    1558              :         }
    1559       454438 :     }
    1560              : 
    1561            0 :     pub(crate) fn walreceiver_status(&self) -> String {
    1562            0 :         match &*self.walreceiver.lock().unwrap() {
    1563            0 :             None => "stopping or stopped".to_string(),
    1564            0 :             Some(walreceiver) => match walreceiver.status() {
    1565            0 :                 Some(status) => status.to_human_readable_string(),
    1566            0 :                 None => "Not active".to_string(),
    1567              :             },
    1568              :         }
    1569            0 :     }
    1570              : 
    1571              :     /// Check that it is valid to request operations with that lsn.
    1572          464 :     pub(crate) fn check_lsn_is_in_scope(
    1573          464 :         &self,
    1574          464 :         lsn: Lsn,
    1575          464 :         latest_gc_cutoff_lsn: &RcuReadGuard<Lsn>,
    1576          464 :     ) -> anyhow::Result<()> {
    1577          464 :         ensure!(
    1578          464 :             lsn >= **latest_gc_cutoff_lsn,
    1579            8 :             "LSN {} is earlier than latest GC cutoff {} (we might've already garbage collected needed data)",
    1580            8 :             lsn,
    1581            8 :             **latest_gc_cutoff_lsn,
    1582              :         );
    1583          456 :         Ok(())
    1584          464 :     }
    1585              : 
    1586              :     /// Initializes an LSN lease. The function will return an error if the requested LSN is less than the `latest_gc_cutoff_lsn`.
    1587           20 :     pub(crate) fn init_lsn_lease(
    1588           20 :         &self,
    1589           20 :         lsn: Lsn,
    1590           20 :         length: Duration,
    1591           20 :         ctx: &RequestContext,
    1592           20 :     ) -> anyhow::Result<LsnLease> {
    1593           20 :         self.make_lsn_lease(lsn, length, true, ctx)
    1594           20 :     }
    1595              : 
    1596              :     /// Renews a lease at a particular LSN. The requested LSN is not validated against the `latest_gc_cutoff_lsn` when we are in the grace period.
    1597            8 :     pub(crate) fn renew_lsn_lease(
    1598            8 :         &self,
    1599            8 :         lsn: Lsn,
    1600            8 :         length: Duration,
    1601            8 :         ctx: &RequestContext,
    1602            8 :     ) -> anyhow::Result<LsnLease> {
    1603            8 :         self.make_lsn_lease(lsn, length, false, ctx)
    1604            8 :     }
    1605              : 
    1606              :     /// Obtains a temporary lease blocking garbage collection for the given LSN.
    1607              :     ///
    1608              :     /// If we are in `AttachedSingle` mode and is not blocked by the lsn lease deadline, this function will error
    1609              :     /// if the requesting LSN is less than the `latest_gc_cutoff_lsn` and there is no existing request present.
    1610              :     ///
    1611              :     /// If there is an existing lease in the map, the lease will be renewed only if the request extends the lease.
    1612              :     /// The returned lease is therefore the maximum between the existing lease and the requesting lease.
    1613           28 :     fn make_lsn_lease(
    1614           28 :         &self,
    1615           28 :         lsn: Lsn,
    1616           28 :         length: Duration,
    1617           28 :         init: bool,
    1618           28 :         _ctx: &RequestContext,
    1619           28 :     ) -> anyhow::Result<LsnLease> {
    1620           24 :         let lease = {
    1621              :             // Normalize the requested LSN to be aligned, and move to the first record
    1622              :             // if it points to the beginning of the page (header).
    1623           28 :             let lsn = xlog_utils::normalize_lsn(lsn, WAL_SEGMENT_SIZE);
    1624           28 : 
    1625           28 :             let mut gc_info = self.gc_info.write().unwrap();
    1626           28 :             let planned_cutoff = gc_info.min_cutoff();
    1627           28 : 
    1628           28 :             let valid_until = SystemTime::now() + length;
    1629           28 : 
    1630           28 :             let entry = gc_info.leases.entry(lsn);
    1631           28 : 
    1632           28 :             match entry {
    1633           12 :                 Entry::Occupied(mut occupied) => {
    1634           12 :                     let existing_lease = occupied.get_mut();
    1635           12 :                     if valid_until > existing_lease.valid_until {
    1636            4 :                         existing_lease.valid_until = valid_until;
    1637            4 :                         let dt: DateTime<Utc> = valid_until.into();
    1638            4 :                         info!("lease extended to {}", dt);
    1639              :                     } else {
    1640            8 :                         let dt: DateTime<Utc> = existing_lease.valid_until.into();
    1641            8 :                         info!("existing lease covers greater length, valid until {}", dt);
    1642              :                     }
    1643              : 
    1644           12 :                     existing_lease.clone()
    1645              :                 }
    1646           16 :                 Entry::Vacant(vacant) => {
    1647              :                     // Reject already GC-ed LSN if we are in AttachedSingle and
    1648              :                     // not blocked by the lsn lease deadline.
    1649           16 :                     let validate = {
    1650           16 :                         let conf = self.tenant_conf.load();
    1651           16 :                         conf.location.attach_mode == AttachmentMode::Single
    1652           16 :                             && !conf.is_gc_blocked_by_lsn_lease_deadline()
    1653              :                     };
    1654              : 
    1655           16 :                     if init || validate {
    1656           16 :                         let latest_gc_cutoff_lsn = self.get_applied_gc_cutoff_lsn();
    1657           16 :                         if lsn < *latest_gc_cutoff_lsn {
    1658            4 :                             bail!(
    1659            4 :                                 "tried to request an lsn lease for an lsn below the latest gc cutoff. requested at {} gc cutoff {}",
    1660            4 :                                 lsn,
    1661            4 :                                 *latest_gc_cutoff_lsn
    1662            4 :                             );
    1663           12 :                         }
    1664           12 :                         if lsn < planned_cutoff {
    1665            0 :                             bail!(
    1666            0 :                                 "tried to request an lsn lease for an lsn below the planned gc cutoff. requested at {} planned gc cutoff {}",
    1667            0 :                                 lsn,
    1668            0 :                                 planned_cutoff
    1669            0 :                             );
    1670           12 :                         }
    1671            0 :                     }
    1672              : 
    1673           12 :                     let dt: DateTime<Utc> = valid_until.into();
    1674           12 :                     info!("lease created, valid until {}", dt);
    1675           12 :                     vacant.insert(LsnLease { valid_until }).clone()
    1676              :                 }
    1677              :             }
    1678              :         };
    1679              : 
    1680           24 :         Ok(lease)
    1681           28 :     }
    1682              : 
    1683              :     /// Freeze the current open in-memory layer. It will be written to disk on next iteration.
    1684              :     /// Returns the flush request ID which can be awaited with wait_flush_completion().
    1685              :     #[instrument(skip(self), fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id))]
    1686              :     pub(crate) async fn freeze(&self) -> Result<u64, FlushLayerError> {
    1687              :         self.freeze0().await
    1688              :     }
    1689              : 
    1690              :     /// Freeze and flush the open in-memory layer, waiting for it to be written to disk.
    1691              :     #[instrument(skip(self), fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id))]
    1692              :     pub(crate) async fn freeze_and_flush(&self) -> Result<(), FlushLayerError> {
    1693              :         self.freeze_and_flush0().await
    1694              :     }
    1695              : 
    1696              :     /// Freeze the current open in-memory layer. It will be written to disk on next iteration.
    1697              :     /// Returns the flush request ID which can be awaited with wait_flush_completion().
    1698         2252 :     pub(crate) async fn freeze0(&self) -> Result<u64, FlushLayerError> {
    1699         2252 :         let mut g = self.write_lock.lock().await;
    1700         2252 :         let to_lsn = self.get_last_record_lsn();
    1701         2252 :         self.freeze_inmem_layer_at(to_lsn, &mut g).await
    1702         2252 :     }
    1703              : 
    1704              :     // This exists to provide a non-span creating version of `freeze_and_flush` we can call without
    1705              :     // polluting the span hierarchy.
    1706         2252 :     pub(crate) async fn freeze_and_flush0(&self) -> Result<(), FlushLayerError> {
    1707         2252 :         let token = self.freeze0().await?;
    1708         2252 :         self.wait_flush_completion(token).await
    1709         2252 :     }
    1710              : 
    1711              :     // Check if an open ephemeral layer should be closed: this provides
    1712              :     // background enforcement of checkpoint interval if there is no active WAL receiver, to avoid keeping
    1713              :     // an ephemeral layer open forever when idle.  It also freezes layers if the global limit on
    1714              :     // ephemeral layer bytes has been breached.
    1715            0 :     pub(super) async fn maybe_freeze_ephemeral_layer(&self) {
    1716            0 :         let Ok(mut write_guard) = self.write_lock.try_lock() else {
    1717              :             // If the write lock is held, there is an active wal receiver: rolling open layers
    1718              :             // is their responsibility while they hold this lock.
    1719            0 :             return;
    1720              :         };
    1721              : 
    1722              :         // FIXME: why not early exit? because before #7927 the state would had been cleared every
    1723              :         // time, and this was missed.
    1724              :         // if write_guard.is_none() { return; }
    1725              : 
    1726            0 :         let Ok(layers_guard) = self.layers.try_read() else {
    1727              :             // Don't block if the layer lock is busy
    1728            0 :             return;
    1729              :         };
    1730              : 
    1731            0 :         let Ok(lm) = layers_guard.layer_map() else {
    1732            0 :             return;
    1733              :         };
    1734              : 
    1735            0 :         let Some(open_layer) = &lm.open_layer else {
    1736              :             // If there is no open layer, we have no layer freezing to do.  However, we might need to generate
    1737              :             // some updates to disk_consistent_lsn and remote_consistent_lsn, in case we ingested some WAL regions
    1738              :             // that didn't result in writes to this shard.
    1739              : 
    1740              :             // Must not hold the layers lock while waiting for a flush.
    1741            0 :             drop(layers_guard);
    1742            0 : 
    1743            0 :             let last_record_lsn = self.get_last_record_lsn();
    1744            0 :             let disk_consistent_lsn = self.get_disk_consistent_lsn();
    1745            0 :             if last_record_lsn > disk_consistent_lsn {
    1746              :                 // We have no open layer, but disk_consistent_lsn is behind the last record: this indicates
    1747              :                 // we are a sharded tenant and have skipped some WAL
    1748            0 :                 let last_freeze_ts = *self.last_freeze_ts.read().unwrap();
    1749            0 :                 if last_freeze_ts.elapsed() >= self.get_checkpoint_timeout() {
    1750              :                     // Only do this if have been layer-less longer than get_checkpoint_timeout, so that a shard
    1751              :                     // without any data ingested (yet) doesn't write a remote index as soon as it
    1752              :                     // sees its LSN advance: we only do this if we've been layer-less
    1753              :                     // for some time.
    1754            0 :                     tracing::debug!(
    1755            0 :                         "Advancing disk_consistent_lsn past WAL ingest gap {} -> {}",
    1756              :                         disk_consistent_lsn,
    1757              :                         last_record_lsn
    1758              :                     );
    1759              : 
    1760              :                     // The flush loop will update remote consistent LSN as well as disk consistent LSN.
    1761              :                     // We know there is no open layer, so we can request freezing without actually
    1762              :                     // freezing anything. This is true even if we have dropped the layers_guard, we
    1763              :                     // still hold the write_guard.
    1764            0 :                     let _ = async {
    1765            0 :                         let token = self
    1766            0 :                             .freeze_inmem_layer_at(last_record_lsn, &mut write_guard)
    1767            0 :                             .await?;
    1768            0 :                         self.wait_flush_completion(token).await
    1769            0 :                     }
    1770            0 :                     .await;
    1771            0 :                 }
    1772            0 :             }
    1773              : 
    1774            0 :             return;
    1775              :         };
    1776              : 
    1777            0 :         let Some(current_size) = open_layer.try_len() else {
    1778              :             // Unexpected: since we hold the write guard, nobody else should be writing to this layer, so
    1779              :             // read lock to get size should always succeed.
    1780            0 :             tracing::warn!("Lock conflict while reading size of open layer");
    1781            0 :             return;
    1782              :         };
    1783              : 
    1784            0 :         let current_lsn = self.get_last_record_lsn();
    1785              : 
    1786            0 :         let checkpoint_distance_override = open_layer.tick().await;
    1787              : 
    1788            0 :         if let Some(size_override) = checkpoint_distance_override {
    1789            0 :             if current_size > size_override {
    1790              :                 // This is not harmful, but it only happens in relatively rare cases where
    1791              :                 // time-based checkpoints are not happening fast enough to keep the amount of
    1792              :                 // ephemeral data within configured limits.  It's a sign of stress on the system.
    1793            0 :                 tracing::info!(
    1794            0 :                     "Early-rolling open layer at size {current_size} (limit {size_override}) due to dirty data pressure"
    1795              :                 );
    1796            0 :             }
    1797            0 :         }
    1798              : 
    1799            0 :         let checkpoint_distance =
    1800            0 :             checkpoint_distance_override.unwrap_or(self.get_checkpoint_distance());
    1801            0 : 
    1802            0 :         if self.should_roll(
    1803            0 :             current_size,
    1804            0 :             current_size,
    1805            0 :             checkpoint_distance,
    1806            0 :             self.get_last_record_lsn(),
    1807            0 :             self.last_freeze_at.load(),
    1808            0 :             open_layer.get_opened_at(),
    1809            0 :         ) {
    1810            0 :             match open_layer.info() {
    1811            0 :                 InMemoryLayerInfo::Frozen { lsn_start, lsn_end } => {
    1812            0 :                     // We may reach this point if the layer was already frozen by not yet flushed: flushing
    1813            0 :                     // happens asynchronously in the background.
    1814            0 :                     tracing::debug!(
    1815            0 :                         "Not freezing open layer, it's already frozen ({lsn_start}..{lsn_end})"
    1816              :                     );
    1817              :                 }
    1818              :                 InMemoryLayerInfo::Open { .. } => {
    1819              :                     // Upgrade to a write lock and freeze the layer
    1820            0 :                     drop(layers_guard);
    1821            0 :                     let res = self
    1822            0 :                         .freeze_inmem_layer_at(current_lsn, &mut write_guard)
    1823            0 :                         .await;
    1824              : 
    1825            0 :                     if let Err(e) = res {
    1826            0 :                         tracing::info!(
    1827            0 :                             "failed to flush frozen layer after background freeze: {e:#}"
    1828              :                         );
    1829            0 :                     }
    1830              :                 }
    1831              :             }
    1832            0 :         }
    1833            0 :     }
    1834              : 
    1835              :     /// Checks if the internal state of the timeline is consistent with it being able to be offloaded.
    1836              :     ///
    1837              :     /// This is neccessary but not sufficient for offloading of the timeline as it might have
    1838              :     /// child timelines that are not offloaded yet.
    1839            0 :     pub(crate) fn can_offload(&self) -> (bool, &'static str) {
    1840            0 :         if self.remote_client.is_archived() != Some(true) {
    1841            0 :             return (false, "the timeline is not archived");
    1842            0 :         }
    1843            0 :         if !self.remote_client.no_pending_work() {
    1844              :             // if the remote client is still processing some work, we can't offload
    1845            0 :             return (false, "the upload queue is not drained yet");
    1846            0 :         }
    1847            0 : 
    1848            0 :         (true, "ok")
    1849            0 :     }
    1850              : 
    1851              :     /// Outermost timeline compaction operation; downloads needed layers. Returns whether we have pending
    1852              :     /// compaction tasks.
    1853          728 :     pub(crate) async fn compact(
    1854          728 :         self: &Arc<Self>,
    1855          728 :         cancel: &CancellationToken,
    1856          728 :         flags: EnumSet<CompactFlags>,
    1857          728 :         ctx: &RequestContext,
    1858          728 :     ) -> Result<CompactionOutcome, CompactionError> {
    1859          728 :         let res = self
    1860          728 :             .compact_with_options(
    1861          728 :                 cancel,
    1862          728 :                 CompactOptions {
    1863          728 :                     flags,
    1864          728 :                     compact_key_range: None,
    1865          728 :                     compact_lsn_range: None,
    1866          728 :                     sub_compaction: false,
    1867          728 :                     sub_compaction_max_job_size_mb: None,
    1868          728 :                 },
    1869          728 :                 ctx,
    1870          728 :             )
    1871          728 :             .await;
    1872          728 :         if let Err(err) = &res {
    1873            0 :             log_compaction_error(err, None, cancel.is_cancelled());
    1874          728 :         }
    1875          728 :         res
    1876          728 :     }
    1877              : 
    1878              :     /// Outermost timeline compaction operation; downloads needed layers.
    1879              :     ///
    1880              :     /// NB: the cancellation token is usually from a background task, but can also come from a
    1881              :     /// request task.
    1882          728 :     pub(crate) async fn compact_with_options(
    1883          728 :         self: &Arc<Self>,
    1884          728 :         cancel: &CancellationToken,
    1885          728 :         options: CompactOptions,
    1886          728 :         ctx: &RequestContext,
    1887          728 :     ) -> Result<CompactionOutcome, CompactionError> {
    1888          728 :         // Acquire the compaction lock and task semaphore.
    1889          728 :         //
    1890          728 :         // L0-only compaction uses a separate semaphore (if enabled) to make sure it isn't starved
    1891          728 :         // out by other background tasks (including image compaction). We request this via
    1892          728 :         // `BackgroundLoopKind::L0Compaction`.
    1893          728 :         //
    1894          728 :         // If this is a regular compaction pass, and L0-only compaction is enabled in the config,
    1895          728 :         // then we should yield for immediate L0 compaction if necessary while we're waiting for the
    1896          728 :         // background task semaphore. There's no point yielding otherwise, since we'd just end up
    1897          728 :         // right back here.
    1898          728 :         let is_l0_only = options.flags.contains(CompactFlags::OnlyL0Compaction);
    1899          728 :         let semaphore_kind = match is_l0_only && self.get_compaction_l0_semaphore() {
    1900            0 :             true => BackgroundLoopKind::L0Compaction,
    1901          728 :             false => BackgroundLoopKind::Compaction,
    1902              :         };
    1903          728 :         let yield_for_l0 = !is_l0_only
    1904          728 :             && self.get_compaction_l0_first()
    1905          728 :             && !options.flags.contains(CompactFlags::NoYield);
    1906              : 
    1907          728 :         let acquire = async move {
    1908          726 :             let guard = self.compaction_lock.lock().await;
    1909          726 :             let permit = super::tasks::acquire_concurrency_permit(semaphore_kind, ctx).await;
    1910          726 :             (guard, permit)
    1911          726 :         };
    1912              : 
    1913          728 :         let (_guard, _permit) = tokio::select! {
    1914          728 :             (guard, permit) = acquire => (guard, permit),
    1915          728 :             _ = self.l0_compaction_trigger.notified(), if yield_for_l0 => {
    1916            2 :                 return Ok(CompactionOutcome::YieldForL0);
    1917              :             }
    1918          728 :             _ = self.cancel.cancelled() => return Ok(CompactionOutcome::Skipped),
    1919          728 :             _ = cancel.cancelled() => return Ok(CompactionOutcome::Skipped),
    1920              :         };
    1921              : 
    1922          726 :         let last_record_lsn = self.get_last_record_lsn();
    1923          726 : 
    1924          726 :         // Last record Lsn could be zero in case the timeline was just created
    1925          726 :         if !last_record_lsn.is_valid() {
    1926            0 :             warn!(
    1927            0 :                 "Skipping compaction for potentially just initialized timeline, it has invalid last record lsn: {last_record_lsn}"
    1928              :             );
    1929            0 :             return Ok(CompactionOutcome::Skipped);
    1930          726 :         }
    1931              : 
    1932          726 :         let result = match self.get_compaction_algorithm_settings().kind {
    1933              :             CompactionAlgorithm::Tiered => {
    1934            0 :                 self.compact_tiered(cancel, ctx).await?;
    1935            0 :                 Ok(CompactionOutcome::Done)
    1936              :             }
    1937          726 :             CompactionAlgorithm::Legacy => self.compact_legacy(cancel, options, ctx).await,
    1938              :         };
    1939              : 
    1940              :         // Signal compaction failure to avoid L0 flush stalls when it's broken.
    1941            0 :         match &result {
    1942          726 :             Ok(_) => self.compaction_failed.store(false, AtomicOrdering::Relaxed),
    1943            0 :             Err(e) if e.is_cancel() => {}
    1944            0 :             Err(CompactionError::ShuttingDown) => {
    1945            0 :                 // Covered by the `Err(e) if e.is_cancel()` branch.
    1946            0 :             }
    1947            0 :             Err(CompactionError::AlreadyRunning(_)) => {
    1948            0 :                 // Covered by the `Err(e) if e.is_cancel()` branch.
    1949            0 :             }
    1950              :             Err(CompactionError::Other(_)) => {
    1951            0 :                 self.compaction_failed.store(true, AtomicOrdering::Relaxed)
    1952              :             }
    1953              :             Err(CompactionError::CollectKeySpaceError(_)) => {
    1954              :                 // Cancelled errors are covered by the `Err(e) if e.is_cancel()` branch.
    1955            0 :                 self.compaction_failed.store(true, AtomicOrdering::Relaxed)
    1956              :             }
    1957              :             // Don't change the current value on offload failure or shutdown. We don't want to
    1958              :             // abruptly stall nor resume L0 flushes in these cases.
    1959            0 :             Err(CompactionError::Offload(_)) => {}
    1960              :         };
    1961              : 
    1962          726 :         result
    1963          728 :     }
    1964              : 
    1965              :     /// Mutate the timeline with a [`TimelineWriter`].
    1966     10266392 :     pub(crate) async fn writer(&self) -> TimelineWriter<'_> {
    1967     10266392 :         TimelineWriter {
    1968     10266392 :             tl: self,
    1969     10266392 :             write_guard: self.write_lock.lock().await,
    1970              :         }
    1971     10266392 :     }
    1972              : 
    1973            0 :     pub(crate) fn activate(
    1974            0 :         self: &Arc<Self>,
    1975            0 :         parent: Arc<crate::tenant::Tenant>,
    1976            0 :         broker_client: BrokerClientChannel,
    1977            0 :         background_jobs_can_start: Option<&completion::Barrier>,
    1978            0 :         ctx: &RequestContext,
    1979            0 :     ) {
    1980            0 :         if self.tenant_shard_id.is_shard_zero() {
    1981            0 :             // Logical size is only maintained accurately on shard zero.
    1982            0 :             self.spawn_initial_logical_size_computation_task(ctx);
    1983            0 :         }
    1984            0 :         self.launch_wal_receiver(ctx, broker_client);
    1985            0 :         self.set_state(TimelineState::Active);
    1986            0 :         self.launch_eviction_task(parent, background_jobs_can_start);
    1987            0 :     }
    1988              : 
    1989              :     /// After this function returns, there are no timeline-scoped tasks are left running.
    1990              :     ///
    1991              :     /// The preferred pattern for is:
    1992              :     /// - in any spawned tasks, keep Timeline::guard open + Timeline::cancel / child token
    1993              :     /// - if early shutdown (not just cancellation) of a sub-tree of tasks is required,
    1994              :     ///   go the extra mile and keep track of JoinHandles
    1995              :     /// - Keep track of JoinHandles using a passed-down `Arc<Mutex<Option<JoinSet>>>` or similar,
    1996              :     ///   instead of spawning directly on a runtime. It is a more composable / testable pattern.
    1997              :     ///
    1998              :     /// For legacy reasons, we still have multiple tasks spawned using
    1999              :     /// `task_mgr::spawn(X, Some(tenant_id), Some(timeline_id))`.
    2000              :     /// We refer to these as "timeline-scoped task_mgr tasks".
    2001              :     /// Some of these tasks are already sensitive to Timeline::cancel while others are
    2002              :     /// not sensitive to Timeline::cancel and instead respect [`task_mgr::shutdown_token`]
    2003              :     /// or [`task_mgr::shutdown_watcher`].
    2004              :     /// We want to gradually convert the code base away from these.
    2005              :     ///
    2006              :     /// Here is an inventory of timeline-scoped task_mgr tasks that are still sensitive to
    2007              :     /// `task_mgr::shutdown_{token,watcher}` (there are also tenant-scoped and global-scoped
    2008              :     /// ones that aren't mentioned here):
    2009              :     /// - [`TaskKind::TimelineDeletionWorker`]
    2010              :     ///    - NB: also used for tenant deletion
    2011              :     /// - [`TaskKind::RemoteUploadTask`]`
    2012              :     /// - [`TaskKind::InitialLogicalSizeCalculation`]
    2013              :     /// - [`TaskKind::DownloadAllRemoteLayers`] (can we get rid of it?)
    2014              :     // Inventory of timeline-scoped task_mgr tasks that use spawn but aren't sensitive:
    2015              :     /// - [`TaskKind::Eviction`]
    2016              :     /// - [`TaskKind::LayerFlushTask`]
    2017              :     /// - [`TaskKind::OndemandLogicalSizeCalculation`]
    2018              :     /// - [`TaskKind::GarbageCollector`] (immediate_gc is timeline-scoped)
    2019           20 :     pub(crate) async fn shutdown(&self, mode: ShutdownMode) {
    2020           20 :         debug_assert_current_span_has_tenant_and_timeline_id();
    2021           20 : 
    2022           20 :         // Regardless of whether we're going to try_freeze_and_flush
    2023           20 :         // or not, stop ingesting any more data. Walreceiver only provides
    2024           20 :         // cancellation but no "wait until gone", because it uses the Timeline::gate.
    2025           20 :         // So, only after the self.gate.close() below will we know for sure that
    2026           20 :         // no walreceiver tasks are left.
    2027           20 :         // For `try_freeze_and_flush=true`, this means that we might still be ingesting
    2028           20 :         // data during the call to `self.freeze_and_flush()` below.
    2029           20 :         // That's not ideal, but, we don't have the concept of a ChildGuard,
    2030           20 :         // which is what we'd need to properly model early shutdown of the walreceiver
    2031           20 :         // task sub-tree before the other Timeline task sub-trees.
    2032           20 :         let walreceiver = self.walreceiver.lock().unwrap().take();
    2033           20 :         tracing::debug!(
    2034            0 :             is_some = walreceiver.is_some(),
    2035            0 :             "Waiting for WalReceiverManager..."
    2036              :         );
    2037           20 :         if let Some(walreceiver) = walreceiver {
    2038            0 :             walreceiver.cancel();
    2039           20 :         }
    2040              :         // ... and inform any waiters for newer LSNs that there won't be any.
    2041           20 :         self.last_record_lsn.shutdown();
    2042           20 : 
    2043           20 :         if let ShutdownMode::FreezeAndFlush = mode {
    2044           12 :             let do_flush = if let Some((open, frozen)) = self
    2045           12 :                 .layers
    2046           12 :                 .read()
    2047           12 :                 .await
    2048           12 :                 .layer_map()
    2049           12 :                 .map(|lm| (lm.open_layer.is_some(), lm.frozen_layers.len()))
    2050           12 :                 .ok()
    2051           12 :                 .filter(|(open, frozen)| *open || *frozen > 0)
    2052              :             {
    2053            0 :                 if self.remote_client.is_archived() == Some(true) {
    2054              :                     // No point flushing on shutdown for an archived timeline: it is not important
    2055              :                     // to have it nice and fresh after our restart, and trying to flush here might
    2056              :                     // race with trying to offload it (which also stops the flush loop)
    2057            0 :                     false
    2058              :                 } else {
    2059            0 :                     tracing::info!(?open, frozen, "flushing and freezing on shutdown");
    2060            0 :                     true
    2061              :                 }
    2062              :             } else {
    2063              :                 // this is double-shutdown, it'll be a no-op
    2064           12 :                 true
    2065              :             };
    2066              : 
    2067              :             // we shut down walreceiver above, so, we won't add anything more
    2068              :             // to the InMemoryLayer; freeze it and wait for all frozen layers
    2069              :             // to reach the disk & upload queue, then shut the upload queue and
    2070              :             // wait for it to drain.
    2071           12 :             if do_flush {
    2072           12 :                 match self.freeze_and_flush().await {
    2073              :                     Ok(_) => {
    2074              :                         // drain the upload queue
    2075              :                         // if we did not wait for completion here, it might be our shutdown process
    2076              :                         // didn't wait for remote uploads to complete at all, as new tasks can forever
    2077              :                         // be spawned.
    2078              :                         //
    2079              :                         // what is problematic is the shutting down of RemoteTimelineClient, because
    2080              :                         // obviously it does not make sense to stop while we wait for it, but what
    2081              :                         // about corner cases like s3 suddenly hanging up?
    2082           12 :                         self.remote_client.shutdown().await;
    2083              :                     }
    2084              :                     Err(FlushLayerError::Cancelled) => {
    2085              :                         // this is likely the second shutdown, ignore silently.
    2086              :                         // TODO: this can be removed once https://github.com/neondatabase/neon/issues/5080
    2087            0 :                         debug_assert!(self.cancel.is_cancelled());
    2088              :                     }
    2089            0 :                     Err(e) => {
    2090            0 :                         // Non-fatal.  Shutdown is infallible.  Failures to flush just mean that
    2091            0 :                         // we have some extra WAL replay to do next time the timeline starts.
    2092            0 :                         warn!("failed to freeze and flush: {e:#}");
    2093              :                     }
    2094              :                 }
    2095              : 
    2096              :                 // `self.remote_client.shutdown().await` above should have already flushed everything from the queue, but
    2097              :                 // we also do a final check here to ensure that the queue is empty.
    2098           12 :                 if !self.remote_client.no_pending_work() {
    2099            0 :                     warn!(
    2100            0 :                         "still have pending work in remote upload queue, but continuing shutting down anyways"
    2101              :                     );
    2102           12 :                 }
    2103            0 :             }
    2104            8 :         }
    2105              : 
    2106           20 :         if let ShutdownMode::Reload = mode {
    2107              :             // drain the upload queue
    2108            4 :             self.remote_client.shutdown().await;
    2109            4 :             if !self.remote_client.no_pending_work() {
    2110            0 :                 warn!(
    2111            0 :                     "still have pending work in remote upload queue, but continuing shutting down anyways"
    2112              :                 );
    2113            4 :             }
    2114           16 :         }
    2115              : 
    2116              :         // Signal any subscribers to our cancellation token to drop out
    2117           20 :         tracing::debug!("Cancelling CancellationToken");
    2118           20 :         self.cancel.cancel();
    2119           20 : 
    2120           20 :         // If we have a background task downloading heatmap layers stop it.
    2121           20 :         // The background downloads are sensitive to timeline cancellation (done above),
    2122           20 :         // so the drain will be immediate.
    2123           20 :         self.stop_and_drain_heatmap_layers_download().await;
    2124              : 
    2125              :         // Ensure Prevent new page service requests from starting.
    2126           20 :         self.handles.shutdown();
    2127           20 : 
    2128           20 :         // Transition the remote_client into a state where it's only useful for timeline deletion.
    2129           20 :         // (The deletion use case is why we can't just hook up remote_client to Self::cancel).)
    2130           20 :         self.remote_client.stop();
    2131           20 : 
    2132           20 :         // As documented in remote_client.stop()'s doc comment, it's our responsibility
    2133           20 :         // to shut down the upload queue tasks.
    2134           20 :         // TODO: fix that, task management should be encapsulated inside remote_client.
    2135           20 :         task_mgr::shutdown_tasks(
    2136           20 :             Some(TaskKind::RemoteUploadTask),
    2137           20 :             Some(self.tenant_shard_id),
    2138           20 :             Some(self.timeline_id),
    2139           20 :         )
    2140           20 :         .await;
    2141              : 
    2142              :         // TODO: work toward making this a no-op. See this function's doc comment for more context.
    2143           20 :         tracing::debug!("Waiting for tasks...");
    2144           20 :         task_mgr::shutdown_tasks(None, Some(self.tenant_shard_id), Some(self.timeline_id)).await;
    2145              : 
    2146              :         {
    2147              :             // Allow any remaining in-memory layers to do cleanup -- until that, they hold the gate
    2148              :             // open.
    2149           20 :             let mut write_guard = self.write_lock.lock().await;
    2150           20 :             self.layers.write().await.shutdown(&mut write_guard);
    2151           20 :         }
    2152           20 : 
    2153           20 :         // Finally wait until any gate-holders are complete.
    2154           20 :         //
    2155           20 :         // TODO: once above shutdown_tasks is a no-op, we can close the gate before calling shutdown_tasks
    2156           20 :         // and use a TBD variant of shutdown_tasks that asserts that there were no tasks left.
    2157           20 :         self.gate.close().await;
    2158              : 
    2159           20 :         self.metrics.shutdown();
    2160           20 :     }
    2161              : 
    2162          908 :     pub(crate) fn set_state(&self, new_state: TimelineState) {
    2163          908 :         match (self.current_state(), new_state) {
    2164          908 :             (equal_state_1, equal_state_2) if equal_state_1 == equal_state_2 => {
    2165            4 :                 info!("Ignoring new state, equal to the existing one: {equal_state_2:?}");
    2166              :             }
    2167            0 :             (st, TimelineState::Loading) => {
    2168            0 :                 error!("ignoring transition from {st:?} into Loading state");
    2169              :             }
    2170            0 :             (TimelineState::Broken { .. }, new_state) => {
    2171            0 :                 error!("Ignoring state update {new_state:?} for broken timeline");
    2172              :             }
    2173              :             (TimelineState::Stopping, TimelineState::Active) => {
    2174            0 :                 error!("Not activating a Stopping timeline");
    2175              :             }
    2176          904 :             (_, new_state) => {
    2177          904 :                 self.state.send_replace(new_state);
    2178          904 :             }
    2179              :         }
    2180          908 :     }
    2181              : 
    2182            4 :     pub(crate) fn set_broken(&self, reason: String) {
    2183            4 :         let backtrace_str: String = format!("{}", std::backtrace::Backtrace::force_capture());
    2184            4 :         let broken_state = TimelineState::Broken {
    2185            4 :             reason,
    2186            4 :             backtrace: backtrace_str,
    2187            4 :         };
    2188            4 :         self.set_state(broken_state);
    2189            4 : 
    2190            4 :         // Although the Broken state is not equivalent to shutdown() (shutdown will be called
    2191            4 :         // later when this tenant is detach or the process shuts down), firing the cancellation token
    2192            4 :         // here avoids the need for other tasks to watch for the Broken state explicitly.
    2193            4 :         self.cancel.cancel();
    2194            4 :     }
    2195              : 
    2196       456552 :     pub(crate) fn current_state(&self) -> TimelineState {
    2197       456552 :         self.state.borrow().clone()
    2198       456552 :     }
    2199              : 
    2200           12 :     pub(crate) fn is_broken(&self) -> bool {
    2201           12 :         matches!(&*self.state.borrow(), TimelineState::Broken { .. })
    2202           12 :     }
    2203              : 
    2204          472 :     pub(crate) fn is_active(&self) -> bool {
    2205          472 :         self.current_state() == TimelineState::Active
    2206          472 :     }
    2207              : 
    2208            0 :     pub(crate) fn is_archived(&self) -> Option<bool> {
    2209            0 :         self.remote_client.is_archived()
    2210            0 :     }
    2211              : 
    2212          734 :     pub(crate) fn is_stopping(&self) -> bool {
    2213          734 :         self.current_state() == TimelineState::Stopping
    2214          734 :     }
    2215              : 
    2216            0 :     pub(crate) fn subscribe_for_state_updates(&self) -> watch::Receiver<TimelineState> {
    2217            0 :         self.state.subscribe()
    2218            0 :     }
    2219              : 
    2220       454442 :     pub(crate) async fn wait_to_become_active(
    2221       454442 :         &self,
    2222       454442 :         _ctx: &RequestContext, // Prepare for use by cancellation
    2223       454442 :     ) -> Result<(), TimelineState> {
    2224       454442 :         let mut receiver = self.state.subscribe();
    2225              :         loop {
    2226       454442 :             let current_state = receiver.borrow().clone();
    2227       454442 :             match current_state {
    2228              :                 TimelineState::Loading => {
    2229            0 :                     receiver
    2230            0 :                         .changed()
    2231            0 :                         .await
    2232            0 :                         .expect("holding a reference to self");
    2233              :                 }
    2234              :                 TimelineState::Active { .. } => {
    2235       454438 :                     return Ok(());
    2236              :                 }
    2237              :                 TimelineState::Broken { .. } | TimelineState::Stopping => {
    2238              :                     // There's no chance the timeline can transition back into ::Active
    2239            4 :                     return Err(current_state);
    2240              :                 }
    2241              :             }
    2242              :         }
    2243       454442 :     }
    2244              : 
    2245            0 :     pub(crate) async fn layer_map_info(
    2246            0 :         &self,
    2247            0 :         reset: LayerAccessStatsReset,
    2248            0 :     ) -> Result<LayerMapInfo, layer_manager::Shutdown> {
    2249            0 :         let guard = self.layers.read().await;
    2250            0 :         let layer_map = guard.layer_map()?;
    2251            0 :         let mut in_memory_layers = Vec::with_capacity(layer_map.frozen_layers.len() + 1);
    2252            0 :         if let Some(open_layer) = &layer_map.open_layer {
    2253            0 :             in_memory_layers.push(open_layer.info());
    2254            0 :         }
    2255            0 :         for frozen_layer in &layer_map.frozen_layers {
    2256            0 :             in_memory_layers.push(frozen_layer.info());
    2257            0 :         }
    2258              : 
    2259            0 :         let historic_layers = layer_map
    2260            0 :             .iter_historic_layers()
    2261            0 :             .map(|desc| guard.get_from_desc(&desc).info(reset))
    2262            0 :             .collect();
    2263            0 : 
    2264            0 :         Ok(LayerMapInfo {
    2265            0 :             in_memory_layers,
    2266            0 :             historic_layers,
    2267            0 :         })
    2268            0 :     }
    2269              : 
    2270              :     #[instrument(skip_all, fields(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))]
    2271              :     pub(crate) async fn download_layer(
    2272              :         &self,
    2273              :         layer_file_name: &LayerName,
    2274              :         ctx: &RequestContext,
    2275              :     ) -> Result<Option<bool>, super::storage_layer::layer::DownloadError> {
    2276              :         let Some(layer) = self
    2277              :             .find_layer(layer_file_name)
    2278              :             .await
    2279            0 :             .map_err(|e| match e {
    2280            0 :                 layer_manager::Shutdown => {
    2281            0 :                     super::storage_layer::layer::DownloadError::TimelineShutdown
    2282            0 :                 }
    2283            0 :             })?
    2284              :         else {
    2285              :             return Ok(None);
    2286              :         };
    2287              : 
    2288              :         layer.download(ctx).await?;
    2289              : 
    2290              :         Ok(Some(true))
    2291              :     }
    2292              : 
    2293              :     /// Evict just one layer.
    2294              :     ///
    2295              :     /// Returns `Ok(None)` in the case where the layer could not be found by its `layer_file_name`.
    2296            0 :     pub(crate) async fn evict_layer(
    2297            0 :         &self,
    2298            0 :         layer_file_name: &LayerName,
    2299            0 :     ) -> anyhow::Result<Option<bool>> {
    2300            0 :         let _gate = self
    2301            0 :             .gate
    2302            0 :             .enter()
    2303            0 :             .map_err(|_| anyhow::anyhow!("Shutting down"))?;
    2304              : 
    2305            0 :         let Some(local_layer) = self.find_layer(layer_file_name).await? else {
    2306            0 :             return Ok(None);
    2307              :         };
    2308              : 
    2309              :         // curl has this by default
    2310            0 :         let timeout = std::time::Duration::from_secs(120);
    2311            0 : 
    2312            0 :         match local_layer.evict_and_wait(timeout).await {
    2313            0 :             Ok(()) => Ok(Some(true)),
    2314            0 :             Err(EvictionError::NotFound) => Ok(Some(false)),
    2315            0 :             Err(EvictionError::Downloaded) => Ok(Some(false)),
    2316            0 :             Err(EvictionError::Timeout) => Ok(Some(false)),
    2317              :         }
    2318            0 :     }
    2319              : 
    2320      9606020 :     fn should_roll(
    2321      9606020 :         &self,
    2322      9606020 :         layer_size: u64,
    2323      9606020 :         projected_layer_size: u64,
    2324      9606020 :         checkpoint_distance: u64,
    2325      9606020 :         projected_lsn: Lsn,
    2326      9606020 :         last_freeze_at: Lsn,
    2327      9606020 :         opened_at: Instant,
    2328      9606020 :     ) -> bool {
    2329      9606020 :         let distance = projected_lsn.widening_sub(last_freeze_at);
    2330      9606020 : 
    2331      9606020 :         // Rolling the open layer can be triggered by:
    2332      9606020 :         // 1. The distance from the last LSN we rolled at. This bounds the amount of WAL that
    2333      9606020 :         //    the safekeepers need to store.  For sharded tenants, we multiply by shard count to
    2334      9606020 :         //    account for how writes are distributed across shards: we expect each node to consume
    2335      9606020 :         //    1/count of the LSN on average.
    2336      9606020 :         // 2. The size of the currently open layer.
    2337      9606020 :         // 3. The time since the last roll. It helps safekeepers to regard pageserver as caught
    2338      9606020 :         //    up and suspend activity.
    2339      9606020 :         if distance >= checkpoint_distance as i128 * self.shard_identity.count.count() as i128 {
    2340            0 :             info!(
    2341            0 :                 "Will roll layer at {} with layer size {} due to LSN distance ({})",
    2342              :                 projected_lsn, layer_size, distance
    2343              :             );
    2344              : 
    2345            0 :             true
    2346      9606020 :         } else if projected_layer_size >= checkpoint_distance {
    2347              :             // NB: this check is relied upon by:
    2348          160 :             let _ = IndexEntry::validate_checkpoint_distance;
    2349          160 :             info!(
    2350            0 :                 "Will roll layer at {} with layer size {} due to layer size ({})",
    2351              :                 projected_lsn, layer_size, projected_layer_size
    2352              :             );
    2353              : 
    2354          160 :             true
    2355      9605860 :         } else if distance > 0 && opened_at.elapsed() >= self.get_checkpoint_timeout() {
    2356            0 :             info!(
    2357            0 :                 "Will roll layer at {} with layer size {} due to time since first write to the layer ({:?})",
    2358            0 :                 projected_lsn,
    2359            0 :                 layer_size,
    2360            0 :                 opened_at.elapsed()
    2361              :             );
    2362              : 
    2363            0 :             true
    2364              :         } else {
    2365      9605860 :             false
    2366              :         }
    2367      9606020 :     }
    2368              : }
    2369              : 
    2370              : /// Number of times we will compute partition within a checkpoint distance.
    2371              : const REPARTITION_FREQ_IN_CHECKPOINT_DISTANCE: u64 = 10;
    2372              : 
    2373              : // Private functions
    2374              : impl Timeline {
    2375           24 :     pub(crate) fn get_lsn_lease_length(&self) -> Duration {
    2376           24 :         let tenant_conf = self.tenant_conf.load();
    2377           24 :         tenant_conf
    2378           24 :             .tenant_conf
    2379           24 :             .lsn_lease_length
    2380           24 :             .unwrap_or(self.conf.default_tenant_conf.lsn_lease_length)
    2381           24 :     }
    2382              : 
    2383            0 :     pub(crate) fn get_lsn_lease_length_for_ts(&self) -> Duration {
    2384            0 :         let tenant_conf = self.tenant_conf.load();
    2385            0 :         tenant_conf
    2386            0 :             .tenant_conf
    2387            0 :             .lsn_lease_length_for_ts
    2388            0 :             .unwrap_or(self.conf.default_tenant_conf.lsn_lease_length_for_ts)
    2389            0 :     }
    2390              : 
    2391            0 :     pub(crate) fn is_gc_blocked_by_lsn_lease_deadline(&self) -> bool {
    2392            0 :         let tenant_conf = self.tenant_conf.load();
    2393            0 :         tenant_conf.is_gc_blocked_by_lsn_lease_deadline()
    2394            0 :     }
    2395              : 
    2396            0 :     pub(crate) fn get_lazy_slru_download(&self) -> bool {
    2397            0 :         let tenant_conf = self.tenant_conf.load();
    2398            0 :         tenant_conf
    2399            0 :             .tenant_conf
    2400            0 :             .lazy_slru_download
    2401            0 :             .unwrap_or(self.conf.default_tenant_conf.lazy_slru_download)
    2402            0 :     }
    2403              : 
    2404      9609012 :     fn get_checkpoint_distance(&self) -> u64 {
    2405      9609012 :         let tenant_conf = self.tenant_conf.load();
    2406      9609012 :         tenant_conf
    2407      9609012 :             .tenant_conf
    2408      9609012 :             .checkpoint_distance
    2409      9609012 :             .unwrap_or(self.conf.default_tenant_conf.checkpoint_distance)
    2410      9609012 :     }
    2411              : 
    2412      9605860 :     fn get_checkpoint_timeout(&self) -> Duration {
    2413      9605860 :         let tenant_conf = self.tenant_conf.load();
    2414      9605860 :         tenant_conf
    2415      9605860 :             .tenant_conf
    2416      9605860 :             .checkpoint_timeout
    2417      9605860 :             .unwrap_or(self.conf.default_tenant_conf.checkpoint_timeout)
    2418      9605860 :     }
    2419              : 
    2420         5032 :     fn get_compaction_period(&self) -> Duration {
    2421         5032 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2422         5032 :         tenant_conf
    2423         5032 :             .compaction_period
    2424         5032 :             .unwrap_or(self.conf.default_tenant_conf.compaction_period)
    2425         5032 :     }
    2426              : 
    2427         1334 :     fn get_compaction_target_size(&self) -> u64 {
    2428         1334 :         let tenant_conf = self.tenant_conf.load();
    2429         1334 :         tenant_conf
    2430         1334 :             .tenant_conf
    2431         1334 :             .compaction_target_size
    2432         1334 :             .unwrap_or(self.conf.default_tenant_conf.compaction_target_size)
    2433         1334 :     }
    2434              : 
    2435         3138 :     fn get_compaction_threshold(&self) -> usize {
    2436         3138 :         let tenant_conf = self.tenant_conf.load();
    2437         3138 :         tenant_conf
    2438         3138 :             .tenant_conf
    2439         3138 :             .compaction_threshold
    2440         3138 :             .unwrap_or(self.conf.default_tenant_conf.compaction_threshold)
    2441         3138 :     }
    2442              : 
    2443              :     /// Returns `true` if the rel_size_v2 config is enabled. NOTE: the write path and read path
    2444              :     /// should look at `get_rel_size_v2_status()` to get the actual status of the timeline. It is
    2445              :     /// possible that the index part persists the state while the config doesn't get persisted.
    2446         3892 :     pub(crate) fn get_rel_size_v2_enabled(&self) -> bool {
    2447         3892 :         let tenant_conf = self.tenant_conf.load();
    2448         3892 :         tenant_conf
    2449         3892 :             .tenant_conf
    2450         3892 :             .rel_size_v2_enabled
    2451         3892 :             .unwrap_or(self.conf.default_tenant_conf.rel_size_v2_enabled)
    2452         3892 :     }
    2453              : 
    2454         4384 :     pub(crate) fn get_rel_size_v2_status(&self) -> RelSizeMigration {
    2455         4384 :         self.rel_size_v2_status
    2456         4384 :             .load()
    2457         4384 :             .as_ref()
    2458         4384 :             .map(|s| s.as_ref().clone())
    2459         4384 :             .unwrap_or(RelSizeMigration::Legacy)
    2460         4384 :     }
    2461              : 
    2462           56 :     fn get_compaction_upper_limit(&self) -> usize {
    2463           56 :         let tenant_conf = self.tenant_conf.load();
    2464           56 :         tenant_conf
    2465           56 :             .tenant_conf
    2466           56 :             .compaction_upper_limit
    2467           56 :             .unwrap_or(self.conf.default_tenant_conf.compaction_upper_limit)
    2468           56 :     }
    2469              : 
    2470          728 :     pub fn get_compaction_l0_first(&self) -> bool {
    2471          728 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2472          728 :         tenant_conf
    2473          728 :             .compaction_l0_first
    2474          728 :             .unwrap_or(self.conf.default_tenant_conf.compaction_l0_first)
    2475          728 :     }
    2476              : 
    2477            0 :     pub fn get_compaction_l0_semaphore(&self) -> bool {
    2478            0 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2479            0 :         tenant_conf
    2480            0 :             .compaction_l0_semaphore
    2481            0 :             .unwrap_or(self.conf.default_tenant_conf.compaction_l0_semaphore)
    2482            0 :     }
    2483              : 
    2484         2516 :     fn get_l0_flush_delay_threshold(&self) -> Option<usize> {
    2485              :         // By default, delay L0 flushes at 3x the compaction threshold. The compaction threshold
    2486              :         // defaults to 10, and L0 compaction is generally able to keep L0 counts below 30.
    2487              :         const DEFAULT_L0_FLUSH_DELAY_FACTOR: usize = 3;
    2488              : 
    2489              :         // If compaction is disabled, don't delay.
    2490         2516 :         if self.get_compaction_period() == Duration::ZERO {
    2491         2516 :             return None;
    2492            0 :         }
    2493            0 : 
    2494            0 :         let compaction_threshold = self.get_compaction_threshold();
    2495            0 :         let tenant_conf = self.tenant_conf.load();
    2496            0 :         let l0_flush_delay_threshold = tenant_conf
    2497            0 :             .tenant_conf
    2498            0 :             .l0_flush_delay_threshold
    2499            0 :             .or(self.conf.default_tenant_conf.l0_flush_delay_threshold)
    2500            0 :             .unwrap_or(DEFAULT_L0_FLUSH_DELAY_FACTOR * compaction_threshold);
    2501            0 : 
    2502            0 :         // 0 disables backpressure.
    2503            0 :         if l0_flush_delay_threshold == 0 {
    2504            0 :             return None;
    2505            0 :         }
    2506            0 : 
    2507            0 :         // Clamp the flush delay threshold to the compaction threshold; it doesn't make sense to
    2508            0 :         // backpressure flushes below this.
    2509            0 :         // TODO: the tenant config should have validation to prevent this instead.
    2510            0 :         debug_assert!(l0_flush_delay_threshold >= compaction_threshold);
    2511            0 :         Some(max(l0_flush_delay_threshold, compaction_threshold))
    2512         2516 :     }
    2513              : 
    2514         2516 :     fn get_l0_flush_stall_threshold(&self) -> Option<usize> {
    2515              :         // Disable L0 stalls by default. Stalling can cause unavailability if L0 compaction isn't
    2516              :         // responsive, and it can e.g. block on other compaction via the compaction semaphore or
    2517              :         // sibling timelines. We need more confidence before enabling this.
    2518              :         const DEFAULT_L0_FLUSH_STALL_FACTOR: usize = 0; // TODO: default to e.g. 5
    2519              : 
    2520              :         // If compaction is disabled, don't stall.
    2521         2516 :         if self.get_compaction_period() == Duration::ZERO {
    2522         2516 :             return None;
    2523            0 :         }
    2524            0 : 
    2525            0 :         // If compaction is failing, don't stall and try to keep the tenant alive. This may not be a
    2526            0 :         // good idea: read amp can grow unbounded, leading to terrible performance, and we may take
    2527            0 :         // on unbounded compaction debt that can take a long time to fix once compaction comes back
    2528            0 :         // online. At least we'll delay flushes, slowing down the growth and buying some time.
    2529            0 :         if self.compaction_failed.load(AtomicOrdering::Relaxed) {
    2530            0 :             return None;
    2531            0 :         }
    2532            0 : 
    2533            0 :         let compaction_threshold = self.get_compaction_threshold();
    2534            0 :         let tenant_conf = self.tenant_conf.load();
    2535            0 :         let l0_flush_stall_threshold = tenant_conf
    2536            0 :             .tenant_conf
    2537            0 :             .l0_flush_stall_threshold
    2538            0 :             .or(self.conf.default_tenant_conf.l0_flush_stall_threshold);
    2539            0 : 
    2540            0 :         // Tests sometimes set compaction_threshold=1 to generate lots of layer files, and don't
    2541            0 :         // handle the 20-second compaction delay. Some (e.g. `test_backward_compatibility`) can't
    2542            0 :         // easily adjust the L0 backpressure settings, so just disable stalls in this case.
    2543            0 :         if cfg!(feature = "testing")
    2544            0 :             && compaction_threshold == 1
    2545            0 :             && l0_flush_stall_threshold.is_none()
    2546              :         {
    2547            0 :             return None;
    2548            0 :         }
    2549            0 : 
    2550            0 :         let l0_flush_stall_threshold = l0_flush_stall_threshold
    2551            0 :             .unwrap_or(DEFAULT_L0_FLUSH_STALL_FACTOR * compaction_threshold);
    2552            0 : 
    2553            0 :         // 0 disables backpressure.
    2554            0 :         if l0_flush_stall_threshold == 0 {
    2555            0 :             return None;
    2556            0 :         }
    2557            0 : 
    2558            0 :         // Clamp the flush stall threshold to the compaction threshold; it doesn't make sense to
    2559            0 :         // backpressure flushes below this.
    2560            0 :         // TODO: the tenant config should have validation to prevent this instead.
    2561            0 :         debug_assert!(l0_flush_stall_threshold >= compaction_threshold);
    2562            0 :         Some(max(l0_flush_stall_threshold, compaction_threshold))
    2563         2516 :     }
    2564              : 
    2565           28 :     fn get_image_creation_threshold(&self) -> usize {
    2566           28 :         let tenant_conf = self.tenant_conf.load();
    2567           28 :         tenant_conf
    2568           28 :             .tenant_conf
    2569           28 :             .image_creation_threshold
    2570           28 :             .unwrap_or(self.conf.default_tenant_conf.image_creation_threshold)
    2571           28 :     }
    2572              : 
    2573          726 :     fn get_compaction_algorithm_settings(&self) -> CompactionAlgorithmSettings {
    2574          726 :         let tenant_conf = &self.tenant_conf.load();
    2575          726 :         tenant_conf
    2576          726 :             .tenant_conf
    2577          726 :             .compaction_algorithm
    2578          726 :             .as_ref()
    2579          726 :             .unwrap_or(&self.conf.default_tenant_conf.compaction_algorithm)
    2580          726 :             .clone()
    2581          726 :     }
    2582              : 
    2583            0 :     fn get_eviction_policy(&self) -> EvictionPolicy {
    2584            0 :         let tenant_conf = self.tenant_conf.load();
    2585            0 :         tenant_conf
    2586            0 :             .tenant_conf
    2587            0 :             .eviction_policy
    2588            0 :             .unwrap_or(self.conf.default_tenant_conf.eviction_policy)
    2589            0 :     }
    2590              : 
    2591          904 :     fn get_evictions_low_residence_duration_metric_threshold(
    2592          904 :         tenant_conf: &pageserver_api::models::TenantConfig,
    2593          904 :         default_tenant_conf: &pageserver_api::config::TenantConfigToml,
    2594          904 :     ) -> Duration {
    2595          904 :         tenant_conf
    2596          904 :             .evictions_low_residence_duration_metric_threshold
    2597          904 :             .unwrap_or(default_tenant_conf.evictions_low_residence_duration_metric_threshold)
    2598          904 :     }
    2599              : 
    2600         1146 :     fn get_image_layer_creation_check_threshold(&self) -> u8 {
    2601         1146 :         let tenant_conf = self.tenant_conf.load();
    2602         1146 :         tenant_conf
    2603         1146 :             .tenant_conf
    2604         1146 :             .image_layer_creation_check_threshold
    2605         1146 :             .unwrap_or(
    2606         1146 :                 self.conf
    2607         1146 :                     .default_tenant_conf
    2608         1146 :                     .image_layer_creation_check_threshold,
    2609         1146 :             )
    2610         1146 :     }
    2611              : 
    2612            0 :     fn get_gc_compaction_settings(&self) -> GcCompactionCombinedSettings {
    2613            0 :         let tenant_conf = &self.tenant_conf.load();
    2614            0 :         let gc_compaction_enabled = tenant_conf
    2615            0 :             .tenant_conf
    2616            0 :             .gc_compaction_enabled
    2617            0 :             .unwrap_or(self.conf.default_tenant_conf.gc_compaction_enabled);
    2618            0 :         let gc_compaction_initial_threshold_kb = tenant_conf
    2619            0 :             .tenant_conf
    2620            0 :             .gc_compaction_initial_threshold_kb
    2621            0 :             .unwrap_or(
    2622            0 :                 self.conf
    2623            0 :                     .default_tenant_conf
    2624            0 :                     .gc_compaction_initial_threshold_kb,
    2625            0 :             );
    2626            0 :         let gc_compaction_ratio_percent = tenant_conf
    2627            0 :             .tenant_conf
    2628            0 :             .gc_compaction_ratio_percent
    2629            0 :             .unwrap_or(self.conf.default_tenant_conf.gc_compaction_ratio_percent);
    2630            0 :         GcCompactionCombinedSettings {
    2631            0 :             gc_compaction_enabled,
    2632            0 :             gc_compaction_initial_threshold_kb,
    2633            0 :             gc_compaction_ratio_percent,
    2634            0 :         }
    2635            0 :     }
    2636              : 
    2637            0 :     fn get_image_creation_preempt_threshold(&self) -> usize {
    2638            0 :         let tenant_conf = self.tenant_conf.load();
    2639            0 :         tenant_conf
    2640            0 :             .tenant_conf
    2641            0 :             .image_creation_preempt_threshold
    2642            0 :             .unwrap_or(
    2643            0 :                 self.conf
    2644            0 :                     .default_tenant_conf
    2645            0 :                     .image_creation_preempt_threshold,
    2646            0 :             )
    2647            0 :     }
    2648              : 
    2649              :     /// Resolve the effective WAL receiver protocol to use for this tenant.
    2650              :     ///
    2651              :     /// Priority order is:
    2652              :     /// 1. Tenant config override
    2653              :     /// 2. Default value for tenant config override
    2654              :     /// 3. Pageserver config override
    2655              :     /// 4. Pageserver config default
    2656            0 :     pub fn resolve_wal_receiver_protocol(&self) -> PostgresClientProtocol {
    2657            0 :         let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
    2658            0 :         tenant_conf
    2659            0 :             .wal_receiver_protocol_override
    2660            0 :             .or(self.conf.default_tenant_conf.wal_receiver_protocol_override)
    2661            0 :             .unwrap_or(self.conf.wal_receiver_protocol)
    2662            0 :     }
    2663              : 
    2664            0 :     pub(super) fn tenant_conf_updated(&self, new_conf: &AttachedTenantConf) {
    2665            0 :         // NB: Most tenant conf options are read by background loops, so,
    2666            0 :         // changes will automatically be picked up.
    2667            0 : 
    2668            0 :         // The threshold is embedded in the metric. So, we need to update it.
    2669            0 :         {
    2670            0 :             let new_threshold = Self::get_evictions_low_residence_duration_metric_threshold(
    2671            0 :                 &new_conf.tenant_conf,
    2672            0 :                 &self.conf.default_tenant_conf,
    2673            0 :             );
    2674            0 : 
    2675            0 :             let tenant_id_str = self.tenant_shard_id.tenant_id.to_string();
    2676            0 :             let shard_id_str = format!("{}", self.tenant_shard_id.shard_slug());
    2677            0 : 
    2678            0 :             let timeline_id_str = self.timeline_id.to_string();
    2679            0 : 
    2680            0 :             self.remote_client.update_config(&new_conf.location);
    2681            0 : 
    2682            0 :             self.metrics
    2683            0 :                 .evictions_with_low_residence_duration
    2684            0 :                 .write()
    2685            0 :                 .unwrap()
    2686            0 :                 .change_threshold(
    2687            0 :                     &tenant_id_str,
    2688            0 :                     &shard_id_str,
    2689            0 :                     &timeline_id_str,
    2690            0 :                     new_threshold,
    2691            0 :                 );
    2692            0 :         }
    2693            0 :     }
    2694              : 
    2695              :     /// Open a Timeline handle.
    2696              :     ///
    2697              :     /// Loads the metadata for the timeline into memory, but not the layer map.
    2698              :     #[allow(clippy::too_many_arguments)]
    2699          904 :     pub(super) fn new(
    2700          904 :         conf: &'static PageServerConf,
    2701          904 :         tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
    2702          904 :         metadata: &TimelineMetadata,
    2703          904 :         previous_heatmap: Option<PreviousHeatmap>,
    2704          904 :         ancestor: Option<Arc<Timeline>>,
    2705          904 :         timeline_id: TimelineId,
    2706          904 :         tenant_shard_id: TenantShardId,
    2707          904 :         generation: Generation,
    2708          904 :         shard_identity: ShardIdentity,
    2709          904 :         walredo_mgr: Option<Arc<super::WalRedoManager>>,
    2710          904 :         resources: TimelineResources,
    2711          904 :         pg_version: u32,
    2712          904 :         state: TimelineState,
    2713          904 :         attach_wal_lag_cooldown: Arc<OnceLock<WalLagCooldown>>,
    2714          904 :         create_idempotency: crate::tenant::CreateTimelineIdempotency,
    2715          904 :         gc_compaction_state: Option<GcCompactionState>,
    2716          904 :         rel_size_v2_status: Option<RelSizeMigration>,
    2717          904 :         cancel: CancellationToken,
    2718          904 :     ) -> Arc<Self> {
    2719          904 :         let disk_consistent_lsn = metadata.disk_consistent_lsn();
    2720          904 :         let (state, _) = watch::channel(state);
    2721          904 : 
    2722          904 :         let (layer_flush_start_tx, _) = tokio::sync::watch::channel((0, disk_consistent_lsn));
    2723          904 :         let (layer_flush_done_tx, _) = tokio::sync::watch::channel((0, Ok(())));
    2724          904 : 
    2725          904 :         let evictions_low_residence_duration_metric_threshold = {
    2726          904 :             let loaded_tenant_conf = tenant_conf.load();
    2727          904 :             Self::get_evictions_low_residence_duration_metric_threshold(
    2728          904 :                 &loaded_tenant_conf.tenant_conf,
    2729          904 :                 &conf.default_tenant_conf,
    2730          904 :             )
    2731              :         };
    2732              : 
    2733          904 :         if let Some(ancestor) = &ancestor {
    2734          460 :             let mut ancestor_gc_info = ancestor.gc_info.write().unwrap();
    2735          460 :             // If we construct an explicit timeline object, it's obviously not offloaded
    2736          460 :             let is_offloaded = MaybeOffloaded::No;
    2737          460 :             ancestor_gc_info.insert_child(timeline_id, metadata.ancestor_lsn(), is_offloaded);
    2738          460 :         }
    2739              : 
    2740          904 :         Arc::new_cyclic(|myself| {
    2741          904 :             let metrics = Arc::new(TimelineMetrics::new(
    2742          904 :                 &tenant_shard_id,
    2743          904 :                 &timeline_id,
    2744          904 :                 crate::metrics::EvictionsWithLowResidenceDurationBuilder::new(
    2745          904 :                     "mtime",
    2746          904 :                     evictions_low_residence_duration_metric_threshold,
    2747          904 :                 ),
    2748          904 :             ));
    2749          904 :             let aux_file_metrics = metrics.aux_file_size_gauge.clone();
    2750              : 
    2751          904 :             let mut result = Timeline {
    2752          904 :                 conf,
    2753          904 :                 tenant_conf,
    2754          904 :                 myself: myself.clone(),
    2755          904 :                 timeline_id,
    2756          904 :                 tenant_shard_id,
    2757          904 :                 generation,
    2758          904 :                 shard_identity,
    2759          904 :                 pg_version,
    2760          904 :                 layers: Default::default(),
    2761          904 :                 gc_compaction_layer_update_lock: tokio::sync::RwLock::new(()),
    2762          904 : 
    2763          904 :                 walredo_mgr,
    2764          904 :                 walreceiver: Mutex::new(None),
    2765          904 : 
    2766          904 :                 remote_client: Arc::new(resources.remote_client),
    2767          904 : 
    2768          904 :                 // initialize in-memory 'last_record_lsn' from 'disk_consistent_lsn'.
    2769          904 :                 last_record_lsn: SeqWait::new(RecordLsn {
    2770          904 :                     last: disk_consistent_lsn,
    2771          904 :                     prev: metadata.prev_record_lsn().unwrap_or(Lsn(0)),
    2772          904 :                 }),
    2773          904 :                 disk_consistent_lsn: AtomicLsn::new(disk_consistent_lsn.0),
    2774          904 : 
    2775          904 :                 gc_compaction_state: ArcSwap::new(Arc::new(gc_compaction_state)),
    2776          904 : 
    2777          904 :                 last_freeze_at: AtomicLsn::new(disk_consistent_lsn.0),
    2778          904 :                 last_freeze_ts: RwLock::new(Instant::now()),
    2779          904 : 
    2780          904 :                 loaded_at: (disk_consistent_lsn, SystemTime::now()),
    2781          904 : 
    2782          904 :                 ancestor_timeline: ancestor,
    2783          904 :                 ancestor_lsn: metadata.ancestor_lsn(),
    2784          904 : 
    2785          904 :                 metrics,
    2786          904 : 
    2787          904 :                 query_metrics: crate::metrics::SmgrQueryTimePerTimeline::new(
    2788          904 :                     &tenant_shard_id,
    2789          904 :                     &timeline_id,
    2790          904 :                     resources.pagestream_throttle_metrics,
    2791          904 :                 ),
    2792          904 : 
    2793         7232 :                 directory_metrics: array::from_fn(|_| AtomicU64::new(0)),
    2794         7232 :                 directory_metrics_inited: array::from_fn(|_| AtomicBool::new(false)),
    2795          904 : 
    2796          904 :                 flush_loop_state: Mutex::new(FlushLoopState::NotStarted),
    2797          904 : 
    2798          904 :                 layer_flush_start_tx,
    2799          904 :                 layer_flush_done_tx,
    2800          904 : 
    2801          904 :                 write_lock: tokio::sync::Mutex::new(None),
    2802          904 : 
    2803          904 :                 gc_info: std::sync::RwLock::new(GcInfo::default()),
    2804          904 : 
    2805          904 :                 last_image_layer_creation_status: ArcSwap::new(Arc::new(
    2806          904 :                     LastImageLayerCreationStatus::default(),
    2807          904 :                 )),
    2808          904 : 
    2809          904 :                 applied_gc_cutoff_lsn: Rcu::new(metadata.latest_gc_cutoff_lsn()),
    2810          904 :                 initdb_lsn: metadata.initdb_lsn(),
    2811          904 : 
    2812          904 :                 current_logical_size: if disk_consistent_lsn.is_valid() {
    2813              :                     // we're creating timeline data with some layer files existing locally,
    2814              :                     // need to recalculate timeline's logical size based on data in the layers.
    2815          468 :                     LogicalSize::deferred_initial(disk_consistent_lsn)
    2816              :                 } else {
    2817              :                     // we're creating timeline data without any layers existing locally,
    2818              :                     // initial logical size is 0.
    2819          436 :                     LogicalSize::empty_initial()
    2820              :                 },
    2821              : 
    2822          904 :                 partitioning: GuardArcSwap::new((
    2823          904 :                     (KeyPartitioning::new(), KeyPartitioning::new().into_sparse()),
    2824          904 :                     Lsn(0),
    2825          904 :                 )),
    2826          904 :                 repartition_threshold: 0,
    2827          904 :                 last_image_layer_creation_check_at: AtomicLsn::new(0),
    2828          904 :                 last_image_layer_creation_check_instant: Mutex::new(None),
    2829          904 : 
    2830          904 :                 last_received_wal: Mutex::new(None),
    2831          904 :                 rel_size_cache: RwLock::new(RelSizeCache {
    2832          904 :                     complete_as_of: disk_consistent_lsn,
    2833          904 :                     map: HashMap::new(),
    2834          904 :                 }),
    2835          904 : 
    2836          904 :                 download_all_remote_layers_task_info: RwLock::new(None),
    2837          904 : 
    2838          904 :                 state,
    2839          904 : 
    2840          904 :                 eviction_task_timeline_state: tokio::sync::Mutex::new(
    2841          904 :                     EvictionTaskTimelineState::default(),
    2842          904 :                 ),
    2843          904 :                 delete_progress: TimelineDeleteProgress::default(),
    2844          904 : 
    2845          904 :                 cancel,
    2846          904 :                 gate: Gate::default(),
    2847          904 : 
    2848          904 :                 compaction_lock: tokio::sync::Mutex::default(),
    2849          904 :                 compaction_failed: AtomicBool::default(),
    2850          904 :                 l0_compaction_trigger: resources.l0_compaction_trigger,
    2851          904 :                 gc_lock: tokio::sync::Mutex::default(),
    2852          904 : 
    2853          904 :                 standby_horizon: AtomicLsn::new(0),
    2854          904 : 
    2855          904 :                 pagestream_throttle: resources.pagestream_throttle,
    2856          904 : 
    2857          904 :                 aux_file_size_estimator: AuxFileSizeEstimator::new(aux_file_metrics),
    2858          904 : 
    2859          904 :                 #[cfg(test)]
    2860          904 :                 extra_test_dense_keyspace: ArcSwap::new(Arc::new(KeySpace::default())),
    2861          904 : 
    2862          904 :                 l0_flush_global_state: resources.l0_flush_global_state,
    2863          904 : 
    2864          904 :                 handles: Default::default(),
    2865          904 : 
    2866          904 :                 attach_wal_lag_cooldown,
    2867          904 : 
    2868          904 :                 create_idempotency,
    2869          904 : 
    2870          904 :                 page_trace: Default::default(),
    2871          904 : 
    2872          904 :                 previous_heatmap: ArcSwapOption::from_pointee(previous_heatmap),
    2873          904 : 
    2874          904 :                 heatmap_layers_downloader: Mutex::new(None),
    2875          904 : 
    2876          904 :                 rel_size_v2_status: ArcSwapOption::from_pointee(rel_size_v2_status),
    2877          904 : 
    2878          904 :                 wait_lsn_log_slow: tokio::sync::Semaphore::new(1),
    2879          904 :             };
    2880          904 : 
    2881          904 :             result.repartition_threshold =
    2882          904 :                 result.get_checkpoint_distance() / REPARTITION_FREQ_IN_CHECKPOINT_DISTANCE;
    2883          904 : 
    2884          904 :             result
    2885          904 :                 .metrics
    2886          904 :                 .last_record_lsn_gauge
    2887          904 :                 .set(disk_consistent_lsn.0 as i64);
    2888          904 :             result
    2889          904 :         })
    2890          904 :     }
    2891              : 
    2892         1312 :     pub(super) fn maybe_spawn_flush_loop(self: &Arc<Self>) {
    2893         1312 :         let Ok(guard) = self.gate.enter() else {
    2894            0 :             info!("cannot start flush loop when the timeline gate has already been closed");
    2895            0 :             return;
    2896              :         };
    2897         1312 :         let mut flush_loop_state = self.flush_loop_state.lock().unwrap();
    2898         1312 :         match *flush_loop_state {
    2899          892 :             FlushLoopState::NotStarted => (),
    2900              :             FlushLoopState::Running { .. } => {
    2901          420 :                 info!(
    2902            0 :                     "skipping attempt to start flush_loop twice {}/{}",
    2903            0 :                     self.tenant_shard_id, self.timeline_id
    2904              :                 );
    2905          420 :                 return;
    2906              :             }
    2907              :             FlushLoopState::Exited => {
    2908            0 :                 info!(
    2909            0 :                     "ignoring attempt to restart exited flush_loop {}/{}",
    2910            0 :                     self.tenant_shard_id, self.timeline_id
    2911              :                 );
    2912            0 :                 return;
    2913              :             }
    2914              :         }
    2915              : 
    2916          892 :         let layer_flush_start_rx = self.layer_flush_start_tx.subscribe();
    2917          892 :         let self_clone = Arc::clone(self);
    2918          892 : 
    2919          892 :         debug!("spawning flush loop");
    2920          892 :         *flush_loop_state = FlushLoopState::Running {
    2921          892 :             #[cfg(test)]
    2922          892 :             expect_initdb_optimization: false,
    2923          892 :             #[cfg(test)]
    2924          892 :             initdb_optimization_count: 0,
    2925          892 :         };
    2926          892 :         task_mgr::spawn(
    2927          892 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    2928          892 :             task_mgr::TaskKind::LayerFlushTask,
    2929          892 :             self.tenant_shard_id,
    2930          892 :             Some(self.timeline_id),
    2931          892 :             "layer flush task",
    2932          892 :             async move {
    2933          892 :                 let _guard = guard;
    2934          892 :                 let background_ctx = RequestContext::todo_child(TaskKind::LayerFlushTask, DownloadBehavior::Error).with_scope_timeline(&self_clone);
    2935          892 :                 self_clone.flush_loop(layer_flush_start_rx, &background_ctx).await;
    2936           20 :                 let mut flush_loop_state = self_clone.flush_loop_state.lock().unwrap();
    2937           20 :                 assert!(matches!(*flush_loop_state, FlushLoopState::Running{..}));
    2938           20 :                 *flush_loop_state  = FlushLoopState::Exited;
    2939           20 :                 Ok(())
    2940           20 :             }
    2941          892 :             .instrument(info_span!(parent: None, "layer flush task", tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))
    2942              :         );
    2943         1312 :     }
    2944              : 
    2945            0 :     pub(crate) fn update_gc_compaction_state(
    2946            0 :         &self,
    2947            0 :         gc_compaction_state: GcCompactionState,
    2948            0 :     ) -> anyhow::Result<()> {
    2949            0 :         self.gc_compaction_state
    2950            0 :             .store(Arc::new(Some(gc_compaction_state.clone())));
    2951            0 :         self.remote_client
    2952            0 :             .schedule_index_upload_for_gc_compaction_state_update(gc_compaction_state)
    2953            0 :     }
    2954              : 
    2955            0 :     pub(crate) fn update_rel_size_v2_status(
    2956            0 :         &self,
    2957            0 :         rel_size_v2_status: RelSizeMigration,
    2958            0 :     ) -> anyhow::Result<()> {
    2959            0 :         self.rel_size_v2_status
    2960            0 :             .store(Some(Arc::new(rel_size_v2_status.clone())));
    2961            0 :         self.remote_client
    2962            0 :             .schedule_index_upload_for_rel_size_v2_status_update(rel_size_v2_status)
    2963            0 :     }
    2964              : 
    2965            0 :     pub(crate) fn get_gc_compaction_state(&self) -> Option<GcCompactionState> {
    2966            0 :         self.gc_compaction_state.load_full().as_ref().clone()
    2967            0 :     }
    2968              : 
    2969              :     /// Creates and starts the wal receiver.
    2970              :     ///
    2971              :     /// This function is expected to be called at most once per Timeline's lifecycle
    2972              :     /// when the timeline is activated.
    2973            0 :     fn launch_wal_receiver(
    2974            0 :         self: &Arc<Self>,
    2975            0 :         ctx: &RequestContext,
    2976            0 :         broker_client: BrokerClientChannel,
    2977            0 :     ) {
    2978            0 :         info!(
    2979            0 :             "launching WAL receiver for timeline {} of tenant {}",
    2980            0 :             self.timeline_id, self.tenant_shard_id
    2981              :         );
    2982              : 
    2983            0 :         let tenant_conf = self.tenant_conf.load();
    2984            0 :         let wal_connect_timeout = tenant_conf
    2985            0 :             .tenant_conf
    2986            0 :             .walreceiver_connect_timeout
    2987            0 :             .unwrap_or(self.conf.default_tenant_conf.walreceiver_connect_timeout);
    2988            0 :         let lagging_wal_timeout = tenant_conf
    2989            0 :             .tenant_conf
    2990            0 :             .lagging_wal_timeout
    2991            0 :             .unwrap_or(self.conf.default_tenant_conf.lagging_wal_timeout);
    2992            0 :         let max_lsn_wal_lag = tenant_conf
    2993            0 :             .tenant_conf
    2994            0 :             .max_lsn_wal_lag
    2995            0 :             .unwrap_or(self.conf.default_tenant_conf.max_lsn_wal_lag);
    2996            0 : 
    2997            0 :         let mut guard = self.walreceiver.lock().unwrap();
    2998            0 :         assert!(
    2999            0 :             guard.is_none(),
    3000            0 :             "multiple launches / re-launches of WAL receiver are not supported"
    3001              :         );
    3002            0 :         *guard = Some(WalReceiver::start(
    3003            0 :             Arc::clone(self),
    3004            0 :             WalReceiverConf {
    3005            0 :                 protocol: self.resolve_wal_receiver_protocol(),
    3006            0 :                 wal_connect_timeout,
    3007            0 :                 lagging_wal_timeout,
    3008            0 :                 max_lsn_wal_lag,
    3009            0 :                 auth_token: crate::config::SAFEKEEPER_AUTH_TOKEN.get().cloned(),
    3010            0 :                 availability_zone: self.conf.availability_zone.clone(),
    3011            0 :                 ingest_batch_size: self.conf.ingest_batch_size,
    3012            0 :                 validate_wal_contiguity: self.conf.validate_wal_contiguity,
    3013            0 :             },
    3014            0 :             broker_client,
    3015            0 :             ctx,
    3016            0 :         ));
    3017            0 :     }
    3018              : 
    3019              :     /// Initialize with an empty layer map. Used when creating a new timeline.
    3020          892 :     pub(super) fn init_empty_layer_map(&self, start_lsn: Lsn) {
    3021          892 :         let mut layers = self.layers.try_write().expect(
    3022          892 :             "in the context where we call this function, no other task has access to the object",
    3023          892 :         );
    3024          892 :         layers
    3025          892 :             .open_mut()
    3026          892 :             .expect("in this context the LayerManager must still be open")
    3027          892 :             .initialize_empty(Lsn(start_lsn.0));
    3028          892 :     }
    3029              : 
    3030              :     /// Scan the timeline directory, cleanup, populate the layer map, and schedule uploads for local-only
    3031              :     /// files.
    3032           12 :     pub(super) async fn load_layer_map(
    3033           12 :         &self,
    3034           12 :         disk_consistent_lsn: Lsn,
    3035           12 :         index_part: IndexPart,
    3036           12 :     ) -> anyhow::Result<()> {
    3037              :         use LayerName::*;
    3038              :         use init::Decision::*;
    3039              :         use init::{Discovered, DismissedLayer};
    3040              : 
    3041           12 :         let mut guard = self.layers.write().await;
    3042              : 
    3043           12 :         let timer = self.metrics.load_layer_map_histo.start_timer();
    3044           12 : 
    3045           12 :         // Scan timeline directory and create ImageLayerName and DeltaFilename
    3046           12 :         // structs representing all files on disk
    3047           12 :         let timeline_path = self
    3048           12 :             .conf
    3049           12 :             .timeline_path(&self.tenant_shard_id, &self.timeline_id);
    3050           12 :         let conf = self.conf;
    3051           12 :         let span = tracing::Span::current();
    3052           12 : 
    3053           12 :         // Copy to move into the task we're about to spawn
    3054           12 :         let this = self.myself.upgrade().expect("&self method holds the arc");
    3055              : 
    3056           12 :         let (loaded_layers, needs_cleanup, total_physical_size) = tokio::task::spawn_blocking({
    3057           12 :             move || {
    3058           12 :                 let _g = span.entered();
    3059           12 :                 let discovered = init::scan_timeline_dir(&timeline_path)?;
    3060           12 :                 let mut discovered_layers = Vec::with_capacity(discovered.len());
    3061           12 :                 let mut unrecognized_files = Vec::new();
    3062           12 : 
    3063           12 :                 let mut path = timeline_path;
    3064              : 
    3065           44 :                 for discovered in discovered {
    3066           32 :                     let (name, kind) = match discovered {
    3067           32 :                         Discovered::Layer(layer_file_name, local_metadata) => {
    3068           32 :                             discovered_layers.push((layer_file_name, local_metadata));
    3069           32 :                             continue;
    3070              :                         }
    3071            0 :                         Discovered::IgnoredBackup(path) => {
    3072            0 :                             std::fs::remove_file(path)
    3073            0 :                                 .or_else(fs_ext::ignore_not_found)
    3074            0 :                                 .fatal_err("Removing .old file");
    3075            0 :                             continue;
    3076              :                         }
    3077            0 :                         Discovered::Unknown(file_name) => {
    3078            0 :                             // we will later error if there are any
    3079            0 :                             unrecognized_files.push(file_name);
    3080            0 :                             continue;
    3081              :                         }
    3082            0 :                         Discovered::Ephemeral(name) => (name, "old ephemeral file"),
    3083            0 :                         Discovered::Temporary(name) => (name, "temporary timeline file"),
    3084            0 :                         Discovered::TemporaryDownload(name) => (name, "temporary download"),
    3085              :                     };
    3086            0 :                     path.push(Utf8Path::new(&name));
    3087            0 :                     init::cleanup(&path, kind)?;
    3088            0 :                     path.pop();
    3089              :                 }
    3090              : 
    3091           12 :                 if !unrecognized_files.is_empty() {
    3092              :                     // assume that if there are any there are many many.
    3093            0 :                     let n = unrecognized_files.len();
    3094            0 :                     let first = &unrecognized_files[..n.min(10)];
    3095            0 :                     anyhow::bail!(
    3096            0 :                         "unrecognized files in timeline dir (total {n}), first 10: {first:?}"
    3097            0 :                     );
    3098           12 :                 }
    3099           12 : 
    3100           12 :                 let decided = init::reconcile(discovered_layers, &index_part, disk_consistent_lsn);
    3101           12 : 
    3102           12 :                 let mut loaded_layers = Vec::new();
    3103           12 :                 let mut needs_cleanup = Vec::new();
    3104           12 :                 let mut total_physical_size = 0;
    3105              : 
    3106           44 :                 for (name, decision) in decided {
    3107           32 :                     let decision = match decision {
    3108           32 :                         Ok(decision) => decision,
    3109            0 :                         Err(DismissedLayer::Future { local }) => {
    3110            0 :                             if let Some(local) = local {
    3111            0 :                                 init::cleanup_future_layer(
    3112            0 :                                     &local.local_path,
    3113            0 :                                     &name,
    3114            0 :                                     disk_consistent_lsn,
    3115            0 :                                 )?;
    3116            0 :                             }
    3117            0 :                             needs_cleanup.push(name);
    3118            0 :                             continue;
    3119              :                         }
    3120            0 :                         Err(DismissedLayer::LocalOnly(local)) => {
    3121            0 :                             init::cleanup_local_only_file(&name, &local)?;
    3122              :                             // this file never existed remotely, we will have to do rework
    3123            0 :                             continue;
    3124              :                         }
    3125            0 :                         Err(DismissedLayer::BadMetadata(local)) => {
    3126            0 :                             init::cleanup_local_file_for_remote(&local)?;
    3127              :                             // this file never existed remotely, we will have to do rework
    3128            0 :                             continue;
    3129              :                         }
    3130              :                     };
    3131              : 
    3132           32 :                     match &name {
    3133           24 :                         Delta(d) => assert!(d.lsn_range.end <= disk_consistent_lsn + 1),
    3134            8 :                         Image(i) => assert!(i.lsn <= disk_consistent_lsn),
    3135              :                     }
    3136              : 
    3137           32 :                     tracing::debug!(layer=%name, ?decision, "applied");
    3138              : 
    3139           32 :                     let layer = match decision {
    3140           32 :                         Resident { local, remote } => {
    3141           32 :                             total_physical_size += local.file_size;
    3142           32 :                             Layer::for_resident(conf, &this, local.local_path, name, remote)
    3143           32 :                                 .drop_eviction_guard()
    3144              :                         }
    3145            0 :                         Evicted(remote) => Layer::for_evicted(conf, &this, name, remote),
    3146              :                     };
    3147              : 
    3148           32 :                     loaded_layers.push(layer);
    3149              :                 }
    3150           12 :                 Ok((loaded_layers, needs_cleanup, total_physical_size))
    3151           12 :             }
    3152           12 :         })
    3153           12 :         .await
    3154           12 :         .map_err(anyhow::Error::new)
    3155           12 :         .and_then(|x| x)?;
    3156              : 
    3157           12 :         let num_layers = loaded_layers.len();
    3158           12 : 
    3159           12 :         guard
    3160           12 :             .open_mut()
    3161           12 :             .expect("layermanager must be open during init")
    3162           12 :             .initialize_local_layers(loaded_layers, disk_consistent_lsn + 1);
    3163           12 : 
    3164           12 :         self.remote_client
    3165           12 :             .schedule_layer_file_deletion(&needs_cleanup)?;
    3166           12 :         self.remote_client
    3167           12 :             .schedule_index_upload_for_file_changes()?;
    3168              :         // This barrier orders above DELETEs before any later operations.
    3169              :         // This is critical because code executing after the barrier might
    3170              :         // create again objects with the same key that we just scheduled for deletion.
    3171              :         // For example, if we just scheduled deletion of an image layer "from the future",
    3172              :         // later compaction might run again and re-create the same image layer.
    3173              :         // "from the future" here means an image layer whose LSN is > IndexPart::disk_consistent_lsn.
    3174              :         // "same" here means same key range and LSN.
    3175              :         //
    3176              :         // Without a barrier between above DELETEs and the re-creation's PUTs,
    3177              :         // the upload queue may execute the PUT first, then the DELETE.
    3178              :         // In our example, we will end up with an IndexPart referencing a non-existent object.
    3179              :         //
    3180              :         // 1. a future image layer is created and uploaded
    3181              :         // 2. ps restart
    3182              :         // 3. the future layer from (1) is deleted during load layer map
    3183              :         // 4. image layer is re-created and uploaded
    3184              :         // 5. deletion queue would like to delete (1) but actually deletes (4)
    3185              :         // 6. delete by name works as expected, but it now deletes the wrong (later) version
    3186              :         //
    3187              :         // See https://github.com/neondatabase/neon/issues/5878
    3188              :         //
    3189              :         // NB: generation numbers naturally protect against this because they disambiguate
    3190              :         //     (1) and (4)
    3191              :         // TODO: this is basically a no-op now, should we remove it?
    3192           12 :         self.remote_client.schedule_barrier()?;
    3193              :         // Tenant::create_timeline will wait for these uploads to happen before returning, or
    3194              :         // on retry.
    3195              : 
    3196              :         // Now that we have the full layer map, we may calculate the visibility of layers within it (a global scan)
    3197           12 :         drop(guard); // drop write lock, update_layer_visibility will take a read lock.
    3198           12 :         self.update_layer_visibility().await?;
    3199              : 
    3200           12 :         info!(
    3201            0 :             "loaded layer map with {} layers at {}, total physical size: {}",
    3202              :             num_layers, disk_consistent_lsn, total_physical_size
    3203              :         );
    3204              : 
    3205           12 :         timer.stop_and_record();
    3206           12 :         Ok(())
    3207           12 :     }
    3208              : 
    3209              :     /// Retrieve current logical size of the timeline.
    3210              :     ///
    3211              :     /// The size could be lagging behind the actual number, in case
    3212              :     /// the initial size calculation has not been run (gets triggered on the first size access).
    3213              :     ///
    3214              :     /// return size and boolean flag that shows if the size is exact
    3215            0 :     pub(crate) fn get_current_logical_size(
    3216            0 :         self: &Arc<Self>,
    3217            0 :         priority: GetLogicalSizePriority,
    3218            0 :         ctx: &RequestContext,
    3219            0 :     ) -> logical_size::CurrentLogicalSize {
    3220            0 :         if !self.tenant_shard_id.is_shard_zero() {
    3221              :             // Logical size is only accurately maintained on shard zero: when called elsewhere, for example
    3222              :             // when HTTP API is serving a GET for timeline zero, return zero
    3223            0 :             return logical_size::CurrentLogicalSize::Approximate(logical_size::Approximate::zero());
    3224            0 :         }
    3225            0 : 
    3226            0 :         let current_size = self.current_logical_size.current_size();
    3227            0 :         debug!("Current size: {current_size:?}");
    3228              : 
    3229            0 :         match (current_size.accuracy(), priority) {
    3230            0 :             (logical_size::Accuracy::Exact, _) => (), // nothing to do
    3231            0 :             (logical_size::Accuracy::Approximate, GetLogicalSizePriority::Background) => {
    3232            0 :                 // background task will eventually deliver an exact value, we're in no rush
    3233            0 :             }
    3234              :             (logical_size::Accuracy::Approximate, GetLogicalSizePriority::User) => {
    3235              :                 // background task is not ready, but user is asking for it now;
    3236              :                 // => make the background task skip the line
    3237              :                 // (The alternative would be to calculate the size here, but,
    3238              :                 //  it can actually take a long time if the user has a lot of rels.
    3239              :                 //  And we'll inevitable need it again; So, let the background task do the work.)
    3240            0 :                 match self
    3241            0 :                     .current_logical_size
    3242            0 :                     .cancel_wait_for_background_loop_concurrency_limit_semaphore
    3243            0 :                     .get()
    3244              :                 {
    3245            0 :                     Some(cancel) => cancel.cancel(),
    3246              :                     None => {
    3247            0 :                         match self.current_state() {
    3248            0 :                             TimelineState::Broken { .. } | TimelineState::Stopping => {
    3249            0 :                                 // Can happen when timeline detail endpoint is used when deletion is ongoing (or its broken).
    3250            0 :                                 // Don't make noise.
    3251            0 :                             }
    3252              :                             TimelineState::Loading => {
    3253              :                                 // Import does not return an activated timeline.
    3254            0 :                                 info!(
    3255            0 :                                     "discarding priority boost for logical size calculation because timeline is not yet active"
    3256              :                                 );
    3257              :                             }
    3258              :                             TimelineState::Active => {
    3259              :                                 // activation should be setting the once cell
    3260            0 :                                 warn!(
    3261            0 :                                     "unexpected: cancel_wait_for_background_loop_concurrency_limit_semaphore not set, priority-boosting of logical size calculation will not work"
    3262              :                                 );
    3263            0 :                                 debug_assert!(false);
    3264              :                             }
    3265              :                         }
    3266              :                     }
    3267              :                 }
    3268              :             }
    3269              :         }
    3270              : 
    3271            0 :         if let CurrentLogicalSize::Approximate(_) = &current_size {
    3272            0 :             if ctx.task_kind() == TaskKind::WalReceiverConnectionHandler {
    3273            0 :                 let first = self
    3274            0 :                     .current_logical_size
    3275            0 :                     .did_return_approximate_to_walreceiver
    3276            0 :                     .compare_exchange(
    3277            0 :                         false,
    3278            0 :                         true,
    3279            0 :                         AtomicOrdering::Relaxed,
    3280            0 :                         AtomicOrdering::Relaxed,
    3281            0 :                     )
    3282            0 :                     .is_ok();
    3283            0 :                 if first {
    3284            0 :                     crate::metrics::initial_logical_size::TIMELINES_WHERE_WALRECEIVER_GOT_APPROXIMATE_SIZE.inc();
    3285            0 :                 }
    3286            0 :             }
    3287            0 :         }
    3288              : 
    3289            0 :         current_size
    3290            0 :     }
    3291              : 
    3292            0 :     fn spawn_initial_logical_size_computation_task(self: &Arc<Self>, ctx: &RequestContext) {
    3293            0 :         let Some(initial_part_end) = self.current_logical_size.initial_part_end else {
    3294              :             // nothing to do for freshly created timelines;
    3295            0 :             assert_eq!(
    3296            0 :                 self.current_logical_size.current_size().accuracy(),
    3297            0 :                 logical_size::Accuracy::Exact,
    3298            0 :             );
    3299            0 :             self.current_logical_size.initialized.add_permits(1);
    3300            0 :             return;
    3301              :         };
    3302              : 
    3303            0 :         let cancel_wait_for_background_loop_concurrency_limit_semaphore = CancellationToken::new();
    3304            0 :         let token = cancel_wait_for_background_loop_concurrency_limit_semaphore.clone();
    3305            0 :         self.current_logical_size
    3306            0 :             .cancel_wait_for_background_loop_concurrency_limit_semaphore.set(token)
    3307            0 :             .expect("initial logical size calculation task must be spawned exactly once per Timeline object");
    3308            0 : 
    3309            0 :         let self_clone = Arc::clone(self);
    3310            0 :         let background_ctx = ctx.detached_child(
    3311            0 :             TaskKind::InitialLogicalSizeCalculation,
    3312            0 :             DownloadBehavior::Download,
    3313            0 :         );
    3314            0 :         task_mgr::spawn(
    3315            0 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    3316            0 :             task_mgr::TaskKind::InitialLogicalSizeCalculation,
    3317            0 :             self.tenant_shard_id,
    3318            0 :             Some(self.timeline_id),
    3319            0 :             "initial size calculation",
    3320              :             // NB: don't log errors here, task_mgr will do that.
    3321            0 :             async move {
    3322            0 :                 self_clone
    3323            0 :                     .initial_logical_size_calculation_task(
    3324            0 :                         initial_part_end,
    3325            0 :                         cancel_wait_for_background_loop_concurrency_limit_semaphore,
    3326            0 :                         background_ctx,
    3327            0 :                     )
    3328            0 :                     .await;
    3329            0 :                 Ok(())
    3330            0 :             }
    3331            0 :             .instrument(info_span!(parent: None, "initial_size_calculation", tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%self.timeline_id)),
    3332              :         );
    3333            0 :     }
    3334              : 
    3335              :     /// # Cancellation
    3336              :     ///
    3337              :     /// This method is sensitive to `Timeline::cancel`.
    3338              :     ///
    3339              :     /// It is _not_ sensitive to task_mgr::shutdown_token().
    3340              :     ///
    3341              :     /// # Cancel-Safety
    3342              :     ///
    3343              :     /// It does Timeline IO, hence this should be polled to completion because
    3344              :     /// we could be leaving in-flight IOs behind, which is safe, but annoying
    3345              :     /// to reason about.
    3346            0 :     async fn initial_logical_size_calculation_task(
    3347            0 :         self: Arc<Self>,
    3348            0 :         initial_part_end: Lsn,
    3349            0 :         skip_concurrency_limiter: CancellationToken,
    3350            0 :         background_ctx: RequestContext,
    3351            0 :     ) {
    3352            0 :         scopeguard::defer! {
    3353            0 :             // Irrespective of the outcome of this operation, we should unblock anyone waiting for it.
    3354            0 :             self.current_logical_size.initialized.add_permits(1);
    3355            0 :         }
    3356            0 : 
    3357            0 :         let try_once = |attempt: usize| {
    3358            0 :             let background_ctx = &background_ctx;
    3359            0 :             let self_ref = &self;
    3360            0 :             let skip_concurrency_limiter = &skip_concurrency_limiter;
    3361            0 :             async move {
    3362            0 :                 let wait_for_permit = super::tasks::acquire_concurrency_permit(
    3363            0 :                     BackgroundLoopKind::InitialLogicalSizeCalculation,
    3364            0 :                     background_ctx,
    3365            0 :                 );
    3366              : 
    3367              :                 use crate::metrics::initial_logical_size::StartCircumstances;
    3368            0 :                 let (_maybe_permit, circumstances) = tokio::select! {
    3369            0 :                     permit = wait_for_permit => {
    3370            0 :                         (Some(permit), StartCircumstances::AfterBackgroundTasksRateLimit)
    3371              :                     }
    3372            0 :                     _ = self_ref.cancel.cancelled() => {
    3373            0 :                         return Err(CalculateLogicalSizeError::Cancelled);
    3374              :                     }
    3375            0 :                     () = skip_concurrency_limiter.cancelled() => {
    3376              :                         // Some action that is part of a end user interaction requested logical size
    3377              :                         // => break out of the rate limit
    3378              :                         // TODO: ideally we'd not run on BackgroundRuntime but the requester's runtime;
    3379              :                         // but then again what happens if they cancel; also, we should just be using
    3380              :                         // one runtime across the entire process, so, let's leave this for now.
    3381            0 :                         (None, StartCircumstances::SkippedConcurrencyLimiter)
    3382              :                     }
    3383              :                 };
    3384              : 
    3385            0 :                 let metrics_guard = if attempt == 1 {
    3386            0 :                     crate::metrics::initial_logical_size::START_CALCULATION.first(circumstances)
    3387              :                 } else {
    3388            0 :                     crate::metrics::initial_logical_size::START_CALCULATION.retry(circumstances)
    3389              :                 };
    3390              : 
    3391            0 :                 let io_concurrency = IoConcurrency::spawn_from_conf(
    3392            0 :                     self_ref.conf,
    3393            0 :                     self_ref
    3394            0 :                         .gate
    3395            0 :                         .enter()
    3396            0 :                         .map_err(|_| CalculateLogicalSizeError::Cancelled)?,
    3397              :                 );
    3398              : 
    3399            0 :                 let calculated_size = self_ref
    3400            0 :                     .logical_size_calculation_task(
    3401            0 :                         initial_part_end,
    3402            0 :                         LogicalSizeCalculationCause::Initial,
    3403            0 :                         background_ctx,
    3404            0 :                     )
    3405            0 :                     .await?;
    3406              : 
    3407            0 :                 self_ref
    3408            0 :                     .trigger_aux_file_size_computation(
    3409            0 :                         initial_part_end,
    3410            0 :                         background_ctx,
    3411            0 :                         io_concurrency,
    3412            0 :                     )
    3413            0 :                     .await?;
    3414              : 
    3415              :                 // TODO: add aux file size to logical size
    3416              : 
    3417            0 :                 Ok((calculated_size, metrics_guard))
    3418            0 :             }
    3419            0 :         };
    3420              : 
    3421            0 :         let retrying = async {
    3422            0 :             let mut attempt = 0;
    3423              :             loop {
    3424            0 :                 attempt += 1;
    3425            0 : 
    3426            0 :                 match try_once(attempt).await {
    3427            0 :                     Ok(res) => return ControlFlow::Continue(res),
    3428            0 :                     Err(CalculateLogicalSizeError::Cancelled) => return ControlFlow::Break(()),
    3429              :                     Err(
    3430            0 :                         e @ (CalculateLogicalSizeError::Decode(_)
    3431            0 :                         | CalculateLogicalSizeError::PageRead(_)),
    3432            0 :                     ) => {
    3433            0 :                         warn!(attempt, "initial size calculation failed: {e:?}");
    3434              :                         // exponential back-off doesn't make sense at these long intervals;
    3435              :                         // use fixed retry interval with generous jitter instead
    3436            0 :                         let sleep_duration = Duration::from_secs(
    3437            0 :                             u64::try_from(
    3438            0 :                                 // 1hour base
    3439            0 :                                 (60_i64 * 60_i64)
    3440            0 :                                     // 10min jitter
    3441            0 :                                     + rand::thread_rng().gen_range(-10 * 60..10 * 60),
    3442            0 :                             )
    3443            0 :                             .expect("10min < 1hour"),
    3444            0 :                         );
    3445            0 :                         tokio::select! {
    3446            0 :                             _ = tokio::time::sleep(sleep_duration) => {}
    3447            0 :                             _ = self.cancel.cancelled() => return ControlFlow::Break(()),
    3448              :                         }
    3449              :                     }
    3450              :                 }
    3451              :             }
    3452            0 :         };
    3453              : 
    3454            0 :         let (calculated_size, metrics_guard) = match retrying.await {
    3455            0 :             ControlFlow::Continue(calculated_size) => calculated_size,
    3456            0 :             ControlFlow::Break(()) => return,
    3457              :         };
    3458              : 
    3459              :         // we cannot query current_logical_size.current_size() to know the current
    3460              :         // *negative* value, only truncated to u64.
    3461            0 :         let added = self
    3462            0 :             .current_logical_size
    3463            0 :             .size_added_after_initial
    3464            0 :             .load(AtomicOrdering::Relaxed);
    3465            0 : 
    3466            0 :         let sum = calculated_size.saturating_add_signed(added);
    3467            0 : 
    3468            0 :         // set the gauge value before it can be set in `update_current_logical_size`.
    3469            0 :         self.metrics.current_logical_size_gauge.set(sum);
    3470            0 : 
    3471            0 :         self.current_logical_size
    3472            0 :             .initial_logical_size
    3473            0 :             .set((calculated_size, metrics_guard.calculation_result_saved()))
    3474            0 :             .ok()
    3475            0 :             .expect("only this task sets it");
    3476            0 :     }
    3477              : 
    3478            0 :     pub(crate) fn spawn_ondemand_logical_size_calculation(
    3479            0 :         self: &Arc<Self>,
    3480            0 :         lsn: Lsn,
    3481            0 :         cause: LogicalSizeCalculationCause,
    3482            0 :         ctx: RequestContext,
    3483            0 :     ) -> oneshot::Receiver<Result<u64, CalculateLogicalSizeError>> {
    3484            0 :         let (sender, receiver) = oneshot::channel();
    3485            0 :         let self_clone = Arc::clone(self);
    3486            0 :         // XXX if our caller loses interest, i.e., ctx is cancelled,
    3487            0 :         // we should stop the size calculation work and return an error.
    3488            0 :         // That would require restructuring this function's API to
    3489            0 :         // return the result directly, instead of a Receiver for the result.
    3490            0 :         let ctx = ctx.detached_child(
    3491            0 :             TaskKind::OndemandLogicalSizeCalculation,
    3492            0 :             DownloadBehavior::Download,
    3493            0 :         );
    3494            0 :         task_mgr::spawn(
    3495            0 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    3496            0 :             task_mgr::TaskKind::OndemandLogicalSizeCalculation,
    3497            0 :             self.tenant_shard_id,
    3498            0 :             Some(self.timeline_id),
    3499            0 :             "ondemand logical size calculation",
    3500            0 :             async move {
    3501            0 :                 let res = self_clone
    3502            0 :                     .logical_size_calculation_task(lsn, cause, &ctx)
    3503            0 :                     .await;
    3504            0 :                 let _ = sender.send(res).ok();
    3505            0 :                 Ok(()) // Receiver is responsible for handling errors
    3506            0 :             }
    3507            0 :             .in_current_span(),
    3508            0 :         );
    3509            0 :         receiver
    3510            0 :     }
    3511              : 
    3512              :     #[instrument(skip_all)]
    3513              :     async fn logical_size_calculation_task(
    3514              :         self: &Arc<Self>,
    3515              :         lsn: Lsn,
    3516              :         cause: LogicalSizeCalculationCause,
    3517              :         ctx: &RequestContext,
    3518              :     ) -> Result<u64, CalculateLogicalSizeError> {
    3519              :         crate::span::debug_assert_current_span_has_tenant_and_timeline_id();
    3520              :         // We should never be calculating logical sizes on shard !=0, because these shards do not have
    3521              :         // accurate relation sizes, and they do not emit consumption metrics.
    3522              :         debug_assert!(self.tenant_shard_id.is_shard_zero());
    3523              : 
    3524              :         let guard = self
    3525              :             .gate
    3526              :             .enter()
    3527            0 :             .map_err(|_| CalculateLogicalSizeError::Cancelled)?;
    3528              : 
    3529              :         self.calculate_logical_size(lsn, cause, &guard, ctx).await
    3530              :     }
    3531              : 
    3532              :     /// Calculate the logical size of the database at the latest LSN.
    3533              :     ///
    3534              :     /// NOTE: counted incrementally, includes ancestors. This can be a slow operation,
    3535              :     /// especially if we need to download remote layers.
    3536            0 :     async fn calculate_logical_size(
    3537            0 :         &self,
    3538            0 :         up_to_lsn: Lsn,
    3539            0 :         cause: LogicalSizeCalculationCause,
    3540            0 :         _guard: &GateGuard,
    3541            0 :         ctx: &RequestContext,
    3542            0 :     ) -> Result<u64, CalculateLogicalSizeError> {
    3543            0 :         info!(
    3544            0 :             "Calculating logical size for timeline {} at {}",
    3545              :             self.timeline_id, up_to_lsn
    3546              :         );
    3547              : 
    3548            0 :         if let Err(()) = pausable_failpoint!("timeline-calculate-logical-size-pause", &self.cancel)
    3549              :         {
    3550            0 :             return Err(CalculateLogicalSizeError::Cancelled);
    3551            0 :         }
    3552              : 
    3553              :         // See if we've already done the work for initial size calculation.
    3554              :         // This is a short-cut for timelines that are mostly unused.
    3555            0 :         if let Some(size) = self.current_logical_size.initialized_size(up_to_lsn) {
    3556            0 :             return Ok(size);
    3557            0 :         }
    3558            0 :         let storage_time_metrics = match cause {
    3559              :             LogicalSizeCalculationCause::Initial
    3560              :             | LogicalSizeCalculationCause::ConsumptionMetricsSyntheticSize
    3561            0 :             | LogicalSizeCalculationCause::TenantSizeHandler => &self.metrics.logical_size_histo,
    3562              :             LogicalSizeCalculationCause::EvictionTaskImitation => {
    3563            0 :                 &self.metrics.imitate_logical_size_histo
    3564              :             }
    3565              :         };
    3566            0 :         let timer = storage_time_metrics.start_timer();
    3567            0 :         let logical_size = self
    3568            0 :             .get_current_logical_size_non_incremental(up_to_lsn, ctx)
    3569            0 :             .await?;
    3570            0 :         debug!("calculated logical size: {logical_size}");
    3571            0 :         timer.stop_and_record();
    3572            0 :         Ok(logical_size)
    3573            0 :     }
    3574              : 
    3575              :     /// Update current logical size, adding `delta' to the old value.
    3576       541140 :     fn update_current_logical_size(&self, delta: i64) {
    3577       541140 :         let logical_size = &self.current_logical_size;
    3578       541140 :         logical_size.increment_size(delta);
    3579       541140 : 
    3580       541140 :         // Also set the value in the prometheus gauge. Note that
    3581       541140 :         // there is a race condition here: if this is is called by two
    3582       541140 :         // threads concurrently, the prometheus gauge might be set to
    3583       541140 :         // one value while current_logical_size is set to the
    3584       541140 :         // other.
    3585       541140 :         match logical_size.current_size() {
    3586       541140 :             CurrentLogicalSize::Exact(ref new_current_size) => self
    3587       541140 :                 .metrics
    3588       541140 :                 .current_logical_size_gauge
    3589       541140 :                 .set(new_current_size.into()),
    3590            0 :             CurrentLogicalSize::Approximate(_) => {
    3591            0 :                 // don't update the gauge yet, this allows us not to update the gauge back and
    3592            0 :                 // forth between the initial size calculation task.
    3593            0 :             }
    3594              :         }
    3595       541140 :     }
    3596              : 
    3597         5988 :     pub(crate) fn update_directory_entries_count(&self, kind: DirectoryKind, count: MetricsUpdate) {
    3598         5988 :         // TODO: this directory metrics is not correct -- we could have multiple reldirs in the system
    3599         5988 :         // for each of the database, but we only store one value, and therefore each pgdirmodification
    3600         5988 :         // would overwrite the previous value if they modify different databases.
    3601         5988 : 
    3602         5988 :         match count {
    3603         2144 :             MetricsUpdate::Set(count) => {
    3604         2144 :                 self.directory_metrics[kind.offset()].store(count, AtomicOrdering::Relaxed);
    3605         2144 :                 self.directory_metrics_inited[kind.offset()].store(true, AtomicOrdering::Relaxed);
    3606         2144 :             }
    3607         3840 :             MetricsUpdate::Add(count) => {
    3608         3840 :                 // TODO: these operations are not atomic; but we only have one writer to the metrics, so
    3609         3840 :                 // it's fine.
    3610         3840 :                 if self.directory_metrics_inited[kind.offset()].load(AtomicOrdering::Relaxed) {
    3611         3840 :                     // The metrics has been initialized with `MetricsUpdate::Set` before, so we can add/sub
    3612         3840 :                     // the value reliably.
    3613         3840 :                     self.directory_metrics[kind.offset()].fetch_add(count, AtomicOrdering::Relaxed);
    3614         3840 :                 }
    3615              :                 // Otherwise, ignore this update
    3616              :             }
    3617            4 :             MetricsUpdate::Sub(count) => {
    3618            4 :                 // TODO: these operations are not atomic; but we only have one writer to the metrics, so
    3619            4 :                 // it's fine.
    3620            4 :                 if self.directory_metrics_inited[kind.offset()].load(AtomicOrdering::Relaxed) {
    3621            4 :                     // The metrics has been initialized with `MetricsUpdate::Set` before.
    3622            4 :                     // The operation could overflow so we need to normalize the value.
    3623            4 :                     let prev_val =
    3624            4 :                         self.directory_metrics[kind.offset()].load(AtomicOrdering::Relaxed);
    3625            4 :                     let res = prev_val.saturating_sub(count);
    3626            4 :                     self.directory_metrics[kind.offset()].store(res, AtomicOrdering::Relaxed);
    3627            4 :                 }
    3628              :                 // Otherwise, ignore this update
    3629              :             }
    3630              :         };
    3631              : 
    3632              :         // TODO: remove this, there's no place in the code that updates this aux metrics.
    3633         5988 :         let aux_metric =
    3634         5988 :             self.directory_metrics[DirectoryKind::AuxFiles.offset()].load(AtomicOrdering::Relaxed);
    3635         5988 : 
    3636         5988 :         let sum_of_entries = self
    3637         5988 :             .directory_metrics
    3638         5988 :             .iter()
    3639        47904 :             .map(|v| v.load(AtomicOrdering::Relaxed))
    3640         5988 :             .sum();
    3641              :         // Set a high general threshold and a lower threshold for the auxiliary files,
    3642              :         // as we can have large numbers of relations in the db directory.
    3643              :         const SUM_THRESHOLD: u64 = 5000;
    3644              :         const AUX_THRESHOLD: u64 = 1000;
    3645         5988 :         if sum_of_entries >= SUM_THRESHOLD || aux_metric >= AUX_THRESHOLD {
    3646            0 :             self.metrics
    3647            0 :                 .directory_entries_count_gauge
    3648            0 :                 .set(sum_of_entries);
    3649         5988 :         } else if let Some(metric) = Lazy::get(&self.metrics.directory_entries_count_gauge) {
    3650            0 :             metric.set(sum_of_entries);
    3651         5988 :         }
    3652         5988 :     }
    3653              : 
    3654            0 :     async fn find_layer(
    3655            0 :         &self,
    3656            0 :         layer_name: &LayerName,
    3657            0 :     ) -> Result<Option<Layer>, layer_manager::Shutdown> {
    3658            0 :         let guard = self.layers.read().await;
    3659            0 :         let layer = guard
    3660            0 :             .layer_map()?
    3661            0 :             .iter_historic_layers()
    3662            0 :             .find(|l| &l.layer_name() == layer_name)
    3663            0 :             .map(|found| guard.get_from_desc(&found));
    3664            0 :         Ok(layer)
    3665            0 :     }
    3666              : 
    3667            0 :     pub(super) fn should_keep_previous_heatmap(&self, new_heatmap_end_lsn: Lsn) -> bool {
    3668            0 :         let crnt = self.previous_heatmap.load();
    3669            0 :         match crnt.as_deref() {
    3670            0 :             Some(PreviousHeatmap::Active { end_lsn, .. }) => match end_lsn {
    3671            0 :                 Some(crnt_end_lsn) => *crnt_end_lsn > new_heatmap_end_lsn,
    3672            0 :                 None => true,
    3673              :             },
    3674            0 :             Some(PreviousHeatmap::Obsolete) => false,
    3675            0 :             None => false,
    3676              :         }
    3677            0 :     }
    3678              : 
    3679              :     /// The timeline heatmap is a hint to secondary locations from the primary location,
    3680              :     /// indicating which layers are currently on-disk on the primary.
    3681              :     ///
    3682              :     /// None is returned if the Timeline is in a state where uploading a heatmap
    3683              :     /// doesn't make sense, such as shutting down or initializing.  The caller
    3684              :     /// should treat this as a cue to simply skip doing any heatmap uploading
    3685              :     /// for this timeline.
    3686           32 :     pub(crate) async fn generate_heatmap(&self) -> Option<HeatMapTimeline> {
    3687           32 :         if !self.is_active() {
    3688            0 :             return None;
    3689           32 :         }
    3690              : 
    3691           32 :         let guard = self.layers.read().await;
    3692              : 
    3693              :         // Firstly, if there's any heatmap left over from when this location
    3694              :         // was a secondary, take that into account. Keep layers that are:
    3695              :         // * present in the layer map
    3696              :         // * visible
    3697              :         // * non-resident
    3698              :         // * not evicted since we read the heatmap
    3699              :         //
    3700              :         // Without this, a new cold, attached location would clobber the previous
    3701              :         // heatamp.
    3702           32 :         let previous_heatmap = self.previous_heatmap.load();
    3703           32 :         let visible_non_resident = match previous_heatmap.as_deref() {
    3704              :             Some(PreviousHeatmap::Active {
    3705           24 :                 heatmap, read_at, ..
    3706           92 :             }) => Some(heatmap.all_layers().filter_map(|hl| {
    3707           92 :                 let desc: PersistentLayerDesc = hl.name.clone().into();
    3708           92 :                 let layer = guard.try_get_from_key(&desc.key())?;
    3709              : 
    3710           92 :                 if layer.visibility() == LayerVisibilityHint::Covered {
    3711            0 :                     return None;
    3712           92 :                 }
    3713           92 : 
    3714           92 :                 if layer.is_likely_resident() {
    3715           40 :                     return None;
    3716           52 :                 }
    3717           52 : 
    3718           52 :                 if layer.last_evicted_at().happened_after(*read_at) {
    3719           12 :                     return None;
    3720           40 :                 }
    3721           40 : 
    3722           40 :                 Some((desc, hl.metadata.clone(), hl.access_time, hl.cold))
    3723           92 :             })),
    3724            0 :             Some(PreviousHeatmap::Obsolete) => None,
    3725            8 :             None => None,
    3726              :         };
    3727              : 
    3728              :         // Secondly, all currently visible, resident layers are included.
    3729           72 :         let resident = guard.likely_resident_layers().filter_map(|layer| {
    3730           72 :             match layer.visibility() {
    3731              :                 LayerVisibilityHint::Visible => {
    3732              :                     // Layer is visible to one or more read LSNs: elegible for inclusion in layer map
    3733           68 :                     let last_activity_ts = layer.latest_activity();
    3734           68 :                     Some((
    3735           68 :                         layer.layer_desc().clone(),
    3736           68 :                         layer.metadata(),
    3737           68 :                         last_activity_ts,
    3738           68 :                         false, // these layers are not cold
    3739           68 :                     ))
    3740              :                 }
    3741              :                 LayerVisibilityHint::Covered => {
    3742              :                     // Layer is resident but unlikely to be read: not elegible for inclusion in heatmap.
    3743            4 :                     None
    3744              :                 }
    3745              :             }
    3746           72 :         });
    3747              : 
    3748           32 :         let mut layers = match visible_non_resident {
    3749           24 :             Some(non_resident) => {
    3750           24 :                 let mut non_resident = non_resident.peekable();
    3751           24 :                 if non_resident.peek().is_none() {
    3752            8 :                     tracing::info!(timeline_id=%self.timeline_id, "Previous heatmap now obsolete");
    3753            8 :                     self.previous_heatmap
    3754            8 :                         .store(Some(PreviousHeatmap::Obsolete.into()));
    3755           16 :                 }
    3756              : 
    3757           24 :                 non_resident.chain(resident).collect::<Vec<_>>()
    3758              :             }
    3759            8 :             None => resident.collect::<Vec<_>>(),
    3760              :         };
    3761              : 
    3762              :         // Sort layers in order of which to download first.  For a large set of layers to download, we
    3763              :         // want to prioritize those layers which are most likely to still be in the resident many minutes
    3764              :         // or hours later:
    3765              :         // - Cold layers go last for convenience when a human inspects the heatmap.
    3766              :         // - Download L0s last, because they churn the fastest: L0s on a fast-writing tenant might
    3767              :         //   only exist for a few minutes before being compacted into L1s.
    3768              :         // - For L1 & image layers, download most recent LSNs first: the older the LSN, the sooner
    3769              :         //   the layer is likely to be covered by an image layer during compaction.
    3770          238 :         layers.sort_by_key(|(desc, _meta, _atime, cold)| {
    3771          238 :             std::cmp::Reverse((
    3772          238 :                 *cold,
    3773          238 :                 !LayerMap::is_l0(&desc.key_range, desc.is_delta),
    3774          238 :                 desc.lsn_range.end,
    3775          238 :             ))
    3776          238 :         });
    3777           32 : 
    3778           32 :         let layers = layers
    3779           32 :             .into_iter()
    3780          108 :             .map(|(desc, meta, atime, cold)| {
    3781          108 :                 HeatMapLayer::new(desc.layer_name(), meta, atime, cold)
    3782          108 :             })
    3783           32 :             .collect();
    3784           32 : 
    3785           32 :         Some(HeatMapTimeline::new(self.timeline_id, layers))
    3786           32 :     }
    3787              : 
    3788            0 :     pub(super) async fn generate_unarchival_heatmap(&self, end_lsn: Lsn) -> PreviousHeatmap {
    3789            0 :         let guard = self.layers.read().await;
    3790              : 
    3791            0 :         let now = SystemTime::now();
    3792            0 :         let mut heatmap_layers = Vec::default();
    3793            0 :         for vl in guard.visible_layers() {
    3794            0 :             if vl.layer_desc().get_lsn_range().start >= end_lsn {
    3795            0 :                 continue;
    3796            0 :             }
    3797            0 : 
    3798            0 :             let hl = HeatMapLayer {
    3799            0 :                 name: vl.layer_desc().layer_name(),
    3800            0 :                 metadata: vl.metadata(),
    3801            0 :                 access_time: now,
    3802            0 :                 cold: true,
    3803            0 :             };
    3804            0 :             heatmap_layers.push(hl);
    3805              :         }
    3806              : 
    3807            0 :         tracing::info!(
    3808            0 :             "Generating unarchival heatmap with {} layers",
    3809            0 :             heatmap_layers.len()
    3810              :         );
    3811              : 
    3812            0 :         let heatmap = HeatMapTimeline::new(self.timeline_id, heatmap_layers);
    3813            0 :         PreviousHeatmap::Active {
    3814            0 :             heatmap,
    3815            0 :             read_at: Instant::now(),
    3816            0 :             end_lsn: Some(end_lsn),
    3817            0 :         }
    3818            0 :     }
    3819              : 
    3820              :     /// Returns true if the given lsn is or was an ancestor branchpoint.
    3821            0 :     pub(crate) fn is_ancestor_lsn(&self, lsn: Lsn) -> bool {
    3822            0 :         // upon timeline detach, we set the ancestor_lsn to Lsn::INVALID and the store the original
    3823            0 :         // branchpoint in the value in IndexPart::lineage
    3824            0 :         self.ancestor_lsn == lsn
    3825            0 :             || (self.ancestor_lsn == Lsn::INVALID
    3826            0 :                 && self.remote_client.is_previous_ancestor_lsn(lsn))
    3827            0 :     }
    3828              : }
    3829              : 
    3830              : impl Timeline {
    3831              :     #[allow(clippy::doc_lazy_continuation)]
    3832              :     /// Get the data needed to reconstruct all keys in the provided keyspace
    3833              :     ///
    3834              :     /// The algorithm is as follows:
    3835              :     /// 1.   While some keys are still not done and there's a timeline to visit:
    3836              :     /// 2.   Visit the timeline (see [`Timeline::get_vectored_reconstruct_data_timeline`]:
    3837              :     /// 2.1: Build the fringe for the current keyspace
    3838              :     /// 2.2  Visit the newest layer from the fringe to collect all values for the range it
    3839              :     ///      intersects
    3840              :     /// 2.3. Pop the timeline from the fringe
    3841              :     /// 2.4. If the fringe is empty, go back to 1
    3842      1255489 :     async fn get_vectored_reconstruct_data(
    3843      1255489 :         &self,
    3844      1255489 :         mut keyspace: KeySpace,
    3845      1255489 :         request_lsn: Lsn,
    3846      1255489 :         reconstruct_state: &mut ValuesReconstructState,
    3847      1255489 :         ctx: &RequestContext,
    3848      1255489 :     ) -> Result<(), GetVectoredError> {
    3849      1255489 :         let mut timeline_owned: Arc<Timeline>;
    3850      1255489 :         let mut timeline = self;
    3851      1255489 : 
    3852      1255489 :         let mut cont_lsn = Lsn(request_lsn.0 + 1);
    3853              : 
    3854      1255485 :         let missing_keyspace = loop {
    3855      1709927 :             if self.cancel.is_cancelled() {
    3856            0 :                 return Err(GetVectoredError::Cancelled);
    3857      1709927 :             }
    3858              : 
    3859              :             let TimelineVisitOutcome {
    3860      1709927 :                 completed_keyspace: completed,
    3861      1709927 :                 image_covered_keyspace,
    3862      1709927 :             } = Self::get_vectored_reconstruct_data_timeline(
    3863      1709927 :                 timeline,
    3864      1709927 :                 keyspace.clone(),
    3865      1709927 :                 cont_lsn,
    3866      1709927 :                 reconstruct_state,
    3867      1709927 :                 &self.cancel,
    3868      1709927 :                 ctx,
    3869      1709927 :             )
    3870      1709927 :             .await?;
    3871              : 
    3872      1709927 :             keyspace.remove_overlapping_with(&completed);
    3873      1709927 : 
    3874      1709927 :             // Do not descend into the ancestor timeline for aux files.
    3875      1709927 :             // We don't return a blanket [`GetVectoredError::MissingKey`] to avoid
    3876      1709927 :             // stalling compaction.
    3877      1709927 :             keyspace.remove_overlapping_with(&KeySpace {
    3878      1709927 :                 ranges: vec![NON_INHERITED_RANGE, Key::sparse_non_inherited_keyspace()],
    3879      1709927 :             });
    3880      1709927 : 
    3881      1709927 :             // Keyspace is fully retrieved
    3882      1709927 :             if keyspace.is_empty() {
    3883      1254977 :                 break None;
    3884       454950 :             }
    3885              : 
    3886       454950 :             let Some(ancestor_timeline) = timeline.ancestor_timeline.as_ref() else {
    3887              :                 // Not fully retrieved but no ancestor timeline.
    3888          508 :                 break Some(keyspace);
    3889              :             };
    3890              : 
    3891              :             // Now we see if there are keys covered by the image layer but does not exist in the
    3892              :             // image layer, which means that the key does not exist.
    3893              : 
    3894              :             // The block below will stop the vectored search if any of the keys encountered an image layer
    3895              :             // which did not contain a snapshot for said key. Since we have already removed all completed
    3896              :             // keys from `keyspace`, we expect there to be no overlap between it and the image covered key
    3897              :             // space. If that's not the case, we had at least one key encounter a gap in the image layer
    3898              :             // and stop the search as a result of that.
    3899       454442 :             let mut removed = keyspace.remove_overlapping_with(&image_covered_keyspace);
    3900       454442 :             // Do not fire missing key error and end early for sparse keys. Note that we hava already removed
    3901       454442 :             // non-inherited keyspaces before, so we can safely do a full `SPARSE_RANGE` remove instead of
    3902       454442 :             // figuring out what is the inherited key range and do a fine-grained pruning.
    3903       454442 :             removed.remove_overlapping_with(&KeySpace {
    3904       454442 :                 ranges: vec![SPARSE_RANGE],
    3905       454442 :             });
    3906       454442 :             if !removed.is_empty() {
    3907            0 :                 break Some(removed);
    3908       454442 :             }
    3909       454442 :             // If we reached this point, `remove_overlapping_with` should not have made any change to the
    3910       454442 :             // keyspace.
    3911       454442 : 
    3912       454442 :             // Take the min to avoid reconstructing a page with data newer than request Lsn.
    3913       454442 :             cont_lsn = std::cmp::min(Lsn(request_lsn.0 + 1), Lsn(timeline.ancestor_lsn.0 + 1));
    3914       454442 :             timeline_owned = timeline
    3915       454442 :                 .get_ready_ancestor_timeline(ancestor_timeline, ctx)
    3916       454442 :                 .await?;
    3917       454438 :             timeline = &*timeline_owned;
    3918              :         };
    3919              : 
    3920              :         // Remove sparse keys from the keyspace so that it doesn't fire errors.
    3921      1255485 :         let missing_keyspace = if let Some(missing_keyspace) = missing_keyspace {
    3922          508 :             let mut missing_keyspace = missing_keyspace;
    3923          508 :             missing_keyspace.remove_overlapping_with(&KeySpace {
    3924          508 :                 ranges: vec![SPARSE_RANGE],
    3925          508 :             });
    3926          508 :             if missing_keyspace.is_empty() {
    3927          480 :                 None
    3928              :             } else {
    3929           28 :                 Some(missing_keyspace)
    3930              :             }
    3931              :         } else {
    3932      1254977 :             None
    3933              :         };
    3934              : 
    3935      1255485 :         if let Some(missing_keyspace) = missing_keyspace {
    3936           28 :             return Err(GetVectoredError::MissingKey(MissingKeyError {
    3937           28 :                 key: missing_keyspace.start().unwrap(), /* better if we can store the full keyspace */
    3938           28 :                 shard: self
    3939           28 :                     .shard_identity
    3940           28 :                     .get_shard_number(&missing_keyspace.start().unwrap()),
    3941           28 :                 cont_lsn,
    3942           28 :                 request_lsn,
    3943           28 :                 ancestor_lsn: Some(timeline.ancestor_lsn),
    3944           28 :                 backtrace: None,
    3945           28 :                 read_path: std::mem::take(&mut reconstruct_state.read_path),
    3946           28 :             }));
    3947      1255457 :         }
    3948      1255457 : 
    3949      1255457 :         Ok(())
    3950      1255489 :     }
    3951              : 
    3952              :     /// Collect the reconstruct data for a keyspace from the specified timeline.
    3953              :     ///
    3954              :     /// Maintain a fringe [`LayerFringe`] which tracks all the layers that intersect
    3955              :     /// the current keyspace. The current keyspace of the search at any given timeline
    3956              :     /// is the original keyspace minus all the keys that have been completed minus
    3957              :     /// any keys for which we couldn't find an intersecting layer. It's not tracked explicitly,
    3958              :     /// but if you merge all the keyspaces in the fringe, you get the "current keyspace".
    3959              :     ///
    3960              :     /// This is basically a depth-first search visitor implementation where a vertex
    3961              :     /// is the (layer, lsn range, key space) tuple. The fringe acts as the stack.
    3962              :     ///
    3963              :     /// At each iteration pop the top of the fringe (the layer with the highest Lsn)
    3964              :     /// and get all the required reconstruct data from the layer in one go.
    3965              :     ///
    3966              :     /// Returns the completed keyspace and the keyspaces with image coverage. The caller
    3967              :     /// decides how to deal with these two keyspaces.
    3968      1709927 :     async fn get_vectored_reconstruct_data_timeline(
    3969      1709927 :         timeline: &Timeline,
    3970      1709927 :         keyspace: KeySpace,
    3971      1709927 :         mut cont_lsn: Lsn,
    3972      1709927 :         reconstruct_state: &mut ValuesReconstructState,
    3973      1709927 :         cancel: &CancellationToken,
    3974      1709927 :         ctx: &RequestContext,
    3975      1709927 :     ) -> Result<TimelineVisitOutcome, GetVectoredError> {
    3976      1709927 :         let mut unmapped_keyspace = keyspace.clone();
    3977      1709927 :         let mut fringe = LayerFringe::new();
    3978      1709927 : 
    3979      1709927 :         let mut completed_keyspace = KeySpace::default();
    3980      1709927 :         let mut image_covered_keyspace = KeySpaceRandomAccum::new();
    3981      1709927 : 
    3982      1709927 :         // Prevent GC from progressing while visiting the current timeline.
    3983      1709927 :         // If we are GC-ing because a new image layer was added while traversing
    3984      1709927 :         // the timeline, then it will remove layers that are required for fulfilling
    3985      1709927 :         // the current get request (read-path cannot "look back" and notice the new
    3986      1709927 :         // image layer).
    3987      1709927 :         let _gc_cutoff_holder = timeline.get_applied_gc_cutoff_lsn();
    3988              : 
    3989              :         // See `compaction::compact_with_gc` for why we need this.
    3990      1709927 :         let _guard = timeline.gc_compaction_layer_update_lock.read().await;
    3991              : 
    3992              :         loop {
    3993      3403725 :             if cancel.is_cancelled() {
    3994            0 :                 return Err(GetVectoredError::Cancelled);
    3995      3403725 :             }
    3996      3403725 : 
    3997      3403725 :             let (keys_done_last_step, keys_with_image_coverage) =
    3998      3403725 :                 reconstruct_state.consume_done_keys();
    3999      3403725 :             unmapped_keyspace.remove_overlapping_with(&keys_done_last_step);
    4000      3403725 :             completed_keyspace.merge(&keys_done_last_step);
    4001      3403725 :             if let Some(keys_with_image_coverage) = keys_with_image_coverage {
    4002        45100 :                 unmapped_keyspace
    4003        45100 :                     .remove_overlapping_with(&KeySpace::single(keys_with_image_coverage.clone()));
    4004        45100 :                 image_covered_keyspace.add_range(keys_with_image_coverage);
    4005      3358625 :             }
    4006              : 
    4007              :             // Do not descent any further if the last layer we visited
    4008              :             // completed all keys in the keyspace it inspected. This is not
    4009              :             // required for correctness, but avoids visiting extra layers
    4010              :             // which turns out to be a perf bottleneck in some cases.
    4011      3403725 :             if !unmapped_keyspace.is_empty() {
    4012      2152788 :                 let guard = timeline.layers.read().await;
    4013      2152788 :                 let layers = guard.layer_map()?;
    4014              : 
    4015      2154184 :                 for range in unmapped_keyspace.ranges.iter() {
    4016      2154184 :                     let results = layers.range_search(range.clone(), cont_lsn);
    4017      2154184 : 
    4018      2154184 :                     results
    4019      2154184 :                         .found
    4020      2154184 :                         .into_iter()
    4021      2154184 :                         .map(|(SearchResult { layer, lsn_floor }, keyspace_accum)| {
    4022      1694734 :                             (
    4023      1694734 :                                 guard.upgrade(layer),
    4024      1694734 :                                 keyspace_accum.to_keyspace(),
    4025      1694734 :                                 lsn_floor..cont_lsn,
    4026      1694734 :                             )
    4027      2154184 :                         })
    4028      2154184 :                         .for_each(|(layer, keyspace, lsn_range)| {
    4029      1694734 :                             fringe.update(layer, keyspace, lsn_range)
    4030      2154184 :                         });
    4031      2154184 :                 }
    4032              : 
    4033              :                 // It's safe to drop the layer map lock after planning the next round of reads.
    4034              :                 // The fringe keeps readable handles for the layers which are safe to read even
    4035              :                 // if layers were compacted or flushed.
    4036              :                 //
    4037              :                 // The more interesting consideration is: "Why is the read algorithm still correct
    4038              :                 // if the layer map changes while it is operating?". Doing a vectored read on a
    4039              :                 // timeline boils down to pushing an imaginary lsn boundary downwards for each range
    4040              :                 // covered by the read. The layer map tells us how to move the lsn downwards for a
    4041              :                 // range at *a particular point in time*. It is fine for the answer to be different
    4042              :                 // at two different time points.
    4043      2152788 :                 drop(guard);
    4044      1250937 :             }
    4045              : 
    4046      3403725 :             if let Some((layer_to_read, keyspace_to_read, lsn_range)) = fringe.next_layer() {
    4047      1693798 :                 if let Some(ref mut read_path) = reconstruct_state.read_path {
    4048      1693798 :                     read_path.record_layer_visit(&layer_to_read, &keyspace_to_read, &lsn_range);
    4049      1693798 :                 }
    4050      1693798 :                 let next_cont_lsn = lsn_range.start;
    4051      1693798 :                 layer_to_read
    4052      1693798 :                     .get_values_reconstruct_data(
    4053      1693798 :                         keyspace_to_read.clone(),
    4054      1693798 :                         lsn_range,
    4055      1693798 :                         reconstruct_state,
    4056      1693798 :                         ctx,
    4057      1693798 :                     )
    4058      1693798 :                     .await?;
    4059              : 
    4060      1693798 :                 unmapped_keyspace = keyspace_to_read;
    4061      1693798 :                 cont_lsn = next_cont_lsn;
    4062      1693798 : 
    4063      1693798 :                 reconstruct_state.on_layer_visited(&layer_to_read);
    4064              :             } else {
    4065      1709927 :                 break;
    4066      1709927 :             }
    4067      1709927 :         }
    4068      1709927 : 
    4069      1709927 :         Ok(TimelineVisitOutcome {
    4070      1709927 :             completed_keyspace,
    4071      1709927 :             image_covered_keyspace: image_covered_keyspace.consume_keyspace(),
    4072      1709927 :         })
    4073      1709927 :     }
    4074              : 
    4075       454442 :     async fn get_ready_ancestor_timeline(
    4076       454442 :         &self,
    4077       454442 :         ancestor: &Arc<Timeline>,
    4078       454442 :         ctx: &RequestContext,
    4079       454442 :     ) -> Result<Arc<Timeline>, GetReadyAncestorError> {
    4080       454442 :         // It's possible that the ancestor timeline isn't active yet, or
    4081       454442 :         // is active but hasn't yet caught up to the branch point. Wait
    4082       454442 :         // for it.
    4083       454442 :         //
    4084       454442 :         // This cannot happen while the pageserver is running normally,
    4085       454442 :         // because you cannot create a branch from a point that isn't
    4086       454442 :         // present in the pageserver yet. However, we don't wait for the
    4087       454442 :         // branch point to be uploaded to cloud storage before creating
    4088       454442 :         // a branch. I.e., the branch LSN need not be remote consistent
    4089       454442 :         // for the branching operation to succeed.
    4090       454442 :         //
    4091       454442 :         // Hence, if we try to load a tenant in such a state where
    4092       454442 :         // 1. the existence of the branch was persisted (in IndexPart and/or locally)
    4093       454442 :         // 2. but the ancestor state is behind branch_lsn because it was not yet persisted
    4094       454442 :         // then we will need to wait for the ancestor timeline to
    4095       454442 :         // re-stream WAL up to branch_lsn before we access it.
    4096       454442 :         //
    4097       454442 :         // How can a tenant get in such a state?
    4098       454442 :         // - ungraceful pageserver process exit
    4099       454442 :         // - detach+attach => this is a bug, https://github.com/neondatabase/neon/issues/4219
    4100       454442 :         //
    4101       454442 :         // NB: this could be avoided by requiring
    4102       454442 :         //   branch_lsn >= remote_consistent_lsn
    4103       454442 :         // during branch creation.
    4104       454442 :         match ancestor.wait_to_become_active(ctx).await {
    4105       454438 :             Ok(()) => {}
    4106              :             Err(TimelineState::Stopping) => {
    4107              :                 // If an ancestor is stopping, it means the tenant is stopping: handle this the same as if this timeline was stopping.
    4108            0 :                 return Err(GetReadyAncestorError::Cancelled);
    4109              :             }
    4110            4 :             Err(state) => {
    4111            4 :                 return Err(GetReadyAncestorError::BadState {
    4112            4 :                     timeline_id: ancestor.timeline_id,
    4113            4 :                     state,
    4114            4 :                 });
    4115              :             }
    4116              :         }
    4117       454438 :         ancestor
    4118       454438 :             .wait_lsn(
    4119       454438 :                 self.ancestor_lsn,
    4120       454438 :                 WaitLsnWaiter::Timeline(self),
    4121       454438 :                 WaitLsnTimeout::Default,
    4122       454438 :                 ctx,
    4123       454438 :             )
    4124       454438 :             .await
    4125       454438 :             .map_err(|e| match e {
    4126            0 :                 e @ WaitLsnError::Timeout(_) => GetReadyAncestorError::AncestorLsnTimeout(e),
    4127            0 :                 WaitLsnError::Shutdown => GetReadyAncestorError::Cancelled,
    4128            0 :                 WaitLsnError::BadState(state) => GetReadyAncestorError::BadState {
    4129            0 :                     timeline_id: ancestor.timeline_id,
    4130            0 :                     state,
    4131            0 :                 },
    4132       454438 :             })?;
    4133              : 
    4134       454438 :         Ok(ancestor.clone())
    4135       454442 :     }
    4136              : 
    4137       594312 :     pub(crate) fn get_shard_identity(&self) -> &ShardIdentity {
    4138       594312 :         &self.shard_identity
    4139       594312 :     }
    4140              : 
    4141              :     #[inline(always)]
    4142            0 :     pub(crate) fn shard_timeline_id(&self) -> ShardTimelineId {
    4143            0 :         ShardTimelineId {
    4144            0 :             shard_index: ShardIndex {
    4145            0 :                 shard_number: self.shard_identity.number,
    4146            0 :                 shard_count: self.shard_identity.count,
    4147            0 :             },
    4148            0 :             timeline_id: self.timeline_id,
    4149            0 :         }
    4150            0 :     }
    4151              : 
    4152              :     /// Returns a non-frozen open in-memory layer for ingestion.
    4153              :     ///
    4154              :     /// Takes a witness of timeline writer state lock being held, because it makes no sense to call
    4155              :     /// this function without holding the mutex.
    4156         2604 :     async fn get_layer_for_write(
    4157         2604 :         &self,
    4158         2604 :         lsn: Lsn,
    4159         2604 :         _guard: &tokio::sync::MutexGuard<'_, Option<TimelineWriterState>>,
    4160         2604 :         ctx: &RequestContext,
    4161         2604 :     ) -> anyhow::Result<Arc<InMemoryLayer>> {
    4162         2604 :         let mut guard = self.layers.write().await;
    4163              : 
    4164         2604 :         let last_record_lsn = self.get_last_record_lsn();
    4165         2604 :         ensure!(
    4166         2604 :             lsn > last_record_lsn,
    4167            0 :             "cannot modify relation after advancing last_record_lsn (incoming_lsn={}, last_record_lsn={})",
    4168              :             lsn,
    4169              :             last_record_lsn,
    4170              :         );
    4171              : 
    4172         2604 :         let layer = guard
    4173         2604 :             .open_mut()?
    4174         2604 :             .get_layer_for_write(
    4175         2604 :                 lsn,
    4176         2604 :                 self.conf,
    4177         2604 :                 self.timeline_id,
    4178         2604 :                 self.tenant_shard_id,
    4179         2604 :                 &self.gate,
    4180         2604 :                 &self.cancel,
    4181         2604 :                 ctx,
    4182         2604 :             )
    4183         2604 :             .await?;
    4184         2604 :         Ok(layer)
    4185         2604 :     }
    4186              : 
    4187     10558196 :     pub(crate) fn finish_write(&self, new_lsn: Lsn) {
    4188     10558196 :         assert!(new_lsn.is_aligned());
    4189              : 
    4190     10558196 :         self.metrics.last_record_lsn_gauge.set(new_lsn.0 as i64);
    4191     10558196 :         self.last_record_lsn.advance(new_lsn);
    4192     10558196 :     }
    4193              : 
    4194              :     /// Freeze any existing open in-memory layer and unconditionally notify the flush loop.
    4195              :     ///
    4196              :     /// Unconditional flush loop notification is given because in sharded cases we will want to
    4197              :     /// leave an Lsn gap. Unsharded tenants do not have Lsn gaps.
    4198         2412 :     async fn freeze_inmem_layer_at(
    4199         2412 :         &self,
    4200         2412 :         at: Lsn,
    4201         2412 :         write_lock: &mut tokio::sync::MutexGuard<'_, Option<TimelineWriterState>>,
    4202         2412 :     ) -> Result<u64, FlushLayerError> {
    4203         2412 :         let frozen = {
    4204         2412 :             let mut guard = self.layers.write().await;
    4205         2412 :             guard
    4206         2412 :                 .open_mut()?
    4207         2412 :                 .try_freeze_in_memory_layer(at, &self.last_freeze_at, write_lock, &self.metrics)
    4208         2412 :                 .await
    4209              :         };
    4210              : 
    4211         2412 :         if frozen {
    4212         2356 :             let now = Instant::now();
    4213         2356 :             *(self.last_freeze_ts.write().unwrap()) = now;
    4214         2356 :         }
    4215              : 
    4216              :         // Increment the flush cycle counter and wake up the flush task.
    4217              :         // Remember the new value, so that when we listen for the flush
    4218              :         // to finish, we know when the flush that we initiated has
    4219              :         // finished, instead of some other flush that was started earlier.
    4220         2412 :         let mut my_flush_request = 0;
    4221         2412 : 
    4222         2412 :         let flush_loop_state = { *self.flush_loop_state.lock().unwrap() };
    4223         2412 :         if !matches!(flush_loop_state, FlushLoopState::Running { .. }) {
    4224            0 :             return Err(FlushLayerError::NotRunning(flush_loop_state));
    4225         2412 :         }
    4226         2412 : 
    4227         2412 :         self.layer_flush_start_tx.send_modify(|(counter, lsn)| {
    4228         2412 :             my_flush_request = *counter + 1;
    4229         2412 :             *counter = my_flush_request;
    4230         2412 :             *lsn = std::cmp::max(at, *lsn);
    4231         2412 :         });
    4232         2412 : 
    4233         2412 :         assert_ne!(my_flush_request, 0);
    4234              : 
    4235         2412 :         Ok(my_flush_request)
    4236         2412 :     }
    4237              : 
    4238              :     /// Layer flusher task's main loop.
    4239          892 :     async fn flush_loop(
    4240          892 :         self: &Arc<Self>,
    4241          892 :         mut layer_flush_start_rx: tokio::sync::watch::Receiver<(u64, Lsn)>,
    4242          892 :         ctx: &RequestContext,
    4243          892 :     ) {
    4244              :         // Subscribe to L0 delta layer updates, for compaction backpressure.
    4245          892 :         let mut watch_l0 = match self.layers.read().await.layer_map() {
    4246          892 :             Ok(lm) => lm.watch_level0_deltas(),
    4247            0 :             Err(Shutdown) => return,
    4248              :         };
    4249              : 
    4250          892 :         info!("started flush loop");
    4251              :         loop {
    4252         3272 :             tokio::select! {
    4253         3272 :                 _ = self.cancel.cancelled() => {
    4254           20 :                     info!("shutting down layer flush task due to Timeline::cancel");
    4255           20 :                     break;
    4256              :                 },
    4257         3272 :                 _ = layer_flush_start_rx.changed() => {}
    4258         2380 :             }
    4259         2380 :             trace!("waking up");
    4260         2380 :             let (flush_counter, frozen_to_lsn) = *layer_flush_start_rx.borrow();
    4261         2380 : 
    4262         2380 :             // The highest LSN to which we flushed in the loop over frozen layers
    4263         2380 :             let mut flushed_to_lsn = Lsn(0);
    4264              : 
    4265         2380 :             let result = loop {
    4266         4736 :                 if self.cancel.is_cancelled() {
    4267            0 :                     info!("dropping out of flush loop for timeline shutdown");
    4268              :                     // Note: we do not bother transmitting into [`layer_flush_done_tx`], because
    4269              :                     // anyone waiting on that will respect self.cancel as well: they will stop
    4270              :                     // waiting at the same time we as drop out of this loop.
    4271            0 :                     return;
    4272         4736 :                 }
    4273         4736 : 
    4274         4736 :                 // Break to notify potential waiters as soon as we've flushed the requested LSN. If
    4275         4736 :                 // more requests have arrived in the meanwhile, we'll resume flushing afterwards.
    4276         4736 :                 if flushed_to_lsn >= frozen_to_lsn {
    4277         2324 :                     break Ok(());
    4278         2412 :                 }
    4279              : 
    4280              :                 // Fetch the next layer to flush, if any.
    4281         2412 :                 let (layer, l0_count, frozen_count, frozen_size) = {
    4282         2412 :                     let layers = self.layers.read().await;
    4283         2412 :                     let Ok(lm) = layers.layer_map() else {
    4284            0 :                         info!("dropping out of flush loop for timeline shutdown");
    4285            0 :                         return;
    4286              :                     };
    4287         2412 :                     let l0_count = lm.level0_deltas().len();
    4288         2412 :                     let frozen_count = lm.frozen_layers.len();
    4289         2412 :                     let frozen_size: u64 = lm
    4290         2412 :                         .frozen_layers
    4291         2412 :                         .iter()
    4292         2412 :                         .map(|l| l.estimated_in_mem_size())
    4293         2412 :                         .sum();
    4294         2412 :                     let layer = lm.frozen_layers.front().cloned();
    4295         2412 :                     (layer, l0_count, frozen_count, frozen_size)
    4296         2412 :                     // drop 'layers' lock
    4297         2412 :                 };
    4298         2412 :                 let Some(layer) = layer else {
    4299           56 :                     break Ok(());
    4300              :                 };
    4301              : 
    4302              :                 // Stall flushes to backpressure if compaction can't keep up. This is propagated up
    4303              :                 // to WAL ingestion by having ephemeral layer rolls wait for flushes.
    4304         2356 :                 if let Some(stall_threshold) = self.get_l0_flush_stall_threshold() {
    4305            0 :                     if l0_count >= stall_threshold {
    4306            0 :                         warn!(
    4307            0 :                             "stalling layer flushes for compaction backpressure at {l0_count} \
    4308            0 :                             L0 layers ({frozen_count} frozen layers with {frozen_size} bytes)"
    4309              :                         );
    4310            0 :                         let stall_timer = self
    4311            0 :                             .metrics
    4312            0 :                             .flush_delay_histo
    4313            0 :                             .start_timer()
    4314            0 :                             .record_on_drop();
    4315            0 :                         tokio::select! {
    4316            0 :                             result = watch_l0.wait_for(|l0| *l0 < stall_threshold) => {
    4317            0 :                                 if let Ok(l0) = result.as_deref() {
    4318            0 :                                     let delay = stall_timer.elapsed().as_secs_f64();
    4319            0 :                                     info!("resuming layer flushes at {l0} L0 layers after {delay:.3}s");
    4320            0 :                                 }
    4321              :                             },
    4322            0 :                             _ = self.cancel.cancelled() => {},
    4323              :                         }
    4324            0 :                         continue; // check again
    4325            0 :                     }
    4326         2356 :                 }
    4327              : 
    4328              :                 // Flush the layer.
    4329         2356 :                 let flush_timer = self.metrics.flush_time_histo.start_timer();
    4330         2356 :                 match self.flush_frozen_layer(layer, ctx).await {
    4331         2356 :                     Ok(layer_lsn) => flushed_to_lsn = max(flushed_to_lsn, layer_lsn),
    4332              :                     Err(FlushLayerError::Cancelled) => {
    4333            0 :                         info!("dropping out of flush loop for timeline shutdown");
    4334            0 :                         return;
    4335              :                     }
    4336            0 :                     err @ Err(
    4337            0 :                         FlushLayerError::NotRunning(_)
    4338            0 :                         | FlushLayerError::Other(_)
    4339            0 :                         | FlushLayerError::CreateImageLayersError(_),
    4340            0 :                     ) => {
    4341            0 :                         error!("could not flush frozen layer: {err:?}");
    4342            0 :                         break err.map(|_| ());
    4343              :                     }
    4344              :                 }
    4345         2356 :                 let flush_duration = flush_timer.stop_and_record();
    4346         2356 : 
    4347         2356 :                 // Notify the tenant compaction loop if L0 compaction is needed.
    4348         2356 :                 let l0_count = *watch_l0.borrow();
    4349         2356 :                 if l0_count >= self.get_compaction_threshold() {
    4350          956 :                     self.l0_compaction_trigger.notify_one();
    4351         1400 :                 }
    4352              : 
    4353              :                 // Delay the next flush to backpressure if compaction can't keep up. We delay by the
    4354              :                 // flush duration such that the flush takes 2x as long. This is propagated up to WAL
    4355              :                 // ingestion by having ephemeral layer rolls wait for flushes.
    4356         2356 :                 if let Some(delay_threshold) = self.get_l0_flush_delay_threshold() {
    4357            0 :                     if l0_count >= delay_threshold {
    4358            0 :                         let delay = flush_duration.as_secs_f64();
    4359            0 :                         info!(
    4360            0 :                             "delaying layer flush by {delay:.3}s for compaction backpressure at \
    4361            0 :                             {l0_count} L0 layers ({frozen_count} frozen layers with {frozen_size} bytes)"
    4362              :                         );
    4363            0 :                         let _delay_timer = self
    4364            0 :                             .metrics
    4365            0 :                             .flush_delay_histo
    4366            0 :                             .start_timer()
    4367            0 :                             .record_on_drop();
    4368            0 :                         tokio::select! {
    4369            0 :                             _ = tokio::time::sleep(flush_duration) => {},
    4370            0 :                             _ = watch_l0.wait_for(|l0| *l0 < delay_threshold) => {},
    4371            0 :                             _ = self.cancel.cancelled() => {},
    4372              :                         }
    4373            0 :                     }
    4374         2356 :                 }
    4375              :             };
    4376              : 
    4377              :             // Unsharded tenants should never advance their LSN beyond the end of the
    4378              :             // highest layer they write: such gaps between layer data and the frozen LSN
    4379              :             // are only legal on sharded tenants.
    4380         2380 :             debug_assert!(
    4381         2380 :                 self.shard_identity.count.count() > 1
    4382         2380 :                     || flushed_to_lsn >= frozen_to_lsn
    4383           56 :                     || !flushed_to_lsn.is_valid()
    4384              :             );
    4385              : 
    4386         2380 :             if flushed_to_lsn < frozen_to_lsn && self.shard_identity.count.count() > 1 {
    4387              :                 // If our layer flushes didn't carry disk_consistent_lsn up to the `to_lsn` advertised
    4388              :                 // to us via layer_flush_start_rx, then advance it here.
    4389              :                 //
    4390              :                 // This path is only taken for tenants with multiple shards: single sharded tenants should
    4391              :                 // never encounter a gap in the wal.
    4392            0 :                 let old_disk_consistent_lsn = self.disk_consistent_lsn.load();
    4393            0 :                 tracing::debug!(
    4394            0 :                     "Advancing disk_consistent_lsn across layer gap {old_disk_consistent_lsn}->{frozen_to_lsn}"
    4395              :                 );
    4396            0 :                 if self.set_disk_consistent_lsn(frozen_to_lsn) {
    4397            0 :                     if let Err(e) = self.schedule_uploads(frozen_to_lsn, vec![]) {
    4398            0 :                         tracing::warn!(
    4399            0 :                             "Failed to schedule metadata upload after updating disk_consistent_lsn: {e}"
    4400              :                         );
    4401            0 :                     }
    4402            0 :                 }
    4403         2380 :             }
    4404              : 
    4405              :             // Notify any listeners that we're done
    4406         2380 :             let _ = self
    4407         2380 :                 .layer_flush_done_tx
    4408         2380 :                 .send_replace((flush_counter, result));
    4409              :         }
    4410           20 :     }
    4411              : 
    4412              :     /// Waits any flush request created by [`Self::freeze_inmem_layer_at`] to complete.
    4413         2252 :     async fn wait_flush_completion(&self, request: u64) -> Result<(), FlushLayerError> {
    4414         2252 :         let mut rx = self.layer_flush_done_tx.subscribe();
    4415              :         loop {
    4416              :             {
    4417         4567 :                 let (last_result_counter, last_result) = &*rx.borrow();
    4418         4567 :                 if *last_result_counter >= request {
    4419         2252 :                     if let Err(err) = last_result {
    4420              :                         // We already logged the original error in
    4421              :                         // flush_loop. We cannot propagate it to the caller
    4422              :                         // here, because it might not be Cloneable
    4423            0 :                         return Err(err.clone());
    4424              :                     } else {
    4425         2252 :                         return Ok(());
    4426              :                     }
    4427         2315 :                 }
    4428         2315 :             }
    4429         2315 :             trace!("waiting for flush to complete");
    4430         2315 :             tokio::select! {
    4431         2315 :                 rx_e = rx.changed() => {
    4432         2315 :                     rx_e.map_err(|_| FlushLayerError::NotRunning(*self.flush_loop_state.lock().unwrap()))?;
    4433              :                 },
    4434              :                 // Cancellation safety: we are not leaving an I/O in-flight for the flush, we're just ignoring
    4435              :                 // the notification from [`flush_loop`] that it completed.
    4436         2315 :                 _ = self.cancel.cancelled() => {
    4437            0 :                     tracing::info!("Cancelled layer flush due on timeline shutdown");
    4438            0 :                     return Ok(())
    4439              :                 }
    4440              :             };
    4441         2315 :             trace!("done")
    4442              :         }
    4443         2252 :     }
    4444              : 
    4445              :     /// Flush one frozen in-memory layer to disk, as a new delta layer.
    4446              :     ///
    4447              :     /// Return value is the last lsn (inclusive) of the layer that was frozen.
    4448              :     #[instrument(skip_all, fields(layer=%frozen_layer))]
    4449              :     async fn flush_frozen_layer(
    4450              :         self: &Arc<Self>,
    4451              :         frozen_layer: Arc<InMemoryLayer>,
    4452              :         ctx: &RequestContext,
    4453              :     ) -> Result<Lsn, FlushLayerError> {
    4454              :         debug_assert_current_span_has_tenant_and_timeline_id();
    4455              : 
    4456              :         // As a special case, when we have just imported an image into the repository,
    4457              :         // instead of writing out a L0 delta layer, we directly write out image layer
    4458              :         // files instead. This is possible as long as *all* the data imported into the
    4459              :         // repository have the same LSN.
    4460              :         let lsn_range = frozen_layer.get_lsn_range();
    4461              : 
    4462              :         // Whether to directly create image layers for this flush, or flush them as delta layers
    4463              :         let create_image_layer =
    4464              :             lsn_range.start == self.initdb_lsn && lsn_range.end == Lsn(self.initdb_lsn.0 + 1);
    4465              : 
    4466              :         #[cfg(test)]
    4467              :         {
    4468              :             match &mut *self.flush_loop_state.lock().unwrap() {
    4469              :                 FlushLoopState::NotStarted | FlushLoopState::Exited => {
    4470              :                     panic!("flush loop not running")
    4471              :                 }
    4472              :                 FlushLoopState::Running {
    4473              :                     expect_initdb_optimization,
    4474              :                     initdb_optimization_count,
    4475              :                     ..
    4476              :                 } => {
    4477              :                     if create_image_layer {
    4478              :                         *initdb_optimization_count += 1;
    4479              :                     } else {
    4480              :                         assert!(!*expect_initdb_optimization, "expected initdb optimization");
    4481              :                     }
    4482              :                 }
    4483              :             }
    4484              :         }
    4485              : 
    4486              :         let (layers_to_upload, delta_layer_to_add) = if create_image_layer {
    4487              :             // Note: The 'ctx' in use here has DownloadBehavior::Error. We should not
    4488              :             // require downloading anything during initial import.
    4489              :             let ((rel_partition, metadata_partition), _lsn) = self
    4490              :                 .repartition(
    4491              :                     self.initdb_lsn,
    4492              :                     self.get_compaction_target_size(),
    4493              :                     EnumSet::empty(),
    4494              :                     ctx,
    4495              :                 )
    4496              :                 .await
    4497            0 :                 .map_err(|e| FlushLayerError::from_anyhow(self, e.into()))?;
    4498              : 
    4499              :             if self.cancel.is_cancelled() {
    4500              :                 return Err(FlushLayerError::Cancelled);
    4501              :             }
    4502              : 
    4503              :             // Ensure that we have a single call to `create_image_layers` with a combined dense keyspace.
    4504              :             // So that the key ranges don't overlap.
    4505              :             let mut partitions = KeyPartitioning::default();
    4506              :             partitions.parts.extend(rel_partition.parts);
    4507              :             if !metadata_partition.parts.is_empty() {
    4508              :                 assert_eq!(
    4509              :                     metadata_partition.parts.len(),
    4510              :                     1,
    4511              :                     "currently sparse keyspace should only contain a single metadata keyspace"
    4512              :                 );
    4513              :                 // Safety: create_image_layers treat sparse keyspaces differently that it does not scan
    4514              :                 // every single key within the keyspace, and therefore, it's safe to force converting it
    4515              :                 // into a dense keyspace before calling this function.
    4516              :                 partitions
    4517              :                     .parts
    4518              :                     .extend(metadata_partition.into_dense().parts);
    4519              :             }
    4520              : 
    4521              :             let mut layers_to_upload = Vec::new();
    4522              :             let (generated_image_layers, is_complete) = self
    4523              :                 .create_image_layers(
    4524              :                     &partitions,
    4525              :                     self.initdb_lsn,
    4526              :                     ImageLayerCreationMode::Initial,
    4527              :                     ctx,
    4528              :                     LastImageLayerCreationStatus::Initial,
    4529              :                     false, // don't yield for L0, we're flushing L0
    4530              :                 )
    4531              :                 .await?;
    4532              :             debug_assert!(
    4533              :                 matches!(is_complete, LastImageLayerCreationStatus::Complete),
    4534              :                 "init image generation mode must fully cover the keyspace"
    4535              :             );
    4536              :             layers_to_upload.extend(generated_image_layers);
    4537              : 
    4538              :             (layers_to_upload, None)
    4539              :         } else {
    4540              :             // Normal case, write out a L0 delta layer file.
    4541              :             // `create_delta_layer` will not modify the layer map.
    4542              :             // We will remove frozen layer and add delta layer in one atomic operation later.
    4543              :             let Some(layer) = self
    4544              :                 .create_delta_layer(&frozen_layer, None, ctx)
    4545              :                 .await
    4546            0 :                 .map_err(|e| FlushLayerError::from_anyhow(self, e))?
    4547              :             else {
    4548              :                 panic!("delta layer cannot be empty if no filter is applied");
    4549              :             };
    4550              :             (
    4551              :                 // FIXME: even though we have a single image and single delta layer assumption
    4552              :                 // we push them to vec
    4553              :                 vec![layer.clone()],
    4554              :                 Some(layer),
    4555              :             )
    4556              :         };
    4557              : 
    4558              :         pausable_failpoint!("flush-layer-cancel-after-writing-layer-out-pausable");
    4559              : 
    4560              :         if self.cancel.is_cancelled() {
    4561              :             return Err(FlushLayerError::Cancelled);
    4562              :         }
    4563              : 
    4564              :         let disk_consistent_lsn = Lsn(lsn_range.end.0 - 1);
    4565              : 
    4566              :         // The new on-disk layers are now in the layer map. We can remove the
    4567              :         // in-memory layer from the map now. The flushed layer is stored in
    4568              :         // the mapping in `create_delta_layer`.
    4569              :         {
    4570              :             let mut guard = self.layers.write().await;
    4571              : 
    4572              :             guard.open_mut()?.finish_flush_l0_layer(
    4573              :                 delta_layer_to_add.as_ref(),
    4574              :                 &frozen_layer,
    4575              :                 &self.metrics,
    4576              :             );
    4577              : 
    4578              :             if self.set_disk_consistent_lsn(disk_consistent_lsn) {
    4579              :                 // Schedule remote uploads that will reflect our new disk_consistent_lsn
    4580              :                 self.schedule_uploads(disk_consistent_lsn, layers_to_upload)
    4581            0 :                     .map_err(|e| FlushLayerError::from_anyhow(self, e))?;
    4582              :             }
    4583              :             // release lock on 'layers'
    4584              :         };
    4585              : 
    4586              :         // FIXME: between create_delta_layer and the scheduling of the upload in `update_metadata_file`,
    4587              :         // a compaction can delete the file and then it won't be available for uploads any more.
    4588              :         // We still schedule the upload, resulting in an error, but ideally we'd somehow avoid this
    4589              :         // race situation.
    4590              :         // See https://github.com/neondatabase/neon/issues/4526
    4591              :         pausable_failpoint!("flush-frozen-pausable");
    4592              : 
    4593              :         // This failpoint is used by another test case `test_pageserver_recovery`.
    4594              :         fail_point!("flush-frozen-exit");
    4595              : 
    4596              :         Ok(Lsn(lsn_range.end.0 - 1))
    4597              :     }
    4598              : 
    4599              :     /// Return true if the value changed
    4600              :     ///
    4601              :     /// This function must only be used from the layer flush task.
    4602         2356 :     fn set_disk_consistent_lsn(&self, new_value: Lsn) -> bool {
    4603         2356 :         let old_value = self.disk_consistent_lsn.fetch_max(new_value);
    4604         2356 :         assert!(
    4605         2356 :             new_value >= old_value,
    4606            0 :             "disk_consistent_lsn must be growing monotonously at runtime; current {old_value}, offered {new_value}"
    4607              :         );
    4608              : 
    4609         2356 :         self.metrics
    4610         2356 :             .disk_consistent_lsn_gauge
    4611         2356 :             .set(new_value.0 as i64);
    4612         2356 :         new_value != old_value
    4613         2356 :     }
    4614              : 
    4615              :     /// Update metadata file
    4616         2456 :     fn schedule_uploads(
    4617         2456 :         &self,
    4618         2456 :         disk_consistent_lsn: Lsn,
    4619         2456 :         layers_to_upload: impl IntoIterator<Item = ResidentLayer>,
    4620         2456 :     ) -> anyhow::Result<()> {
    4621         2456 :         // We can only save a valid 'prev_record_lsn' value on disk if we
    4622         2456 :         // flushed *all* in-memory changes to disk. We only track
    4623         2456 :         // 'prev_record_lsn' in memory for the latest processed record, so we
    4624         2456 :         // don't remember what the correct value that corresponds to some old
    4625         2456 :         // LSN is. But if we flush everything, then the value corresponding
    4626         2456 :         // current 'last_record_lsn' is correct and we can store it on disk.
    4627         2456 :         let RecordLsn {
    4628         2456 :             last: last_record_lsn,
    4629         2456 :             prev: prev_record_lsn,
    4630         2456 :         } = self.last_record_lsn.load();
    4631         2456 :         let ondisk_prev_record_lsn = if disk_consistent_lsn == last_record_lsn {
    4632         2201 :             Some(prev_record_lsn)
    4633              :         } else {
    4634          255 :             None
    4635              :         };
    4636              : 
    4637         2456 :         let update = crate::tenant::metadata::MetadataUpdate::new(
    4638         2456 :             disk_consistent_lsn,
    4639         2456 :             ondisk_prev_record_lsn,
    4640         2456 :             *self.applied_gc_cutoff_lsn.read(),
    4641         2456 :         );
    4642         2456 : 
    4643         2456 :         fail_point!("checkpoint-before-saving-metadata", |x| bail!(
    4644            0 :             "{}",
    4645            0 :             x.unwrap()
    4646         2456 :         ));
    4647              : 
    4648         4836 :         for layer in layers_to_upload {
    4649         2380 :             self.remote_client.schedule_layer_file_upload(layer)?;
    4650              :         }
    4651         2456 :         self.remote_client
    4652         2456 :             .schedule_index_upload_for_metadata_update(&update)?;
    4653              : 
    4654         2456 :         Ok(())
    4655         2456 :     }
    4656              : 
    4657            0 :     pub(crate) async fn preserve_initdb_archive(&self) -> anyhow::Result<()> {
    4658            0 :         self.remote_client
    4659            0 :             .preserve_initdb_archive(
    4660            0 :                 &self.tenant_shard_id.tenant_id,
    4661            0 :                 &self.timeline_id,
    4662            0 :                 &self.cancel,
    4663            0 :             )
    4664            0 :             .await
    4665            0 :     }
    4666              : 
    4667              :     // Write out the given frozen in-memory layer as a new L0 delta file. This L0 file will not be tracked
    4668              :     // in layer map immediately. The caller is responsible to put it into the layer map.
    4669         1936 :     async fn create_delta_layer(
    4670         1936 :         self: &Arc<Self>,
    4671         1936 :         frozen_layer: &Arc<InMemoryLayer>,
    4672         1936 :         key_range: Option<Range<Key>>,
    4673         1936 :         ctx: &RequestContext,
    4674         1936 :     ) -> anyhow::Result<Option<ResidentLayer>> {
    4675         1936 :         let self_clone = Arc::clone(self);
    4676         1936 :         let frozen_layer = Arc::clone(frozen_layer);
    4677         1936 :         let ctx = ctx.attached_child();
    4678         1936 :         let work = async move {
    4679         1936 :             let Some((desc, path)) = frozen_layer
    4680         1936 :                 .write_to_disk(&ctx, key_range, self_clone.l0_flush_global_state.inner())
    4681         1936 :                 .await?
    4682              :             else {
    4683            0 :                 return Ok(None);
    4684              :             };
    4685         1936 :             let new_delta = Layer::finish_creating(self_clone.conf, &self_clone, desc, &path)?;
    4686              : 
    4687              :             // The write_to_disk() above calls writer.finish() which already did the fsync of the inodes.
    4688              :             // We just need to fsync the directory in which these inodes are linked,
    4689              :             // which we know to be the timeline directory.
    4690              :             //
    4691              :             // We use fatal_err() below because the after write_to_disk returns with success,
    4692              :             // the in-memory state of the filesystem already has the layer file in its final place,
    4693              :             // and subsequent pageserver code could think it's durable while it really isn't.
    4694         1936 :             let timeline_dir = VirtualFile::open(
    4695         1936 :                 &self_clone
    4696         1936 :                     .conf
    4697         1936 :                     .timeline_path(&self_clone.tenant_shard_id, &self_clone.timeline_id),
    4698         1936 :                 &ctx,
    4699         1936 :             )
    4700         1936 :             .await
    4701         1936 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    4702         1936 :             timeline_dir
    4703         1936 :                 .sync_all()
    4704         1936 :                 .await
    4705         1936 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    4706         1936 :             anyhow::Ok(Some(new_delta))
    4707         1936 :         };
    4708              :         // Before tokio-epoll-uring, we ran write_to_disk & the sync_all inside spawn_blocking.
    4709              :         // Preserve that behavior to maintain the same behavior for `virtual_file_io_engine=std-fs`.
    4710              :         use crate::virtual_file::io_engine::IoEngine;
    4711         1936 :         match crate::virtual_file::io_engine::get() {
    4712            0 :             IoEngine::NotSet => panic!("io engine not set"),
    4713              :             IoEngine::StdFs => {
    4714          968 :                 let span = tracing::info_span!("blocking");
    4715          968 :                 tokio::task::spawn_blocking({
    4716          968 :                     move || Handle::current().block_on(work.instrument(span))
    4717          968 :                 })
    4718          968 :                 .await
    4719          968 :                 .context("spawn_blocking")
    4720          968 :                 .and_then(|x| x)
    4721              :             }
    4722              :             #[cfg(target_os = "linux")]
    4723          968 :             IoEngine::TokioEpollUring => work.await,
    4724              :         }
    4725         1936 :     }
    4726              : 
    4727         1146 :     async fn repartition(
    4728         1146 :         &self,
    4729         1146 :         lsn: Lsn,
    4730         1146 :         partition_size: u64,
    4731         1146 :         flags: EnumSet<CompactFlags>,
    4732         1146 :         ctx: &RequestContext,
    4733         1146 :     ) -> Result<((KeyPartitioning, SparseKeyPartitioning), Lsn), CompactionError> {
    4734         1146 :         let Ok(mut guard) = self.partitioning.try_write_guard() else {
    4735              :             // NB: there are two callers, one is the compaction task, of which there is only one per struct Tenant and hence Timeline.
    4736              :             // The other is the initdb optimization in flush_frozen_layer, used by `boostrap_timeline`, which runs before `.activate()`
    4737              :             // and hence before the compaction task starts.
    4738            0 :             return Err(CompactionError::Other(anyhow!(
    4739            0 :                 "repartition() called concurrently"
    4740            0 :             )));
    4741              :         };
    4742         1146 :         let ((dense_partition, sparse_partition), partition_lsn) = &*guard.read();
    4743         1146 :         if lsn < *partition_lsn {
    4744            0 :             return Err(CompactionError::Other(anyhow!(
    4745            0 :                 "repartition() called with LSN going backwards, this should not happen"
    4746            0 :             )));
    4747         1146 :         }
    4748         1146 : 
    4749         1146 :         let distance = lsn.0 - partition_lsn.0;
    4750         1146 :         if *partition_lsn != Lsn(0)
    4751          522 :             && distance <= self.repartition_threshold
    4752          522 :             && !flags.contains(CompactFlags::ForceRepartition)
    4753              :         {
    4754          494 :             debug!(
    4755              :                 distance,
    4756              :                 threshold = self.repartition_threshold,
    4757            0 :                 "no repartitioning needed"
    4758              :             );
    4759          494 :             return Ok((
    4760          494 :                 (dense_partition.clone(), sparse_partition.clone()),
    4761          494 :                 *partition_lsn,
    4762          494 :             ));
    4763          652 :         }
    4764              : 
    4765          652 :         let (dense_ks, sparse_ks) = self.collect_keyspace(lsn, ctx).await?;
    4766          652 :         let dense_partitioning = dense_ks.partition(&self.shard_identity, partition_size);
    4767          652 :         let sparse_partitioning = SparseKeyPartitioning {
    4768          652 :             parts: vec![sparse_ks],
    4769          652 :         }; // no partitioning for metadata keys for now
    4770          652 :         let result = ((dense_partitioning, sparse_partitioning), lsn);
    4771          652 :         guard.write(result.clone());
    4772          652 :         Ok(result)
    4773         1146 :     }
    4774              : 
    4775              :     // Is it time to create a new image layer for the given partition? True if we want to generate.
    4776           28 :     async fn time_for_new_image_layer(&self, partition: &KeySpace, lsn: Lsn) -> bool {
    4777           28 :         let threshold = self.get_image_creation_threshold();
    4778              : 
    4779           28 :         let guard = self.layers.read().await;
    4780           28 :         let Ok(layers) = guard.layer_map() else {
    4781            0 :             return false;
    4782              :         };
    4783              : 
    4784           28 :         let mut max_deltas = 0;
    4785           56 :         for part_range in &partition.ranges {
    4786           28 :             let image_coverage = layers.image_coverage(part_range, lsn);
    4787           56 :             for (img_range, last_img) in image_coverage {
    4788           28 :                 let img_lsn = if let Some(last_img) = last_img {
    4789            0 :                     last_img.get_lsn_range().end
    4790              :                 } else {
    4791           28 :                     Lsn(0)
    4792              :                 };
    4793              :                 // Let's consider an example:
    4794              :                 //
    4795              :                 // delta layer with LSN range 71-81
    4796              :                 // delta layer with LSN range 81-91
    4797              :                 // delta layer with LSN range 91-101
    4798              :                 // image layer at LSN 100
    4799              :                 //
    4800              :                 // If 'lsn' is still 100, i.e. no new WAL has been processed since the last image layer,
    4801              :                 // there's no need to create a new one. We check this case explicitly, to avoid passing
    4802              :                 // a bogus range to count_deltas below, with start > end. It's even possible that there
    4803              :                 // are some delta layers *later* than current 'lsn', if more WAL was processed and flushed
    4804              :                 // after we read last_record_lsn, which is passed here in the 'lsn' argument.
    4805           28 :                 if img_lsn < lsn {
    4806           28 :                     let num_deltas =
    4807           28 :                         layers.count_deltas(&img_range, &(img_lsn..lsn), Some(threshold));
    4808           28 : 
    4809           28 :                     max_deltas = max_deltas.max(num_deltas);
    4810           28 :                     if num_deltas >= threshold {
    4811            0 :                         debug!(
    4812            0 :                             "key range {}-{}, has {} deltas on this timeline in LSN range {}..{}",
    4813              :                             img_range.start, img_range.end, num_deltas, img_lsn, lsn
    4814              :                         );
    4815            0 :                         return true;
    4816           28 :                     }
    4817            0 :                 }
    4818              :             }
    4819              :         }
    4820              : 
    4821           28 :         debug!(
    4822              :             max_deltas,
    4823            0 :             "none of the partitioned ranges had >= {threshold} deltas"
    4824              :         );
    4825           28 :         false
    4826           28 :     }
    4827              : 
    4828              :     /// Create image layers for Postgres data. Assumes the caller passes a partition that is not too large,
    4829              :     /// so that at most one image layer will be produced from this function.
    4830              :     #[allow(clippy::too_many_arguments)]
    4831          472 :     async fn create_image_layer_for_rel_blocks(
    4832          472 :         self: &Arc<Self>,
    4833          472 :         partition: &KeySpace,
    4834          472 :         mut image_layer_writer: ImageLayerWriter,
    4835          472 :         lsn: Lsn,
    4836          472 :         ctx: &RequestContext,
    4837          472 :         img_range: Range<Key>,
    4838          472 :         io_concurrency: IoConcurrency,
    4839          472 :     ) -> Result<ImageLayerCreationOutcome, CreateImageLayersError> {
    4840          472 :         let mut wrote_keys = false;
    4841          472 : 
    4842          472 :         let mut key_request_accum = KeySpaceAccum::new();
    4843         3128 :         for range in &partition.ranges {
    4844         2656 :             let mut key = range.start;
    4845         5756 :             while key < range.end {
    4846              :                 // Decide whether to retain this key: usually we do, but sharded tenants may
    4847              :                 // need to drop keys that don't belong to them.  If we retain the key, add it
    4848              :                 // to `key_request_accum` for later issuing a vectored get
    4849         3100 :                 if self.shard_identity.is_key_disposable(&key) {
    4850            0 :                     debug!(
    4851            0 :                         "Dropping key {} during compaction (it belongs on shard {:?})",
    4852            0 :                         key,
    4853            0 :                         self.shard_identity.get_shard_number(&key)
    4854              :                     );
    4855         3100 :                 } else {
    4856         3100 :                     key_request_accum.add_key(key);
    4857         3100 :                 }
    4858              : 
    4859         3100 :                 let last_key_in_range = key.next() == range.end;
    4860         3100 :                 key = key.next();
    4861         3100 : 
    4862         3100 :                 // Maybe flush `key_rest_accum`
    4863         3100 :                 if key_request_accum.raw_size() >= Timeline::MAX_GET_VECTORED_KEYS
    4864         3100 :                     || (last_key_in_range && key_request_accum.raw_size() > 0)
    4865              :                 {
    4866         2656 :                     let results = self
    4867         2656 :                         .get_vectored(
    4868         2656 :                             key_request_accum.consume_keyspace(),
    4869         2656 :                             lsn,
    4870         2656 :                             io_concurrency.clone(),
    4871         2656 :                             ctx,
    4872         2656 :                         )
    4873         2656 :                         .await?;
    4874              : 
    4875         2656 :                     if self.cancel.is_cancelled() {
    4876            0 :                         return Err(CreateImageLayersError::Cancelled);
    4877         2656 :                     }
    4878              : 
    4879         5756 :                     for (img_key, img) in results {
    4880         3100 :                         let img = match img {
    4881         3100 :                             Ok(img) => img,
    4882            0 :                             Err(err) => {
    4883            0 :                                 // If we fail to reconstruct a VM or FSM page, we can zero the
    4884            0 :                                 // page without losing any actual user data. That seems better
    4885            0 :                                 // than failing repeatedly and getting stuck.
    4886            0 :                                 //
    4887            0 :                                 // We had a bug at one point, where we truncated the FSM and VM
    4888            0 :                                 // in the pageserver, but the Postgres didn't know about that
    4889            0 :                                 // and continued to generate incremental WAL records for pages
    4890            0 :                                 // that didn't exist in the pageserver. Trying to replay those
    4891            0 :                                 // WAL records failed to find the previous image of the page.
    4892            0 :                                 // This special case allows us to recover from that situation.
    4893            0 :                                 // See https://github.com/neondatabase/neon/issues/2601.
    4894            0 :                                 //
    4895            0 :                                 // Unfortunately we cannot do this for the main fork, or for
    4896            0 :                                 // any metadata keys, keys, as that would lead to actual data
    4897            0 :                                 // loss.
    4898            0 :                                 if img_key.is_rel_fsm_block_key() || img_key.is_rel_vm_block_key() {
    4899            0 :                                     warn!(
    4900            0 :                                         "could not reconstruct FSM or VM key {img_key}, filling with zeros: {err:?}"
    4901              :                                     );
    4902            0 :                                     ZERO_PAGE.clone()
    4903              :                                 } else {
    4904            0 :                                     return Err(CreateImageLayersError::from(err));
    4905              :                                 }
    4906              :                             }
    4907              :                         };
    4908              : 
    4909              :                         // Write all the keys we just read into our new image layer.
    4910         3100 :                         image_layer_writer.put_image(img_key, img, ctx).await?;
    4911         3100 :                         wrote_keys = true;
    4912              :                     }
    4913          444 :                 }
    4914              :             }
    4915              :         }
    4916              : 
    4917          472 :         if wrote_keys {
    4918              :             // Normal path: we have written some data into the new image layer for this
    4919              :             // partition, so flush it to disk.
    4920          472 :             info!(
    4921            0 :                 "produced image layer for rel {}",
    4922            0 :                 ImageLayerName {
    4923            0 :                     key_range: img_range.clone(),
    4924            0 :                     lsn
    4925            0 :                 },
    4926              :             );
    4927          472 :             Ok(ImageLayerCreationOutcome::Generated {
    4928          472 :                 unfinished_image_layer: image_layer_writer,
    4929          472 :             })
    4930              :         } else {
    4931            0 :             tracing::debug!("no data in range {}-{}", img_range.start, img_range.end);
    4932            0 :             Ok(ImageLayerCreationOutcome::Empty)
    4933              :         }
    4934          472 :     }
    4935              : 
    4936              :     /// Create an image layer for metadata keys. This function produces one image layer for all metadata
    4937              :     /// keys for now. Because metadata keys cannot exceed basebackup size limit, the image layer for it
    4938              :     /// would not be too large to fit in a single image layer.
    4939              :     ///
    4940              :     /// Creating image layers for metadata keys are different from relational keys. Firstly, instead of
    4941              :     /// iterating each key and get an image for each of them, we do a `vectored_get` scan over the sparse
    4942              :     /// keyspace to get all images in one run. Secondly, we use a different image layer generation metrics
    4943              :     /// for metadata keys than relational keys, which is the number of delta files visited during the scan.
    4944              :     #[allow(clippy::too_many_arguments)]
    4945          452 :     async fn create_image_layer_for_metadata_keys(
    4946          452 :         self: &Arc<Self>,
    4947          452 :         partition: &KeySpace,
    4948          452 :         mut image_layer_writer: ImageLayerWriter,
    4949          452 :         lsn: Lsn,
    4950          452 :         ctx: &RequestContext,
    4951          452 :         img_range: Range<Key>,
    4952          452 :         mode: ImageLayerCreationMode,
    4953          452 :         io_concurrency: IoConcurrency,
    4954          452 :     ) -> Result<ImageLayerCreationOutcome, CreateImageLayersError> {
    4955          452 :         // Metadata keys image layer creation.
    4956          452 :         let mut reconstruct_state = ValuesReconstructState::new(io_concurrency);
    4957          452 :         let begin = Instant::now();
    4958              :         // Directly use `get_vectored_impl` to skip the max_vectored_read_key limit check. Note that the keyspace should
    4959              :         // not contain too many keys, otherwise this takes a lot of memory.
    4960          452 :         let data = self
    4961          452 :             .get_vectored_impl(partition.clone(), lsn, &mut reconstruct_state, ctx)
    4962          452 :             .await?;
    4963          452 :         let (data, total_kb_retrieved, total_keys_retrieved) = {
    4964          452 :             let mut new_data = BTreeMap::new();
    4965          452 :             let mut total_kb_retrieved = 0;
    4966          452 :             let mut total_keys_retrieved = 0;
    4967        20476 :             for (k, v) in data {
    4968        20024 :                 let v = v?;
    4969        20024 :                 total_kb_retrieved += KEY_SIZE + v.len();
    4970        20024 :                 total_keys_retrieved += 1;
    4971        20024 :                 new_data.insert(k, v);
    4972              :             }
    4973          452 :             (new_data, total_kb_retrieved / 1024, total_keys_retrieved)
    4974          452 :         };
    4975          452 :         let delta_files_accessed = reconstruct_state.get_delta_layers_visited();
    4976          452 :         let elapsed = begin.elapsed();
    4977          452 : 
    4978          452 :         let trigger_generation = delta_files_accessed as usize >= MAX_AUX_FILE_V2_DELTAS;
    4979          452 :         info!(
    4980            0 :             "metadata key compaction: trigger_generation={trigger_generation}, delta_files_accessed={delta_files_accessed}, total_kb_retrieved={total_kb_retrieved}, total_keys_retrieved={total_keys_retrieved}, read_time={}s",
    4981            0 :             elapsed.as_secs_f64()
    4982              :         );
    4983              : 
    4984          452 :         if !trigger_generation && mode == ImageLayerCreationMode::Try {
    4985            4 :             return Ok(ImageLayerCreationOutcome::Skip);
    4986          448 :         }
    4987          448 :         if self.cancel.is_cancelled() {
    4988            0 :             return Err(CreateImageLayersError::Cancelled);
    4989          448 :         }
    4990          448 :         let mut wrote_any_image = false;
    4991        20472 :         for (k, v) in data {
    4992        20024 :             if v.is_empty() {
    4993              :                 // the key has been deleted, it does not need an image
    4994              :                 // in metadata keyspace, an empty image == tombstone
    4995           16 :                 continue;
    4996        20008 :             }
    4997        20008 :             wrote_any_image = true;
    4998        20008 : 
    4999        20008 :             // No need to handle sharding b/c metadata keys are always on the 0-th shard.
    5000        20008 : 
    5001        20008 :             // TODO: split image layers to avoid too large layer files. Too large image files are not handled
    5002        20008 :             // on the normal data path either.
    5003        20008 :             image_layer_writer.put_image(k, v, ctx).await?;
    5004              :         }
    5005              : 
    5006          448 :         if wrote_any_image {
    5007              :             // Normal path: we have written some data into the new image layer for this
    5008              :             // partition, so flush it to disk.
    5009           24 :             info!(
    5010            0 :                 "created image layer for metadata {}",
    5011            0 :                 ImageLayerName {
    5012            0 :                     key_range: img_range.clone(),
    5013            0 :                     lsn
    5014            0 :                 }
    5015              :             );
    5016           24 :             Ok(ImageLayerCreationOutcome::Generated {
    5017           24 :                 unfinished_image_layer: image_layer_writer,
    5018           24 :             })
    5019              :         } else {
    5020          424 :             tracing::debug!("no data in range {}-{}", img_range.start, img_range.end);
    5021          424 :             Ok(ImageLayerCreationOutcome::Empty)
    5022              :         }
    5023          452 :     }
    5024              : 
    5025              :     /// Predicate function which indicates whether we should check if new image layers
    5026              :     /// are required. Since checking if new image layers are required is expensive in
    5027              :     /// terms of CPU, we only do it in the following cases:
    5028              :     /// 1. If the timeline has ingested sufficient WAL to justify the cost
    5029              :     /// 2. If enough time has passed since the last check:
    5030              :     ///     1. For large tenants, we wish to perform the check more often since they
    5031              :     ///        suffer from the lack of image layers
    5032              :     ///     2. For small tenants (that can mostly fit in RAM), we use a much longer interval
    5033         1146 :     fn should_check_if_image_layers_required(self: &Arc<Timeline>, lsn: Lsn) -> bool {
    5034              :         const LARGE_TENANT_THRESHOLD: u64 = 2 * 1024 * 1024 * 1024;
    5035              : 
    5036         1146 :         let last_checks_at = self.last_image_layer_creation_check_at.load();
    5037         1146 :         let distance = lsn
    5038         1146 :             .checked_sub(last_checks_at)
    5039         1146 :             .expect("Attempt to compact with LSN going backwards");
    5040         1146 :         let min_distance =
    5041         1146 :             self.get_image_layer_creation_check_threshold() as u64 * self.get_checkpoint_distance();
    5042         1146 : 
    5043         1146 :         let distance_based_decision = distance.0 >= min_distance;
    5044         1146 : 
    5045         1146 :         let mut time_based_decision = false;
    5046         1146 :         let mut last_check_instant = self.last_image_layer_creation_check_instant.lock().unwrap();
    5047         1146 :         if let CurrentLogicalSize::Exact(logical_size) = self.current_logical_size.current_size() {
    5048          942 :             let check_required_after = if Into::<u64>::into(&logical_size) >= LARGE_TENANT_THRESHOLD
    5049              :             {
    5050            0 :                 self.get_checkpoint_timeout()
    5051              :             } else {
    5052          942 :                 Duration::from_secs(3600 * 48)
    5053              :             };
    5054              : 
    5055          942 :             time_based_decision = match *last_check_instant {
    5056          522 :                 Some(last_check) => {
    5057          522 :                     let elapsed = last_check.elapsed();
    5058          522 :                     elapsed >= check_required_after
    5059              :                 }
    5060          420 :                 None => true,
    5061              :             };
    5062          204 :         }
    5063              : 
    5064              :         // Do the expensive delta layer counting only if this timeline has ingested sufficient
    5065              :         // WAL since the last check or a checkpoint timeout interval has elapsed since the last
    5066              :         // check.
    5067         1146 :         let decision = distance_based_decision || time_based_decision;
    5068              : 
    5069         1146 :         if decision {
    5070          424 :             self.last_image_layer_creation_check_at.store(lsn);
    5071          424 :             *last_check_instant = Some(Instant::now());
    5072          722 :         }
    5073              : 
    5074         1146 :         decision
    5075         1146 :     }
    5076              : 
    5077              :     /// Returns the image layers generated and an enum indicating whether the process is fully completed.
    5078              :     /// true = we have generate all image layers, false = we preempt the process for L0 compaction.
    5079              :     #[tracing::instrument(skip_all, fields(%lsn, %mode))]
    5080              :     async fn create_image_layers(
    5081              :         self: &Arc<Timeline>,
    5082              :         partitioning: &KeyPartitioning,
    5083              :         lsn: Lsn,
    5084              :         mode: ImageLayerCreationMode,
    5085              :         ctx: &RequestContext,
    5086              :         last_status: LastImageLayerCreationStatus,
    5087              :         yield_for_l0: bool,
    5088              :     ) -> Result<(Vec<ResidentLayer>, LastImageLayerCreationStatus), CreateImageLayersError> {
    5089              :         let timer = self.metrics.create_images_time_histo.start_timer();
    5090              : 
    5091              :         if partitioning.parts.is_empty() {
    5092              :             warn!("no partitions to create image layers for");
    5093              :             return Ok((vec![], LastImageLayerCreationStatus::Complete));
    5094              :         }
    5095              : 
    5096              :         // We need to avoid holes between generated image layers.
    5097              :         // Otherwise LayerMap::image_layer_exists will return false if key range of some layer is covered by more than one
    5098              :         // image layer with hole between them. In this case such layer can not be utilized by GC.
    5099              :         //
    5100              :         // How such hole between partitions can appear?
    5101              :         // if we have relation with relid=1 and size 100 and relation with relid=2 with size 200 then result of
    5102              :         // KeySpace::partition may contain partitions <100000000..100000099> and <200000000..200000199>.
    5103              :         // If there is delta layer <100000000..300000000> then it never be garbage collected because
    5104              :         // image layers  <100000000..100000099> and <200000000..200000199> are not completely covering it.
    5105              :         let mut start = Key::MIN;
    5106              : 
    5107              :         let check_for_image_layers =
    5108              :             if let LastImageLayerCreationStatus::Incomplete { last_key } = last_status {
    5109              :                 info!(
    5110              :                     "resuming image layer creation: last_status=incomplete, continue from {}",
    5111              :                     last_key
    5112              :                 );
    5113              :                 true
    5114              :             } else {
    5115              :                 self.should_check_if_image_layers_required(lsn)
    5116              :             };
    5117              : 
    5118              :         let mut batch_image_writer = BatchLayerWriter::new(self.conf).await?;
    5119              : 
    5120              :         let mut all_generated = true;
    5121              : 
    5122              :         let mut partition_processed = 0;
    5123              :         let mut total_partitions = partitioning.parts.len();
    5124              :         let mut last_partition_processed = None;
    5125              :         let mut partition_parts = partitioning.parts.clone();
    5126              : 
    5127              :         if let LastImageLayerCreationStatus::Incomplete { last_key } = last_status {
    5128              :             // We need to skip the partitions that have already been processed.
    5129              :             let mut found = false;
    5130              :             for (i, partition) in partition_parts.iter().enumerate() {
    5131              :                 if last_key <= partition.end().unwrap() {
    5132              :                     // ```plain
    5133              :                     // |------|--------|----------|------|
    5134              :                     //              ^last_key
    5135              :                     //                    ^start from this partition
    5136              :                     // ```
    5137              :                     // Why `i+1` instead of `i`?
    5138              :                     // It is possible that the user did some writes after the previous image layer creation attempt so that
    5139              :                     // a relation grows in size, and the last_key is now in the middle of the partition. In this case, we
    5140              :                     // still want to skip this partition, so that we can make progress and avoid generating image layers over
    5141              :                     // the same partition. Doing a mod to ensure we don't end up with an empty vec.
    5142              :                     if i + 1 >= total_partitions {
    5143              :                         // In general, this case should not happen -- if last_key is on the last partition, the previous
    5144              :                         // iteration of image layer creation should return a complete status.
    5145              :                         break; // with found=false
    5146              :                     }
    5147              :                     partition_parts = partition_parts.split_off(i + 1); // Remove the first i + 1 elements
    5148              :                     total_partitions = partition_parts.len();
    5149              :                     // Update the start key to the partition start.
    5150              :                     start = partition_parts[0].start().unwrap();
    5151              :                     found = true;
    5152              :                     break;
    5153              :                 }
    5154              :             }
    5155              :             if !found {
    5156              :                 // Last key is within the last partition, or larger than all partitions.
    5157              :                 return Ok((vec![], LastImageLayerCreationStatus::Complete));
    5158              :             }
    5159              :         }
    5160              : 
    5161              :         for partition in partition_parts.iter() {
    5162              :             if self.cancel.is_cancelled() {
    5163              :                 return Err(CreateImageLayersError::Cancelled);
    5164              :             }
    5165              :             partition_processed += 1;
    5166              :             let img_range = start..partition.ranges.last().unwrap().end;
    5167              :             let compact_metadata = partition.overlaps(&Key::metadata_key_range());
    5168              :             if compact_metadata {
    5169              :                 for range in &partition.ranges {
    5170              :                     assert!(
    5171              :                         range.start.field1 >= METADATA_KEY_BEGIN_PREFIX
    5172              :                             && range.end.field1 <= METADATA_KEY_END_PREFIX,
    5173              :                         "metadata keys must be partitioned separately"
    5174              :                     );
    5175              :                 }
    5176              :                 if mode == ImageLayerCreationMode::Try && !check_for_image_layers {
    5177              :                     // Skip compaction if there are not enough updates. Metadata compaction will do a scan and
    5178              :                     // might mess up with evictions.
    5179              :                     start = img_range.end;
    5180              :                     continue;
    5181              :                 }
    5182              :                 // For initial and force modes, we always generate image layers for metadata keys.
    5183              :             } else if let ImageLayerCreationMode::Try = mode {
    5184              :                 // check_for_image_layers = false -> skip
    5185              :                 // check_for_image_layers = true -> check time_for_new_image_layer -> skip/generate
    5186              :                 if !check_for_image_layers || !self.time_for_new_image_layer(partition, lsn).await {
    5187              :                     start = img_range.end;
    5188              :                     continue;
    5189              :                 }
    5190              :             }
    5191              :             if let ImageLayerCreationMode::Force = mode {
    5192              :                 // When forced to create image layers, we might try and create them where they already
    5193              :                 // exist.  This mode is only used in tests/debug.
    5194              :                 let layers = self.layers.read().await;
    5195              :                 if layers.contains_key(&PersistentLayerKey {
    5196              :                     key_range: img_range.clone(),
    5197              :                     lsn_range: PersistentLayerDesc::image_layer_lsn_range(lsn),
    5198              :                     is_delta: false,
    5199              :                 }) {
    5200              :                     // TODO: this can be processed with the BatchLayerWriter::finish_with_discard
    5201              :                     // in the future.
    5202              :                     tracing::info!(
    5203              :                         "Skipping image layer at {lsn} {}..{}, already exists",
    5204              :                         img_range.start,
    5205              :                         img_range.end
    5206              :                     );
    5207              :                     start = img_range.end;
    5208              :                     continue;
    5209              :                 }
    5210              :             }
    5211              : 
    5212              :             let image_layer_writer = ImageLayerWriter::new(
    5213              :                 self.conf,
    5214              :                 self.timeline_id,
    5215              :                 self.tenant_shard_id,
    5216              :                 &img_range,
    5217              :                 lsn,
    5218              :                 ctx,
    5219              :             )
    5220              :             .await?;
    5221              : 
    5222            0 :             fail_point!("image-layer-writer-fail-before-finish", |_| {
    5223            0 :                 Err(CreateImageLayersError::Other(anyhow::anyhow!(
    5224            0 :                     "failpoint image-layer-writer-fail-before-finish"
    5225            0 :                 )))
    5226            0 :             });
    5227              : 
    5228              :             let io_concurrency = IoConcurrency::spawn_from_conf(
    5229              :                 self.conf,
    5230              :                 self.gate
    5231              :                     .enter()
    5232            0 :                     .map_err(|_| CreateImageLayersError::Cancelled)?,
    5233              :             );
    5234              : 
    5235              :             let outcome = if !compact_metadata {
    5236              :                 self.create_image_layer_for_rel_blocks(
    5237              :                     partition,
    5238              :                     image_layer_writer,
    5239              :                     lsn,
    5240              :                     ctx,
    5241              :                     img_range.clone(),
    5242              :                     io_concurrency,
    5243              :                 )
    5244              :                 .await?
    5245              :             } else {
    5246              :                 self.create_image_layer_for_metadata_keys(
    5247              :                     partition,
    5248              :                     image_layer_writer,
    5249              :                     lsn,
    5250              :                     ctx,
    5251              :                     img_range.clone(),
    5252              :                     mode,
    5253              :                     io_concurrency,
    5254              :                 )
    5255              :                 .await?
    5256              :             };
    5257              :             match outcome {
    5258              :                 ImageLayerCreationOutcome::Empty => {
    5259              :                     // No data in this partition, so we don't need to create an image layer (for now).
    5260              :                     // The next image layer should cover this key range, so we don't advance the `start`
    5261              :                     // key.
    5262              :                 }
    5263              :                 ImageLayerCreationOutcome::Generated {
    5264              :                     unfinished_image_layer,
    5265              :                 } => {
    5266              :                     batch_image_writer.add_unfinished_image_writer(
    5267              :                         unfinished_image_layer,
    5268              :                         img_range.clone(),
    5269              :                         lsn,
    5270              :                     );
    5271              :                     // The next image layer should be generated right after this one.
    5272              :                     start = img_range.end;
    5273              :                 }
    5274              :                 ImageLayerCreationOutcome::Skip => {
    5275              :                     // We don't need to create an image layer for this partition.
    5276              :                     // The next image layer should NOT cover this range, otherwise
    5277              :                     // the keyspace becomes empty (reads don't go past image layers).
    5278              :                     start = img_range.end;
    5279              :                 }
    5280              :             }
    5281              : 
    5282              :             if let ImageLayerCreationMode::Try = mode {
    5283              :                 // We have at least made some progress
    5284              :                 if yield_for_l0 && batch_image_writer.pending_layer_num() >= 1 {
    5285              :                     // The `Try` mode is currently only used on the compaction path. We want to avoid
    5286              :                     // image layer generation taking too long time and blocking L0 compaction. So in this
    5287              :                     // mode, we also inspect the current number of L0 layers and skip image layer generation
    5288              :                     // if there are too many of them.
    5289              :                     let image_preempt_threshold = self.get_image_creation_preempt_threshold()
    5290              :                         * self.get_compaction_threshold();
    5291              :                     // TODO: currently we do not respect `get_image_creation_preempt_threshold` and always yield
    5292              :                     // when there is a single timeline with more than L0 threshold L0 layers. As long as the
    5293              :                     // `get_image_creation_preempt_threshold` is set to a value greater than 0, we will yield for L0 compaction.
    5294              :                     if image_preempt_threshold != 0 {
    5295              :                         let should_yield = self
    5296              :                             .l0_compaction_trigger
    5297              :                             .notified()
    5298              :                             .now_or_never()
    5299              :                             .is_some();
    5300              :                         if should_yield {
    5301              :                             tracing::info!(
    5302              :                                 "preempt image layer generation at {lsn} when processing partition {}..{}: too many L0 layers",
    5303              :                                 partition.start().unwrap(),
    5304              :                                 partition.end().unwrap()
    5305              :                             );
    5306              :                             last_partition_processed = Some(partition.clone());
    5307              :                             all_generated = false;
    5308              :                             break;
    5309              :                         }
    5310              :                     }
    5311              :                 }
    5312              :             }
    5313              :         }
    5314              : 
    5315              :         let image_layers = batch_image_writer.finish(self, ctx).await?;
    5316              : 
    5317              :         let mut guard = self.layers.write().await;
    5318              : 
    5319              :         // FIXME: we could add the images to be uploaded *before* returning from here, but right
    5320              :         // now they are being scheduled outside of write lock; current way is inconsistent with
    5321              :         // compaction lock order.
    5322              :         guard
    5323              :             .open_mut()?
    5324              :             .track_new_image_layers(&image_layers, &self.metrics);
    5325              :         drop_wlock(guard);
    5326              :         let duration = timer.stop_and_record();
    5327              : 
    5328              :         // Creating image layers may have caused some previously visible layers to be covered
    5329              :         if !image_layers.is_empty() {
    5330              :             self.update_layer_visibility().await?;
    5331              :         }
    5332              : 
    5333              :         let total_layer_size = image_layers
    5334              :             .iter()
    5335          496 :             .map(|l| l.metadata().file_size)
    5336              :             .sum::<u64>();
    5337              : 
    5338              :         if !image_layers.is_empty() {
    5339              :             info!(
    5340              :                 "created {} image layers ({} bytes) in {}s, processed {} out of {} partitions",
    5341              :                 image_layers.len(),
    5342              :                 total_layer_size,
    5343              :                 duration.as_secs_f64(),
    5344              :                 partition_processed,
    5345              :                 total_partitions
    5346              :             );
    5347              :         }
    5348              : 
    5349              :         Ok((
    5350              :             image_layers,
    5351              :             if all_generated {
    5352              :                 LastImageLayerCreationStatus::Complete
    5353              :             } else {
    5354              :                 LastImageLayerCreationStatus::Incomplete {
    5355              :                     last_key: if let Some(last_partition_processed) = last_partition_processed {
    5356              :                         last_partition_processed.end().unwrap_or(Key::MIN)
    5357              :                     } else {
    5358              :                         // This branch should be unreachable, but in case it happens, we can just return the start key.
    5359              :                         Key::MIN
    5360              :                     },
    5361              :                 }
    5362              :             },
    5363              :         ))
    5364              :     }
    5365              : 
    5366              :     /// Wait until the background initial logical size calculation is complete, or
    5367              :     /// this Timeline is shut down.  Calling this function will cause the initial
    5368              :     /// logical size calculation to skip waiting for the background jobs barrier.
    5369            0 :     pub(crate) async fn await_initial_logical_size(self: Arc<Self>) {
    5370            0 :         if !self.shard_identity.is_shard_zero() {
    5371              :             // We don't populate logical size on shard >0: skip waiting for it.
    5372            0 :             return;
    5373            0 :         }
    5374            0 : 
    5375            0 :         if self.remote_client.is_deleting() {
    5376              :             // The timeline was created in a deletion-resume state, we don't expect logical size to be populated
    5377            0 :             return;
    5378            0 :         }
    5379            0 : 
    5380            0 :         if self.current_logical_size.current_size().is_exact() {
    5381              :             // root timelines are initialized with exact count, but never start the background
    5382              :             // calculation
    5383            0 :             return;
    5384            0 :         }
    5385              : 
    5386            0 :         if let Some(await_bg_cancel) = self
    5387            0 :             .current_logical_size
    5388            0 :             .cancel_wait_for_background_loop_concurrency_limit_semaphore
    5389            0 :             .get()
    5390            0 :         {
    5391            0 :             await_bg_cancel.cancel();
    5392            0 :         } else {
    5393              :             // We should not wait if we were not able to explicitly instruct
    5394              :             // the logical size cancellation to skip the concurrency limit semaphore.
    5395              :             // TODO: this is an unexpected case.  We should restructure so that it
    5396              :             // can't happen.
    5397            0 :             tracing::warn!(
    5398            0 :                 "await_initial_logical_size: can't get semaphore cancel token, skipping"
    5399              :             );
    5400            0 :             debug_assert!(false);
    5401              :         }
    5402              : 
    5403            0 :         tokio::select!(
    5404            0 :             _ = self.current_logical_size.initialized.acquire() => {},
    5405            0 :             _ = self.cancel.cancelled() => {}
    5406              :         )
    5407            0 :     }
    5408              : 
    5409              :     /// Detach this timeline from its ancestor by copying all of ancestors layers as this
    5410              :     /// Timelines layers up to the ancestor_lsn.
    5411              :     ///
    5412              :     /// Requires a timeline that:
    5413              :     /// - has an ancestor to detach from
    5414              :     /// - the ancestor does not have an ancestor -- follows from the original RFC limitations, not
    5415              :     ///   a technical requirement
    5416              :     ///
    5417              :     /// After the operation has been started, it cannot be canceled. Upon restart it needs to be
    5418              :     /// polled again until completion.
    5419              :     ///
    5420              :     /// During the operation all timelines sharing the data with this timeline will be reparented
    5421              :     /// from our ancestor to be branches of this timeline.
    5422            0 :     pub(crate) async fn prepare_to_detach_from_ancestor(
    5423            0 :         self: &Arc<Timeline>,
    5424            0 :         tenant: &crate::tenant::Tenant,
    5425            0 :         options: detach_ancestor::Options,
    5426            0 :         behavior: DetachBehavior,
    5427            0 :         ctx: &RequestContext,
    5428            0 :     ) -> Result<detach_ancestor::Progress, detach_ancestor::Error> {
    5429            0 :         detach_ancestor::prepare(self, tenant, behavior, options, ctx).await
    5430            0 :     }
    5431              : 
    5432              :     /// Second step of detach from ancestor; detaches the `self` from it's current ancestor and
    5433              :     /// reparents any reparentable children of previous ancestor.
    5434              :     ///
    5435              :     /// This method is to be called while holding the TenantManager's tenant slot, so during this
    5436              :     /// method we cannot be deleted nor can any timeline be deleted. After this method returns
    5437              :     /// successfully, tenant must be reloaded.
    5438              :     ///
    5439              :     /// Final step will be to [`Self::complete_detaching_timeline_ancestor`] after optionally
    5440              :     /// resetting the tenant.
    5441            0 :     pub(crate) async fn detach_from_ancestor_and_reparent(
    5442            0 :         self: &Arc<Timeline>,
    5443            0 :         tenant: &crate::tenant::Tenant,
    5444            0 :         prepared: detach_ancestor::PreparedTimelineDetach,
    5445            0 :         ancestor_timeline_id: TimelineId,
    5446            0 :         ancestor_lsn: Lsn,
    5447            0 :         behavior: DetachBehavior,
    5448            0 :         ctx: &RequestContext,
    5449            0 :     ) -> Result<detach_ancestor::DetachingAndReparenting, detach_ancestor::Error> {
    5450            0 :         detach_ancestor::detach_and_reparent(
    5451            0 :             self,
    5452            0 :             tenant,
    5453            0 :             prepared,
    5454            0 :             ancestor_timeline_id,
    5455            0 :             ancestor_lsn,
    5456            0 :             behavior,
    5457            0 :             ctx,
    5458            0 :         )
    5459            0 :         .await
    5460            0 :     }
    5461              : 
    5462              :     /// Final step which unblocks the GC.
    5463              :     ///
    5464              :     /// The tenant must've been reset if ancestry was modified previously (in tenant manager).
    5465            0 :     pub(crate) async fn complete_detaching_timeline_ancestor(
    5466            0 :         self: &Arc<Timeline>,
    5467            0 :         tenant: &crate::tenant::Tenant,
    5468            0 :         attempt: detach_ancestor::Attempt,
    5469            0 :         ctx: &RequestContext,
    5470            0 :     ) -> Result<(), detach_ancestor::Error> {
    5471            0 :         detach_ancestor::complete(self, tenant, attempt, ctx).await
    5472            0 :     }
    5473              : }
    5474              : 
    5475              : impl Drop for Timeline {
    5476           20 :     fn drop(&mut self) {
    5477           20 :         if let Some(ancestor) = &self.ancestor_timeline {
    5478              :             // This lock should never be poisoned, but in case it is we do a .map() instead of
    5479              :             // an unwrap(), to avoid panicking in a destructor and thereby aborting the process.
    5480            8 :             if let Ok(mut gc_info) = ancestor.gc_info.write() {
    5481            8 :                 if !gc_info.remove_child_not_offloaded(self.timeline_id) {
    5482            0 :                     tracing::error!(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id,
    5483            0 :                         "Couldn't remove retain_lsn entry from offloaded timeline's parent: already removed");
    5484            8 :                 }
    5485            0 :             }
    5486           12 :         }
    5487           20 :         info!(
    5488            0 :             "Timeline {} for tenant {} is being dropped",
    5489              :             self.timeline_id, self.tenant_shard_id.tenant_id
    5490              :         );
    5491           20 :     }
    5492              : }
    5493              : 
    5494              : /// Top-level failure to compact.
    5495              : #[derive(Debug, thiserror::Error)]
    5496              : pub(crate) enum CompactionError {
    5497              :     #[error("The timeline or pageserver is shutting down")]
    5498              :     ShuttingDown,
    5499              :     /// Compaction tried to offload a timeline and failed
    5500              :     #[error("Failed to offload timeline: {0}")]
    5501              :     Offload(OffloadError),
    5502              :     /// Compaction cannot be done right now; page reconstruction and so on.
    5503              :     #[error("Failed to collect keyspace: {0}")]
    5504              :     CollectKeySpaceError(#[from] CollectKeySpaceError),
    5505              :     #[error(transparent)]
    5506              :     Other(anyhow::Error),
    5507              :     #[error("Compaction already running: {0}")]
    5508              :     AlreadyRunning(&'static str),
    5509              : }
    5510              : 
    5511              : impl CompactionError {
    5512              :     /// Errors that can be ignored, i.e., cancel and shutdown.
    5513            0 :     pub fn is_cancel(&self) -> bool {
    5514            0 :         matches!(
    5515            0 :             self,
    5516              :             Self::ShuttingDown
    5517              :                 | Self::AlreadyRunning(_)
    5518              :                 | Self::CollectKeySpaceError(CollectKeySpaceError::Cancelled)
    5519              :                 | Self::CollectKeySpaceError(CollectKeySpaceError::PageRead(
    5520              :                     PageReconstructError::Cancelled
    5521              :                 ))
    5522              :                 | Self::Offload(OffloadError::Cancelled)
    5523              :         )
    5524            0 :     }
    5525              : 
    5526              :     /// Critical errors that indicate data corruption.
    5527            0 :     pub fn is_critical(&self) -> bool {
    5528            0 :         matches!(
    5529            0 :             self,
    5530              :             Self::CollectKeySpaceError(
    5531              :                 CollectKeySpaceError::Decode(_)
    5532              :                     | CollectKeySpaceError::PageRead(
    5533              :                         PageReconstructError::MissingKey(_) | PageReconstructError::WalRedo(_),
    5534              :                     )
    5535              :             )
    5536              :         )
    5537            0 :     }
    5538              : }
    5539              : 
    5540              : impl From<OffloadError> for CompactionError {
    5541            0 :     fn from(e: OffloadError) -> Self {
    5542            0 :         match e {
    5543            0 :             OffloadError::Cancelled => Self::ShuttingDown,
    5544            0 :             _ => Self::Offload(e),
    5545              :         }
    5546            0 :     }
    5547              : }
    5548              : 
    5549              : impl From<super::upload_queue::NotInitialized> for CompactionError {
    5550            0 :     fn from(value: super::upload_queue::NotInitialized) -> Self {
    5551            0 :         match value {
    5552              :             super::upload_queue::NotInitialized::Uninitialized => {
    5553            0 :                 CompactionError::Other(anyhow::anyhow!(value))
    5554              :             }
    5555              :             super::upload_queue::NotInitialized::ShuttingDown
    5556            0 :             | super::upload_queue::NotInitialized::Stopped => CompactionError::ShuttingDown,
    5557              :         }
    5558            0 :     }
    5559              : }
    5560              : 
    5561              : impl From<super::storage_layer::layer::DownloadError> for CompactionError {
    5562            0 :     fn from(e: super::storage_layer::layer::DownloadError) -> Self {
    5563            0 :         match e {
    5564              :             super::storage_layer::layer::DownloadError::TimelineShutdown
    5565              :             | super::storage_layer::layer::DownloadError::DownloadCancelled => {
    5566            0 :                 CompactionError::ShuttingDown
    5567              :             }
    5568              :             super::storage_layer::layer::DownloadError::ContextAndConfigReallyDeniesDownloads
    5569              :             | super::storage_layer::layer::DownloadError::DownloadRequired
    5570              :             | super::storage_layer::layer::DownloadError::NotFile(_)
    5571              :             | super::storage_layer::layer::DownloadError::DownloadFailed
    5572              :             | super::storage_layer::layer::DownloadError::PreStatFailed(_) => {
    5573            0 :                 CompactionError::Other(anyhow::anyhow!(e))
    5574              :             }
    5575              :             #[cfg(test)]
    5576              :             super::storage_layer::layer::DownloadError::Failpoint(_) => {
    5577            0 :                 CompactionError::Other(anyhow::anyhow!(e))
    5578              :             }
    5579              :         }
    5580            0 :     }
    5581              : }
    5582              : 
    5583              : impl From<layer_manager::Shutdown> for CompactionError {
    5584            0 :     fn from(_: layer_manager::Shutdown) -> Self {
    5585            0 :         CompactionError::ShuttingDown
    5586            0 :     }
    5587              : }
    5588              : 
    5589              : #[serde_as]
    5590          392 : #[derive(serde::Serialize)]
    5591              : struct RecordedDuration(#[serde_as(as = "serde_with::DurationMicroSeconds")] Duration);
    5592              : 
    5593              : #[derive(Default)]
    5594              : enum DurationRecorder {
    5595              :     #[default]
    5596              :     NotStarted,
    5597              :     Recorded(RecordedDuration, tokio::time::Instant),
    5598              : }
    5599              : 
    5600              : impl DurationRecorder {
    5601         1006 :     fn till_now(&self) -> DurationRecorder {
    5602         1006 :         match self {
    5603              :             DurationRecorder::NotStarted => {
    5604            0 :                 panic!("must only call on recorded measurements")
    5605              :             }
    5606         1006 :             DurationRecorder::Recorded(_, ended) => {
    5607         1006 :                 let now = tokio::time::Instant::now();
    5608         1006 :                 DurationRecorder::Recorded(RecordedDuration(now - *ended), now)
    5609         1006 :             }
    5610         1006 :         }
    5611         1006 :     }
    5612          392 :     fn into_recorded(self) -> Option<RecordedDuration> {
    5613          392 :         match self {
    5614            0 :             DurationRecorder::NotStarted => None,
    5615          392 :             DurationRecorder::Recorded(recorded, _) => Some(recorded),
    5616              :         }
    5617          392 :     }
    5618              : }
    5619              : 
    5620              : /// Descriptor for a delta layer used in testing infra. The start/end key/lsn range of the
    5621              : /// delta layer might be different from the min/max key/lsn in the delta layer. Therefore,
    5622              : /// the layer descriptor requires the user to provide the ranges, which should cover all
    5623              : /// keys specified in the `data` field.
    5624              : #[cfg(test)]
    5625              : #[derive(Clone)]
    5626              : pub struct DeltaLayerTestDesc {
    5627              :     pub lsn_range: Range<Lsn>,
    5628              :     pub key_range: Range<Key>,
    5629              :     pub data: Vec<(Key, Lsn, Value)>,
    5630              : }
    5631              : 
    5632              : #[cfg(test)]
    5633              : #[derive(Clone)]
    5634              : pub struct InMemoryLayerTestDesc {
    5635              :     pub lsn_range: Range<Lsn>,
    5636              :     pub data: Vec<(Key, Lsn, Value)>,
    5637              :     pub is_open: bool,
    5638              : }
    5639              : 
    5640              : #[cfg(test)]
    5641              : impl DeltaLayerTestDesc {
    5642            8 :     pub fn new(lsn_range: Range<Lsn>, key_range: Range<Key>, data: Vec<(Key, Lsn, Value)>) -> Self {
    5643            8 :         Self {
    5644            8 :             lsn_range,
    5645            8 :             key_range,
    5646            8 :             data,
    5647            8 :         }
    5648            8 :     }
    5649              : 
    5650          176 :     pub fn new_with_inferred_key_range(
    5651          176 :         lsn_range: Range<Lsn>,
    5652          176 :         data: Vec<(Key, Lsn, Value)>,
    5653          176 :     ) -> Self {
    5654          440 :         let key_min = data.iter().map(|(key, _, _)| key).min().unwrap();
    5655          440 :         let key_max = data.iter().map(|(key, _, _)| key).max().unwrap();
    5656          176 :         Self {
    5657          176 :             key_range: (*key_min)..(key_max.next()),
    5658          176 :             lsn_range,
    5659          176 :             data,
    5660          176 :         }
    5661          176 :     }
    5662              : 
    5663           20 :     pub(crate) fn layer_name(&self) -> LayerName {
    5664           20 :         LayerName::Delta(super::storage_layer::DeltaLayerName {
    5665           20 :             key_range: self.key_range.clone(),
    5666           20 :             lsn_range: self.lsn_range.clone(),
    5667           20 :         })
    5668           20 :     }
    5669              : }
    5670              : 
    5671              : impl Timeline {
    5672           56 :     async fn finish_compact_batch(
    5673           56 :         self: &Arc<Self>,
    5674           56 :         new_deltas: &[ResidentLayer],
    5675           56 :         new_images: &[ResidentLayer],
    5676           56 :         layers_to_remove: &[Layer],
    5677           56 :     ) -> Result<(), CompactionError> {
    5678           56 :         let mut guard = tokio::select! {
    5679           56 :             guard = self.layers.write() => guard,
    5680           56 :             _ = self.cancel.cancelled() => {
    5681            0 :                 return Err(CompactionError::ShuttingDown);
    5682              :             }
    5683              :         };
    5684              : 
    5685           56 :         let mut duplicated_layers = HashSet::new();
    5686           56 : 
    5687           56 :         let mut insert_layers = Vec::with_capacity(new_deltas.len());
    5688              : 
    5689          672 :         for l in new_deltas {
    5690          616 :             if guard.contains(l.as_ref()) {
    5691              :                 // expected in tests
    5692            0 :                 tracing::error!(layer=%l, "duplicated L1 layer");
    5693              : 
    5694              :                 // good ways to cause a duplicate: we repeatedly error after taking the writelock
    5695              :                 // `guard`  on self.layers. as of writing this, there are no error returns except
    5696              :                 // for compact_level0_phase1 creating an L0, which does not happen in practice
    5697              :                 // because we have not implemented L0 => L0 compaction.
    5698            0 :                 duplicated_layers.insert(l.layer_desc().key());
    5699          616 :             } else if LayerMap::is_l0(&l.layer_desc().key_range, l.layer_desc().is_delta) {
    5700            0 :                 return Err(CompactionError::Other(anyhow::anyhow!(
    5701            0 :                     "compaction generates a L0 layer file as output, which will cause infinite compaction."
    5702            0 :                 )));
    5703          616 :             } else {
    5704          616 :                 insert_layers.push(l.clone());
    5705          616 :             }
    5706              :         }
    5707              : 
    5708              :         // only remove those inputs which were not outputs
    5709           56 :         let remove_layers: Vec<Layer> = layers_to_remove
    5710           56 :             .iter()
    5711          804 :             .filter(|l| !duplicated_layers.contains(&l.layer_desc().key()))
    5712           56 :             .cloned()
    5713           56 :             .collect();
    5714           56 : 
    5715           56 :         if !new_images.is_empty() {
    5716            0 :             guard
    5717            0 :                 .open_mut()?
    5718            0 :                 .track_new_image_layers(new_images, &self.metrics);
    5719           56 :         }
    5720              : 
    5721           56 :         guard
    5722           56 :             .open_mut()?
    5723           56 :             .finish_compact_l0(&remove_layers, &insert_layers, &self.metrics);
    5724           56 : 
    5725           56 :         self.remote_client
    5726           56 :             .schedule_compaction_update(&remove_layers, new_deltas)?;
    5727              : 
    5728           56 :         drop_wlock(guard);
    5729           56 : 
    5730           56 :         Ok(())
    5731           56 :     }
    5732              : 
    5733            0 :     async fn rewrite_layers(
    5734            0 :         self: &Arc<Self>,
    5735            0 :         mut replace_layers: Vec<(Layer, ResidentLayer)>,
    5736            0 :         mut drop_layers: Vec<Layer>,
    5737            0 :     ) -> Result<(), CompactionError> {
    5738            0 :         let mut guard = self.layers.write().await;
    5739              : 
    5740              :         // Trim our lists in case our caller (compaction) raced with someone else (GC) removing layers: we want
    5741              :         // to avoid double-removing, and avoid rewriting something that was removed.
    5742            0 :         replace_layers.retain(|(l, _)| guard.contains(l));
    5743            0 :         drop_layers.retain(|l| guard.contains(l));
    5744            0 : 
    5745            0 :         guard
    5746            0 :             .open_mut()?
    5747            0 :             .rewrite_layers(&replace_layers, &drop_layers, &self.metrics);
    5748            0 : 
    5749            0 :         let upload_layers: Vec<_> = replace_layers.into_iter().map(|r| r.1).collect();
    5750            0 : 
    5751            0 :         self.remote_client
    5752            0 :             .schedule_compaction_update(&drop_layers, &upload_layers)?;
    5753              : 
    5754            0 :         Ok(())
    5755            0 :     }
    5756              : 
    5757              :     /// Schedules the uploads of the given image layers
    5758          726 :     fn upload_new_image_layers(
    5759          726 :         self: &Arc<Self>,
    5760          726 :         new_images: impl IntoIterator<Item = ResidentLayer>,
    5761          726 :     ) -> Result<(), super::upload_queue::NotInitialized> {
    5762          778 :         for layer in new_images {
    5763           52 :             self.remote_client.schedule_layer_file_upload(layer)?;
    5764              :         }
    5765              :         // should any new image layer been created, not uploading index_part will
    5766              :         // result in a mismatch between remote_physical_size and layermap calculated
    5767              :         // size, which will fail some tests, but should not be an issue otherwise.
    5768          726 :         self.remote_client
    5769          726 :             .schedule_index_upload_for_file_changes()?;
    5770          726 :         Ok(())
    5771          726 :     }
    5772              : 
    5773            0 :     async fn find_gc_time_cutoff(
    5774            0 :         &self,
    5775            0 :         now: SystemTime,
    5776            0 :         pitr: Duration,
    5777            0 :         cancel: &CancellationToken,
    5778            0 :         ctx: &RequestContext,
    5779            0 :     ) -> Result<Option<Lsn>, PageReconstructError> {
    5780            0 :         debug_assert_current_span_has_tenant_and_timeline_id();
    5781            0 :         if self.shard_identity.is_shard_zero() {
    5782              :             // Shard Zero has SLRU data and can calculate the PITR time -> LSN mapping itself
    5783            0 :             let time_range = if pitr == Duration::ZERO {
    5784            0 :                 humantime::parse_duration(DEFAULT_PITR_INTERVAL).expect("constant is invalid")
    5785              :             } else {
    5786            0 :                 pitr
    5787              :             };
    5788              : 
    5789              :             // If PITR is so large or `now` is so small that this underflows, we will retain no history (highly unexpected case)
    5790            0 :             let time_cutoff = now.checked_sub(time_range).unwrap_or(now);
    5791            0 :             let timestamp = to_pg_timestamp(time_cutoff);
    5792              : 
    5793            0 :             let time_cutoff = match self.find_lsn_for_timestamp(timestamp, cancel, ctx).await? {
    5794            0 :                 LsnForTimestamp::Present(lsn) => Some(lsn),
    5795            0 :                 LsnForTimestamp::Future(lsn) => {
    5796            0 :                     // The timestamp is in the future. That sounds impossible,
    5797            0 :                     // but what it really means is that there hasn't been
    5798            0 :                     // any commits since the cutoff timestamp.
    5799            0 :                     //
    5800            0 :                     // In this case we should use the LSN of the most recent commit,
    5801            0 :                     // which is implicitly the last LSN in the log.
    5802            0 :                     debug!("future({})", lsn);
    5803            0 :                     Some(self.get_last_record_lsn())
    5804              :                 }
    5805            0 :                 LsnForTimestamp::Past(lsn) => {
    5806            0 :                     debug!("past({})", lsn);
    5807            0 :                     None
    5808              :                 }
    5809            0 :                 LsnForTimestamp::NoData(lsn) => {
    5810            0 :                     debug!("nodata({})", lsn);
    5811            0 :                     None
    5812              :                 }
    5813              :             };
    5814            0 :             Ok(time_cutoff)
    5815              :         } else {
    5816              :             // Shards other than shard zero cannot do timestamp->lsn lookups, and must instead learn their GC cutoff
    5817              :             // from shard zero's index.  The index doesn't explicitly tell us the time cutoff, but we may assume that
    5818              :             // the point up to which shard zero's last_gc_cutoff has advanced will either be the time cutoff, or a
    5819              :             // space cutoff that we would also have respected ourselves.
    5820            0 :             match self
    5821            0 :                 .remote_client
    5822            0 :                 .download_foreign_index(ShardNumber(0), cancel)
    5823            0 :                 .await
    5824              :             {
    5825            0 :                 Ok((index_part, index_generation, _index_mtime)) => {
    5826            0 :                     tracing::info!(
    5827            0 :                         "GC loaded shard zero metadata (gen {index_generation:?}): latest_gc_cutoff_lsn: {}",
    5828            0 :                         index_part.metadata.latest_gc_cutoff_lsn()
    5829              :                     );
    5830            0 :                     Ok(Some(index_part.metadata.latest_gc_cutoff_lsn()))
    5831              :                 }
    5832              :                 Err(DownloadError::NotFound) => {
    5833              :                     // This is unexpected, because during timeline creations shard zero persists to remote
    5834              :                     // storage before other shards are called, and during timeline deletion non-zeroth shards are
    5835              :                     // deleted before the zeroth one.  However, it should be harmless: if we somehow end up in this
    5836              :                     // state, then shard zero should _eventually_ write an index when it GCs.
    5837            0 :                     tracing::warn!("GC couldn't find shard zero's index for timeline");
    5838            0 :                     Ok(None)
    5839              :                 }
    5840            0 :                 Err(e) => {
    5841            0 :                     // TODO: this function should return a different error type than page reconstruct error
    5842            0 :                     Err(PageReconstructError::Other(anyhow::anyhow!(e)))
    5843              :                 }
    5844              :             }
    5845              : 
    5846              :             // TODO: after reading shard zero's GC cutoff, we should validate its generation with the storage
    5847              :             // controller.  Otherwise, it is possible that we see the GC cutoff go backwards while shard zero
    5848              :             // is going through a migration if we read the old location's index and it has GC'd ahead of the
    5849              :             // new location.  This is legal in principle, but problematic in practice because it might result
    5850              :             // in a timeline creation succeeding on shard zero ('s new location) but then failing on other shards
    5851              :             // because they have GC'd past the branch point.
    5852              :         }
    5853            0 :     }
    5854              : 
    5855              :     /// Find the Lsns above which layer files need to be retained on
    5856              :     /// garbage collection.
    5857              :     ///
    5858              :     /// We calculate two cutoffs, one based on time and one based on WAL size.  `pitr`
    5859              :     /// controls the time cutoff (or ZERO to disable time-based retention), and `space_cutoff` controls
    5860              :     /// the space-based retention.
    5861              :     ///
    5862              :     /// This function doesn't simply to calculate time & space based retention: it treats time-based
    5863              :     /// retention as authoritative if enabled, and falls back to space-based retention if calculating
    5864              :     /// the LSN for a time point isn't possible.  Therefore the GcCutoffs::horizon in the response might
    5865              :     /// be different to the `space_cutoff` input.  Callers should treat the min() of the two cutoffs
    5866              :     /// in the response as the GC cutoff point for the timeline.
    5867              :     #[instrument(skip_all, fields(timeline_id=%self.timeline_id))]
    5868              :     pub(super) async fn find_gc_cutoffs(
    5869              :         &self,
    5870              :         now: SystemTime,
    5871              :         space_cutoff: Lsn,
    5872              :         pitr: Duration,
    5873              :         cancel: &CancellationToken,
    5874              :         ctx: &RequestContext,
    5875              :     ) -> Result<GcCutoffs, PageReconstructError> {
    5876              :         let _timer = self
    5877              :             .metrics
    5878              :             .find_gc_cutoffs_histo
    5879              :             .start_timer()
    5880              :             .record_on_drop();
    5881              : 
    5882              :         pausable_failpoint!("Timeline::find_gc_cutoffs-pausable");
    5883              : 
    5884              :         if cfg!(test) {
    5885              :             // Unit tests which specify zero PITR interval expect to avoid doing any I/O for timestamp lookup
    5886              :             if pitr == Duration::ZERO {
    5887              :                 return Ok(GcCutoffs {
    5888              :                     time: self.get_last_record_lsn(),
    5889              :                     space: space_cutoff,
    5890              :                 });
    5891              :             }
    5892              :         }
    5893              : 
    5894              :         // Calculate a time-based limit on how much to retain:
    5895              :         // - if PITR interval is set, then this is our cutoff.
    5896              :         // - if PITR interval is not set, then we do a lookup
    5897              :         //   based on DEFAULT_PITR_INTERVAL, so that size-based retention does not result in keeping history around permanently on idle databases.
    5898              :         let time_cutoff = self.find_gc_time_cutoff(now, pitr, cancel, ctx).await?;
    5899              : 
    5900              :         Ok(match (pitr, time_cutoff) {
    5901              :             (Duration::ZERO, Some(time_cutoff)) => {
    5902              :                 // PITR is not set. Retain the size-based limit, or the default time retention,
    5903              :                 // whichever requires less data.
    5904              :                 GcCutoffs {
    5905              :                     time: self.get_last_record_lsn(),
    5906              :                     space: std::cmp::max(time_cutoff, space_cutoff),
    5907              :                 }
    5908              :             }
    5909              :             (Duration::ZERO, None) => {
    5910              :                 // PITR is not set, and time lookup failed
    5911              :                 GcCutoffs {
    5912              :                     time: self.get_last_record_lsn(),
    5913              :                     space: space_cutoff,
    5914              :                 }
    5915              :             }
    5916              :             (_, None) => {
    5917              :                 // PITR interval is set & we didn't look up a timestamp successfully.  Conservatively assume PITR
    5918              :                 // cannot advance beyond what was already GC'd, and respect space-based retention
    5919              :                 GcCutoffs {
    5920              :                     time: *self.get_applied_gc_cutoff_lsn(),
    5921              :                     space: space_cutoff,
    5922              :                 }
    5923              :             }
    5924              :             (_, Some(time_cutoff)) => {
    5925              :                 // PITR interval is set and we looked up timestamp successfully.  Ignore
    5926              :                 // size based retention and make time cutoff authoritative
    5927              :                 GcCutoffs {
    5928              :                     time: time_cutoff,
    5929              :                     space: time_cutoff,
    5930              :                 }
    5931              :             }
    5932              :         })
    5933              :     }
    5934              : 
    5935              :     /// Garbage collect layer files on a timeline that are no longer needed.
    5936              :     ///
    5937              :     /// Currently, we don't make any attempt at removing unneeded page versions
    5938              :     /// within a layer file. We can only remove the whole file if it's fully
    5939              :     /// obsolete.
    5940            8 :     pub(super) async fn gc(&self) -> Result<GcResult, GcError> {
    5941              :         // this is most likely the background tasks, but it might be the spawned task from
    5942              :         // immediate_gc
    5943            8 :         let _g = tokio::select! {
    5944            8 :             guard = self.gc_lock.lock() => guard,
    5945            8 :             _ = self.cancel.cancelled() => return Ok(GcResult::default()),
    5946              :         };
    5947            8 :         let timer = self.metrics.garbage_collect_histo.start_timer();
    5948            8 : 
    5949            8 :         fail_point!("before-timeline-gc");
    5950            8 : 
    5951            8 :         // Is the timeline being deleted?
    5952            8 :         if self.is_stopping() {
    5953            0 :             return Err(GcError::TimelineCancelled);
    5954            8 :         }
    5955            8 : 
    5956            8 :         let (space_cutoff, time_cutoff, retain_lsns, max_lsn_with_valid_lease) = {
    5957            8 :             let gc_info = self.gc_info.read().unwrap();
    5958            8 : 
    5959            8 :             let space_cutoff = min(gc_info.cutoffs.space, self.get_disk_consistent_lsn());
    5960            8 :             let time_cutoff = gc_info.cutoffs.time;
    5961            8 :             let retain_lsns = gc_info
    5962            8 :                 .retain_lsns
    5963            8 :                 .iter()
    5964            8 :                 .map(|(lsn, _child_id, _is_offloaded)| *lsn)
    5965            8 :                 .collect();
    5966            8 : 
    5967            8 :             // Gets the maximum LSN that holds the valid lease.
    5968            8 :             //
    5969            8 :             // Caveat: `refresh_gc_info` is in charged of updating the lease map.
    5970            8 :             // Here, we do not check for stale leases again.
    5971            8 :             let max_lsn_with_valid_lease = gc_info.leases.last_key_value().map(|(lsn, _)| *lsn);
    5972            8 : 
    5973            8 :             (
    5974            8 :                 space_cutoff,
    5975            8 :                 time_cutoff,
    5976            8 :                 retain_lsns,
    5977            8 :                 max_lsn_with_valid_lease,
    5978            8 :             )
    5979            8 :         };
    5980            8 : 
    5981            8 :         let mut new_gc_cutoff = Lsn::min(space_cutoff, time_cutoff);
    5982            8 :         let standby_horizon = self.standby_horizon.load();
    5983            8 :         // Hold GC for the standby, but as a safety guard do it only within some
    5984            8 :         // reasonable lag.
    5985            8 :         if standby_horizon != Lsn::INVALID {
    5986            0 :             if let Some(standby_lag) = new_gc_cutoff.checked_sub(standby_horizon) {
    5987              :                 const MAX_ALLOWED_STANDBY_LAG: u64 = 10u64 << 30; // 10 GB
    5988            0 :                 if standby_lag.0 < MAX_ALLOWED_STANDBY_LAG {
    5989            0 :                     new_gc_cutoff = Lsn::min(standby_horizon, new_gc_cutoff);
    5990            0 :                     trace!("holding off GC for standby apply LSN {}", standby_horizon);
    5991              :                 } else {
    5992            0 :                     warn!(
    5993            0 :                         "standby is lagging for more than {}MB, not holding gc for it",
    5994            0 :                         MAX_ALLOWED_STANDBY_LAG / 1024 / 1024
    5995              :                     )
    5996              :                 }
    5997            0 :             }
    5998            8 :         }
    5999              : 
    6000              :         // Reset standby horizon to ignore it if it is not updated till next GC.
    6001              :         // It is an easy way to unset it when standby disappears without adding
    6002              :         // more conf options.
    6003            8 :         self.standby_horizon.store(Lsn::INVALID);
    6004            8 :         self.metrics
    6005            8 :             .standby_horizon_gauge
    6006            8 :             .set(Lsn::INVALID.0 as i64);
    6007              : 
    6008            8 :         let res = self
    6009            8 :             .gc_timeline(
    6010            8 :                 space_cutoff,
    6011            8 :                 time_cutoff,
    6012            8 :                 retain_lsns,
    6013            8 :                 max_lsn_with_valid_lease,
    6014            8 :                 new_gc_cutoff,
    6015            8 :             )
    6016            8 :             .instrument(
    6017            8 :                 info_span!("gc_timeline", timeline_id = %self.timeline_id, cutoff = %new_gc_cutoff),
    6018              :             )
    6019            8 :             .await?;
    6020              : 
    6021              :         // only record successes
    6022            8 :         timer.stop_and_record();
    6023            8 : 
    6024            8 :         Ok(res)
    6025            8 :     }
    6026              : 
    6027            8 :     async fn gc_timeline(
    6028            8 :         &self,
    6029            8 :         space_cutoff: Lsn,
    6030            8 :         time_cutoff: Lsn,
    6031            8 :         retain_lsns: Vec<Lsn>,
    6032            8 :         max_lsn_with_valid_lease: Option<Lsn>,
    6033            8 :         new_gc_cutoff: Lsn,
    6034            8 :     ) -> Result<GcResult, GcError> {
    6035            8 :         // FIXME: if there is an ongoing detach_from_ancestor, we should just skip gc
    6036            8 : 
    6037            8 :         let now = SystemTime::now();
    6038            8 :         let mut result: GcResult = GcResult::default();
    6039            8 : 
    6040            8 :         // Nothing to GC. Return early.
    6041            8 :         let latest_gc_cutoff = *self.get_applied_gc_cutoff_lsn();
    6042            8 :         if latest_gc_cutoff >= new_gc_cutoff {
    6043            0 :             info!(
    6044            0 :                 "Nothing to GC: new_gc_cutoff_lsn {new_gc_cutoff}, latest_gc_cutoff_lsn {latest_gc_cutoff}",
    6045              :             );
    6046            0 :             return Ok(result);
    6047            8 :         }
    6048              : 
    6049              :         // We need to ensure that no one tries to read page versions or create
    6050              :         // branches at a point before latest_gc_cutoff_lsn. See branch_timeline()
    6051              :         // for details. This will block until the old value is no longer in use.
    6052              :         //
    6053              :         // The GC cutoff should only ever move forwards.
    6054            8 :         let waitlist = {
    6055            8 :             let write_guard = self.applied_gc_cutoff_lsn.lock_for_write();
    6056            8 :             if *write_guard > new_gc_cutoff {
    6057            0 :                 return Err(GcError::BadLsn {
    6058            0 :                     why: format!(
    6059            0 :                         "Cannot move GC cutoff LSN backwards (was {}, new {})",
    6060            0 :                         *write_guard, new_gc_cutoff
    6061            0 :                     ),
    6062            0 :                 });
    6063            8 :             }
    6064            8 : 
    6065            8 :             write_guard.store_and_unlock(new_gc_cutoff)
    6066            8 :         };
    6067            8 :         waitlist.wait().await;
    6068              : 
    6069            8 :         info!("GC starting");
    6070              : 
    6071            8 :         debug!("retain_lsns: {:?}", retain_lsns);
    6072              : 
    6073            8 :         let mut layers_to_remove = Vec::new();
    6074              : 
    6075              :         // Scan all layers in the timeline (remote or on-disk).
    6076              :         //
    6077              :         // Garbage collect the layer if all conditions are satisfied:
    6078              :         // 1. it is older than cutoff LSN;
    6079              :         // 2. it is older than PITR interval;
    6080              :         // 3. it doesn't need to be retained for 'retain_lsns';
    6081              :         // 4. it does not need to be kept for LSNs holding valid leases.
    6082              :         // 5. newer on-disk image layers cover the layer's whole key range
    6083              :         //
    6084              :         // TODO holding a write lock is too agressive and avoidable
    6085            8 :         let mut guard = self.layers.write().await;
    6086            8 :         let layers = guard.layer_map()?;
    6087           48 :         'outer: for l in layers.iter_historic_layers() {
    6088           48 :             result.layers_total += 1;
    6089           48 : 
    6090           48 :             // 1. Is it newer than GC horizon cutoff point?
    6091           48 :             if l.get_lsn_range().end > space_cutoff {
    6092            4 :                 info!(
    6093            0 :                     "keeping {} because it's newer than space_cutoff {}",
    6094            0 :                     l.layer_name(),
    6095              :                     space_cutoff,
    6096              :                 );
    6097            4 :                 result.layers_needed_by_cutoff += 1;
    6098            4 :                 continue 'outer;
    6099           44 :             }
    6100           44 : 
    6101           44 :             // 2. It is newer than PiTR cutoff point?
    6102           44 :             if l.get_lsn_range().end > time_cutoff {
    6103            0 :                 info!(
    6104            0 :                     "keeping {} because it's newer than time_cutoff {}",
    6105            0 :                     l.layer_name(),
    6106              :                     time_cutoff,
    6107              :                 );
    6108            0 :                 result.layers_needed_by_pitr += 1;
    6109            0 :                 continue 'outer;
    6110           44 :             }
    6111              : 
    6112              :             // 3. Is it needed by a child branch?
    6113              :             // NOTE With that we would keep data that
    6114              :             // might be referenced by child branches forever.
    6115              :             // We can track this in child timeline GC and delete parent layers when
    6116              :             // they are no longer needed. This might be complicated with long inheritance chains.
    6117              :             //
    6118              :             // TODO Vec is not a great choice for `retain_lsns`
    6119           44 :             for retain_lsn in &retain_lsns {
    6120              :                 // start_lsn is inclusive
    6121            0 :                 if &l.get_lsn_range().start <= retain_lsn {
    6122            0 :                     info!(
    6123            0 :                         "keeping {} because it's still might be referenced by child branch forked at {} is_dropped: xx is_incremental: {}",
    6124            0 :                         l.layer_name(),
    6125            0 :                         retain_lsn,
    6126            0 :                         l.is_incremental(),
    6127              :                     );
    6128            0 :                     result.layers_needed_by_branches += 1;
    6129            0 :                     continue 'outer;
    6130            0 :                 }
    6131              :             }
    6132              : 
    6133              :             // 4. Is there a valid lease that requires us to keep this layer?
    6134           44 :             if let Some(lsn) = &max_lsn_with_valid_lease {
    6135              :                 // keep if layer start <= any of the lease
    6136           36 :                 if &l.get_lsn_range().start <= lsn {
    6137           28 :                     info!(
    6138            0 :                         "keeping {} because there is a valid lease preventing GC at {}",
    6139            0 :                         l.layer_name(),
    6140              :                         lsn,
    6141              :                     );
    6142           28 :                     result.layers_needed_by_leases += 1;
    6143           28 :                     continue 'outer;
    6144            8 :                 }
    6145            8 :             }
    6146              : 
    6147              :             // 5. Is there a later on-disk layer for this relation?
    6148              :             //
    6149              :             // The end-LSN is exclusive, while disk_consistent_lsn is
    6150              :             // inclusive. For example, if disk_consistent_lsn is 100, it is
    6151              :             // OK for a delta layer to have end LSN 101, but if the end LSN
    6152              :             // is 102, then it might not have been fully flushed to disk
    6153              :             // before crash.
    6154              :             //
    6155              :             // For example, imagine that the following layers exist:
    6156              :             //
    6157              :             // 1000      - image (A)
    6158              :             // 1000-2000 - delta (B)
    6159              :             // 2000      - image (C)
    6160              :             // 2000-3000 - delta (D)
    6161              :             // 3000      - image (E)
    6162              :             //
    6163              :             // If GC horizon is at 2500, we can remove layers A and B, but
    6164              :             // we cannot remove C, even though it's older than 2500, because
    6165              :             // the delta layer 2000-3000 depends on it.
    6166           16 :             if !layers
    6167           16 :                 .image_layer_exists(&l.get_key_range(), &(l.get_lsn_range().end..new_gc_cutoff))
    6168              :             {
    6169           12 :                 info!("keeping {} because it is the latest layer", l.layer_name());
    6170           12 :                 result.layers_not_updated += 1;
    6171           12 :                 continue 'outer;
    6172            4 :             }
    6173            4 : 
    6174            4 :             // We didn't find any reason to keep this file, so remove it.
    6175            4 :             info!(
    6176            0 :                 "garbage collecting {} is_dropped: xx is_incremental: {}",
    6177            0 :                 l.layer_name(),
    6178            0 :                 l.is_incremental(),
    6179              :             );
    6180            4 :             layers_to_remove.push(l);
    6181              :         }
    6182              : 
    6183            8 :         if !layers_to_remove.is_empty() {
    6184              :             // Persist the new GC cutoff value before we actually remove anything.
    6185              :             // This unconditionally schedules also an index_part.json update, even though, we will
    6186              :             // be doing one a bit later with the unlinked gc'd layers.
    6187            4 :             let disk_consistent_lsn = self.disk_consistent_lsn.load();
    6188            4 :             self.schedule_uploads(disk_consistent_lsn, None)
    6189            4 :                 .map_err(|e| {
    6190            0 :                     if self.cancel.is_cancelled() {
    6191            0 :                         GcError::TimelineCancelled
    6192              :                     } else {
    6193            0 :                         GcError::Remote(e)
    6194              :                     }
    6195            4 :                 })?;
    6196              : 
    6197            4 :             let gc_layers = layers_to_remove
    6198            4 :                 .iter()
    6199            4 :                 .map(|x| guard.get_from_desc(x))
    6200            4 :                 .collect::<Vec<Layer>>();
    6201            4 : 
    6202            4 :             result.layers_removed = gc_layers.len() as u64;
    6203            4 : 
    6204            4 :             self.remote_client.schedule_gc_update(&gc_layers)?;
    6205              : 
    6206            4 :             guard.open_mut()?.finish_gc_timeline(&gc_layers);
    6207            4 : 
    6208            4 :             #[cfg(feature = "testing")]
    6209            4 :             {
    6210            4 :                 result.doomed_layers = gc_layers;
    6211            4 :             }
    6212            4 :         }
    6213              : 
    6214            8 :         info!(
    6215            0 :             "GC completed removing {} layers, cutoff {}",
    6216              :             result.layers_removed, new_gc_cutoff
    6217              :         );
    6218              : 
    6219            8 :         result.elapsed = now.elapsed().unwrap_or(Duration::ZERO);
    6220            8 :         Ok(result)
    6221            8 :     }
    6222              : 
    6223              :     /// Reconstruct a value, using the given base image and WAL records in 'data'.
    6224      1340241 :     async fn reconstruct_value(
    6225      1340241 :         &self,
    6226      1340241 :         key: Key,
    6227      1340241 :         request_lsn: Lsn,
    6228      1340241 :         mut data: ValueReconstructState,
    6229      1340241 :     ) -> Result<Bytes, PageReconstructError> {
    6230      1340241 :         // Perform WAL redo if needed
    6231      1340241 :         data.records.reverse();
    6232      1340241 : 
    6233      1340241 :         // If we have a page image, and no WAL, we're all set
    6234      1340241 :         if data.records.is_empty() {
    6235      1338565 :             if let Some((img_lsn, img)) = &data.img {
    6236      1338565 :                 trace!(
    6237            0 :                     "found page image for key {} at {}, no WAL redo required, req LSN {}",
    6238              :                     key, img_lsn, request_lsn,
    6239              :                 );
    6240      1338565 :                 Ok(img.clone())
    6241              :             } else {
    6242            0 :                 Err(PageReconstructError::from(anyhow!(
    6243            0 :                     "base image for {key} at {request_lsn} not found"
    6244            0 :                 )))
    6245              :             }
    6246              :         } else {
    6247              :             // We need to do WAL redo.
    6248              :             //
    6249              :             // If we don't have a base image, then the oldest WAL record better initialize
    6250              :             // the page
    6251         1676 :             if data.img.is_none() && !data.records.first().unwrap().1.will_init() {
    6252            0 :                 Err(PageReconstructError::from(anyhow!(
    6253            0 :                     "Base image for {} at {} not found, but got {} WAL records",
    6254            0 :                     key,
    6255            0 :                     request_lsn,
    6256            0 :                     data.records.len()
    6257            0 :                 )))
    6258              :             } else {
    6259         1676 :                 if data.img.is_some() {
    6260         1536 :                     trace!(
    6261            0 :                         "found {} WAL records and a base image for {} at {}, performing WAL redo",
    6262            0 :                         data.records.len(),
    6263              :                         key,
    6264              :                         request_lsn
    6265              :                     );
    6266              :                 } else {
    6267          140 :                     trace!(
    6268            0 :                         "found {} WAL records that will init the page for {} at {}, performing WAL redo",
    6269            0 :                         data.records.len(),
    6270              :                         key,
    6271              :                         request_lsn
    6272              :                     );
    6273              :                 };
    6274         1676 :                 let res = self
    6275         1676 :                     .walredo_mgr
    6276         1676 :                     .as_ref()
    6277         1676 :                     .context("timeline has no walredo manager")
    6278         1676 :                     .map_err(PageReconstructError::WalRedo)?
    6279         1676 :                     .request_redo(key, request_lsn, data.img, data.records, self.pg_version)
    6280         1676 :                     .await;
    6281         1676 :                 let img = match res {
    6282         1676 :                     Ok(img) => img,
    6283            0 :                     Err(walredo::Error::Cancelled) => return Err(PageReconstructError::Cancelled),
    6284            0 :                     Err(walredo::Error::Other(err)) => {
    6285            0 :                         critical!("walredo failure during page reconstruction: {err:?}");
    6286            0 :                         return Err(PageReconstructError::WalRedo(
    6287            0 :                             err.context("reconstruct a page image"),
    6288            0 :                         ));
    6289              :                     }
    6290              :                 };
    6291         1676 :                 Ok(img)
    6292              :             }
    6293              :         }
    6294      1340241 :     }
    6295              : 
    6296            0 :     pub(crate) async fn spawn_download_all_remote_layers(
    6297            0 :         self: Arc<Self>,
    6298            0 :         request: DownloadRemoteLayersTaskSpawnRequest,
    6299            0 :         ctx: &RequestContext,
    6300            0 :     ) -> Result<DownloadRemoteLayersTaskInfo, DownloadRemoteLayersTaskInfo> {
    6301              :         use pageserver_api::models::DownloadRemoteLayersTaskState;
    6302              : 
    6303              :         // this is not really needed anymore; it has tests which really check the return value from
    6304              :         // http api. it would be better not to maintain this anymore.
    6305              : 
    6306            0 :         let mut status_guard = self.download_all_remote_layers_task_info.write().unwrap();
    6307            0 :         if let Some(st) = &*status_guard {
    6308            0 :             match &st.state {
    6309              :                 DownloadRemoteLayersTaskState::Running => {
    6310            0 :                     return Err(st.clone());
    6311              :                 }
    6312              :                 DownloadRemoteLayersTaskState::ShutDown
    6313            0 :                 | DownloadRemoteLayersTaskState::Completed => {
    6314            0 :                     *status_guard = None;
    6315            0 :                 }
    6316              :             }
    6317            0 :         }
    6318              : 
    6319            0 :         let self_clone = Arc::clone(&self);
    6320            0 :         let task_ctx = ctx.detached_child(
    6321            0 :             TaskKind::DownloadAllRemoteLayers,
    6322            0 :             DownloadBehavior::Download,
    6323            0 :         );
    6324            0 :         let task_id = task_mgr::spawn(
    6325            0 :             task_mgr::BACKGROUND_RUNTIME.handle(),
    6326            0 :             task_mgr::TaskKind::DownloadAllRemoteLayers,
    6327            0 :             self.tenant_shard_id,
    6328            0 :             Some(self.timeline_id),
    6329            0 :             "download all remote layers task",
    6330            0 :             async move {
    6331            0 :                 self_clone.download_all_remote_layers(request, &task_ctx).await;
    6332            0 :                 let mut status_guard = self_clone.download_all_remote_layers_task_info.write().unwrap();
    6333            0 :                  match &mut *status_guard {
    6334              :                     None => {
    6335            0 :                         warn!("tasks status is supposed to be Some(), since we are running");
    6336              :                     }
    6337            0 :                     Some(st) => {
    6338            0 :                         let exp_task_id = format!("{}", task_mgr::current_task_id().unwrap());
    6339            0 :                         if st.task_id != exp_task_id {
    6340            0 :                             warn!("task id changed while we were still running, expecting {} but have {}", exp_task_id, st.task_id);
    6341            0 :                         } else {
    6342            0 :                             st.state = DownloadRemoteLayersTaskState::Completed;
    6343            0 :                         }
    6344              :                     }
    6345              :                 };
    6346            0 :                 Ok(())
    6347            0 :             }
    6348            0 :             .instrument(info_span!(parent: None, "download_all_remote_layers", tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id))
    6349              :         );
    6350              : 
    6351            0 :         let initial_info = DownloadRemoteLayersTaskInfo {
    6352            0 :             task_id: format!("{task_id}"),
    6353            0 :             state: DownloadRemoteLayersTaskState::Running,
    6354            0 :             total_layer_count: 0,
    6355            0 :             successful_download_count: 0,
    6356            0 :             failed_download_count: 0,
    6357            0 :         };
    6358            0 :         *status_guard = Some(initial_info.clone());
    6359            0 : 
    6360            0 :         Ok(initial_info)
    6361            0 :     }
    6362              : 
    6363            0 :     async fn download_all_remote_layers(
    6364            0 :         self: &Arc<Self>,
    6365            0 :         request: DownloadRemoteLayersTaskSpawnRequest,
    6366            0 :         ctx: &RequestContext,
    6367            0 :     ) {
    6368              :         use pageserver_api::models::DownloadRemoteLayersTaskState;
    6369              : 
    6370            0 :         let remaining = {
    6371            0 :             let guard = self.layers.read().await;
    6372            0 :             let Ok(lm) = guard.layer_map() else {
    6373              :                 // technically here we could look into iterating accessible layers, but downloading
    6374              :                 // all layers of a shutdown timeline makes no sense regardless.
    6375            0 :                 tracing::info!("attempted to download all layers of shutdown timeline");
    6376            0 :                 return;
    6377              :             };
    6378            0 :             lm.iter_historic_layers()
    6379            0 :                 .map(|desc| guard.get_from_desc(&desc))
    6380            0 :                 .collect::<Vec<_>>()
    6381            0 :         };
    6382            0 :         let total_layer_count = remaining.len();
    6383              : 
    6384              :         macro_rules! lock_status {
    6385              :             ($st:ident) => {
    6386              :                 let mut st = self.download_all_remote_layers_task_info.write().unwrap();
    6387              :                 let st = st
    6388              :                     .as_mut()
    6389              :                     .expect("this function is only called after the task has been spawned");
    6390              :                 assert_eq!(
    6391              :                     st.task_id,
    6392              :                     format!(
    6393              :                         "{}",
    6394              :                         task_mgr::current_task_id().expect("we run inside a task_mgr task")
    6395              :                     )
    6396              :                 );
    6397              :                 let $st = st;
    6398              :             };
    6399              :         }
    6400              : 
    6401              :         {
    6402            0 :             lock_status!(st);
    6403            0 :             st.total_layer_count = total_layer_count as u64;
    6404            0 :         }
    6405            0 : 
    6406            0 :         let mut remaining = remaining.into_iter();
    6407            0 :         let mut have_remaining = true;
    6408            0 :         let mut js = tokio::task::JoinSet::new();
    6409            0 : 
    6410            0 :         let cancel = task_mgr::shutdown_token();
    6411            0 : 
    6412            0 :         let limit = request.max_concurrent_downloads;
    6413              : 
    6414              :         loop {
    6415            0 :             while js.len() < limit.get() && have_remaining && !cancel.is_cancelled() {
    6416            0 :                 let Some(next) = remaining.next() else {
    6417            0 :                     have_remaining = false;
    6418            0 :                     break;
    6419              :                 };
    6420              : 
    6421            0 :                 let span = tracing::info_span!("download", layer = %next);
    6422              : 
    6423            0 :                 let ctx = ctx.attached_child();
    6424            0 :                 js.spawn(
    6425            0 :                     async move {
    6426            0 :                         let res = next.download(&ctx).await;
    6427            0 :                         (next, res)
    6428            0 :                     }
    6429            0 :                     .instrument(span),
    6430            0 :                 );
    6431            0 :             }
    6432              : 
    6433            0 :             while let Some(res) = js.join_next().await {
    6434            0 :                 match res {
    6435              :                     Ok((_, Ok(_))) => {
    6436            0 :                         lock_status!(st);
    6437            0 :                         st.successful_download_count += 1;
    6438              :                     }
    6439            0 :                     Ok((layer, Err(e))) => {
    6440            0 :                         tracing::error!(%layer, "download failed: {e:#}");
    6441            0 :                         lock_status!(st);
    6442            0 :                         st.failed_download_count += 1;
    6443              :                     }
    6444            0 :                     Err(je) if je.is_cancelled() => unreachable!("not used here"),
    6445            0 :                     Err(je) if je.is_panic() => {
    6446            0 :                         lock_status!(st);
    6447            0 :                         st.failed_download_count += 1;
    6448              :                     }
    6449            0 :                     Err(je) => tracing::warn!("unknown joinerror: {je:?}"),
    6450              :                 }
    6451              :             }
    6452              : 
    6453            0 :             if js.is_empty() && (!have_remaining || cancel.is_cancelled()) {
    6454            0 :                 break;
    6455            0 :             }
    6456              :         }
    6457              : 
    6458              :         {
    6459            0 :             lock_status!(st);
    6460            0 :             st.state = DownloadRemoteLayersTaskState::Completed;
    6461              :         }
    6462            0 :     }
    6463              : 
    6464            0 :     pub(crate) fn get_download_all_remote_layers_task_info(
    6465            0 :         &self,
    6466            0 :     ) -> Option<DownloadRemoteLayersTaskInfo> {
    6467            0 :         self.download_all_remote_layers_task_info
    6468            0 :             .read()
    6469            0 :             .unwrap()
    6470            0 :             .clone()
    6471            0 :     }
    6472              : }
    6473              : 
    6474              : impl Timeline {
    6475              :     /// Returns non-remote layers for eviction.
    6476            0 :     pub(crate) async fn get_local_layers_for_disk_usage_eviction(&self) -> DiskUsageEvictionInfo {
    6477            0 :         let guard = self.layers.read().await;
    6478            0 :         let mut max_layer_size: Option<u64> = None;
    6479            0 : 
    6480            0 :         let resident_layers = guard
    6481            0 :             .likely_resident_layers()
    6482            0 :             .map(|layer| {
    6483            0 :                 let file_size = layer.layer_desc().file_size;
    6484            0 :                 max_layer_size = max_layer_size.map_or(Some(file_size), |m| Some(m.max(file_size)));
    6485            0 : 
    6486            0 :                 let last_activity_ts = layer.latest_activity();
    6487            0 : 
    6488            0 :                 EvictionCandidate {
    6489            0 :                     layer: layer.to_owned().into(),
    6490            0 :                     last_activity_ts,
    6491            0 :                     relative_last_activity: finite_f32::FiniteF32::ZERO,
    6492            0 :                     visibility: layer.visibility(),
    6493            0 :                 }
    6494            0 :             })
    6495            0 :             .collect();
    6496            0 : 
    6497            0 :         DiskUsageEvictionInfo {
    6498            0 :             max_layer_size,
    6499            0 :             resident_layers,
    6500            0 :         }
    6501            0 :     }
    6502              : 
    6503         3748 :     pub(crate) fn get_shard_index(&self) -> ShardIndex {
    6504         3748 :         ShardIndex {
    6505         3748 :             shard_number: self.tenant_shard_id.shard_number,
    6506         3748 :             shard_count: self.tenant_shard_id.shard_count,
    6507         3748 :         }
    6508         3748 :     }
    6509              : 
    6510              :     /// Persistently blocks gc for `Manual` reason.
    6511              :     ///
    6512              :     /// Returns true if no such block existed before, false otherwise.
    6513            0 :     pub(crate) async fn block_gc(&self, tenant: &super::Tenant) -> anyhow::Result<bool> {
    6514              :         use crate::tenant::remote_timeline_client::index::GcBlockingReason;
    6515            0 :         assert_eq!(self.tenant_shard_id, tenant.tenant_shard_id);
    6516            0 :         tenant.gc_block.insert(self, GcBlockingReason::Manual).await
    6517            0 :     }
    6518              : 
    6519              :     /// Persistently unblocks gc for `Manual` reason.
    6520            0 :     pub(crate) async fn unblock_gc(&self, tenant: &super::Tenant) -> anyhow::Result<()> {
    6521              :         use crate::tenant::remote_timeline_client::index::GcBlockingReason;
    6522            0 :         assert_eq!(self.tenant_shard_id, tenant.tenant_shard_id);
    6523            0 :         tenant.gc_block.remove(self, GcBlockingReason::Manual).await
    6524            0 :     }
    6525              : 
    6526              :     #[cfg(test)]
    6527          100 :     pub(super) fn force_advance_lsn(self: &Arc<Timeline>, new_lsn: Lsn) {
    6528          100 :         self.last_record_lsn.advance(new_lsn);
    6529          100 :     }
    6530              : 
    6531              :     #[cfg(test)]
    6532            4 :     pub(super) fn force_set_disk_consistent_lsn(&self, new_value: Lsn) {
    6533            4 :         self.disk_consistent_lsn.store(new_value);
    6534            4 :     }
    6535              : 
    6536              :     /// Force create an image layer and place it into the layer map.
    6537              :     ///
    6538              :     /// DO NOT use this function directly. Use [`Tenant::branch_timeline_test_with_layers`]
    6539              :     /// or [`Tenant::create_test_timeline_with_layers`] to ensure all these layers are
    6540              :     /// placed into the layer map in one run AND be validated.
    6541              :     #[cfg(test)]
    6542          128 :     pub(super) async fn force_create_image_layer(
    6543          128 :         self: &Arc<Timeline>,
    6544          128 :         lsn: Lsn,
    6545          128 :         mut images: Vec<(Key, Bytes)>,
    6546          128 :         check_start_lsn: Option<Lsn>,
    6547          128 :         ctx: &RequestContext,
    6548          128 :     ) -> anyhow::Result<()> {
    6549          128 :         let last_record_lsn = self.get_last_record_lsn();
    6550          128 :         assert!(
    6551          128 :             lsn <= last_record_lsn,
    6552            0 :             "advance last record lsn before inserting a layer, lsn={lsn}, last_record_lsn={last_record_lsn}"
    6553              :         );
    6554          128 :         if let Some(check_start_lsn) = check_start_lsn {
    6555          128 :             assert!(lsn >= check_start_lsn);
    6556            0 :         }
    6557          380 :         images.sort_unstable_by(|(ka, _), (kb, _)| ka.cmp(kb));
    6558          128 :         let min_key = *images.first().map(|(k, _)| k).unwrap();
    6559          128 :         let end_key = images.last().map(|(k, _)| k).unwrap().next();
    6560          128 :         let mut image_layer_writer = ImageLayerWriter::new(
    6561          128 :             self.conf,
    6562          128 :             self.timeline_id,
    6563          128 :             self.tenant_shard_id,
    6564          128 :             &(min_key..end_key),
    6565          128 :             lsn,
    6566          128 :             ctx,
    6567          128 :         )
    6568          128 :         .await?;
    6569          636 :         for (key, img) in images {
    6570          508 :             image_layer_writer.put_image(key, img, ctx).await?;
    6571              :         }
    6572          128 :         let (desc, path) = image_layer_writer.finish(ctx).await?;
    6573          128 :         let image_layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    6574          128 :         info!("force created image layer {}", image_layer.local_path());
    6575              :         {
    6576          128 :             let mut guard = self.layers.write().await;
    6577          128 :             guard
    6578          128 :                 .open_mut()
    6579          128 :                 .unwrap()
    6580          128 :                 .force_insert_layer(image_layer.clone());
    6581          128 :         }
    6582          128 : 
    6583          128 :         // Update remote_timeline_client state to reflect existence of this layer
    6584          128 :         self.remote_client
    6585          128 :             .schedule_layer_file_upload(image_layer)
    6586          128 :             .unwrap();
    6587          128 : 
    6588          128 :         Ok(())
    6589          128 :     }
    6590              : 
    6591              :     /// Force create a delta layer and place it into the layer map.
    6592              :     ///
    6593              :     /// DO NOT use this function directly. Use [`Tenant::branch_timeline_test_with_layers`]
    6594              :     /// or [`Tenant::create_test_timeline_with_layers`] to ensure all these layers are
    6595              :     /// placed into the layer map in one run AND be validated.
    6596              :     #[cfg(test)]
    6597          184 :     pub(super) async fn force_create_delta_layer(
    6598          184 :         self: &Arc<Timeline>,
    6599          184 :         mut deltas: DeltaLayerTestDesc,
    6600          184 :         check_start_lsn: Option<Lsn>,
    6601          184 :         ctx: &RequestContext,
    6602          184 :     ) -> anyhow::Result<()> {
    6603          184 :         let last_record_lsn = self.get_last_record_lsn();
    6604          184 :         deltas
    6605          184 :             .data
    6606          264 :             .sort_unstable_by(|(ka, la, _), (kb, lb, _)| (ka, la).cmp(&(kb, lb)));
    6607          184 :         assert!(deltas.data.first().unwrap().0 >= deltas.key_range.start);
    6608          184 :         assert!(deltas.data.last().unwrap().0 < deltas.key_range.end);
    6609          632 :         for (_, lsn, _) in &deltas.data {
    6610          448 :             assert!(deltas.lsn_range.start <= *lsn && *lsn < deltas.lsn_range.end);
    6611              :         }
    6612          184 :         assert!(
    6613          184 :             deltas.lsn_range.end <= last_record_lsn,
    6614            0 :             "advance last record lsn before inserting a layer, end_lsn={}, last_record_lsn={}",
    6615              :             deltas.lsn_range.end,
    6616              :             last_record_lsn
    6617              :         );
    6618          184 :         if let Some(check_start_lsn) = check_start_lsn {
    6619          184 :             assert!(deltas.lsn_range.start >= check_start_lsn);
    6620            0 :         }
    6621          184 :         let mut delta_layer_writer = DeltaLayerWriter::new(
    6622          184 :             self.conf,
    6623          184 :             self.timeline_id,
    6624          184 :             self.tenant_shard_id,
    6625          184 :             deltas.key_range.start,
    6626          184 :             deltas.lsn_range,
    6627          184 :             ctx,
    6628          184 :         )
    6629          184 :         .await?;
    6630          632 :         for (key, lsn, val) in deltas.data {
    6631          448 :             delta_layer_writer.put_value(key, lsn, val, ctx).await?;
    6632              :         }
    6633          184 :         let (desc, path) = delta_layer_writer.finish(deltas.key_range.end, ctx).await?;
    6634          184 :         let delta_layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    6635          184 :         info!("force created delta layer {}", delta_layer.local_path());
    6636              :         {
    6637          184 :             let mut guard = self.layers.write().await;
    6638          184 :             guard
    6639          184 :                 .open_mut()
    6640          184 :                 .unwrap()
    6641          184 :                 .force_insert_layer(delta_layer.clone());
    6642          184 :         }
    6643          184 : 
    6644          184 :         // Update remote_timeline_client state to reflect existence of this layer
    6645          184 :         self.remote_client
    6646          184 :             .schedule_layer_file_upload(delta_layer)
    6647          184 :             .unwrap();
    6648          184 : 
    6649          184 :         Ok(())
    6650          184 :     }
    6651              : 
    6652              :     /// Force create an in-memory layer and place them into the layer map.
    6653              :     #[cfg(test)]
    6654            8 :     pub(super) async fn force_create_in_memory_layer(
    6655            8 :         self: &Arc<Timeline>,
    6656            8 :         mut in_memory: InMemoryLayerTestDesc,
    6657            8 :         check_start_lsn: Option<Lsn>,
    6658            8 :         ctx: &RequestContext,
    6659            8 :     ) -> anyhow::Result<()> {
    6660              :         use utils::bin_ser::BeSer;
    6661              : 
    6662              :         // Validate LSNs
    6663            8 :         if let Some(check_start_lsn) = check_start_lsn {
    6664            8 :             assert!(in_memory.lsn_range.start >= check_start_lsn);
    6665            0 :         }
    6666              : 
    6667            8 :         let last_record_lsn = self.get_last_record_lsn();
    6668            8 :         let layer_end_lsn = if in_memory.is_open {
    6669            4 :             in_memory
    6670            4 :                 .data
    6671            4 :                 .iter()
    6672           40 :                 .map(|(_key, lsn, _value)| lsn)
    6673            4 :                 .max()
    6674            4 :                 .cloned()
    6675              :         } else {
    6676            4 :             Some(in_memory.lsn_range.end)
    6677              :         };
    6678              : 
    6679            8 :         if let Some(end) = layer_end_lsn {
    6680            8 :             assert!(
    6681            8 :                 end <= last_record_lsn,
    6682            0 :                 "advance last record lsn before inserting a layer, end_lsn={}, last_record_lsn={}",
    6683              :                 end,
    6684              :                 last_record_lsn,
    6685              :             );
    6686            0 :         }
    6687              : 
    6688           80 :         in_memory.data.iter().for_each(|(_key, lsn, _value)| {
    6689           80 :             assert!(*lsn >= in_memory.lsn_range.start);
    6690           80 :             assert!(*lsn < in_memory.lsn_range.end);
    6691           80 :         });
    6692            8 : 
    6693            8 :         // Build the batch
    6694            8 :         in_memory
    6695            8 :             .data
    6696           72 :             .sort_unstable_by(|(ka, la, _), (kb, lb, _)| (ka, la).cmp(&(kb, lb)));
    6697            8 : 
    6698            8 :         let data = in_memory
    6699            8 :             .data
    6700            8 :             .into_iter()
    6701           80 :             .map(|(key, lsn, value)| {
    6702           80 :                 let value_size = value.serialized_size().unwrap() as usize;
    6703           80 :                 (key.to_compact(), lsn, value_size, value)
    6704           80 :             })
    6705            8 :             .collect::<Vec<_>>();
    6706            8 : 
    6707            8 :         let batch = SerializedValueBatch::from_values(data);
    6708              : 
    6709              :         // Create the in-memory layer and write the batch into it
    6710            8 :         let layer = InMemoryLayer::create(
    6711            8 :             self.conf,
    6712            8 :             self.timeline_id,
    6713            8 :             self.tenant_shard_id,
    6714            8 :             in_memory.lsn_range.start,
    6715            8 :             &self.gate,
    6716            8 :             // TODO: if we ever use this function in production code, we need to pass the real cancellation token
    6717            8 :             &CancellationToken::new(),
    6718            8 :             ctx,
    6719            8 :         )
    6720            8 :         .await
    6721            8 :         .unwrap();
    6722            8 : 
    6723            8 :         layer.put_batch(batch, ctx).await.unwrap();
    6724            8 :         if !in_memory.is_open {
    6725            4 :             layer.freeze(in_memory.lsn_range.end).await;
    6726            4 :         }
    6727              : 
    6728            8 :         info!("force created in-memory layer {:?}", in_memory.lsn_range);
    6729              : 
    6730              :         // Link the layer to the layer map
    6731              :         {
    6732            8 :             let mut guard = self.layers.write().await;
    6733            8 :             let layer_map = guard.open_mut().unwrap();
    6734            8 :             layer_map.force_insert_in_memory_layer(Arc::new(layer));
    6735            8 :         }
    6736            8 : 
    6737            8 :         Ok(())
    6738            8 :     }
    6739              : 
    6740              :     /// Return all keys at the LSN in the image layers
    6741              :     #[cfg(test)]
    6742           12 :     pub(crate) async fn inspect_image_layers(
    6743           12 :         self: &Arc<Timeline>,
    6744           12 :         lsn: Lsn,
    6745           12 :         ctx: &RequestContext,
    6746           12 :         io_concurrency: IoConcurrency,
    6747           12 :     ) -> anyhow::Result<Vec<(Key, Bytes)>> {
    6748           12 :         let mut all_data = Vec::new();
    6749           12 :         let guard = self.layers.read().await;
    6750           68 :         for layer in guard.layer_map()?.iter_historic_layers() {
    6751           68 :             if !layer.is_delta() && layer.image_layer_lsn() == lsn {
    6752           16 :                 let layer = guard.get_from_desc(&layer);
    6753           16 :                 let mut reconstruct_data = ValuesReconstructState::new(io_concurrency.clone());
    6754           16 :                 layer
    6755           16 :                     .get_values_reconstruct_data(
    6756           16 :                         KeySpace::single(Key::MIN..Key::MAX),
    6757           16 :                         lsn..Lsn(lsn.0 + 1),
    6758           16 :                         &mut reconstruct_data,
    6759           16 :                         ctx,
    6760           16 :                     )
    6761           16 :                     .await?;
    6762          132 :                 for (k, v) in std::mem::take(&mut reconstruct_data.keys) {
    6763          132 :                     let v = v.collect_pending_ios().await?;
    6764          132 :                     all_data.push((k, v.img.unwrap().1));
    6765              :                 }
    6766           52 :             }
    6767              :         }
    6768           12 :         all_data.sort();
    6769           12 :         Ok(all_data)
    6770           12 :     }
    6771              : 
    6772              :     /// Get all historic layer descriptors in the layer map
    6773              :     #[cfg(test)]
    6774           48 :     pub(crate) async fn inspect_historic_layers(
    6775           48 :         self: &Arc<Timeline>,
    6776           48 :     ) -> anyhow::Result<Vec<super::storage_layer::PersistentLayerKey>> {
    6777           48 :         let mut layers = Vec::new();
    6778           48 :         let guard = self.layers.read().await;
    6779          228 :         for layer in guard.layer_map()?.iter_historic_layers() {
    6780          228 :             layers.push(layer.key());
    6781          228 :         }
    6782           48 :         Ok(layers)
    6783           48 :     }
    6784              : 
    6785              :     #[cfg(test)]
    6786           20 :     pub(crate) fn add_extra_test_dense_keyspace(&self, ks: KeySpace) {
    6787           20 :         let mut keyspace = self.extra_test_dense_keyspace.load().as_ref().clone();
    6788           20 :         keyspace.merge(&ks);
    6789           20 :         self.extra_test_dense_keyspace.store(Arc::new(keyspace));
    6790           20 :     }
    6791              : }
    6792              : 
    6793              : /// Tracking writes ingestion does to a particular in-memory layer.
    6794              : ///
    6795              : /// Cleared upon freezing a layer.
    6796              : pub(crate) struct TimelineWriterState {
    6797              :     open_layer: Arc<InMemoryLayer>,
    6798              :     current_size: u64,
    6799              :     // Previous Lsn which passed through
    6800              :     prev_lsn: Option<Lsn>,
    6801              :     // Largest Lsn which passed through the current writer
    6802              :     max_lsn: Option<Lsn>,
    6803              :     // Cached details of the last freeze. Avoids going trough the atomic/lock on every put.
    6804              :     cached_last_freeze_at: Lsn,
    6805              : }
    6806              : 
    6807              : impl TimelineWriterState {
    6808         2604 :     fn new(open_layer: Arc<InMemoryLayer>, current_size: u64, last_freeze_at: Lsn) -> Self {
    6809         2604 :         Self {
    6810         2604 :             open_layer,
    6811         2604 :             current_size,
    6812         2604 :             prev_lsn: None,
    6813         2604 :             max_lsn: None,
    6814         2604 :             cached_last_freeze_at: last_freeze_at,
    6815         2604 :         }
    6816         2604 :     }
    6817              : }
    6818              : 
    6819              : /// Various functions to mutate the timeline.
    6820              : // TODO Currently, Deref is used to allow easy access to read methods from this trait.
    6821              : // This is probably considered a bad practice in Rust and should be fixed eventually,
    6822              : // but will cause large code changes.
    6823              : pub(crate) struct TimelineWriter<'a> {
    6824              :     tl: &'a Timeline,
    6825              :     write_guard: tokio::sync::MutexGuard<'a, Option<TimelineWriterState>>,
    6826              : }
    6827              : 
    6828              : impl Deref for TimelineWriter<'_> {
    6829              :     type Target = Timeline;
    6830              : 
    6831     19796508 :     fn deref(&self) -> &Self::Target {
    6832     19796508 :         self.tl
    6833     19796508 :     }
    6834              : }
    6835              : 
    6836              : #[derive(PartialEq)]
    6837              : enum OpenLayerAction {
    6838              :     Roll,
    6839              :     Open,
    6840              :     None,
    6841              : }
    6842              : 
    6843              : impl TimelineWriter<'_> {
    6844      9608476 :     async fn handle_open_layer_action(
    6845      9608476 :         &mut self,
    6846      9608476 :         at: Lsn,
    6847      9608476 :         action: OpenLayerAction,
    6848      9608476 :         ctx: &RequestContext,
    6849      9608476 :     ) -> anyhow::Result<&Arc<InMemoryLayer>> {
    6850      9608476 :         match action {
    6851              :             OpenLayerAction::Roll => {
    6852          160 :                 let freeze_at = self.write_guard.as_ref().unwrap().max_lsn.unwrap();
    6853          160 :                 self.roll_layer(freeze_at).await?;
    6854          160 :                 self.open_layer(at, ctx).await?;
    6855              :             }
    6856         2444 :             OpenLayerAction::Open => self.open_layer(at, ctx).await?,
    6857              :             OpenLayerAction::None => {
    6858      9605872 :                 assert!(self.write_guard.is_some());
    6859              :             }
    6860              :         }
    6861              : 
    6862      9608476 :         Ok(&self.write_guard.as_ref().unwrap().open_layer)
    6863      9608476 :     }
    6864              : 
    6865         2604 :     async fn open_layer(&mut self, at: Lsn, ctx: &RequestContext) -> anyhow::Result<()> {
    6866         2604 :         let layer = self
    6867         2604 :             .tl
    6868         2604 :             .get_layer_for_write(at, &self.write_guard, ctx)
    6869         2604 :             .await?;
    6870         2604 :         let initial_size = layer.size().await?;
    6871              : 
    6872         2604 :         let last_freeze_at = self.last_freeze_at.load();
    6873         2604 :         self.write_guard.replace(TimelineWriterState::new(
    6874         2604 :             layer,
    6875         2604 :             initial_size,
    6876         2604 :             last_freeze_at,
    6877         2604 :         ));
    6878         2604 : 
    6879         2604 :         Ok(())
    6880         2604 :     }
    6881              : 
    6882          160 :     async fn roll_layer(&mut self, freeze_at: Lsn) -> Result<(), FlushLayerError> {
    6883          160 :         let current_size = self.write_guard.as_ref().unwrap().current_size;
    6884              : 
    6885              :         // If layer flushes are backpressured due to compaction not keeping up, wait for the flush
    6886              :         // to propagate the backpressure up into WAL ingestion.
    6887          160 :         let l0_count = self
    6888          160 :             .tl
    6889          160 :             .layers
    6890          160 :             .read()
    6891          160 :             .await
    6892          160 :             .layer_map()?
    6893          160 :             .level0_deltas()
    6894          160 :             .len();
    6895          160 :         let wait_thresholds = [
    6896          160 :             self.get_l0_flush_delay_threshold(),
    6897          160 :             self.get_l0_flush_stall_threshold(),
    6898          160 :         ];
    6899          160 :         let wait_threshold = wait_thresholds.into_iter().flatten().min();
    6900              : 
    6901              :         // self.write_guard will be taken by the freezing
    6902          160 :         let flush_id = self
    6903          160 :             .tl
    6904          160 :             .freeze_inmem_layer_at(freeze_at, &mut self.write_guard)
    6905          160 :             .await?;
    6906              : 
    6907          160 :         assert!(self.write_guard.is_none());
    6908              : 
    6909          160 :         if let Some(wait_threshold) = wait_threshold {
    6910            0 :             if l0_count >= wait_threshold {
    6911            0 :                 debug!(
    6912            0 :                     "layer roll waiting for flush due to compaction backpressure at {l0_count} L0 layers"
    6913              :                 );
    6914            0 :                 self.tl.wait_flush_completion(flush_id).await?;
    6915            0 :             }
    6916          160 :         }
    6917              : 
    6918          160 :         if current_size >= self.get_checkpoint_distance() * 2 {
    6919            0 :             warn!("Flushed oversized open layer with size {}", current_size)
    6920          160 :         }
    6921              : 
    6922          160 :         Ok(())
    6923          160 :     }
    6924              : 
    6925      9608476 :     fn get_open_layer_action(&self, lsn: Lsn, new_value_size: u64) -> OpenLayerAction {
    6926      9608476 :         let state = &*self.write_guard;
    6927      9608476 :         let Some(state) = &state else {
    6928         2444 :             return OpenLayerAction::Open;
    6929              :         };
    6930              : 
    6931              :         #[cfg(feature = "testing")]
    6932      9606032 :         if state.cached_last_freeze_at < self.tl.last_freeze_at.load() {
    6933              :             // this check and assertion are not really needed because
    6934              :             // LayerManager::try_freeze_in_memory_layer will always clear out the
    6935              :             // TimelineWriterState if something is frozen. however, we can advance last_freeze_at when there
    6936              :             // is no TimelineWriterState.
    6937            0 :             assert!(
    6938            0 :                 state.open_layer.end_lsn.get().is_some(),
    6939            0 :                 "our open_layer must be outdated"
    6940              :             );
    6941              : 
    6942              :             // this would be a memory leak waiting to happen because the in-memory layer always has
    6943              :             // an index
    6944            0 :             panic!("BUG: TimelineWriterState held on to frozen in-memory layer.");
    6945      9606032 :         }
    6946      9606032 : 
    6947      9606032 :         if state.prev_lsn == Some(lsn) {
    6948              :             // Rolling mid LSN is not supported by [downstream code].
    6949              :             // Hence, only roll at LSN boundaries.
    6950              :             //
    6951              :             // [downstream code]: https://github.com/neondatabase/neon/pull/7993#discussion_r1633345422
    6952           12 :             return OpenLayerAction::None;
    6953      9606020 :         }
    6954      9606020 : 
    6955      9606020 :         if state.current_size == 0 {
    6956              :             // Don't roll empty layers
    6957            0 :             return OpenLayerAction::None;
    6958      9606020 :         }
    6959      9606020 : 
    6960      9606020 :         if self.tl.should_roll(
    6961      9606020 :             state.current_size,
    6962      9606020 :             state.current_size + new_value_size,
    6963      9606020 :             self.get_checkpoint_distance(),
    6964      9606020 :             lsn,
    6965      9606020 :             state.cached_last_freeze_at,
    6966      9606020 :             state.open_layer.get_opened_at(),
    6967      9606020 :         ) {
    6968          160 :             OpenLayerAction::Roll
    6969              :         } else {
    6970      9605860 :             OpenLayerAction::None
    6971              :         }
    6972      9608476 :     }
    6973              : 
    6974              :     /// Put a batch of keys at the specified Lsns.
    6975      9608472 :     pub(crate) async fn put_batch(
    6976      9608472 :         &mut self,
    6977      9608472 :         batch: SerializedValueBatch,
    6978      9608472 :         ctx: &RequestContext,
    6979      9608472 :     ) -> anyhow::Result<()> {
    6980      9608472 :         if !batch.has_data() {
    6981            0 :             return Ok(());
    6982      9608472 :         }
    6983      9608472 : 
    6984      9608472 :         // In debug builds, assert that we don't write any keys that don't belong to this shard.
    6985      9608472 :         // We don't assert this in release builds, since key ownership policies may change over
    6986      9608472 :         // time. Stray keys will be removed during compaction.
    6987      9608472 :         if cfg!(debug_assertions) {
    6988     19789888 :             for metadata in &batch.metadata {
    6989     10181416 :                 if let ValueMeta::Serialized(metadata) = metadata {
    6990     10181416 :                     let key = Key::from_compact(metadata.key);
    6991     10181416 :                     assert!(
    6992     10181416 :                         self.shard_identity.is_key_local(&key)
    6993            0 :                             || self.shard_identity.is_key_global(&key),
    6994            0 :                         "key {key} does not belong on shard {}",
    6995            0 :                         self.shard_identity.shard_index()
    6996              :                     );
    6997            0 :                 }
    6998              :             }
    6999            0 :         }
    7000              : 
    7001      9608472 :         let batch_max_lsn = batch.max_lsn;
    7002      9608472 :         let buf_size: u64 = batch.buffer_size() as u64;
    7003      9608472 : 
    7004      9608472 :         let action = self.get_open_layer_action(batch_max_lsn, buf_size);
    7005      9608472 :         let layer = self
    7006      9608472 :             .handle_open_layer_action(batch_max_lsn, action, ctx)
    7007      9608472 :             .await?;
    7008              : 
    7009      9608472 :         let res = layer.put_batch(batch, ctx).await;
    7010              : 
    7011      9608472 :         if res.is_ok() {
    7012      9608472 :             // Update the current size only when the entire write was ok.
    7013      9608472 :             // In case of failures, we may have had partial writes which
    7014      9608472 :             // render the size tracking out of sync. That's ok because
    7015      9608472 :             // the checkpoint distance should be significantly smaller
    7016      9608472 :             // than the S3 single shot upload limit of 5GiB.
    7017      9608472 :             let state = self.write_guard.as_mut().unwrap();
    7018      9608472 : 
    7019      9608472 :             state.current_size += buf_size;
    7020      9608472 :             state.prev_lsn = Some(batch_max_lsn);
    7021      9608472 :             state.max_lsn = std::cmp::max(state.max_lsn, Some(batch_max_lsn));
    7022      9608472 :         }
    7023              : 
    7024      9608472 :         res
    7025      9608472 :     }
    7026              : 
    7027              :     #[cfg(test)]
    7028              :     /// Test helper, for tests that would like to poke individual values without composing a batch
    7029      8780308 :     pub(crate) async fn put(
    7030      8780308 :         &mut self,
    7031      8780308 :         key: Key,
    7032      8780308 :         lsn: Lsn,
    7033      8780308 :         value: &Value,
    7034      8780308 :         ctx: &RequestContext,
    7035      8780308 :     ) -> anyhow::Result<()> {
    7036              :         use utils::bin_ser::BeSer;
    7037      8780308 :         if !key.is_valid_key_on_write_path() {
    7038            0 :             bail!(
    7039            0 :                 "the request contains data not supported by pageserver at TimelineWriter::put: {}",
    7040            0 :                 key
    7041            0 :             );
    7042      8780308 :         }
    7043      8780308 :         let val_ser_size = value.serialized_size().unwrap() as usize;
    7044      8780308 :         let batch = SerializedValueBatch::from_values(vec![(
    7045      8780308 :             key.to_compact(),
    7046      8780308 :             lsn,
    7047      8780308 :             val_ser_size,
    7048      8780308 :             value.clone(),
    7049      8780308 :         )]);
    7050      8780308 : 
    7051      8780308 :         self.put_batch(batch, ctx).await
    7052      8780308 :     }
    7053              : 
    7054            4 :     pub(crate) async fn delete_batch(
    7055            4 :         &mut self,
    7056            4 :         batch: &[(Range<Key>, Lsn)],
    7057            4 :         ctx: &RequestContext,
    7058            4 :     ) -> anyhow::Result<()> {
    7059            4 :         if let Some((_, lsn)) = batch.first() {
    7060            4 :             let action = self.get_open_layer_action(*lsn, 0);
    7061            4 :             let layer = self.handle_open_layer_action(*lsn, action, ctx).await?;
    7062            4 :             layer.put_tombstones(batch).await?;
    7063            0 :         }
    7064              : 
    7065            4 :         Ok(())
    7066            4 :     }
    7067              : 
    7068              :     /// Track the end of the latest digested WAL record.
    7069              :     /// Remember the (end of) last valid WAL record remembered in the timeline.
    7070              :     ///
    7071              :     /// Call this after you have finished writing all the WAL up to 'lsn'.
    7072              :     ///
    7073              :     /// 'lsn' must be aligned. This wakes up any wait_lsn() callers waiting for
    7074              :     /// the 'lsn' or anything older. The previous last record LSN is stored alongside
    7075              :     /// the latest and can be read.
    7076     10558196 :     pub(crate) fn finish_write(&self, new_lsn: Lsn) {
    7077     10558196 :         self.tl.finish_write(new_lsn);
    7078     10558196 :     }
    7079              : 
    7080       541140 :     pub(crate) fn update_current_logical_size(&self, delta: i64) {
    7081       541140 :         self.tl.update_current_logical_size(delta)
    7082       541140 :     }
    7083              : }
    7084              : 
    7085              : // We need TimelineWriter to be send in upcoming conversion of
    7086              : // Timeline::layers to tokio::sync::RwLock.
    7087              : #[test]
    7088            4 : fn is_send() {
    7089            4 :     fn _assert_send<T: Send>() {}
    7090            4 :     _assert_send::<TimelineWriter<'_>>();
    7091            4 : }
    7092              : 
    7093              : #[cfg(test)]
    7094              : mod tests {
    7095              :     use std::sync::Arc;
    7096              : 
    7097              :     use pageserver_api::key::Key;
    7098              :     use pageserver_api::value::Value;
    7099              :     use std::iter::Iterator;
    7100              :     use tracing::Instrument;
    7101              :     use utils::id::TimelineId;
    7102              :     use utils::lsn::Lsn;
    7103              : 
    7104              :     use super::HeatMapTimeline;
    7105              :     use crate::context::RequestContextBuilder;
    7106              :     use crate::tenant::harness::{TenantHarness, test_img};
    7107              :     use crate::tenant::layer_map::LayerMap;
    7108              :     use crate::tenant::storage_layer::{Layer, LayerName, LayerVisibilityHint};
    7109              :     use crate::tenant::timeline::{DeltaLayerTestDesc, EvictionError};
    7110              :     use crate::tenant::{PreviousHeatmap, Timeline};
    7111              : 
    7112           20 :     fn assert_heatmaps_have_same_layers(lhs: &HeatMapTimeline, rhs: &HeatMapTimeline) {
    7113           20 :         assert_eq!(lhs.all_layers().count(), rhs.all_layers().count());
    7114           20 :         let lhs_rhs = lhs.all_layers().zip(rhs.all_layers());
    7115          100 :         for (l, r) in lhs_rhs {
    7116           80 :             assert_eq!(l.name, r.name);
    7117           80 :             assert_eq!(l.metadata, r.metadata);
    7118              :         }
    7119           20 :     }
    7120              : 
    7121              :     #[tokio::test]
    7122            4 :     async fn test_heatmap_generation() {
    7123            4 :         let harness = TenantHarness::create("heatmap_generation").await.unwrap();
    7124            4 : 
    7125            4 :         let covered_delta = DeltaLayerTestDesc::new_with_inferred_key_range(
    7126            4 :             Lsn(0x10)..Lsn(0x20),
    7127            4 :             vec![(
    7128            4 :                 Key::from_hex("620000000033333333444444445500000000").unwrap(),
    7129            4 :                 Lsn(0x11),
    7130            4 :                 Value::Image(test_img("foo")),
    7131            4 :             )],
    7132            4 :         );
    7133            4 :         let visible_delta = DeltaLayerTestDesc::new_with_inferred_key_range(
    7134            4 :             Lsn(0x10)..Lsn(0x20),
    7135            4 :             vec![(
    7136            4 :                 Key::from_hex("720000000033333333444444445500000000").unwrap(),
    7137            4 :                 Lsn(0x11),
    7138            4 :                 Value::Image(test_img("foo")),
    7139            4 :             )],
    7140            4 :         );
    7141            4 :         let l0_delta = DeltaLayerTestDesc::new(
    7142            4 :             Lsn(0x20)..Lsn(0x30),
    7143            4 :             Key::from_hex("000000000000000000000000000000000000").unwrap()
    7144            4 :                 ..Key::from_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF").unwrap(),
    7145            4 :             vec![(
    7146            4 :                 Key::from_hex("720000000033333333444444445500000000").unwrap(),
    7147            4 :                 Lsn(0x25),
    7148            4 :                 Value::Image(test_img("foo")),
    7149            4 :             )],
    7150            4 :         );
    7151            4 :         let delta_layers = vec![
    7152            4 :             covered_delta.clone(),
    7153            4 :             visible_delta.clone(),
    7154            4 :             l0_delta.clone(),
    7155            4 :         ];
    7156            4 : 
    7157            4 :         let image_layer = (
    7158            4 :             Lsn(0x40),
    7159            4 :             vec![(
    7160            4 :                 Key::from_hex("620000000033333333444444445500000000").unwrap(),
    7161            4 :                 test_img("bar"),
    7162            4 :             )],
    7163            4 :         );
    7164            4 :         let image_layers = vec![image_layer];
    7165            4 : 
    7166            4 :         let (tenant, ctx) = harness.load().await;
    7167            4 :         let timeline = tenant
    7168            4 :             .create_test_timeline_with_layers(
    7169            4 :                 TimelineId::generate(),
    7170            4 :                 Lsn(0x10),
    7171            4 :                 14,
    7172            4 :                 &ctx,
    7173            4 :                 Vec::new(), // in-memory layers
    7174            4 :                 delta_layers,
    7175            4 :                 image_layers,
    7176            4 :                 Lsn(0x100),
    7177            4 :             )
    7178            4 :             .await
    7179            4 :             .unwrap();
    7180            4 :         let ctx = &ctx.with_scope_timeline(&timeline);
    7181            4 : 
    7182            4 :         // Layer visibility is an input to heatmap generation, so refresh it first
    7183            4 :         timeline.update_layer_visibility().await.unwrap();
    7184            4 : 
    7185            4 :         let heatmap = timeline
    7186            4 :             .generate_heatmap()
    7187            4 :             .await
    7188            4 :             .expect("Infallible while timeline is not shut down");
    7189            4 : 
    7190            4 :         assert_eq!(heatmap.timeline_id, timeline.timeline_id);
    7191            4 : 
    7192            4 :         // L0 should come last
    7193            4 :         let heatmap_layers = heatmap.all_layers().collect::<Vec<_>>();
    7194            4 :         assert_eq!(heatmap_layers.last().unwrap().name, l0_delta.layer_name());
    7195            4 : 
    7196            4 :         let mut last_lsn = Lsn::MAX;
    7197           20 :         for layer in heatmap_layers {
    7198            4 :             // Covered layer should be omitted
    7199           16 :             assert!(layer.name != covered_delta.layer_name());
    7200            4 : 
    7201           16 :             let layer_lsn = match &layer.name {
    7202            8 :                 LayerName::Delta(d) => d.lsn_range.end,
    7203            8 :                 LayerName::Image(i) => i.lsn,
    7204            4 :             };
    7205            4 : 
    7206            4 :             // Apart from L0s, newest Layers should come first
    7207           16 :             if !LayerMap::is_l0(layer.name.key_range(), layer.name.is_delta()) {
    7208           12 :                 assert!(layer_lsn <= last_lsn);
    7209           12 :                 last_lsn = layer_lsn;
    7210            4 :             }
    7211            4 :         }
    7212            4 : 
    7213            4 :         // Evict all the layers and stash the old heatmap in the timeline.
    7214            4 :         // This simulates a migration to a cold secondary location.
    7215            4 : 
    7216            4 :         let guard = timeline.layers.read().await;
    7217            4 :         let mut all_layers = Vec::new();
    7218            4 :         let forever = std::time::Duration::from_secs(120);
    7219           20 :         for layer in guard.likely_resident_layers() {
    7220           20 :             all_layers.push(layer.clone());
    7221           20 :             layer.evict_and_wait(forever).await.unwrap();
    7222            4 :         }
    7223            4 :         drop(guard);
    7224            4 : 
    7225            4 :         timeline
    7226            4 :             .previous_heatmap
    7227            4 :             .store(Some(Arc::new(PreviousHeatmap::Active {
    7228            4 :                 heatmap: heatmap.clone(),
    7229            4 :                 read_at: std::time::Instant::now(),
    7230            4 :                 end_lsn: None,
    7231            4 :             })));
    7232            4 : 
    7233            4 :         // Generate a new heatmap and assert that it contains the same layers as the old one.
    7234            4 :         let post_migration_heatmap = timeline.generate_heatmap().await.unwrap();
    7235            4 :         assert_heatmaps_have_same_layers(&heatmap, &post_migration_heatmap);
    7236            4 : 
    7237            4 :         // Download each layer one by one. Generate the heatmap at each step and check
    7238            4 :         // that it's stable.
    7239           24 :         for layer in all_layers {
    7240           20 :             if layer.visibility() == LayerVisibilityHint::Covered {
    7241            4 :                 continue;
    7242           16 :             }
    7243           16 : 
    7244           16 :             eprintln!("Downloading {layer} and re-generating heatmap");
    7245           16 : 
    7246           16 :             let ctx = &RequestContextBuilder::extend(ctx)
    7247           16 :                 .download_behavior(crate::context::DownloadBehavior::Download)
    7248           16 :                 .build();
    7249            4 : 
    7250           16 :             let _resident = layer
    7251           16 :                 .download_and_keep_resident(ctx)
    7252           16 :                 .instrument(tracing::info_span!(
    7253           16 :                     parent: None,
    7254            4 :                     "download_layer",
    7255            4 :                     tenant_id = %timeline.tenant_shard_id.tenant_id,
    7256            0 :                     shard_id = %timeline.tenant_shard_id.shard_slug(),
    7257            0 :                     timeline_id = %timeline.timeline_id
    7258            4 :                 ))
    7259           16 :                 .await
    7260           16 :                 .unwrap();
    7261            4 : 
    7262           16 :             let post_download_heatmap = timeline.generate_heatmap().await.unwrap();
    7263           16 :             assert_heatmaps_have_same_layers(&heatmap, &post_download_heatmap);
    7264            4 :         }
    7265            4 : 
    7266            4 :         // Everything from the post-migration heatmap is now resident.
    7267            4 :         // Check that we drop it from memory.
    7268            4 :         assert!(matches!(
    7269            4 :             timeline.previous_heatmap.load().as_deref(),
    7270            4 :             Some(PreviousHeatmap::Obsolete)
    7271            4 :         ));
    7272            4 :     }
    7273              : 
    7274              :     #[tokio::test]
    7275            4 :     async fn test_previous_heatmap_obsoletion() {
    7276            4 :         let harness = TenantHarness::create("heatmap_previous_heatmap_obsoletion")
    7277            4 :             .await
    7278            4 :             .unwrap();
    7279            4 : 
    7280            4 :         let l0_delta = DeltaLayerTestDesc::new(
    7281            4 :             Lsn(0x20)..Lsn(0x30),
    7282            4 :             Key::from_hex("000000000000000000000000000000000000").unwrap()
    7283            4 :                 ..Key::from_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF").unwrap(),
    7284            4 :             vec![(
    7285            4 :                 Key::from_hex("720000000033333333444444445500000000").unwrap(),
    7286            4 :                 Lsn(0x25),
    7287            4 :                 Value::Image(test_img("foo")),
    7288            4 :             )],
    7289            4 :         );
    7290            4 : 
    7291            4 :         let image_layer = (
    7292            4 :             Lsn(0x40),
    7293            4 :             vec![(
    7294            4 :                 Key::from_hex("620000000033333333444444445500000000").unwrap(),
    7295            4 :                 test_img("bar"),
    7296            4 :             )],
    7297            4 :         );
    7298            4 : 
    7299            4 :         let delta_layers = vec![l0_delta];
    7300            4 :         let image_layers = vec![image_layer];
    7301            4 : 
    7302            4 :         let (tenant, ctx) = harness.load().await;
    7303            4 :         let timeline = tenant
    7304            4 :             .create_test_timeline_with_layers(
    7305            4 :                 TimelineId::generate(),
    7306            4 :                 Lsn(0x10),
    7307            4 :                 14,
    7308            4 :                 &ctx,
    7309            4 :                 Vec::new(), // in-memory layers
    7310            4 :                 delta_layers,
    7311            4 :                 image_layers,
    7312            4 :                 Lsn(0x100),
    7313            4 :             )
    7314            4 :             .await
    7315            4 :             .unwrap();
    7316            4 : 
    7317            4 :         // Layer visibility is an input to heatmap generation, so refresh it first
    7318            4 :         timeline.update_layer_visibility().await.unwrap();
    7319            4 : 
    7320            4 :         let heatmap = timeline
    7321            4 :             .generate_heatmap()
    7322            4 :             .await
    7323            4 :             .expect("Infallible while timeline is not shut down");
    7324            4 : 
    7325            4 :         // Both layers should be in the heatmap
    7326            4 :         assert!(heatmap.all_layers().count() > 0);
    7327            4 : 
    7328            4 :         // Now simulate a migration.
    7329            4 :         timeline
    7330            4 :             .previous_heatmap
    7331            4 :             .store(Some(Arc::new(PreviousHeatmap::Active {
    7332            4 :                 heatmap: heatmap.clone(),
    7333            4 :                 read_at: std::time::Instant::now(),
    7334            4 :                 end_lsn: None,
    7335            4 :             })));
    7336            4 : 
    7337            4 :         // Evict all the layers in the previous heatmap
    7338            4 :         let guard = timeline.layers.read().await;
    7339            4 :         let forever = std::time::Duration::from_secs(120);
    7340           12 :         for layer in guard.likely_resident_layers() {
    7341           12 :             layer.evict_and_wait(forever).await.unwrap();
    7342            4 :         }
    7343            4 :         drop(guard);
    7344            4 : 
    7345            4 :         // Generate a new heatmap and check that the previous heatmap
    7346            4 :         // has been marked obsolete.
    7347            4 :         let post_eviction_heatmap = timeline
    7348            4 :             .generate_heatmap()
    7349            4 :             .await
    7350            4 :             .expect("Infallible while timeline is not shut down");
    7351            4 : 
    7352            4 :         assert_eq!(post_eviction_heatmap.all_layers().count(), 0);
    7353            4 :         assert!(matches!(
    7354            4 :             timeline.previous_heatmap.load().as_deref(),
    7355            4 :             Some(PreviousHeatmap::Obsolete)
    7356            4 :         ));
    7357            4 :     }
    7358              : 
    7359              :     #[tokio::test]
    7360            4 :     async fn two_layer_eviction_attempts_at_the_same_time() {
    7361            4 :         let harness = TenantHarness::create("two_layer_eviction_attempts_at_the_same_time")
    7362            4 :             .await
    7363            4 :             .unwrap();
    7364            4 : 
    7365            4 :         let (tenant, ctx) = harness.load().await;
    7366            4 :         let timeline = tenant
    7367            4 :             .create_test_timeline(TimelineId::generate(), Lsn(0x10), 14, &ctx)
    7368            4 :             .await
    7369            4 :             .unwrap();
    7370            4 : 
    7371            4 :         let layer = find_some_layer(&timeline).await;
    7372            4 :         let layer = layer
    7373            4 :             .keep_resident()
    7374            4 :             .await
    7375            4 :             .expect("no download => no downloading errors")
    7376            4 :             .drop_eviction_guard();
    7377            4 : 
    7378            4 :         let forever = std::time::Duration::from_secs(120);
    7379            4 : 
    7380            4 :         let first = layer.evict_and_wait(forever);
    7381            4 :         let second = layer.evict_and_wait(forever);
    7382            4 : 
    7383            4 :         let (first, second) = tokio::join!(first, second);
    7384            4 : 
    7385            4 :         let res = layer.keep_resident().await;
    7386            4 :         assert!(res.is_none(), "{res:?}");
    7387            4 : 
    7388            4 :         match (first, second) {
    7389            4 :             (Ok(()), Ok(())) => {
    7390            4 :                 // because there are no more timeline locks being taken on eviction path, we can
    7391            4 :                 // witness all three outcomes here.
    7392            4 :             }
    7393            4 :             (Ok(()), Err(EvictionError::NotFound)) | (Err(EvictionError::NotFound), Ok(())) => {
    7394            0 :                 // if one completes before the other, this is fine just as well.
    7395            0 :             }
    7396            4 :             other => unreachable!("unexpected {:?}", other),
    7397            4 :         }
    7398            4 :     }
    7399              : 
    7400            4 :     async fn find_some_layer(timeline: &Timeline) -> Layer {
    7401            4 :         let layers = timeline.layers.read().await;
    7402            4 :         let desc = layers
    7403            4 :             .layer_map()
    7404            4 :             .unwrap()
    7405            4 :             .iter_historic_layers()
    7406            4 :             .next()
    7407            4 :             .expect("must find one layer to evict");
    7408            4 : 
    7409            4 :         layers.get_from_desc(&desc)
    7410            4 :     }
    7411              : }
        

Generated by: LCOV version 2.1-beta