Line data Source code
1 : //! New compaction implementation. The algorithm itself is implemented in the
2 : //! compaction crate. This file implements the callbacks and structs that allow
3 : //! the algorithm to drive the process.
4 : //!
5 : //! The old legacy algorithm is implemented directly in `timeline.rs`.
6 :
7 : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
8 : use std::ops::{Deref, Range};
9 : use std::sync::Arc;
10 : use std::time::{Duration, Instant};
11 :
12 : use super::layer_manager::LayerManager;
13 : use super::{
14 : CompactFlags, CompactOptions, CompactionError, CreateImageLayersError, DurationRecorder,
15 : GetVectoredError, ImageLayerCreationMode, LastImageLayerCreationStatus, RecordedDuration,
16 : Timeline,
17 : };
18 :
19 : use crate::tenant::timeline::DeltaEntry;
20 : use crate::walredo::RedoAttemptType;
21 : use anyhow::{Context, anyhow};
22 : use bytes::Bytes;
23 : use enumset::EnumSet;
24 : use fail::fail_point;
25 : use futures::FutureExt;
26 : use itertools::Itertools;
27 : use once_cell::sync::Lazy;
28 : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
29 : use pageserver_api::key::{KEY_SIZE, Key};
30 : use pageserver_api::keyspace::{KeySpace, ShardedRange};
31 : use pageserver_api::models::{CompactInfoResponse, CompactKeyRange};
32 : use pageserver_api::record::NeonWalRecord;
33 : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
34 : use pageserver_api::value::Value;
35 : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
36 : use pageserver_compaction::interface::*;
37 : use serde::Serialize;
38 : use tokio::sync::{OwnedSemaphorePermit, Semaphore};
39 : use tokio_util::sync::CancellationToken;
40 : use tracing::{Instrument, debug, error, info, info_span, trace, warn};
41 : use utils::critical;
42 : use utils::id::TimelineId;
43 : use utils::lsn::Lsn;
44 :
45 : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
46 : use crate::page_cache;
47 : use crate::statvfs::Statvfs;
48 : use crate::tenant::checks::check_valid_layermap;
49 : use crate::tenant::gc_block::GcBlock;
50 : use crate::tenant::layer_map::LayerMap;
51 : use crate::tenant::remote_timeline_client::WaitCompletionError;
52 : use crate::tenant::remote_timeline_client::index::GcCompactionState;
53 : use crate::tenant::storage_layer::batch_split_writer::{
54 : BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
55 : };
56 : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
57 : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
58 : use crate::tenant::storage_layer::{
59 : AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
60 : };
61 : use crate::tenant::tasks::log_compaction_error;
62 : use crate::tenant::timeline::{
63 : DeltaLayerWriter, ImageLayerCreationOutcome, ImageLayerWriter, IoConcurrency, Layer,
64 : ResidentLayer, drop_rlock,
65 : };
66 : use crate::tenant::{DeltaLayer, MaybeOffloaded};
67 : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
68 :
69 : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
70 : const COMPACTION_DELTA_THRESHOLD: usize = 5;
71 :
72 : #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
73 : pub struct GcCompactionJobId(pub usize);
74 :
75 : impl std::fmt::Display for GcCompactionJobId {
76 0 : fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
77 0 : write!(f, "{}", self.0)
78 0 : }
79 : }
80 :
81 : pub struct GcCompactionCombinedSettings {
82 : pub gc_compaction_enabled: bool,
83 : pub gc_compaction_verification: bool,
84 : pub gc_compaction_initial_threshold_kb: u64,
85 : pub gc_compaction_ratio_percent: u64,
86 : }
87 :
88 : #[derive(Debug, Clone)]
89 : pub enum GcCompactionQueueItem {
90 : MetaJob {
91 : /// Compaction options
92 : options: CompactOptions,
93 : /// Whether the compaction is triggered automatically (determines whether we need to update L2 LSN)
94 : auto: bool,
95 : },
96 : SubCompactionJob(CompactOptions),
97 : Notify(GcCompactionJobId, Option<Lsn>),
98 : }
99 :
100 : impl GcCompactionQueueItem {
101 0 : pub fn into_compact_info_resp(
102 0 : self,
103 0 : id: GcCompactionJobId,
104 0 : running: bool,
105 0 : ) -> Option<CompactInfoResponse> {
106 0 : match self {
107 0 : GcCompactionQueueItem::MetaJob { options, .. } => Some(CompactInfoResponse {
108 0 : compact_key_range: options.compact_key_range,
109 0 : compact_lsn_range: options.compact_lsn_range,
110 0 : sub_compaction: options.sub_compaction,
111 0 : running,
112 0 : job_id: id.0,
113 0 : }),
114 0 : GcCompactionQueueItem::SubCompactionJob(options) => Some(CompactInfoResponse {
115 0 : compact_key_range: options.compact_key_range,
116 0 : compact_lsn_range: options.compact_lsn_range,
117 0 : sub_compaction: options.sub_compaction,
118 0 : running,
119 0 : job_id: id.0,
120 0 : }),
121 0 : GcCompactionQueueItem::Notify(_, _) => None,
122 : }
123 0 : }
124 : }
125 :
126 : #[derive(Default)]
127 : struct GcCompactionGuardItems {
128 : notify: Option<tokio::sync::oneshot::Sender<()>>,
129 : permit: Option<OwnedSemaphorePermit>,
130 : }
131 :
132 : struct GcCompactionQueueInner {
133 : running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
134 : queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
135 : guards: HashMap<GcCompactionJobId, GcCompactionGuardItems>,
136 : last_id: GcCompactionJobId,
137 : }
138 :
139 : impl GcCompactionQueueInner {
140 0 : fn next_id(&mut self) -> GcCompactionJobId {
141 0 : let id = self.last_id;
142 0 : self.last_id = GcCompactionJobId(id.0 + 1);
143 0 : id
144 0 : }
145 : }
146 :
147 : /// A structure to store gc_compaction jobs.
148 : pub struct GcCompactionQueue {
149 : /// All items in the queue, and the currently-running job.
150 : inner: std::sync::Mutex<GcCompactionQueueInner>,
151 : /// Ensure only one thread is consuming the queue.
152 : consumer_lock: tokio::sync::Mutex<()>,
153 : }
154 :
155 0 : static CONCURRENT_GC_COMPACTION_TASKS: Lazy<Arc<Semaphore>> = Lazy::new(|| {
156 0 : // Only allow two timelines on one pageserver to run gc compaction at a time.
157 0 : Arc::new(Semaphore::new(2))
158 0 : });
159 :
160 : impl GcCompactionQueue {
161 0 : pub fn new() -> Self {
162 0 : GcCompactionQueue {
163 0 : inner: std::sync::Mutex::new(GcCompactionQueueInner {
164 0 : running: None,
165 0 : queued: VecDeque::new(),
166 0 : guards: HashMap::new(),
167 0 : last_id: GcCompactionJobId(0),
168 0 : }),
169 0 : consumer_lock: tokio::sync::Mutex::new(()),
170 0 : }
171 0 : }
172 :
173 0 : pub fn cancel_scheduled(&self) {
174 0 : let mut guard = self.inner.lock().unwrap();
175 0 : guard.queued.clear();
176 0 : // TODO: if there is a running job, we should keep the gc guard. However, currently, the cancel
177 0 : // API is only used for testing purposes, so we can drop everything here.
178 0 : guard.guards.clear();
179 0 : }
180 :
181 : /// Schedule a manual compaction job.
182 0 : pub fn schedule_manual_compaction(
183 0 : &self,
184 0 : options: CompactOptions,
185 0 : notify: Option<tokio::sync::oneshot::Sender<()>>,
186 0 : ) -> GcCompactionJobId {
187 0 : let mut guard = self.inner.lock().unwrap();
188 0 : let id = guard.next_id();
189 0 : guard.queued.push_back((
190 0 : id,
191 0 : GcCompactionQueueItem::MetaJob {
192 0 : options,
193 0 : auto: false,
194 0 : },
195 0 : ));
196 0 : guard.guards.entry(id).or_default().notify = notify;
197 0 : info!("scheduled compaction job id={}", id);
198 0 : id
199 0 : }
200 :
201 : /// Schedule an auto compaction job.
202 0 : fn schedule_auto_compaction(
203 0 : &self,
204 0 : options: CompactOptions,
205 0 : permit: OwnedSemaphorePermit,
206 0 : ) -> GcCompactionJobId {
207 0 : let mut guard = self.inner.lock().unwrap();
208 0 : let id = guard.next_id();
209 0 : guard.queued.push_back((
210 0 : id,
211 0 : GcCompactionQueueItem::MetaJob {
212 0 : options,
213 0 : auto: true,
214 0 : },
215 0 : ));
216 0 : guard.guards.entry(id).or_default().permit = Some(permit);
217 0 : id
218 0 : }
219 :
220 : /// Trigger an auto compaction.
221 0 : pub async fn trigger_auto_compaction(
222 0 : &self,
223 0 : timeline: &Arc<Timeline>,
224 0 : ) -> Result<(), CompactionError> {
225 0 : let GcCompactionCombinedSettings {
226 0 : gc_compaction_enabled,
227 0 : gc_compaction_initial_threshold_kb,
228 0 : gc_compaction_ratio_percent,
229 0 : ..
230 0 : } = timeline.get_gc_compaction_settings();
231 0 : if !gc_compaction_enabled {
232 0 : return Ok(());
233 0 : }
234 0 : if self.remaining_jobs_num() > 0 {
235 : // Only schedule auto compaction when the queue is empty
236 0 : return Ok(());
237 0 : }
238 0 : if timeline.ancestor_timeline().is_some() {
239 : // Do not trigger auto compaction for child timelines. We haven't tested
240 : // it enough in staging yet.
241 0 : return Ok(());
242 0 : }
243 0 : if timeline.get_gc_compaction_watermark() == Lsn::INVALID {
244 : // If the gc watermark is not set, we don't need to trigger auto compaction.
245 : // This check is the same as in `gc_compaction_split_jobs` but we don't log
246 : // here and we can also skip the computation of the trigger condition earlier.
247 0 : return Ok(());
248 0 : }
249 :
250 0 : let Ok(permit) = CONCURRENT_GC_COMPACTION_TASKS.clone().try_acquire_owned() else {
251 : // Only allow one compaction run at a time. TODO: As we do `try_acquire_owned`, we cannot ensure
252 : // the fairness of the lock across timelines. We should listen for both `acquire` and `l0_compaction_trigger`
253 : // to ensure the fairness while avoid starving other tasks.
254 0 : return Ok(());
255 : };
256 :
257 0 : let gc_compaction_state = timeline.get_gc_compaction_state();
258 0 : let l2_lsn = gc_compaction_state
259 0 : .map(|x| x.last_completed_lsn)
260 0 : .unwrap_or(Lsn::INVALID);
261 :
262 0 : let layers = {
263 0 : let guard = timeline.layers.read().await;
264 0 : let layer_map = guard.layer_map()?;
265 0 : layer_map.iter_historic_layers().collect_vec()
266 0 : };
267 0 : let mut l2_size: u64 = 0;
268 0 : let mut l1_size = 0;
269 0 : let gc_cutoff = *timeline.get_applied_gc_cutoff_lsn();
270 0 : for layer in layers {
271 0 : if layer.lsn_range.start <= l2_lsn {
272 0 : l2_size += layer.file_size();
273 0 : } else if layer.lsn_range.start <= gc_cutoff {
274 0 : l1_size += layer.file_size();
275 0 : }
276 : }
277 :
278 0 : fn trigger_compaction(
279 0 : l1_size: u64,
280 0 : l2_size: u64,
281 0 : gc_compaction_initial_threshold_kb: u64,
282 0 : gc_compaction_ratio_percent: u64,
283 0 : ) -> bool {
284 : const AUTO_TRIGGER_LIMIT: u64 = 150 * 1024 * 1024 * 1024; // 150GB
285 0 : if l1_size + l2_size >= AUTO_TRIGGER_LIMIT {
286 : // Do not auto-trigger when physical size >= 150GB
287 0 : return false;
288 0 : }
289 0 : // initial trigger
290 0 : if l2_size == 0 && l1_size >= gc_compaction_initial_threshold_kb * 1024 {
291 0 : info!(
292 0 : "trigger auto-compaction because l1_size={} >= gc_compaction_initial_threshold_kb={}",
293 : l1_size, gc_compaction_initial_threshold_kb
294 : );
295 0 : return true;
296 0 : }
297 0 : // size ratio trigger
298 0 : if l2_size == 0 {
299 0 : return false;
300 0 : }
301 0 : if l1_size as f64 / l2_size as f64 >= (gc_compaction_ratio_percent as f64 / 100.0) {
302 0 : info!(
303 0 : "trigger auto-compaction because l1_size={} / l2_size={} > gc_compaction_ratio_percent={}",
304 : l1_size, l2_size, gc_compaction_ratio_percent
305 : );
306 0 : return true;
307 0 : }
308 0 : false
309 0 : }
310 :
311 0 : if trigger_compaction(
312 0 : l1_size,
313 0 : l2_size,
314 0 : gc_compaction_initial_threshold_kb,
315 0 : gc_compaction_ratio_percent,
316 0 : ) {
317 0 : self.schedule_auto_compaction(
318 0 : CompactOptions {
319 0 : flags: {
320 0 : let mut flags = EnumSet::new();
321 0 : flags |= CompactFlags::EnhancedGcBottomMostCompaction;
322 0 : if timeline.get_compaction_l0_first() {
323 0 : flags |= CompactFlags::YieldForL0;
324 0 : }
325 0 : flags
326 0 : },
327 0 : sub_compaction: true,
328 0 : // Only auto-trigger gc-compaction over the data keyspace due to concerns in
329 0 : // https://github.com/neondatabase/neon/issues/11318.
330 0 : compact_key_range: Some(CompactKeyRange {
331 0 : start: Key::MIN,
332 0 : end: Key::metadata_key_range().start,
333 0 : }),
334 0 : compact_lsn_range: None,
335 0 : sub_compaction_max_job_size_mb: None,
336 0 : },
337 0 : permit,
338 0 : );
339 0 : info!(
340 0 : "scheduled auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
341 : l1_size, l2_size, l2_lsn, gc_cutoff
342 : );
343 : } else {
344 0 : debug!(
345 0 : "did not trigger auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
346 : l1_size, l2_size, l2_lsn, gc_cutoff
347 : );
348 : }
349 0 : Ok(())
350 0 : }
351 :
352 : /// Notify the caller the job has finished and unblock GC.
353 0 : fn notify_and_unblock(&self, id: GcCompactionJobId) {
354 0 : info!("compaction job id={} finished", id);
355 0 : let mut guard = self.inner.lock().unwrap();
356 0 : if let Some(items) = guard.guards.remove(&id) {
357 0 : if let Some(tx) = items.notify {
358 0 : let _ = tx.send(());
359 0 : }
360 0 : }
361 0 : }
362 :
363 0 : fn clear_running_job(&self) {
364 0 : let mut guard = self.inner.lock().unwrap();
365 0 : guard.running = None;
366 0 : }
367 :
368 0 : async fn handle_sub_compaction(
369 0 : &self,
370 0 : id: GcCompactionJobId,
371 0 : options: CompactOptions,
372 0 : timeline: &Arc<Timeline>,
373 0 : auto: bool,
374 0 : ) -> Result<(), CompactionError> {
375 0 : info!(
376 0 : "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
377 : );
378 0 : let res = timeline
379 0 : .gc_compaction_split_jobs(
380 0 : GcCompactJob::from_compact_options(options.clone()),
381 0 : options.sub_compaction_max_job_size_mb,
382 0 : )
383 0 : .await;
384 0 : let jobs = match res {
385 0 : Ok(jobs) => jobs,
386 0 : Err(err) => {
387 0 : warn!("cannot split gc-compaction jobs: {}, unblocked gc", err);
388 0 : self.notify_and_unblock(id);
389 0 : return Err(err);
390 : }
391 : };
392 0 : if jobs.is_empty() {
393 0 : info!("no jobs to run, skipping scheduled compaction task");
394 0 : self.notify_and_unblock(id);
395 : } else {
396 0 : let jobs_len = jobs.len();
397 0 : let mut pending_tasks = Vec::new();
398 0 : // gc-compaction might pick more layers or fewer layers to compact. The L2 LSN does not need to be accurate.
399 0 : // And therefore, we simply assume the maximum LSN of all jobs is the expected L2 LSN.
400 0 : let expected_l2_lsn = jobs.iter().map(|job| job.compact_lsn_range.end).max();
401 0 : for job in jobs {
402 : // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
403 : // until we do further refactors to allow directly call `compact_with_gc`.
404 0 : let mut flags: EnumSet<CompactFlags> = EnumSet::default();
405 0 : flags |= CompactFlags::EnhancedGcBottomMostCompaction;
406 0 : if job.dry_run {
407 0 : flags |= CompactFlags::DryRun;
408 0 : }
409 0 : if options.flags.contains(CompactFlags::YieldForL0) {
410 0 : flags |= CompactFlags::YieldForL0;
411 0 : }
412 0 : let options = CompactOptions {
413 0 : flags,
414 0 : sub_compaction: false,
415 0 : compact_key_range: Some(job.compact_key_range.into()),
416 0 : compact_lsn_range: Some(job.compact_lsn_range.into()),
417 0 : sub_compaction_max_job_size_mb: None,
418 0 : };
419 0 : pending_tasks.push(GcCompactionQueueItem::SubCompactionJob(options));
420 : }
421 :
422 0 : if !auto {
423 0 : pending_tasks.push(GcCompactionQueueItem::Notify(id, None));
424 0 : } else {
425 0 : pending_tasks.push(GcCompactionQueueItem::Notify(id, expected_l2_lsn));
426 0 : }
427 :
428 : {
429 0 : let mut guard = self.inner.lock().unwrap();
430 0 : let mut tasks = Vec::new();
431 0 : for task in pending_tasks {
432 0 : let id = guard.next_id();
433 0 : tasks.push((id, task));
434 0 : }
435 0 : tasks.reverse();
436 0 : for item in tasks {
437 0 : guard.queued.push_front(item);
438 0 : }
439 : }
440 0 : info!(
441 0 : "scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs",
442 : jobs_len
443 : );
444 : }
445 0 : Ok(())
446 0 : }
447 :
448 : /// Take a job from the queue and process it. Returns if there are still pending tasks.
449 0 : pub async fn iteration(
450 0 : &self,
451 0 : cancel: &CancellationToken,
452 0 : ctx: &RequestContext,
453 0 : gc_block: &GcBlock,
454 0 : timeline: &Arc<Timeline>,
455 0 : ) -> Result<CompactionOutcome, CompactionError> {
456 0 : let res = self.iteration_inner(cancel, ctx, gc_block, timeline).await;
457 0 : if let Err(err) = &res {
458 0 : log_compaction_error(err, None, cancel.is_cancelled(), true);
459 0 : }
460 0 : match res {
461 0 : Ok(res) => Ok(res),
462 0 : Err(CompactionError::ShuttingDown) => Err(CompactionError::ShuttingDown),
463 : Err(_) => {
464 : // There are some cases where traditional gc might collect some layer
465 : // files causing gc-compaction cannot read the full history of the key.
466 : // This needs to be resolved in the long-term by improving the compaction
467 : // process. For now, let's simply avoid such errors triggering the
468 : // circuit breaker.
469 0 : Ok(CompactionOutcome::Skipped)
470 : }
471 : }
472 0 : }
473 :
474 0 : async fn iteration_inner(
475 0 : &self,
476 0 : cancel: &CancellationToken,
477 0 : ctx: &RequestContext,
478 0 : gc_block: &GcBlock,
479 0 : timeline: &Arc<Timeline>,
480 0 : ) -> Result<CompactionOutcome, CompactionError> {
481 0 : let Ok(_one_op_at_a_time_guard) = self.consumer_lock.try_lock() else {
482 0 : return Err(CompactionError::AlreadyRunning(
483 0 : "cannot run gc-compaction because another gc-compaction is running. This should not happen because we only call this function from the gc-compaction queue.",
484 0 : ));
485 : };
486 : let has_pending_tasks;
487 0 : let mut yield_for_l0 = false;
488 0 : let Some((id, item)) = ({
489 0 : let mut guard = self.inner.lock().unwrap();
490 0 : if let Some((id, item)) = guard.queued.pop_front() {
491 0 : guard.running = Some((id, item.clone()));
492 0 : has_pending_tasks = !guard.queued.is_empty();
493 0 : Some((id, item))
494 : } else {
495 0 : has_pending_tasks = false;
496 0 : None
497 : }
498 : }) else {
499 0 : self.trigger_auto_compaction(timeline).await?;
500 : // Always yield after triggering auto-compaction. Gc-compaction is a low-priority task and we
501 : // have not implemented preemption mechanism yet. We always want to yield it to more important
502 : // tasks if there is one.
503 0 : return Ok(CompactionOutcome::Done);
504 : };
505 0 : match item {
506 0 : GcCompactionQueueItem::MetaJob { options, auto } => {
507 0 : if !options
508 0 : .flags
509 0 : .contains(CompactFlags::EnhancedGcBottomMostCompaction)
510 : {
511 0 : warn!(
512 0 : "ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}",
513 : options
514 : );
515 0 : } else if options.sub_compaction {
516 0 : info!(
517 0 : "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
518 : );
519 0 : self.handle_sub_compaction(id, options, timeline, auto)
520 0 : .await?;
521 : } else {
522 : // Auto compaction always enables sub-compaction so we don't need to handle update_l2_lsn
523 : // in this branch.
524 0 : let _gc_guard = match gc_block.start().await {
525 0 : Ok(guard) => guard,
526 0 : Err(e) => {
527 0 : self.notify_and_unblock(id);
528 0 : self.clear_running_job();
529 0 : return Err(CompactionError::Other(anyhow!(
530 0 : "cannot run gc-compaction because gc is blocked: {}",
531 0 : e
532 0 : )));
533 : }
534 : };
535 0 : let res = timeline.compact_with_options(cancel, options, ctx).await;
536 0 : let compaction_result = match res {
537 0 : Ok(res) => res,
538 0 : Err(err) => {
539 0 : warn!(%err, "failed to run gc-compaction");
540 0 : self.notify_and_unblock(id);
541 0 : self.clear_running_job();
542 0 : return Err(err);
543 : }
544 : };
545 0 : if compaction_result == CompactionOutcome::YieldForL0 {
546 0 : yield_for_l0 = true;
547 0 : }
548 : }
549 : }
550 0 : GcCompactionQueueItem::SubCompactionJob(options) => {
551 : // TODO: error handling, clear the queue if any task fails?
552 0 : let _gc_guard = match gc_block.start().await {
553 0 : Ok(guard) => guard,
554 0 : Err(e) => {
555 0 : self.clear_running_job();
556 0 : return Err(CompactionError::Other(anyhow!(
557 0 : "cannot run gc-compaction because gc is blocked: {}",
558 0 : e
559 0 : )));
560 : }
561 : };
562 0 : let res = timeline.compact_with_options(cancel, options, ctx).await;
563 0 : let compaction_result = match res {
564 0 : Ok(res) => res,
565 0 : Err(err) => {
566 0 : warn!(%err, "failed to run gc-compaction subcompaction job");
567 0 : self.clear_running_job();
568 0 : return Err(err);
569 : }
570 : };
571 0 : if compaction_result == CompactionOutcome::YieldForL0 {
572 0 : // We will permenantly give up a task if we yield for L0 compaction: the preempted subcompaction job won't be running
573 0 : // again. This ensures that we don't keep doing duplicated work within gc-compaction. Not directly returning here because
574 0 : // we need to clean things up before returning from the function.
575 0 : yield_for_l0 = true;
576 0 : }
577 : }
578 0 : GcCompactionQueueItem::Notify(id, l2_lsn) => {
579 0 : self.notify_and_unblock(id);
580 0 : if let Some(l2_lsn) = l2_lsn {
581 0 : let current_l2_lsn = timeline
582 0 : .get_gc_compaction_state()
583 0 : .map(|x| x.last_completed_lsn)
584 0 : .unwrap_or(Lsn::INVALID);
585 0 : if l2_lsn >= current_l2_lsn {
586 0 : info!("l2_lsn updated to {}", l2_lsn);
587 0 : timeline
588 0 : .update_gc_compaction_state(GcCompactionState {
589 0 : last_completed_lsn: l2_lsn,
590 0 : })
591 0 : .map_err(CompactionError::Other)?;
592 : } else {
593 0 : warn!(
594 0 : "l2_lsn updated to {} but it is less than the current l2_lsn {}",
595 : l2_lsn, current_l2_lsn
596 : );
597 : }
598 0 : }
599 : }
600 : }
601 0 : self.clear_running_job();
602 0 : Ok(if yield_for_l0 {
603 0 : tracing::info!("give up gc-compaction: yield for L0 compaction");
604 0 : CompactionOutcome::YieldForL0
605 0 : } else if has_pending_tasks {
606 0 : CompactionOutcome::Pending
607 : } else {
608 0 : CompactionOutcome::Done
609 : })
610 0 : }
611 :
612 : #[allow(clippy::type_complexity)]
613 0 : pub fn remaining_jobs(
614 0 : &self,
615 0 : ) -> (
616 0 : Option<(GcCompactionJobId, GcCompactionQueueItem)>,
617 0 : VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
618 0 : ) {
619 0 : let guard = self.inner.lock().unwrap();
620 0 : (guard.running.clone(), guard.queued.clone())
621 0 : }
622 :
623 0 : pub fn remaining_jobs_num(&self) -> usize {
624 0 : let guard = self.inner.lock().unwrap();
625 0 : guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
626 0 : }
627 : }
628 :
629 : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
630 : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
631 : /// called.
632 : #[derive(Debug, Clone)]
633 : pub(crate) struct GcCompactJob {
634 : pub dry_run: bool,
635 : /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
636 : /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
637 : pub compact_key_range: Range<Key>,
638 : /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
639 : /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
640 : /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
641 : /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
642 : pub compact_lsn_range: Range<Lsn>,
643 : }
644 :
645 : impl GcCompactJob {
646 112 : pub fn from_compact_options(options: CompactOptions) -> Self {
647 112 : GcCompactJob {
648 112 : dry_run: options.flags.contains(CompactFlags::DryRun),
649 112 : compact_key_range: options
650 112 : .compact_key_range
651 112 : .map(|x| x.into())
652 112 : .unwrap_or(Key::MIN..Key::MAX),
653 112 : compact_lsn_range: options
654 112 : .compact_lsn_range
655 112 : .map(|x| x.into())
656 112 : .unwrap_or(Lsn::INVALID..Lsn::MAX),
657 112 : }
658 112 : }
659 : }
660 :
661 : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
662 : /// and contains the exact layers we want to compact.
663 : pub struct GcCompactionJobDescription {
664 : /// All layers to read in the compaction job
665 : selected_layers: Vec<Layer>,
666 : /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
667 : /// keep all deltas <= this LSN or generate an image == this LSN.
668 : gc_cutoff: Lsn,
669 : /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
670 : /// generate an image == this LSN.
671 : retain_lsns_below_horizon: Vec<Lsn>,
672 : /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
673 : /// \>= this LSN will be kept and will not be rewritten.
674 : max_layer_lsn: Lsn,
675 : /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
676 : /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
677 : /// k-merge within gc-compaction.
678 : min_layer_lsn: Lsn,
679 : /// Only compact layers overlapping with this range.
680 : compaction_key_range: Range<Key>,
681 : /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
682 : /// This field is here solely for debugging. The field will not be read once the compaction
683 : /// description is generated.
684 : rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
685 : }
686 :
687 : /// The result of bottom-most compaction for a single key at each LSN.
688 : #[derive(Debug)]
689 : #[cfg_attr(test, derive(PartialEq))]
690 : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
691 :
692 : /// The result of bottom-most compaction.
693 : #[derive(Debug)]
694 : #[cfg_attr(test, derive(PartialEq))]
695 : pub(crate) struct KeyHistoryRetention {
696 : /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
697 : pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
698 : /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
699 : pub(crate) above_horizon: KeyLogAtLsn,
700 : }
701 :
702 : impl KeyHistoryRetention {
703 : /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
704 : ///
705 : /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
706 : /// For example, consider the case where a single delta with range [0x10,0x50) exists.
707 : /// And we have branches at LSN 0x10, 0x20, 0x30.
708 : /// Then we delete branch @ 0x20.
709 : /// Bottom-most compaction may now delete the delta [0x20,0x30).
710 : /// And that wouldnt' change the shape of the layer.
711 : ///
712 : /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
713 : ///
714 : /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
715 148 : async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
716 148 : if dry_run {
717 0 : return true;
718 148 : }
719 148 : if LayerMap::is_l0(&key.key_range, key.is_delta) {
720 : // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
721 : // We should ignore such layers.
722 0 : return true;
723 148 : }
724 : let layer_generation;
725 : {
726 148 : let guard = tline.layers.read().await;
727 148 : if !guard.contains_key(key) {
728 104 : return false;
729 44 : }
730 44 : layer_generation = guard.get_from_key(key).metadata().generation;
731 44 : }
732 44 : if layer_generation == tline.generation {
733 44 : info!(
734 : key=%key,
735 : ?layer_generation,
736 0 : "discard layer due to duplicated layer key in the same generation",
737 : );
738 44 : true
739 : } else {
740 0 : false
741 : }
742 148 : }
743 :
744 : /// Pipe a history of a single key to the writers.
745 : ///
746 : /// If `image_writer` is none, the images will be placed into the delta layers.
747 : /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
748 : #[allow(clippy::too_many_arguments)]
749 1276 : async fn pipe_to(
750 1276 : self,
751 1276 : key: Key,
752 1276 : delta_writer: &mut SplitDeltaLayerWriter,
753 1276 : mut image_writer: Option<&mut SplitImageLayerWriter>,
754 1276 : stat: &mut CompactionStatistics,
755 1276 : ctx: &RequestContext,
756 1276 : ) -> anyhow::Result<()> {
757 1276 : let mut first_batch = true;
758 4088 : for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
759 2812 : if first_batch {
760 1276 : if logs.len() == 1 && logs[0].1.is_image() {
761 1200 : let Value::Image(img) = &logs[0].1 else {
762 0 : unreachable!()
763 : };
764 1200 : stat.produce_image_key(img);
765 1200 : if let Some(image_writer) = image_writer.as_mut() {
766 1200 : image_writer.put_image(key, img.clone(), ctx).await?;
767 : } else {
768 0 : delta_writer
769 0 : .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
770 0 : .await?;
771 : }
772 : } else {
773 132 : for (lsn, val) in logs {
774 56 : stat.produce_key(&val);
775 56 : delta_writer.put_value(key, lsn, val, ctx).await?;
776 : }
777 : }
778 1276 : first_batch = false;
779 : } else {
780 1768 : for (lsn, val) in logs {
781 232 : stat.produce_key(&val);
782 232 : delta_writer.put_value(key, lsn, val, ctx).await?;
783 : }
784 : }
785 : }
786 1276 : let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
787 1392 : for (lsn, val) in above_horizon_logs {
788 116 : stat.produce_key(&val);
789 116 : delta_writer.put_value(key, lsn, val, ctx).await?;
790 : }
791 1276 : Ok(())
792 1276 : }
793 :
794 : /// Verify if every key in the retention is readable by replaying the logs.
795 1292 : async fn verify(
796 1292 : &self,
797 1292 : key: Key,
798 1292 : base_img_from_ancestor: &Option<(Key, Lsn, Bytes)>,
799 1292 : full_history: &[(Key, Lsn, Value)],
800 1292 : tline: &Arc<Timeline>,
801 1292 : ) -> anyhow::Result<()> {
802 : // Usually the min_lsn should be the first record but we do a full iteration to be safe.
803 1832 : let Some(min_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).min() else {
804 : // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
805 0 : return Ok(());
806 : };
807 1832 : let Some(max_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).max() else {
808 : // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
809 0 : return Ok(());
810 : };
811 1292 : let mut base_img = base_img_from_ancestor
812 1292 : .as_ref()
813 1292 : .map(|(_, lsn, img)| (*lsn, img));
814 1292 : let mut history = Vec::new();
815 :
816 4108 : async fn collect_and_verify(
817 4108 : key: Key,
818 4108 : lsn: Lsn,
819 4108 : base_img: &Option<(Lsn, &Bytes)>,
820 4108 : history: &[(Lsn, &NeonWalRecord)],
821 4108 : tline: &Arc<Timeline>,
822 4108 : ) -> anyhow::Result<()> {
823 4108 : let mut records = history
824 4108 : .iter()
825 4108 : .map(|(lsn, val)| (*lsn, (*val).clone()))
826 4108 : .collect::<Vec<_>>();
827 4108 :
828 4108 : // WAL redo requires records in the reverse LSN order
829 4108 : records.reverse();
830 4108 : let data = ValueReconstructState {
831 4108 : img: base_img.as_ref().map(|(lsn, img)| (*lsn, (*img).clone())),
832 4108 : records,
833 4108 : };
834 4108 :
835 4108 : tline
836 4108 : .reconstruct_value(key, lsn, data, RedoAttemptType::GcCompaction)
837 4108 : .await
838 4108 : .with_context(|| format!("verification failed for key {} at lsn {}", key, lsn))?;
839 :
840 4108 : Ok(())
841 4108 : }
842 :
843 4144 : for (retain_lsn, KeyLogAtLsn(logs)) in &self.below_horizon {
844 4384 : for (lsn, val) in logs {
845 304 : match val {
846 1228 : Value::Image(img) => {
847 1228 : base_img = Some((*lsn, img));
848 1228 : history.clear();
849 1228 : }
850 304 : Value::WalRecord(rec) if val.will_init() => {
851 0 : base_img = None;
852 0 : history.clear();
853 0 : history.push((*lsn, rec));
854 0 : }
855 304 : Value::WalRecord(rec) => {
856 304 : history.push((*lsn, rec));
857 304 : }
858 : }
859 : }
860 2852 : if *retain_lsn >= min_lsn {
861 : // Only verify after the key appears in the full history for the first time.
862 :
863 2796 : if base_img.is_none() && history.is_empty() {
864 0 : anyhow::bail!(
865 0 : "verificatoin failed: key {} has no history at {}",
866 0 : key,
867 0 : retain_lsn
868 0 : );
869 2796 : };
870 2796 : // We don't modify history: in theory, we could replace the history with a single
871 2796 : // image as in `generate_key_retention` to make redos at later LSNs faster. But we
872 2796 : // want to verify everything as if they are read from the real layer map.
873 2796 : collect_and_verify(key, *retain_lsn, &base_img, &history, tline).await?;
874 56 : }
875 : }
876 :
877 1440 : for (lsn, val) in &self.above_horizon.0 {
878 128 : match val {
879 20 : Value::Image(img) => {
880 20 : // Above the GC horizon, we verify every time we see an image.
881 20 : collect_and_verify(key, *lsn, &base_img, &history, tline).await?;
882 20 : base_img = Some((*lsn, img));
883 20 : history.clear();
884 : }
885 128 : Value::WalRecord(rec) if val.will_init() => {
886 0 : // Above the GC horizon, we verify every time we see an init record.
887 0 : collect_and_verify(key, *lsn, &base_img, &history, tline).await?;
888 0 : base_img = None;
889 0 : history.clear();
890 0 : history.push((*lsn, rec));
891 : }
892 128 : Value::WalRecord(rec) => {
893 128 : history.push((*lsn, rec));
894 128 : }
895 : }
896 : }
897 : // Ensure the latest record is readable.
898 1292 : collect_and_verify(key, max_lsn, &base_img, &history, tline).await?;
899 1292 : Ok(())
900 1292 : }
901 : }
902 :
903 : #[derive(Debug, Serialize, Default)]
904 : struct CompactionStatisticsNumSize {
905 : num: u64,
906 : size: u64,
907 : }
908 :
909 : #[derive(Debug, Serialize, Default)]
910 : pub struct CompactionStatistics {
911 : /// Delta layer visited (maybe compressed, physical size)
912 : delta_layer_visited: CompactionStatisticsNumSize,
913 : /// Image layer visited (maybe compressed, physical size)
914 : image_layer_visited: CompactionStatisticsNumSize,
915 : /// Delta layer produced (maybe compressed, physical size)
916 : delta_layer_produced: CompactionStatisticsNumSize,
917 : /// Image layer produced (maybe compressed, physical size)
918 : image_layer_produced: CompactionStatisticsNumSize,
919 : /// Delta layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
920 : delta_layer_discarded: CompactionStatisticsNumSize,
921 : /// Image layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
922 : image_layer_discarded: CompactionStatisticsNumSize,
923 : num_unique_keys_visited: usize,
924 : /// Delta visited (uncompressed, original size)
925 : wal_keys_visited: CompactionStatisticsNumSize,
926 : /// Image visited (uncompressed, original size)
927 : image_keys_visited: CompactionStatisticsNumSize,
928 : /// Delta produced (uncompressed, original size)
929 : wal_produced: CompactionStatisticsNumSize,
930 : /// Image produced (uncompressed, original size)
931 : image_produced: CompactionStatisticsNumSize,
932 :
933 : // Time spent in each phase
934 : time_acquire_lock_secs: f64,
935 : time_analyze_secs: f64,
936 : time_download_layer_secs: f64,
937 : time_to_first_kv_pair_secs: f64,
938 : time_main_loop_secs: f64,
939 : time_final_phase_secs: f64,
940 : time_total_secs: f64,
941 :
942 : // Summary
943 : /// Ratio of the key-value size after/before gc-compaction.
944 : uncompressed_retention_ratio: f64,
945 : /// Ratio of the physical size after/before gc-compaction.
946 : compressed_retention_ratio: f64,
947 : }
948 :
949 : impl CompactionStatistics {
950 2136 : fn estimated_size_of_value(val: &Value) -> usize {
951 876 : match val {
952 1260 : Value::Image(img) => img.len(),
953 0 : Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
954 876 : _ => std::mem::size_of::<NeonWalRecord>(),
955 : }
956 2136 : }
957 3356 : fn estimated_size_of_key() -> usize {
958 3356 : KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
959 3356 : }
960 176 : fn visit_delta_layer(&mut self, size: u64) {
961 176 : self.delta_layer_visited.num += 1;
962 176 : self.delta_layer_visited.size += size;
963 176 : }
964 140 : fn visit_image_layer(&mut self, size: u64) {
965 140 : self.image_layer_visited.num += 1;
966 140 : self.image_layer_visited.size += size;
967 140 : }
968 1280 : fn on_unique_key_visited(&mut self) {
969 1280 : self.num_unique_keys_visited += 1;
970 1280 : }
971 492 : fn visit_wal_key(&mut self, val: &Value) {
972 492 : self.wal_keys_visited.num += 1;
973 492 : self.wal_keys_visited.size +=
974 492 : Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
975 492 : }
976 1260 : fn visit_image_key(&mut self, val: &Value) {
977 1260 : self.image_keys_visited.num += 1;
978 1260 : self.image_keys_visited.size +=
979 1260 : Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
980 1260 : }
981 404 : fn produce_key(&mut self, val: &Value) {
982 404 : match val {
983 20 : Value::Image(img) => self.produce_image_key(img),
984 384 : Value::WalRecord(_) => self.produce_wal_key(val),
985 : }
986 404 : }
987 384 : fn produce_wal_key(&mut self, val: &Value) {
988 384 : self.wal_produced.num += 1;
989 384 : self.wal_produced.size +=
990 384 : Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
991 384 : }
992 1220 : fn produce_image_key(&mut self, val: &Bytes) {
993 1220 : self.image_produced.num += 1;
994 1220 : self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
995 1220 : }
996 28 : fn discard_delta_layer(&mut self, original_size: u64) {
997 28 : self.delta_layer_discarded.num += 1;
998 28 : self.delta_layer_discarded.size += original_size;
999 28 : }
1000 16 : fn discard_image_layer(&mut self, original_size: u64) {
1001 16 : self.image_layer_discarded.num += 1;
1002 16 : self.image_layer_discarded.size += original_size;
1003 16 : }
1004 48 : fn produce_delta_layer(&mut self, size: u64) {
1005 48 : self.delta_layer_produced.num += 1;
1006 48 : self.delta_layer_produced.size += size;
1007 48 : }
1008 60 : fn produce_image_layer(&mut self, size: u64) {
1009 60 : self.image_layer_produced.num += 1;
1010 60 : self.image_layer_produced.size += size;
1011 60 : }
1012 104 : fn finalize(&mut self) {
1013 104 : let original_key_value_size = self.image_keys_visited.size + self.wal_keys_visited.size;
1014 104 : let produced_key_value_size = self.image_produced.size + self.wal_produced.size;
1015 104 : self.uncompressed_retention_ratio =
1016 104 : produced_key_value_size as f64 / (original_key_value_size as f64 + 1.0); // avoid div by 0
1017 104 : let original_physical_size = self.image_layer_visited.size + self.delta_layer_visited.size;
1018 104 : let produced_physical_size = self.image_layer_produced.size
1019 104 : + self.delta_layer_produced.size
1020 104 : + self.image_layer_discarded.size
1021 104 : + self.delta_layer_discarded.size; // Also include the discarded layers to make the ratio accurate
1022 104 : self.compressed_retention_ratio =
1023 104 : produced_physical_size as f64 / (original_physical_size as f64 + 1.0); // avoid div by 0
1024 104 : }
1025 : }
1026 :
1027 : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
1028 : pub enum CompactionOutcome {
1029 : #[default]
1030 : /// No layers need to be compacted after this round. Compaction doesn't need
1031 : /// to be immediately scheduled.
1032 : Done,
1033 : /// Still has pending layers to be compacted after this round. Ideally, the scheduler
1034 : /// should immediately schedule another compaction.
1035 : Pending,
1036 : /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
1037 : /// guaranteed when `compaction_l0_first` is enabled).
1038 : YieldForL0,
1039 : /// Compaction was skipped, because the timeline is ineligible for compaction.
1040 : Skipped,
1041 : }
1042 :
1043 : impl Timeline {
1044 : /// TODO: cancellation
1045 : ///
1046 : /// Returns whether the compaction has pending tasks.
1047 728 : pub(crate) async fn compact_legacy(
1048 728 : self: &Arc<Self>,
1049 728 : cancel: &CancellationToken,
1050 728 : options: CompactOptions,
1051 728 : ctx: &RequestContext,
1052 728 : ) -> Result<CompactionOutcome, CompactionError> {
1053 728 : if options
1054 728 : .flags
1055 728 : .contains(CompactFlags::EnhancedGcBottomMostCompaction)
1056 : {
1057 0 : self.compact_with_gc(cancel, options, ctx).await?;
1058 0 : return Ok(CompactionOutcome::Done);
1059 728 : }
1060 728 :
1061 728 : if options.flags.contains(CompactFlags::DryRun) {
1062 0 : return Err(CompactionError::Other(anyhow!(
1063 0 : "dry-run mode is not supported for legacy compaction for now"
1064 0 : )));
1065 728 : }
1066 728 :
1067 728 : if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
1068 : // maybe useful in the future? could implement this at some point
1069 0 : return Err(CompactionError::Other(anyhow!(
1070 0 : "compaction range is not supported for legacy compaction for now"
1071 0 : )));
1072 728 : }
1073 728 :
1074 728 : // High level strategy for compaction / image creation:
1075 728 : //
1076 728 : // 1. First, do a L0 compaction to ensure we move the L0
1077 728 : // layers into the historic layer map get flat levels of
1078 728 : // layers. If we did not compact all L0 layers, we will
1079 728 : // prioritize compacting the timeline again and not do
1080 728 : // any of the compactions below.
1081 728 : //
1082 728 : // 2. Then, calculate the desired "partitioning" of the
1083 728 : // currently in-use key space. The goal is to partition the
1084 728 : // key space into roughly fixed-size chunks, but also take into
1085 728 : // account any existing image layers, and try to align the
1086 728 : // chunk boundaries with the existing image layers to avoid
1087 728 : // too much churn. Also try to align chunk boundaries with
1088 728 : // relation boundaries. In principle, we don't know about
1089 728 : // relation boundaries here, we just deal with key-value
1090 728 : // pairs, and the code in pgdatadir_mapping.rs knows how to
1091 728 : // map relations into key-value pairs. But in practice we know
1092 728 : // that 'field6' is the block number, and the fields 1-5
1093 728 : // identify a relation. This is just an optimization,
1094 728 : // though.
1095 728 : //
1096 728 : // 3. Once we know the partitioning, for each partition,
1097 728 : // decide if it's time to create a new image layer. The
1098 728 : // criteria is: there has been too much "churn" since the last
1099 728 : // image layer? The "churn" is fuzzy concept, it's a
1100 728 : // combination of too many delta files, or too much WAL in
1101 728 : // total in the delta file. Or perhaps: if creating an image
1102 728 : // file would allow to delete some older files.
1103 728 : //
1104 728 : // 4. In the end, if the tenant gets auto-sharded, we will run
1105 728 : // a shard-ancestor compaction.
1106 728 :
1107 728 : // Is the timeline being deleted?
1108 728 : if self.is_stopping() {
1109 0 : trace!("Dropping out of compaction on timeline shutdown");
1110 0 : return Err(CompactionError::ShuttingDown);
1111 728 : }
1112 728 :
1113 728 : let target_file_size = self.get_checkpoint_distance();
1114 :
1115 : // Define partitioning schema if needed
1116 :
1117 : // 1. L0 Compact
1118 728 : let l0_outcome = {
1119 728 : let timer = self.metrics.compact_time_histo.start_timer();
1120 728 : let l0_outcome = self
1121 728 : .compact_level0(
1122 728 : target_file_size,
1123 728 : options.flags.contains(CompactFlags::ForceL0Compaction),
1124 728 : ctx,
1125 728 : )
1126 728 : .await?;
1127 728 : timer.stop_and_record();
1128 728 : l0_outcome
1129 728 : };
1130 728 :
1131 728 : if options.flags.contains(CompactFlags::OnlyL0Compaction) {
1132 0 : return Ok(l0_outcome);
1133 728 : }
1134 728 :
1135 728 : // Yield if we have pending L0 compaction. The scheduler will do another pass.
1136 728 : if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
1137 0 : && options.flags.contains(CompactFlags::YieldForL0)
1138 : {
1139 0 : info!("image/ancestor compaction yielding for L0 compaction");
1140 0 : return Ok(CompactionOutcome::YieldForL0);
1141 728 : }
1142 728 :
1143 728 : // 2. Repartition and create image layers if necessary
1144 728 : match self
1145 728 : .repartition(
1146 728 : self.get_last_record_lsn(),
1147 728 : self.get_compaction_target_size(),
1148 728 : options.flags,
1149 728 : ctx,
1150 728 : )
1151 728 : .await
1152 : {
1153 728 : Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
1154 728 : // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
1155 728 : let image_ctx = RequestContextBuilder::from(ctx)
1156 728 : .access_stats_behavior(AccessStatsBehavior::Skip)
1157 728 : .attached_child();
1158 728 :
1159 728 : let mut partitioning = dense_partitioning;
1160 728 : partitioning
1161 728 : .parts
1162 728 : .extend(sparse_partitioning.into_dense().parts);
1163 :
1164 : // 3. Create new image layers for partitions that have been modified "enough".
1165 728 : let (image_layers, outcome) = self
1166 728 : .create_image_layers(
1167 728 : &partitioning,
1168 728 : lsn,
1169 728 : if options
1170 728 : .flags
1171 728 : .contains(CompactFlags::ForceImageLayerCreation)
1172 : {
1173 28 : ImageLayerCreationMode::Force
1174 : } else {
1175 700 : ImageLayerCreationMode::Try
1176 : },
1177 728 : &image_ctx,
1178 728 : self.last_image_layer_creation_status
1179 728 : .load()
1180 728 : .as_ref()
1181 728 : .clone(),
1182 728 : options.flags.contains(CompactFlags::YieldForL0),
1183 728 : )
1184 728 : .await
1185 728 : .inspect_err(|err| {
1186 : if let CreateImageLayersError::GetVectoredError(
1187 : GetVectoredError::MissingKey(_),
1188 0 : ) = err
1189 : {
1190 0 : critical!("missing key during compaction: {err:?}");
1191 0 : }
1192 728 : })?;
1193 :
1194 728 : self.last_image_layer_creation_status
1195 728 : .store(Arc::new(outcome.clone()));
1196 728 :
1197 728 : self.upload_new_image_layers(image_layers)?;
1198 728 : if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
1199 : // Yield and do not do any other kind of compaction.
1200 0 : info!(
1201 0 : "skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction)."
1202 : );
1203 0 : return Ok(CompactionOutcome::YieldForL0);
1204 728 : }
1205 : }
1206 :
1207 : // Suppress errors when cancelled.
1208 0 : Err(_) if self.cancel.is_cancelled() => {}
1209 0 : Err(err) if err.is_cancel() => {}
1210 :
1211 : // Alert on critical errors that indicate data corruption.
1212 0 : Err(err) if err.is_critical() => {
1213 0 : critical!("could not compact, repartitioning keyspace failed: {err:?}");
1214 : }
1215 :
1216 : // Log other errors. No partitioning? This is normal, if the timeline was just created
1217 : // as an empty timeline. Also in unit tests, when we use the timeline as a simple
1218 : // key-value store, ignoring the datadir layout. Log the error but continue.
1219 0 : Err(err) => error!("could not compact, repartitioning keyspace failed: {err:?}"),
1220 : };
1221 :
1222 728 : let partition_count = self.partitioning.read().0.0.parts.len();
1223 728 :
1224 728 : // 4. Shard ancestor compaction
1225 728 :
1226 728 : if self.shard_identity.count >= ShardCount::new(2) {
1227 : // Limit the number of layer rewrites to the number of partitions: this means its
1228 : // runtime should be comparable to a full round of image layer creations, rather than
1229 : // being potentially much longer.
1230 0 : let rewrite_max = partition_count;
1231 :
1232 0 : let outcome = self
1233 0 : .compact_shard_ancestors(
1234 0 : rewrite_max,
1235 0 : options.flags.contains(CompactFlags::YieldForL0),
1236 0 : ctx,
1237 0 : )
1238 0 : .await?;
1239 0 : match outcome {
1240 0 : CompactionOutcome::Pending | CompactionOutcome::YieldForL0 => return Ok(outcome),
1241 0 : CompactionOutcome::Done | CompactionOutcome::Skipped => {}
1242 : }
1243 728 : }
1244 :
1245 728 : Ok(CompactionOutcome::Done)
1246 728 : }
1247 :
1248 : /// Check for layers that are elegible to be rewritten:
1249 : /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
1250 : /// we don't indefinitely retain keys in this shard that aren't needed.
1251 : /// - For future use: layers beyond pitr_interval that are in formats we would
1252 : /// rather not maintain compatibility with indefinitely.
1253 : ///
1254 : /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
1255 : /// how much work it will try to do in each compaction pass.
1256 0 : async fn compact_shard_ancestors(
1257 0 : self: &Arc<Self>,
1258 0 : rewrite_max: usize,
1259 0 : yield_for_l0: bool,
1260 0 : ctx: &RequestContext,
1261 0 : ) -> Result<CompactionOutcome, CompactionError> {
1262 0 : let mut outcome = CompactionOutcome::Done;
1263 0 : let mut drop_layers = Vec::new();
1264 0 : let mut layers_to_rewrite: Vec<Layer> = Vec::new();
1265 0 :
1266 0 : // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
1267 0 : // layer is behind this Lsn, it indicates that the layer is being retained beyond the
1268 0 : // pitr_interval, for example because a branchpoint references it.
1269 0 : //
1270 0 : // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
1271 0 : // are rewriting layers.
1272 0 : let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
1273 0 : let pitr_cutoff = self.gc_info.read().unwrap().cutoffs.time;
1274 :
1275 0 : let layers = self.layers.read().await;
1276 0 : for layer_desc in layers.layer_map()?.iter_historic_layers() {
1277 0 : let layer = layers.get_from_desc(&layer_desc);
1278 0 : if layer.metadata().shard.shard_count == self.shard_identity.count {
1279 : // This layer does not belong to a historic ancestor, no need to re-image it.
1280 0 : continue;
1281 0 : }
1282 0 :
1283 0 : // This layer was created on an ancestor shard: check if it contains any data for this shard.
1284 0 : let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
1285 0 : let layer_local_page_count = sharded_range.page_count();
1286 0 : let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
1287 0 : if layer_local_page_count == 0 {
1288 : // This ancestral layer only covers keys that belong to other shards.
1289 : // We include the full metadata in the log: if we had some critical bug that caused
1290 : // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
1291 0 : debug!(%layer, old_metadata=?layer.metadata(),
1292 0 : "dropping layer after shard split, contains no keys for this shard",
1293 : );
1294 :
1295 0 : if cfg!(debug_assertions) {
1296 : // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
1297 : // wrong. If ShardedRange claims the local page count is zero, then no keys in this layer
1298 : // should be !is_key_disposable()
1299 : // TODO: exclude sparse keyspace from this check, otherwise it will infinitely loop.
1300 0 : let range = layer_desc.get_key_range();
1301 0 : let mut key = range.start;
1302 0 : while key < range.end {
1303 0 : debug_assert!(self.shard_identity.is_key_disposable(&key));
1304 0 : key = key.next();
1305 : }
1306 0 : }
1307 :
1308 0 : drop_layers.push(layer);
1309 0 : continue;
1310 0 : } else if layer_local_page_count != u32::MAX
1311 0 : && layer_local_page_count == layer_raw_page_count
1312 : {
1313 0 : debug!(%layer,
1314 0 : "layer is entirely shard local ({} keys), no need to filter it",
1315 : layer_local_page_count
1316 : );
1317 0 : continue;
1318 0 : }
1319 0 :
1320 0 : // Don't bother re-writing a layer unless it will at least halve its size
1321 0 : if layer_local_page_count != u32::MAX
1322 0 : && layer_local_page_count > layer_raw_page_count / 2
1323 : {
1324 0 : debug!(%layer,
1325 0 : "layer is already mostly local ({}/{}), not rewriting",
1326 : layer_local_page_count,
1327 : layer_raw_page_count
1328 : );
1329 0 : }
1330 :
1331 : // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
1332 : // without incurring the I/O cost of a rewrite.
1333 0 : if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
1334 0 : debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
1335 0 : layer_desc.get_lsn_range().end, *latest_gc_cutoff);
1336 0 : continue;
1337 0 : }
1338 0 :
1339 0 : if layer_desc.is_delta() {
1340 : // We do not yet implement rewrite of delta layers
1341 0 : debug!(%layer, "Skipping rewrite of delta layer");
1342 0 : continue;
1343 0 : }
1344 0 :
1345 0 : // Only rewrite layers if their generations differ. This guarantees:
1346 0 : // - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
1347 0 : // - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
1348 0 : if layer.metadata().generation == self.generation {
1349 0 : debug!(%layer, "Skipping rewrite, is not from old generation");
1350 0 : continue;
1351 0 : }
1352 0 :
1353 0 : if layers_to_rewrite.len() >= rewrite_max {
1354 0 : debug!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
1355 0 : layers_to_rewrite.len()
1356 : );
1357 0 : outcome = CompactionOutcome::Pending;
1358 0 : break;
1359 0 : }
1360 0 :
1361 0 : // Fall through: all our conditions for doing a rewrite passed.
1362 0 : layers_to_rewrite.push(layer);
1363 : }
1364 :
1365 : // Drop read lock on layer map before we start doing time-consuming I/O.
1366 0 : drop(layers);
1367 0 :
1368 0 : // Drop out early if there's nothing to do.
1369 0 : if layers_to_rewrite.is_empty() && drop_layers.is_empty() {
1370 0 : return Ok(CompactionOutcome::Done);
1371 0 : }
1372 0 :
1373 0 : info!(
1374 0 : "starting shard ancestor compaction, rewriting {} layers and dropping {} layers \
1375 0 : (latest_gc_cutoff={} pitr_cutoff={})",
1376 0 : layers_to_rewrite.len(),
1377 0 : drop_layers.len(),
1378 0 : *latest_gc_cutoff,
1379 : pitr_cutoff,
1380 : );
1381 0 : let started = Instant::now();
1382 0 :
1383 0 : let mut replace_image_layers = Vec::new();
1384 :
1385 0 : for layer in layers_to_rewrite {
1386 0 : if self.cancel.is_cancelled() {
1387 0 : return Err(CompactionError::ShuttingDown);
1388 0 : }
1389 0 :
1390 0 : info!(layer=%layer, "rewriting layer after shard split");
1391 0 : let mut image_layer_writer = ImageLayerWriter::new(
1392 0 : self.conf,
1393 0 : self.timeline_id,
1394 0 : self.tenant_shard_id,
1395 0 : &layer.layer_desc().key_range,
1396 0 : layer.layer_desc().image_layer_lsn(),
1397 0 : ctx,
1398 0 : )
1399 0 : .await
1400 0 : .map_err(CompactionError::Other)?;
1401 :
1402 : // Safety of layer rewrites:
1403 : // - We are writing to a different local file path than we are reading from, so the old Layer
1404 : // cannot interfere with the new one.
1405 : // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
1406 : // is different for two layers with the same name (in `ImageLayerInner::new` we always
1407 : // acquire a fresh id from [`crate::page_cache::next_file_id`]. So readers do not risk
1408 : // reading the index from one layer file, and then data blocks from the rewritten layer file.
1409 : // - Any readers that have a reference to the old layer will keep it alive until they are done
1410 : // with it. If they are trying to promote from remote storage, that will fail, but this is the same
1411 : // as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
1412 : // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
1413 : // - GC, which at worst witnesses us "undelete" a layer that they just deleted.
1414 : // - ingestion, which only inserts layers, therefore cannot collide with us.
1415 0 : let resident = layer.download_and_keep_resident(ctx).await?;
1416 :
1417 0 : let keys_written = resident
1418 0 : .filter(&self.shard_identity, &mut image_layer_writer, ctx)
1419 0 : .await?;
1420 :
1421 0 : if keys_written > 0 {
1422 0 : let (desc, path) = image_layer_writer
1423 0 : .finish(ctx)
1424 0 : .await
1425 0 : .map_err(CompactionError::Other)?;
1426 0 : let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
1427 0 : .map_err(CompactionError::Other)?;
1428 0 : info!(layer=%new_layer, "rewrote layer, {} -> {} bytes",
1429 0 : layer.metadata().file_size,
1430 0 : new_layer.metadata().file_size);
1431 :
1432 0 : replace_image_layers.push((layer, new_layer));
1433 0 : } else {
1434 0 : // Drop the old layer. Usually for this case we would already have noticed that
1435 0 : // the layer has no data for us with the ShardedRange check above, but
1436 0 : drop_layers.push(layer);
1437 0 : }
1438 :
1439 : // Yield for L0 compaction if necessary, but make sure we update the layer map below
1440 : // with the work we've already done.
1441 0 : if yield_for_l0
1442 0 : && self
1443 0 : .l0_compaction_trigger
1444 0 : .notified()
1445 0 : .now_or_never()
1446 0 : .is_some()
1447 : {
1448 0 : info!("shard ancestor compaction yielding for L0 compaction");
1449 0 : outcome = CompactionOutcome::YieldForL0;
1450 0 : break;
1451 0 : }
1452 : }
1453 :
1454 0 : for layer in &drop_layers {
1455 0 : info!(%layer, old_metadata=?layer.metadata(),
1456 0 : "dropping layer after shard split (no keys for this shard)",
1457 : );
1458 : }
1459 :
1460 : // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
1461 : // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
1462 : // to remote index) and be removed. This is inefficient but safe.
1463 0 : fail::fail_point!("compact-shard-ancestors-localonly");
1464 0 :
1465 0 : // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
1466 0 : self.rewrite_layers(replace_image_layers, drop_layers)
1467 0 : .await?;
1468 :
1469 0 : fail::fail_point!("compact-shard-ancestors-enqueued");
1470 0 :
1471 0 : // We wait for all uploads to complete before finishing this compaction stage. This is not
1472 0 : // necessary for correctness, but it simplifies testing, and avoids proceeding with another
1473 0 : // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
1474 0 : // load.
1475 0 : if outcome != CompactionOutcome::YieldForL0 {
1476 0 : info!("shard ancestor compaction waiting for uploads");
1477 0 : tokio::select! {
1478 0 : result = self.remote_client.wait_completion() => match result {
1479 0 : Ok(()) => {},
1480 0 : Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
1481 : Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
1482 0 : return Err(CompactionError::ShuttingDown);
1483 : }
1484 : },
1485 : // Don't wait if there's L0 compaction to do. We don't need to update the outcome
1486 : // here, because we've already done the actual work.
1487 0 : _ = self.l0_compaction_trigger.notified(), if yield_for_l0 => {},
1488 : }
1489 0 : }
1490 :
1491 0 : info!(
1492 0 : "shard ancestor compaction done in {:.3}s{}",
1493 0 : started.elapsed().as_secs_f64(),
1494 0 : match outcome {
1495 : CompactionOutcome::Pending =>
1496 0 : format!(", with pending work (rewrite_max={rewrite_max})"),
1497 0 : CompactionOutcome::YieldForL0 => String::from(", yielding for L0 compaction"),
1498 0 : CompactionOutcome::Skipped | CompactionOutcome::Done => String::new(),
1499 : }
1500 : );
1501 :
1502 0 : fail::fail_point!("compact-shard-ancestors-persistent");
1503 0 :
1504 0 : Ok(outcome)
1505 0 : }
1506 :
1507 : /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
1508 : /// an image layer between them and the most recent readable LSN (branch point or tip of timeline). The
1509 : /// purpose of the visibility hint is to record which layers need to be available to service reads.
1510 : ///
1511 : /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
1512 : /// that we know won't be needed for reads.
1513 476 : pub(crate) async fn update_layer_visibility(
1514 476 : &self,
1515 476 : ) -> Result<(), super::layer_manager::Shutdown> {
1516 476 : let head_lsn = self.get_last_record_lsn();
1517 :
1518 : // We will sweep through layers in reverse-LSN order. We only do historic layers. L0 deltas
1519 : // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
1520 : // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
1521 : // they will be subject to L0->L1 compaction in the near future.
1522 476 : let layer_manager = self.layers.read().await;
1523 476 : let layer_map = layer_manager.layer_map()?;
1524 :
1525 476 : let readable_points = {
1526 476 : let children = self.gc_info.read().unwrap().retain_lsns.clone();
1527 476 :
1528 476 : let mut readable_points = Vec::with_capacity(children.len() + 1);
1529 476 : for (child_lsn, _child_timeline_id, is_offloaded) in &children {
1530 0 : if *is_offloaded == MaybeOffloaded::Yes {
1531 0 : continue;
1532 0 : }
1533 0 : readable_points.push(*child_lsn);
1534 : }
1535 476 : readable_points.push(head_lsn);
1536 476 : readable_points
1537 476 : };
1538 476 :
1539 476 : let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
1540 1200 : for (layer_desc, visibility) in layer_visibility {
1541 724 : // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
1542 724 : let layer = layer_manager.get_from_desc(&layer_desc);
1543 724 : layer.set_visibility(visibility);
1544 724 : }
1545 :
1546 : // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
1547 : // avoid assuming that everything at a branch point is visible.
1548 476 : drop(covered);
1549 476 : Ok(())
1550 476 : }
1551 :
1552 : /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
1553 : /// as Level 1 files. Returns whether the L0 layers are fully compacted.
1554 728 : async fn compact_level0(
1555 728 : self: &Arc<Self>,
1556 728 : target_file_size: u64,
1557 728 : force_compaction_ignore_threshold: bool,
1558 728 : ctx: &RequestContext,
1559 728 : ) -> Result<CompactionOutcome, CompactionError> {
1560 : let CompactLevel0Phase1Result {
1561 728 : new_layers,
1562 728 : deltas_to_compact,
1563 728 : outcome,
1564 : } = {
1565 728 : let phase1_span = info_span!("compact_level0_phase1");
1566 728 : let ctx = ctx.attached_child();
1567 728 : let mut stats = CompactLevel0Phase1StatsBuilder {
1568 728 : version: Some(2),
1569 728 : tenant_id: Some(self.tenant_shard_id),
1570 728 : timeline_id: Some(self.timeline_id),
1571 728 : ..Default::default()
1572 728 : };
1573 728 :
1574 728 : let begin = tokio::time::Instant::now();
1575 728 : let phase1_layers_locked = self.layers.read().await;
1576 728 : let now = tokio::time::Instant::now();
1577 728 : stats.read_lock_acquisition_micros =
1578 728 : DurationRecorder::Recorded(RecordedDuration(now - begin), now);
1579 728 : self.compact_level0_phase1(
1580 728 : phase1_layers_locked,
1581 728 : stats,
1582 728 : target_file_size,
1583 728 : force_compaction_ignore_threshold,
1584 728 : &ctx,
1585 728 : )
1586 728 : .instrument(phase1_span)
1587 728 : .await?
1588 : };
1589 :
1590 728 : if new_layers.is_empty() && deltas_to_compact.is_empty() {
1591 : // nothing to do
1592 672 : return Ok(CompactionOutcome::Done);
1593 56 : }
1594 56 :
1595 56 : self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
1596 56 : .await?;
1597 56 : Ok(outcome)
1598 728 : }
1599 :
1600 : /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
1601 728 : async fn compact_level0_phase1<'a>(
1602 728 : self: &'a Arc<Self>,
1603 728 : guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
1604 728 : mut stats: CompactLevel0Phase1StatsBuilder,
1605 728 : target_file_size: u64,
1606 728 : force_compaction_ignore_threshold: bool,
1607 728 : ctx: &RequestContext,
1608 728 : ) -> Result<CompactLevel0Phase1Result, CompactionError> {
1609 728 : stats.read_lock_held_spawn_blocking_startup_micros =
1610 728 : stats.read_lock_acquisition_micros.till_now(); // set by caller
1611 728 : let layers = guard.layer_map()?;
1612 728 : let level0_deltas = layers.level0_deltas();
1613 728 : stats.level0_deltas_count = Some(level0_deltas.len());
1614 728 :
1615 728 : // Only compact if enough layers have accumulated.
1616 728 : let threshold = self.get_compaction_threshold();
1617 728 : if level0_deltas.is_empty() || level0_deltas.len() < threshold {
1618 672 : if force_compaction_ignore_threshold {
1619 0 : if !level0_deltas.is_empty() {
1620 0 : info!(
1621 0 : level0_deltas = level0_deltas.len(),
1622 0 : threshold, "too few deltas to compact, but forcing compaction"
1623 : );
1624 : } else {
1625 0 : info!(
1626 0 : level0_deltas = level0_deltas.len(),
1627 0 : threshold, "too few deltas to compact, cannot force compaction"
1628 : );
1629 0 : return Ok(CompactLevel0Phase1Result::default());
1630 : }
1631 : } else {
1632 672 : debug!(
1633 0 : level0_deltas = level0_deltas.len(),
1634 0 : threshold, "too few deltas to compact"
1635 : );
1636 672 : return Ok(CompactLevel0Phase1Result::default());
1637 : }
1638 56 : }
1639 :
1640 56 : let mut level0_deltas = level0_deltas
1641 56 : .iter()
1642 804 : .map(|x| guard.get_from_desc(x))
1643 56 : .collect::<Vec<_>>();
1644 56 :
1645 56 : // Gather the files to compact in this iteration.
1646 56 : //
1647 56 : // Start with the oldest Level 0 delta file, and collect any other
1648 56 : // level 0 files that form a contiguous sequence, such that the end
1649 56 : // LSN of previous file matches the start LSN of the next file.
1650 56 : //
1651 56 : // Note that if the files don't form such a sequence, we might
1652 56 : // "compact" just a single file. That's a bit pointless, but it allows
1653 56 : // us to get rid of the level 0 file, and compact the other files on
1654 56 : // the next iteration. This could probably made smarter, but such
1655 56 : // "gaps" in the sequence of level 0 files should only happen in case
1656 56 : // of a crash, partial download from cloud storage, or something like
1657 56 : // that, so it's not a big deal in practice.
1658 1496 : level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
1659 56 : let mut level0_deltas_iter = level0_deltas.iter();
1660 56 :
1661 56 : let first_level0_delta = level0_deltas_iter.next().unwrap();
1662 56 : let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
1663 56 : let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
1664 56 :
1665 56 : // Accumulate the size of layers in `deltas_to_compact`
1666 56 : let mut deltas_to_compact_bytes = 0;
1667 56 :
1668 56 : // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
1669 56 : // checkpoint_distance each. To avoid edge cases using extra system resources, bound our
1670 56 : // work in this function to only operate on this much delta data at once.
1671 56 : //
1672 56 : // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
1673 56 : // the constraint is not respected, we use the larger of the two.
1674 56 : let delta_size_limit = std::cmp::max(
1675 56 : self.get_compaction_upper_limit(),
1676 56 : self.get_compaction_threshold(),
1677 56 : ) as u64
1678 56 : * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
1679 56 :
1680 56 : let mut fully_compacted = true;
1681 56 :
1682 56 : deltas_to_compact.push(first_level0_delta.download_and_keep_resident(ctx).await?);
1683 804 : for l in level0_deltas_iter {
1684 748 : let lsn_range = &l.layer_desc().lsn_range;
1685 748 :
1686 748 : if lsn_range.start != prev_lsn_end {
1687 0 : break;
1688 748 : }
1689 748 : deltas_to_compact.push(l.download_and_keep_resident(ctx).await?);
1690 748 : deltas_to_compact_bytes += l.metadata().file_size;
1691 748 : prev_lsn_end = lsn_range.end;
1692 748 :
1693 748 : if deltas_to_compact_bytes >= delta_size_limit {
1694 0 : info!(
1695 0 : l0_deltas_selected = deltas_to_compact.len(),
1696 0 : l0_deltas_total = level0_deltas.len(),
1697 0 : "L0 compaction picker hit max delta layer size limit: {}",
1698 : delta_size_limit
1699 : );
1700 0 : fully_compacted = false;
1701 0 :
1702 0 : // Proceed with compaction, but only a subset of L0s
1703 0 : break;
1704 748 : }
1705 : }
1706 56 : let lsn_range = Range {
1707 56 : start: deltas_to_compact
1708 56 : .first()
1709 56 : .unwrap()
1710 56 : .layer_desc()
1711 56 : .lsn_range
1712 56 : .start,
1713 56 : end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
1714 56 : };
1715 56 :
1716 56 : info!(
1717 0 : "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
1718 0 : lsn_range.start,
1719 0 : lsn_range.end,
1720 0 : deltas_to_compact.len(),
1721 0 : level0_deltas.len()
1722 : );
1723 :
1724 804 : for l in deltas_to_compact.iter() {
1725 804 : info!("compact includes {l}");
1726 : }
1727 :
1728 : // We don't need the original list of layers anymore. Drop it so that
1729 : // we don't accidentally use it later in the function.
1730 56 : drop(level0_deltas);
1731 56 :
1732 56 : stats.read_lock_held_prerequisites_micros = stats
1733 56 : .read_lock_held_spawn_blocking_startup_micros
1734 56 : .till_now();
1735 :
1736 : // TODO: replace with streaming k-merge
1737 56 : let all_keys = {
1738 56 : let mut all_keys = Vec::new();
1739 804 : for l in deltas_to_compact.iter() {
1740 804 : if self.cancel.is_cancelled() {
1741 0 : return Err(CompactionError::ShuttingDown);
1742 804 : }
1743 804 : let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
1744 804 : let keys = delta
1745 804 : .index_entries(ctx)
1746 804 : .await
1747 804 : .map_err(CompactionError::Other)?;
1748 804 : all_keys.extend(keys);
1749 : }
1750 : // The current stdlib sorting implementation is designed in a way where it is
1751 : // particularly fast where the slice is made up of sorted sub-ranges.
1752 8847580 : all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
1753 56 : all_keys
1754 56 : };
1755 56 :
1756 56 : stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
1757 :
1758 : // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
1759 : //
1760 : // A hole is a key range for which this compaction doesn't have any WAL records.
1761 : // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
1762 : // cover the hole, but actually don't contain any WAL records for that key range.
1763 : // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
1764 : // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
1765 : //
1766 : // The algorithm chooses holes as follows.
1767 : // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
1768 : // - Filter: min threshold on range length
1769 : // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
1770 : //
1771 : // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
1772 : #[derive(PartialEq, Eq)]
1773 : struct Hole {
1774 : key_range: Range<Key>,
1775 : coverage_size: usize,
1776 : }
1777 56 : let holes: Vec<Hole> = {
1778 : use std::cmp::Ordering;
1779 : impl Ord for Hole {
1780 0 : fn cmp(&self, other: &Self) -> Ordering {
1781 0 : self.coverage_size.cmp(&other.coverage_size).reverse()
1782 0 : }
1783 : }
1784 : impl PartialOrd for Hole {
1785 0 : fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1786 0 : Some(self.cmp(other))
1787 0 : }
1788 : }
1789 56 : let max_holes = deltas_to_compact.len();
1790 56 : let last_record_lsn = self.get_last_record_lsn();
1791 56 : let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
1792 56 : let min_hole_coverage_size = 3; // TODO: something more flexible?
1793 56 : // min-heap (reserve space for one more element added before eviction)
1794 56 : let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
1795 56 : let mut prev: Option<Key> = None;
1796 :
1797 4128076 : for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
1798 4128076 : if let Some(prev_key) = prev {
1799 : // just first fast filter, do not create hole entries for metadata keys. The last hole in the
1800 : // compaction is the gap between data key and metadata keys.
1801 4128020 : if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
1802 0 : && !Key::is_metadata_key(&prev_key)
1803 : {
1804 0 : let key_range = prev_key..next_key;
1805 0 : // Measuring hole by just subtraction of i128 representation of key range boundaries
1806 0 : // has not so much sense, because largest holes will corresponds field1/field2 changes.
1807 0 : // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
1808 0 : // That is why it is better to measure size of hole as number of covering image layers.
1809 0 : let coverage_size =
1810 0 : layers.image_coverage(&key_range, last_record_lsn).len();
1811 0 : if coverage_size >= min_hole_coverage_size {
1812 0 : heap.push(Hole {
1813 0 : key_range,
1814 0 : coverage_size,
1815 0 : });
1816 0 : if heap.len() > max_holes {
1817 0 : heap.pop(); // remove smallest hole
1818 0 : }
1819 0 : }
1820 4128020 : }
1821 56 : }
1822 4128076 : prev = Some(next_key.next());
1823 : }
1824 56 : let mut holes = heap.into_vec();
1825 56 : holes.sort_unstable_by_key(|hole| hole.key_range.start);
1826 56 : holes
1827 56 : };
1828 56 : stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
1829 56 : drop_rlock(guard);
1830 56 :
1831 56 : if self.cancel.is_cancelled() {
1832 0 : return Err(CompactionError::ShuttingDown);
1833 56 : }
1834 56 :
1835 56 : stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
1836 :
1837 : // This iterator walks through all key-value pairs from all the layers
1838 : // we're compacting, in key, LSN order.
1839 : // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
1840 : // then the Value::Image is ordered before Value::WalRecord.
1841 56 : let mut all_values_iter = {
1842 56 : let mut deltas = Vec::with_capacity(deltas_to_compact.len());
1843 804 : for l in deltas_to_compact.iter() {
1844 804 : let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
1845 804 : deltas.push(l);
1846 : }
1847 56 : MergeIterator::create(&deltas, &[], ctx)
1848 56 : };
1849 56 :
1850 56 : // This iterator walks through all keys and is needed to calculate size used by each key
1851 56 : let mut all_keys_iter = all_keys
1852 56 : .iter()
1853 4128076 : .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
1854 4128020 : .coalesce(|mut prev, cur| {
1855 4128020 : // Coalesce keys that belong to the same key pair.
1856 4128020 : // This ensures that compaction doesn't put them
1857 4128020 : // into different layer files.
1858 4128020 : // Still limit this by the target file size,
1859 4128020 : // so that we keep the size of the files in
1860 4128020 : // check.
1861 4128020 : if prev.0 == cur.0 && prev.2 < target_file_size {
1862 80076 : prev.2 += cur.2;
1863 80076 : Ok(prev)
1864 : } else {
1865 4047944 : Err((prev, cur))
1866 : }
1867 4128020 : });
1868 56 :
1869 56 : // Merge the contents of all the input delta layers into a new set
1870 56 : // of delta layers, based on the current partitioning.
1871 56 : //
1872 56 : // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
1873 56 : // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
1874 56 : // would be too large. In that case, we also split on the LSN dimension.
1875 56 : //
1876 56 : // LSN
1877 56 : // ^
1878 56 : // |
1879 56 : // | +-----------+ +--+--+--+--+
1880 56 : // | | | | | | | |
1881 56 : // | +-----------+ | | | | |
1882 56 : // | | | | | | | |
1883 56 : // | +-----------+ ==> | | | | |
1884 56 : // | | | | | | | |
1885 56 : // | +-----------+ | | | | |
1886 56 : // | | | | | | | |
1887 56 : // | +-----------+ +--+--+--+--+
1888 56 : // |
1889 56 : // +--------------> key
1890 56 : //
1891 56 : //
1892 56 : // If one key (X) has a lot of page versions:
1893 56 : //
1894 56 : // LSN
1895 56 : // ^
1896 56 : // | (X)
1897 56 : // | +-----------+ +--+--+--+--+
1898 56 : // | | | | | | | |
1899 56 : // | +-----------+ | | +--+ |
1900 56 : // | | | | | | | |
1901 56 : // | +-----------+ ==> | | | | |
1902 56 : // | | | | | +--+ |
1903 56 : // | +-----------+ | | | | |
1904 56 : // | | | | | | | |
1905 56 : // | +-----------+ +--+--+--+--+
1906 56 : // |
1907 56 : // +--------------> key
1908 56 : // TODO: this actually divides the layers into fixed-size chunks, not
1909 56 : // based on the partitioning.
1910 56 : //
1911 56 : // TODO: we should also opportunistically materialize and
1912 56 : // garbage collect what we can.
1913 56 : let mut new_layers = Vec::new();
1914 56 : let mut prev_key: Option<Key> = None;
1915 56 : let mut writer: Option<DeltaLayerWriter> = None;
1916 56 : let mut key_values_total_size = 0u64;
1917 56 : let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
1918 56 : let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
1919 56 : let mut next_hole = 0; // index of next hole in holes vector
1920 56 :
1921 56 : let mut keys = 0;
1922 :
1923 4128132 : while let Some((key, lsn, value)) = all_values_iter
1924 4128132 : .next()
1925 4128132 : .await
1926 4128132 : .map_err(CompactionError::Other)?
1927 : {
1928 4128076 : keys += 1;
1929 4128076 :
1930 4128076 : if keys % 32_768 == 0 && self.cancel.is_cancelled() {
1931 : // avoid hitting the cancellation token on every key. in benches, we end up
1932 : // shuffling an order of million keys per layer, this means we'll check it
1933 : // around tens of times per layer.
1934 0 : return Err(CompactionError::ShuttingDown);
1935 4128076 : }
1936 4128076 :
1937 4128076 : let same_key = prev_key == Some(key);
1938 4128076 : // We need to check key boundaries once we reach next key or end of layer with the same key
1939 4128076 : if !same_key || lsn == dup_end_lsn {
1940 4048000 : let mut next_key_size = 0u64;
1941 4048000 : let is_dup_layer = dup_end_lsn.is_valid();
1942 4048000 : dup_start_lsn = Lsn::INVALID;
1943 4048000 : if !same_key {
1944 4048000 : dup_end_lsn = Lsn::INVALID;
1945 4048000 : }
1946 : // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
1947 4048000 : for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
1948 4048000 : next_key_size = next_size;
1949 4048000 : if key != next_key {
1950 4047944 : if dup_end_lsn.is_valid() {
1951 0 : // We are writting segment with duplicates:
1952 0 : // place all remaining values of this key in separate segment
1953 0 : dup_start_lsn = dup_end_lsn; // new segments starts where old stops
1954 0 : dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
1955 4047944 : }
1956 4047944 : break;
1957 56 : }
1958 56 : key_values_total_size += next_size;
1959 56 : // Check if it is time to split segment: if total keys size is larger than target file size.
1960 56 : // We need to avoid generation of empty segments if next_size > target_file_size.
1961 56 : if key_values_total_size > target_file_size && lsn != next_lsn {
1962 : // Split key between multiple layers: such layer can contain only single key
1963 0 : dup_start_lsn = if dup_end_lsn.is_valid() {
1964 0 : dup_end_lsn // new segment with duplicates starts where old one stops
1965 : } else {
1966 0 : lsn // start with the first LSN for this key
1967 : };
1968 0 : dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
1969 0 : break;
1970 56 : }
1971 : }
1972 : // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
1973 4048000 : if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
1974 0 : dup_start_lsn = dup_end_lsn;
1975 0 : dup_end_lsn = lsn_range.end;
1976 4048000 : }
1977 4048000 : if writer.is_some() {
1978 4047944 : let written_size = writer.as_mut().unwrap().size();
1979 4047944 : let contains_hole =
1980 4047944 : next_hole < holes.len() && key >= holes[next_hole].key_range.end;
1981 : // check if key cause layer overflow or contains hole...
1982 4047944 : if is_dup_layer
1983 4047944 : || dup_end_lsn.is_valid()
1984 4047944 : || written_size + key_values_total_size > target_file_size
1985 4047384 : || contains_hole
1986 : {
1987 : // ... if so, flush previous layer and prepare to write new one
1988 560 : let (desc, path) = writer
1989 560 : .take()
1990 560 : .unwrap()
1991 560 : .finish(prev_key.unwrap().next(), ctx)
1992 560 : .await
1993 560 : .map_err(CompactionError::Other)?;
1994 560 : let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
1995 560 : .map_err(CompactionError::Other)?;
1996 :
1997 560 : new_layers.push(new_delta);
1998 560 : writer = None;
1999 560 :
2000 560 : if contains_hole {
2001 0 : // skip hole
2002 0 : next_hole += 1;
2003 560 : }
2004 4047384 : }
2005 56 : }
2006 : // Remember size of key value because at next iteration we will access next item
2007 4048000 : key_values_total_size = next_key_size;
2008 80076 : }
2009 4128076 : fail_point!("delta-layer-writer-fail-before-finish", |_| {
2010 0 : Err(CompactionError::Other(anyhow::anyhow!(
2011 0 : "failpoint delta-layer-writer-fail-before-finish"
2012 0 : )))
2013 4128076 : });
2014 :
2015 4128076 : if !self.shard_identity.is_key_disposable(&key) {
2016 4128076 : if writer.is_none() {
2017 616 : if self.cancel.is_cancelled() {
2018 : // to be somewhat responsive to cancellation, check for each new layer
2019 0 : return Err(CompactionError::ShuttingDown);
2020 616 : }
2021 : // Create writer if not initiaized yet
2022 616 : writer = Some(
2023 : DeltaLayerWriter::new(
2024 616 : self.conf,
2025 616 : self.timeline_id,
2026 616 : self.tenant_shard_id,
2027 616 : key,
2028 616 : if dup_end_lsn.is_valid() {
2029 : // this is a layer containing slice of values of the same key
2030 0 : debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
2031 0 : dup_start_lsn..dup_end_lsn
2032 : } else {
2033 616 : debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
2034 616 : lsn_range.clone()
2035 : },
2036 616 : ctx,
2037 616 : )
2038 616 : .await
2039 616 : .map_err(CompactionError::Other)?,
2040 : );
2041 :
2042 616 : keys = 0;
2043 4127460 : }
2044 :
2045 4128076 : writer
2046 4128076 : .as_mut()
2047 4128076 : .unwrap()
2048 4128076 : .put_value(key, lsn, value, ctx)
2049 4128076 : .await
2050 4128076 : .map_err(CompactionError::Other)?;
2051 : } else {
2052 0 : let owner = self.shard_identity.get_shard_number(&key);
2053 0 :
2054 0 : // This happens after a shard split, when we're compacting an L0 created by our parent shard
2055 0 : debug!("dropping key {key} during compaction (it belongs on shard {owner})");
2056 : }
2057 :
2058 4128076 : if !new_layers.is_empty() {
2059 39572 : fail_point!("after-timeline-compacted-first-L1");
2060 4088504 : }
2061 :
2062 4128076 : prev_key = Some(key);
2063 : }
2064 56 : if let Some(writer) = writer {
2065 56 : let (desc, path) = writer
2066 56 : .finish(prev_key.unwrap().next(), ctx)
2067 56 : .await
2068 56 : .map_err(CompactionError::Other)?;
2069 56 : let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
2070 56 : .map_err(CompactionError::Other)?;
2071 56 : new_layers.push(new_delta);
2072 0 : }
2073 :
2074 : // Sync layers
2075 56 : if !new_layers.is_empty() {
2076 : // Print a warning if the created layer is larger than double the target size
2077 : // Add two pages for potential overhead. This should in theory be already
2078 : // accounted for in the target calculation, but for very small targets,
2079 : // we still might easily hit the limit otherwise.
2080 56 : let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
2081 616 : for layer in new_layers.iter() {
2082 616 : if layer.layer_desc().file_size > warn_limit {
2083 0 : warn!(
2084 : %layer,
2085 0 : "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
2086 : );
2087 616 : }
2088 : }
2089 :
2090 : // The writer.finish() above already did the fsync of the inodes.
2091 : // We just need to fsync the directory in which these inodes are linked,
2092 : // which we know to be the timeline directory.
2093 : //
2094 : // We use fatal_err() below because the after writer.finish() returns with success,
2095 : // the in-memory state of the filesystem already has the layer file in its final place,
2096 : // and subsequent pageserver code could think it's durable while it really isn't.
2097 56 : let timeline_dir = VirtualFile::open(
2098 56 : &self
2099 56 : .conf
2100 56 : .timeline_path(&self.tenant_shard_id, &self.timeline_id),
2101 56 : ctx,
2102 56 : )
2103 56 : .await
2104 56 : .fatal_err("VirtualFile::open for timeline dir fsync");
2105 56 : timeline_dir
2106 56 : .sync_all()
2107 56 : .await
2108 56 : .fatal_err("VirtualFile::sync_all timeline dir");
2109 0 : }
2110 :
2111 56 : stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
2112 56 : stats.new_deltas_count = Some(new_layers.len());
2113 616 : stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
2114 56 :
2115 56 : match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
2116 56 : .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
2117 : {
2118 56 : Ok(stats_json) => {
2119 56 : info!(
2120 0 : stats_json = stats_json.as_str(),
2121 0 : "compact_level0_phase1 stats available"
2122 : )
2123 : }
2124 0 : Err(e) => {
2125 0 : warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
2126 : }
2127 : }
2128 :
2129 : // Without this, rustc complains about deltas_to_compact still
2130 : // being borrowed when we `.into_iter()` below.
2131 56 : drop(all_values_iter);
2132 56 :
2133 56 : Ok(CompactLevel0Phase1Result {
2134 56 : new_layers,
2135 56 : deltas_to_compact: deltas_to_compact
2136 56 : .into_iter()
2137 804 : .map(|x| x.drop_eviction_guard())
2138 56 : .collect::<Vec<_>>(),
2139 56 : outcome: if fully_compacted {
2140 56 : CompactionOutcome::Done
2141 : } else {
2142 0 : CompactionOutcome::Pending
2143 : },
2144 : })
2145 728 : }
2146 : }
2147 :
2148 : #[derive(Default)]
2149 : struct CompactLevel0Phase1Result {
2150 : new_layers: Vec<ResidentLayer>,
2151 : deltas_to_compact: Vec<Layer>,
2152 : // Whether we have included all L0 layers, or selected only part of them due to the
2153 : // L0 compaction size limit.
2154 : outcome: CompactionOutcome,
2155 : }
2156 :
2157 : #[derive(Default)]
2158 : struct CompactLevel0Phase1StatsBuilder {
2159 : version: Option<u64>,
2160 : tenant_id: Option<TenantShardId>,
2161 : timeline_id: Option<TimelineId>,
2162 : read_lock_acquisition_micros: DurationRecorder,
2163 : read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
2164 : read_lock_held_key_sort_micros: DurationRecorder,
2165 : read_lock_held_prerequisites_micros: DurationRecorder,
2166 : read_lock_held_compute_holes_micros: DurationRecorder,
2167 : read_lock_drop_micros: DurationRecorder,
2168 : write_layer_files_micros: DurationRecorder,
2169 : level0_deltas_count: Option<usize>,
2170 : new_deltas_count: Option<usize>,
2171 : new_deltas_size: Option<u64>,
2172 : }
2173 :
2174 : #[derive(serde::Serialize)]
2175 : struct CompactLevel0Phase1Stats {
2176 : version: u64,
2177 : tenant_id: TenantShardId,
2178 : timeline_id: TimelineId,
2179 : read_lock_acquisition_micros: RecordedDuration,
2180 : read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
2181 : read_lock_held_key_sort_micros: RecordedDuration,
2182 : read_lock_held_prerequisites_micros: RecordedDuration,
2183 : read_lock_held_compute_holes_micros: RecordedDuration,
2184 : read_lock_drop_micros: RecordedDuration,
2185 : write_layer_files_micros: RecordedDuration,
2186 : level0_deltas_count: usize,
2187 : new_deltas_count: usize,
2188 : new_deltas_size: u64,
2189 : }
2190 :
2191 : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
2192 : type Error = anyhow::Error;
2193 :
2194 56 : fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
2195 56 : Ok(Self {
2196 56 : version: value.version.ok_or_else(|| anyhow!("version not set"))?,
2197 56 : tenant_id: value
2198 56 : .tenant_id
2199 56 : .ok_or_else(|| anyhow!("tenant_id not set"))?,
2200 56 : timeline_id: value
2201 56 : .timeline_id
2202 56 : .ok_or_else(|| anyhow!("timeline_id not set"))?,
2203 56 : read_lock_acquisition_micros: value
2204 56 : .read_lock_acquisition_micros
2205 56 : .into_recorded()
2206 56 : .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
2207 56 : read_lock_held_spawn_blocking_startup_micros: value
2208 56 : .read_lock_held_spawn_blocking_startup_micros
2209 56 : .into_recorded()
2210 56 : .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
2211 56 : read_lock_held_key_sort_micros: value
2212 56 : .read_lock_held_key_sort_micros
2213 56 : .into_recorded()
2214 56 : .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
2215 56 : read_lock_held_prerequisites_micros: value
2216 56 : .read_lock_held_prerequisites_micros
2217 56 : .into_recorded()
2218 56 : .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
2219 56 : read_lock_held_compute_holes_micros: value
2220 56 : .read_lock_held_compute_holes_micros
2221 56 : .into_recorded()
2222 56 : .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
2223 56 : read_lock_drop_micros: value
2224 56 : .read_lock_drop_micros
2225 56 : .into_recorded()
2226 56 : .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
2227 56 : write_layer_files_micros: value
2228 56 : .write_layer_files_micros
2229 56 : .into_recorded()
2230 56 : .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
2231 56 : level0_deltas_count: value
2232 56 : .level0_deltas_count
2233 56 : .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
2234 56 : new_deltas_count: value
2235 56 : .new_deltas_count
2236 56 : .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
2237 56 : new_deltas_size: value
2238 56 : .new_deltas_size
2239 56 : .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
2240 : })
2241 56 : }
2242 : }
2243 :
2244 : impl Timeline {
2245 : /// Entry point for new tiered compaction algorithm.
2246 : ///
2247 : /// All the real work is in the implementation in the pageserver_compaction
2248 : /// crate. The code here would apply to any algorithm implemented by the
2249 : /// same interface, but tiered is the only one at the moment.
2250 : ///
2251 : /// TODO: cancellation
2252 0 : pub(crate) async fn compact_tiered(
2253 0 : self: &Arc<Self>,
2254 0 : _cancel: &CancellationToken,
2255 0 : ctx: &RequestContext,
2256 0 : ) -> Result<(), CompactionError> {
2257 0 : let fanout = self.get_compaction_threshold() as u64;
2258 0 : let target_file_size = self.get_checkpoint_distance();
2259 :
2260 : // Find the top of the historical layers
2261 0 : let end_lsn = {
2262 0 : let guard = self.layers.read().await;
2263 0 : let layers = guard.layer_map()?;
2264 :
2265 0 : let l0_deltas = layers.level0_deltas();
2266 0 :
2267 0 : // As an optimization, if we find that there are too few L0 layers,
2268 0 : // bail out early. We know that the compaction algorithm would do
2269 0 : // nothing in that case.
2270 0 : if l0_deltas.len() < fanout as usize {
2271 : // doesn't need compacting
2272 0 : return Ok(());
2273 0 : }
2274 0 : l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
2275 0 : };
2276 0 :
2277 0 : // Is the timeline being deleted?
2278 0 : if self.is_stopping() {
2279 0 : trace!("Dropping out of compaction on timeline shutdown");
2280 0 : return Err(CompactionError::ShuttingDown);
2281 0 : }
2282 :
2283 0 : let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
2284 : // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
2285 0 : let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
2286 0 :
2287 0 : pageserver_compaction::compact_tiered::compact_tiered(
2288 0 : &mut adaptor,
2289 0 : end_lsn,
2290 0 : target_file_size,
2291 0 : fanout,
2292 0 : ctx,
2293 0 : )
2294 0 : .await
2295 : // TODO: compact_tiered needs to return CompactionError
2296 0 : .map_err(CompactionError::Other)?;
2297 :
2298 0 : adaptor.flush_updates().await?;
2299 0 : Ok(())
2300 0 : }
2301 :
2302 : /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
2303 : ///
2304 : /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
2305 : /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
2306 : /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
2307 : ///
2308 : /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
2309 : ///
2310 : /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
2311 : /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
2312 : ///
2313 : /// The function will produce:
2314 : ///
2315 : /// ```plain
2316 : /// 0x20(retain_lsn) -> img=AB@0x20 always produce a single image below the lowest retain LSN
2317 : /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40] two deltas since the last base image, keeping the deltas
2318 : /// 0x50(horizon) -> deltas=[ABCDE@0x50] three deltas since the last base image, generate an image but put it in the delta
2319 : /// above_horizon -> deltas=[+F@0x60] full history above the horizon
2320 : /// ```
2321 : ///
2322 : /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
2323 : #[allow(clippy::too_many_arguments)]
2324 1296 : pub(crate) async fn generate_key_retention(
2325 1296 : self: &Arc<Timeline>,
2326 1296 : key: Key,
2327 1296 : full_history: &[(Key, Lsn, Value)],
2328 1296 : horizon: Lsn,
2329 1296 : retain_lsn_below_horizon: &[Lsn],
2330 1296 : delta_threshold_cnt: usize,
2331 1296 : base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
2332 1296 : verification: bool,
2333 1296 : ) -> anyhow::Result<KeyHistoryRetention> {
2334 : // Pre-checks for the invariants
2335 :
2336 1296 : let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
2337 :
2338 1296 : if debug_mode {
2339 3144 : for (log_key, _, _) in full_history {
2340 1848 : assert_eq!(log_key, &key, "mismatched key");
2341 : }
2342 1296 : for i in 1..full_history.len() {
2343 552 : assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
2344 552 : if full_history[i - 1].1 == full_history[i].1 {
2345 0 : assert!(
2346 0 : matches!(full_history[i - 1].2, Value::Image(_)),
2347 0 : "unordered delta/image, or duplicated delta"
2348 : );
2349 552 : }
2350 : }
2351 : // There was an assertion for no base image that checks if the first
2352 : // record in the history is `will_init` before, but it was removed.
2353 : // This is explained in the test cases for generate_key_retention.
2354 : // Search "incomplete history" for more information.
2355 2856 : for lsn in retain_lsn_below_horizon {
2356 1560 : assert!(lsn < &horizon, "retain lsn must be below horizon")
2357 : }
2358 1296 : for i in 1..retain_lsn_below_horizon.len() {
2359 712 : assert!(
2360 712 : retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
2361 0 : "unordered LSN"
2362 : );
2363 : }
2364 0 : }
2365 1296 : let has_ancestor = base_img_from_ancestor.is_some();
2366 : // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
2367 : // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
2368 1296 : let (mut split_history, lsn_split_points) = {
2369 1296 : let mut split_history = Vec::new();
2370 1296 : split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
2371 1296 : let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
2372 2856 : for lsn in retain_lsn_below_horizon {
2373 1560 : lsn_split_points.push(*lsn);
2374 1560 : }
2375 1296 : lsn_split_points.push(horizon);
2376 1296 : let mut current_idx = 0;
2377 3144 : for item @ (_, lsn, _) in full_history {
2378 2336 : while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
2379 488 : current_idx += 1;
2380 488 : }
2381 1848 : split_history[current_idx].push(item);
2382 : }
2383 1296 : (split_history, lsn_split_points)
2384 : };
2385 : // Step 2: filter out duplicated records due to the k-merge of image/delta layers
2386 5448 : for split_for_lsn in &mut split_history {
2387 4152 : let mut prev_lsn = None;
2388 4152 : let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
2389 4152 : for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
2390 1848 : if let Some(prev_lsn) = &prev_lsn {
2391 248 : if *prev_lsn == lsn {
2392 : // The case that we have an LSN with both data from the delta layer and the image layer. As
2393 : // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
2394 : // drop this delta and keep the image.
2395 : //
2396 : // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
2397 : // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
2398 : // dropped.
2399 : //
2400 : // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
2401 : // threshold, we could have kept delta instead to save space. This is an optimization for the future.
2402 0 : continue;
2403 248 : }
2404 1600 : }
2405 1848 : prev_lsn = Some(lsn);
2406 1848 : new_split_for_lsn.push(record);
2407 : }
2408 4152 : *split_for_lsn = new_split_for_lsn;
2409 : }
2410 : // Step 3: generate images when necessary
2411 1296 : let mut retention = Vec::with_capacity(split_history.len());
2412 1296 : let mut records_since_last_image = 0;
2413 1296 : let batch_cnt = split_history.len();
2414 1296 : assert!(
2415 1296 : batch_cnt >= 2,
2416 0 : "should have at least below + above horizon batches"
2417 : );
2418 1296 : let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
2419 1296 : if let Some((key, lsn, ref img)) = base_img_from_ancestor {
2420 84 : replay_history.push((key, lsn, Value::Image(img.clone())));
2421 1212 : }
2422 :
2423 : /// Generate debug information for the replay history
2424 0 : fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
2425 : use std::fmt::Write;
2426 0 : let mut output = String::new();
2427 0 : if let Some((key, _, _)) = replay_history.first() {
2428 0 : write!(output, "key={} ", key).unwrap();
2429 0 : let mut cnt = 0;
2430 0 : for (_, lsn, val) in replay_history {
2431 0 : if val.is_image() {
2432 0 : write!(output, "i@{} ", lsn).unwrap();
2433 0 : } else if val.will_init() {
2434 0 : write!(output, "di@{} ", lsn).unwrap();
2435 0 : } else {
2436 0 : write!(output, "d@{} ", lsn).unwrap();
2437 0 : }
2438 0 : cnt += 1;
2439 0 : if cnt >= 128 {
2440 0 : write!(output, "... and more").unwrap();
2441 0 : break;
2442 0 : }
2443 : }
2444 0 : } else {
2445 0 : write!(output, "<no history>").unwrap();
2446 0 : }
2447 0 : output
2448 0 : }
2449 :
2450 0 : fn generate_debug_trace(
2451 0 : replay_history: Option<&[(Key, Lsn, Value)]>,
2452 0 : full_history: &[(Key, Lsn, Value)],
2453 0 : lsns: &[Lsn],
2454 0 : horizon: Lsn,
2455 0 : ) -> String {
2456 : use std::fmt::Write;
2457 0 : let mut output = String::new();
2458 0 : if let Some(replay_history) = replay_history {
2459 0 : writeln!(
2460 0 : output,
2461 0 : "replay_history: {}",
2462 0 : generate_history_trace(replay_history)
2463 0 : )
2464 0 : .unwrap();
2465 0 : } else {
2466 0 : writeln!(output, "replay_history: <disabled>",).unwrap();
2467 0 : }
2468 0 : writeln!(
2469 0 : output,
2470 0 : "full_history: {}",
2471 0 : generate_history_trace(full_history)
2472 0 : )
2473 0 : .unwrap();
2474 0 : writeln!(
2475 0 : output,
2476 0 : "when processing: [{}] horizon={}",
2477 0 : lsns.iter().map(|l| format!("{l}")).join(","),
2478 0 : horizon
2479 0 : )
2480 0 : .unwrap();
2481 0 : output
2482 0 : }
2483 :
2484 1296 : let mut key_exists = false;
2485 4148 : for (i, split_for_lsn) in split_history.into_iter().enumerate() {
2486 : // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
2487 4148 : records_since_last_image += split_for_lsn.len();
2488 : // Whether to produce an image into the final layer files
2489 4148 : let produce_image = if i == 0 && !has_ancestor {
2490 : // We always generate images for the first batch (below horizon / lowest retain_lsn)
2491 1212 : true
2492 2936 : } else if i == batch_cnt - 1 {
2493 : // Do not generate images for the last batch (above horizon)
2494 1292 : false
2495 1644 : } else if records_since_last_image == 0 {
2496 1288 : false
2497 356 : } else if records_since_last_image >= delta_threshold_cnt {
2498 : // Generate images when there are too many records
2499 12 : true
2500 : } else {
2501 344 : false
2502 : };
2503 4148 : replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
2504 : // Only retain the items after the last image record
2505 5108 : for idx in (0..replay_history.len()).rev() {
2506 5108 : if replay_history[idx].2.will_init() {
2507 4148 : replay_history = replay_history[idx..].to_vec();
2508 4148 : break;
2509 960 : }
2510 : }
2511 4148 : if replay_history.is_empty() && !key_exists {
2512 : // The key does not exist at earlier LSN, we can skip this iteration.
2513 0 : retention.push(Vec::new());
2514 0 : continue;
2515 4148 : } else {
2516 4148 : key_exists = true;
2517 4148 : }
2518 4148 : let Some((_, _, val)) = replay_history.first() else {
2519 0 : unreachable!("replay history should not be empty once it exists")
2520 : };
2521 4148 : if !val.will_init() {
2522 0 : return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
2523 0 : generate_debug_trace(
2524 0 : Some(&replay_history),
2525 0 : full_history,
2526 0 : retain_lsn_below_horizon,
2527 0 : horizon,
2528 0 : )
2529 0 : });
2530 4148 : }
2531 : // Whether to reconstruct the image. In debug mode, we will generate an image
2532 : // at every retain_lsn to ensure data is not corrupted, but we won't put the
2533 : // image into the final layer.
2534 4148 : let img_and_lsn = if produce_image {
2535 1224 : records_since_last_image = 0;
2536 1224 : let replay_history_for_debug = if debug_mode {
2537 1224 : Some(replay_history.clone())
2538 : } else {
2539 0 : None
2540 : };
2541 1224 : let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
2542 1224 : let history = std::mem::take(&mut replay_history);
2543 1224 : let mut img = None;
2544 1224 : let mut records = Vec::with_capacity(history.len());
2545 1224 : if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
2546 1180 : img = Some((*lsn, val.clone()));
2547 1180 : for (_, lsn, val) in history.into_iter().skip(1) {
2548 80 : let Value::WalRecord(rec) = val else {
2549 0 : return Err(anyhow::anyhow!(
2550 0 : "invalid record, first record is image, expect walrecords"
2551 0 : ))
2552 0 : .with_context(|| {
2553 0 : generate_debug_trace(
2554 0 : replay_history_for_debug_ref,
2555 0 : full_history,
2556 0 : retain_lsn_below_horizon,
2557 0 : horizon,
2558 0 : )
2559 0 : });
2560 : };
2561 80 : records.push((lsn, rec));
2562 : }
2563 : } else {
2564 72 : for (_, lsn, val) in history.into_iter() {
2565 72 : let Value::WalRecord(rec) = val else {
2566 0 : return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
2567 0 : .with_context(|| generate_debug_trace(
2568 0 : replay_history_for_debug_ref,
2569 0 : full_history,
2570 0 : retain_lsn_below_horizon,
2571 0 : horizon,
2572 0 : ));
2573 : };
2574 72 : records.push((lsn, rec));
2575 : }
2576 : }
2577 : // WAL redo requires records in the reverse LSN order
2578 1224 : records.reverse();
2579 1224 : let state = ValueReconstructState { img, records };
2580 : // last batch does not generate image so i is always in range, unless we force generate
2581 : // an image during testing
2582 1224 : let request_lsn = if i >= lsn_split_points.len() {
2583 0 : Lsn::MAX
2584 : } else {
2585 1224 : lsn_split_points[i]
2586 : };
2587 1224 : let img = self
2588 1224 : .reconstruct_value(key, request_lsn, state, RedoAttemptType::GcCompaction)
2589 1224 : .await?;
2590 1220 : Some((request_lsn, img))
2591 : } else {
2592 2924 : None
2593 : };
2594 4144 : if produce_image {
2595 1220 : let (request_lsn, img) = img_and_lsn.unwrap();
2596 1220 : replay_history.push((key, request_lsn, Value::Image(img.clone())));
2597 1220 : retention.push(vec![(request_lsn, Value::Image(img))]);
2598 2924 : } else {
2599 2924 : let deltas = split_for_lsn
2600 2924 : .iter()
2601 2924 : .map(|(_, lsn, value)| (*lsn, value.clone()))
2602 2924 : .collect_vec();
2603 2924 : retention.push(deltas);
2604 2924 : }
2605 : }
2606 1292 : let mut result = Vec::with_capacity(retention.len());
2607 1292 : assert_eq!(retention.len(), lsn_split_points.len() + 1);
2608 4144 : for (idx, logs) in retention.into_iter().enumerate() {
2609 4144 : if idx == lsn_split_points.len() {
2610 1292 : let retention = KeyHistoryRetention {
2611 1292 : below_horizon: result,
2612 1292 : above_horizon: KeyLogAtLsn(logs),
2613 1292 : };
2614 1292 : if verification {
2615 1292 : retention
2616 1292 : .verify(key, &base_img_from_ancestor, full_history, self)
2617 1292 : .await?;
2618 0 : }
2619 1292 : return Ok(retention);
2620 2852 : } else {
2621 2852 : result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
2622 2852 : }
2623 : }
2624 0 : unreachable!("key retention is empty")
2625 1296 : }
2626 :
2627 : /// Check how much space is left on the disk
2628 108 : async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
2629 108 : let tenants_dir = self.conf.tenants_path();
2630 :
2631 108 : let stat = Statvfs::get(&tenants_dir, None)
2632 108 : .context("statvfs failed, presumably directory got unlinked")?;
2633 :
2634 108 : let (avail_bytes, _) = stat.get_avail_total_bytes();
2635 108 :
2636 108 : Ok(avail_bytes)
2637 108 : }
2638 :
2639 : /// Check if the compaction can proceed safely without running out of space. We assume the size
2640 : /// upper bound of the produced files of a compaction job is the same as all layers involved in
2641 : /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
2642 : /// compaction.
2643 108 : async fn check_compaction_space(
2644 108 : self: &Arc<Self>,
2645 108 : layer_selection: &[Layer],
2646 108 : ) -> Result<(), CompactionError> {
2647 108 : let available_space = self
2648 108 : .check_available_space()
2649 108 : .await
2650 108 : .map_err(CompactionError::Other)?;
2651 108 : let mut remote_layer_size = 0;
2652 108 : let mut all_layer_size = 0;
2653 424 : for layer in layer_selection {
2654 316 : let needs_download = layer
2655 316 : .needs_download()
2656 316 : .await
2657 316 : .context("failed to check if layer needs download")
2658 316 : .map_err(CompactionError::Other)?;
2659 316 : if needs_download.is_some() {
2660 0 : remote_layer_size += layer.layer_desc().file_size;
2661 316 : }
2662 316 : all_layer_size += layer.layer_desc().file_size;
2663 : }
2664 108 : let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
2665 108 : if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
2666 : {
2667 0 : return Err(CompactionError::Other(anyhow!(
2668 0 : "not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
2669 0 : available_space,
2670 0 : allocated_space,
2671 0 : all_layer_size,
2672 0 : remote_layer_size,
2673 0 : all_layer_size + remote_layer_size
2674 0 : )));
2675 108 : }
2676 108 : Ok(())
2677 108 : }
2678 :
2679 : /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
2680 : /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
2681 : /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
2682 : /// here.
2683 112 : pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
2684 112 : let gc_cutoff_lsn = {
2685 112 : let gc_info = self.gc_info.read().unwrap();
2686 112 : gc_info.min_cutoff()
2687 112 : };
2688 112 :
2689 112 : // TODO: standby horizon should use leases so we don't really need to consider it here.
2690 112 : // let watermark = watermark.min(self.standby_horizon.load());
2691 112 :
2692 112 : // TODO: ensure the child branches will not use anything below the watermark, or consider
2693 112 : // them when computing the watermark.
2694 112 : gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
2695 112 : }
2696 :
2697 : /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
2698 : /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
2699 : /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
2700 : /// like a full compaction of the specified keyspace.
2701 0 : pub(crate) async fn gc_compaction_split_jobs(
2702 0 : self: &Arc<Self>,
2703 0 : job: GcCompactJob,
2704 0 : sub_compaction_max_job_size_mb: Option<u64>,
2705 0 : ) -> Result<Vec<GcCompactJob>, CompactionError> {
2706 0 : let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
2707 0 : job.compact_lsn_range.end
2708 : } else {
2709 0 : self.get_gc_compaction_watermark()
2710 : };
2711 :
2712 0 : if compact_below_lsn == Lsn::INVALID {
2713 0 : tracing::warn!(
2714 0 : "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
2715 : );
2716 0 : return Ok(vec![]);
2717 0 : }
2718 :
2719 : // Split compaction job to about 4GB each
2720 : const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
2721 0 : let sub_compaction_max_job_size_mb =
2722 0 : sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
2723 0 :
2724 0 : let mut compact_jobs = Vec::<GcCompactJob>::new();
2725 0 : // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
2726 0 : // by estimating the amount of files read for a compaction job. We should also partition on LSN.
2727 0 : let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
2728 : // Truncate the key range to be within user specified compaction range.
2729 0 : fn truncate_to(
2730 0 : source_start: &Key,
2731 0 : source_end: &Key,
2732 0 : target_start: &Key,
2733 0 : target_end: &Key,
2734 0 : ) -> Option<(Key, Key)> {
2735 0 : let start = source_start.max(target_start);
2736 0 : let end = source_end.min(target_end);
2737 0 : if start < end {
2738 0 : Some((*start, *end))
2739 : } else {
2740 0 : None
2741 : }
2742 0 : }
2743 0 : let mut split_key_ranges = Vec::new();
2744 0 : let ranges = dense_ks
2745 0 : .parts
2746 0 : .iter()
2747 0 : .map(|partition| partition.ranges.iter())
2748 0 : .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
2749 0 : .flatten()
2750 0 : .cloned()
2751 0 : .collect_vec();
2752 0 : for range in ranges.iter() {
2753 0 : let Some((start, end)) = truncate_to(
2754 0 : &range.start,
2755 0 : &range.end,
2756 0 : &job.compact_key_range.start,
2757 0 : &job.compact_key_range.end,
2758 0 : ) else {
2759 0 : continue;
2760 : };
2761 0 : split_key_ranges.push((start, end));
2762 : }
2763 0 : split_key_ranges.sort();
2764 0 : let all_layers = {
2765 0 : let guard = self.layers.read().await;
2766 0 : let layer_map = guard.layer_map()?;
2767 0 : layer_map.iter_historic_layers().collect_vec()
2768 0 : };
2769 0 : let mut current_start = None;
2770 0 : let ranges_num = split_key_ranges.len();
2771 0 : for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
2772 0 : if current_start.is_none() {
2773 0 : current_start = Some(start);
2774 0 : }
2775 0 : let start = current_start.unwrap();
2776 0 : if start >= end {
2777 : // We have already processed this partition.
2778 0 : continue;
2779 0 : }
2780 0 : let overlapping_layers = {
2781 0 : let mut desc = Vec::new();
2782 0 : for layer in all_layers.iter() {
2783 0 : if overlaps_with(&layer.get_key_range(), &(start..end))
2784 0 : && layer.get_lsn_range().start <= compact_below_lsn
2785 0 : {
2786 0 : desc.push(layer.clone());
2787 0 : }
2788 : }
2789 0 : desc
2790 0 : };
2791 0 : let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
2792 0 : if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
2793 : // Try to extend the compaction range so that we include at least one full layer file.
2794 0 : let extended_end = overlapping_layers
2795 0 : .iter()
2796 0 : .map(|layer| layer.key_range.end)
2797 0 : .min();
2798 : // It is possible that the search range does not contain any layer files when we reach the end of the loop.
2799 : // In this case, we simply use the specified key range end.
2800 0 : let end = if let Some(extended_end) = extended_end {
2801 0 : extended_end.max(end)
2802 : } else {
2803 0 : end
2804 : };
2805 0 : let end = if ranges_num == idx + 1 {
2806 : // extend the compaction range to the end of the key range if it's the last partition
2807 0 : end.max(job.compact_key_range.end)
2808 : } else {
2809 0 : end
2810 : };
2811 0 : if total_size == 0 && !compact_jobs.is_empty() {
2812 0 : info!(
2813 0 : "splitting compaction job: {}..{}, estimated_size={}, extending the previous job",
2814 : start, end, total_size
2815 : );
2816 0 : compact_jobs.last_mut().unwrap().compact_key_range.end = end;
2817 0 : current_start = Some(end);
2818 : } else {
2819 0 : info!(
2820 0 : "splitting compaction job: {}..{}, estimated_size={}",
2821 : start, end, total_size
2822 : );
2823 0 : compact_jobs.push(GcCompactJob {
2824 0 : dry_run: job.dry_run,
2825 0 : compact_key_range: start..end,
2826 0 : compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
2827 0 : });
2828 0 : current_start = Some(end);
2829 : }
2830 0 : }
2831 : }
2832 0 : Ok(compact_jobs)
2833 0 : }
2834 :
2835 : /// An experimental compaction building block that combines compaction with garbage collection.
2836 : ///
2837 : /// The current implementation picks all delta + image layers that are below or intersecting with
2838 : /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
2839 : /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
2840 : /// and create delta layers with all deltas >= gc horizon.
2841 : ///
2842 : /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
2843 : /// Partial compaction will read and process all layers overlapping with the key range, even if it might
2844 : /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
2845 : /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
2846 : /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
2847 : /// part of the range.
2848 : ///
2849 : /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
2850 : /// the LSN. Otherwise, it will use the gc cutoff by default.
2851 112 : pub(crate) async fn compact_with_gc(
2852 112 : self: &Arc<Self>,
2853 112 : cancel: &CancellationToken,
2854 112 : options: CompactOptions,
2855 112 : ctx: &RequestContext,
2856 112 : ) -> Result<CompactionOutcome, CompactionError> {
2857 112 : let sub_compaction = options.sub_compaction;
2858 112 : let job = GcCompactJob::from_compact_options(options.clone());
2859 112 : let yield_for_l0 = options.flags.contains(CompactFlags::YieldForL0);
2860 112 : if sub_compaction {
2861 0 : info!(
2862 0 : "running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
2863 : );
2864 0 : let jobs = self
2865 0 : .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
2866 0 : .await?;
2867 0 : let jobs_len = jobs.len();
2868 0 : for (idx, job) in jobs.into_iter().enumerate() {
2869 0 : info!(
2870 0 : "running enhanced gc bottom-most compaction, sub-compaction {}/{}",
2871 0 : idx + 1,
2872 : jobs_len
2873 : );
2874 0 : self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
2875 0 : .await?;
2876 : }
2877 0 : if jobs_len == 0 {
2878 0 : info!("no jobs to run, skipping gc bottom-most compaction");
2879 0 : }
2880 0 : return Ok(CompactionOutcome::Done);
2881 112 : }
2882 112 : self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
2883 112 : .await
2884 112 : }
2885 :
2886 112 : async fn compact_with_gc_inner(
2887 112 : self: &Arc<Self>,
2888 112 : cancel: &CancellationToken,
2889 112 : job: GcCompactJob,
2890 112 : ctx: &RequestContext,
2891 112 : yield_for_l0: bool,
2892 112 : ) -> Result<CompactionOutcome, CompactionError> {
2893 112 : // Block other compaction/GC tasks from running for now. GC-compaction could run along
2894 112 : // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
2895 112 : // Note that we already acquired the compaction lock when the outer `compact` function gets called.
2896 112 :
2897 112 : let timer = Instant::now();
2898 112 : let begin_timer = timer;
2899 112 :
2900 112 : let gc_lock = async {
2901 112 : tokio::select! {
2902 112 : guard = self.gc_lock.lock() => Ok(guard),
2903 112 : _ = cancel.cancelled() => Err(CompactionError::ShuttingDown),
2904 : }
2905 112 : };
2906 :
2907 112 : let time_acquire_lock = timer.elapsed();
2908 112 : let timer = Instant::now();
2909 :
2910 112 : let gc_lock = crate::timed(
2911 112 : gc_lock,
2912 112 : "acquires gc lock",
2913 112 : std::time::Duration::from_secs(5),
2914 112 : )
2915 112 : .await?;
2916 :
2917 112 : let dry_run = job.dry_run;
2918 112 : let compact_key_range = job.compact_key_range;
2919 112 : let compact_lsn_range = job.compact_lsn_range;
2920 :
2921 112 : let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
2922 :
2923 112 : info!(
2924 0 : "running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}",
2925 : compact_key_range.start,
2926 : compact_key_range.end,
2927 : compact_lsn_range.start,
2928 : compact_lsn_range.end
2929 : );
2930 :
2931 112 : scopeguard::defer! {
2932 112 : info!("done enhanced gc bottom-most compaction");
2933 112 : };
2934 112 :
2935 112 : let mut stat = CompactionStatistics::default();
2936 :
2937 : // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
2938 : // The layer selection has the following properties:
2939 : // 1. If a layer is in the selection, all layers below it are in the selection.
2940 : // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
2941 108 : let job_desc = {
2942 112 : let guard = self.layers.read().await;
2943 112 : let layers = guard.layer_map()?;
2944 112 : let gc_info = self.gc_info.read().unwrap();
2945 112 : let mut retain_lsns_below_horizon = Vec::new();
2946 112 : let gc_cutoff = {
2947 : // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
2948 : // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
2949 : // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
2950 : // to get the truth data.
2951 112 : let real_gc_cutoff = self.get_gc_compaction_watermark();
2952 : // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
2953 : // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
2954 : // the real cutoff.
2955 112 : let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
2956 100 : if real_gc_cutoff == Lsn::INVALID {
2957 : // If the gc_cutoff is not generated yet, we should not compact anything.
2958 0 : tracing::warn!(
2959 0 : "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
2960 : );
2961 0 : return Ok(CompactionOutcome::Skipped);
2962 100 : }
2963 100 : real_gc_cutoff
2964 : } else {
2965 12 : compact_lsn_range.end
2966 : };
2967 112 : if gc_cutoff > real_gc_cutoff {
2968 8 : warn!(
2969 0 : "provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff",
2970 : gc_cutoff, real_gc_cutoff
2971 : );
2972 8 : gc_cutoff = real_gc_cutoff;
2973 104 : }
2974 112 : gc_cutoff
2975 : };
2976 140 : for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
2977 140 : if lsn < &gc_cutoff {
2978 140 : retain_lsns_below_horizon.push(*lsn);
2979 140 : }
2980 : }
2981 112 : for lsn in gc_info.leases.keys() {
2982 0 : if lsn < &gc_cutoff {
2983 0 : retain_lsns_below_horizon.push(*lsn);
2984 0 : }
2985 : }
2986 112 : let mut selected_layers: Vec<Layer> = Vec::new();
2987 112 : drop(gc_info);
2988 : // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
2989 112 : let Some(max_layer_lsn) = layers
2990 112 : .iter_historic_layers()
2991 500 : .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
2992 428 : .map(|desc| desc.get_lsn_range().end)
2993 112 : .max()
2994 : else {
2995 0 : info!(
2996 0 : "no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}",
2997 : gc_cutoff
2998 : );
2999 0 : return Ok(CompactionOutcome::Done);
3000 : };
3001 : // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
3002 : // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
3003 : // it is a branch.
3004 112 : let Some(min_layer_lsn) = layers
3005 112 : .iter_historic_layers()
3006 500 : .filter(|desc| {
3007 500 : if compact_lsn_range.start == Lsn::INVALID {
3008 408 : true // select all layers below if start == Lsn(0)
3009 : } else {
3010 92 : desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
3011 : }
3012 500 : })
3013 464 : .map(|desc| desc.get_lsn_range().start)
3014 112 : .min()
3015 : else {
3016 0 : info!(
3017 0 : "no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}",
3018 : compact_lsn_range.end
3019 : );
3020 0 : return Ok(CompactionOutcome::Done);
3021 : };
3022 : // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
3023 : // layers to compact.
3024 112 : let mut rewrite_layers = Vec::new();
3025 500 : for desc in layers.iter_historic_layers() {
3026 500 : if desc.get_lsn_range().end <= max_layer_lsn
3027 428 : && desc.get_lsn_range().start >= min_layer_lsn
3028 392 : && overlaps_with(&desc.get_key_range(), &compact_key_range)
3029 : {
3030 : // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
3031 : // even if it might contain extra keys
3032 316 : selected_layers.push(guard.get_from_desc(&desc));
3033 316 : // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
3034 316 : // to overlap image layers)
3035 316 : if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
3036 4 : {
3037 4 : rewrite_layers.push(desc);
3038 312 : }
3039 184 : }
3040 : }
3041 112 : if selected_layers.is_empty() {
3042 4 : info!(
3043 0 : "no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}",
3044 : gc_cutoff, compact_key_range.start, compact_key_range.end
3045 : );
3046 4 : return Ok(CompactionOutcome::Done);
3047 108 : }
3048 108 : retain_lsns_below_horizon.sort();
3049 108 : GcCompactionJobDescription {
3050 108 : selected_layers,
3051 108 : gc_cutoff,
3052 108 : retain_lsns_below_horizon,
3053 108 : min_layer_lsn,
3054 108 : max_layer_lsn,
3055 108 : compaction_key_range: compact_key_range,
3056 108 : rewrite_layers,
3057 108 : }
3058 : };
3059 108 : let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
3060 : // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
3061 : // We use job_desc.min_layer_lsn as if it's the lowest branch point.
3062 16 : (true, job_desc.min_layer_lsn)
3063 92 : } else if self.ancestor_timeline.is_some() {
3064 : // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
3065 : // LSN ranges all the way to the ancestor timeline.
3066 4 : (true, self.ancestor_lsn)
3067 : } else {
3068 88 : let res = job_desc
3069 88 : .retain_lsns_below_horizon
3070 88 : .first()
3071 88 : .copied()
3072 88 : .unwrap_or(job_desc.gc_cutoff);
3073 88 : if debug_mode {
3074 88 : assert_eq!(
3075 88 : res,
3076 88 : job_desc
3077 88 : .retain_lsns_below_horizon
3078 88 : .iter()
3079 88 : .min()
3080 88 : .copied()
3081 88 : .unwrap_or(job_desc.gc_cutoff)
3082 88 : );
3083 0 : }
3084 88 : (false, res)
3085 : };
3086 :
3087 108 : let verification = self.get_gc_compaction_settings().gc_compaction_verification;
3088 108 :
3089 108 : info!(
3090 0 : "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
3091 0 : job_desc.selected_layers.len(),
3092 0 : job_desc.rewrite_layers.len(),
3093 : job_desc.max_layer_lsn,
3094 : job_desc.min_layer_lsn,
3095 : job_desc.gc_cutoff,
3096 : lowest_retain_lsn,
3097 : job_desc.compaction_key_range.start,
3098 : job_desc.compaction_key_range.end,
3099 : has_data_below,
3100 : );
3101 :
3102 108 : let time_analyze = timer.elapsed();
3103 108 : let timer = Instant::now();
3104 :
3105 424 : for layer in &job_desc.selected_layers {
3106 316 : debug!("read layer: {}", layer.layer_desc().key());
3107 : }
3108 112 : for layer in &job_desc.rewrite_layers {
3109 4 : debug!("rewrite layer: {}", layer.key());
3110 : }
3111 :
3112 108 : self.check_compaction_space(&job_desc.selected_layers)
3113 108 : .await?;
3114 :
3115 : // Generate statistics for the compaction
3116 424 : for layer in &job_desc.selected_layers {
3117 316 : let desc = layer.layer_desc();
3118 316 : if desc.is_delta() {
3119 176 : stat.visit_delta_layer(desc.file_size());
3120 176 : } else {
3121 140 : stat.visit_image_layer(desc.file_size());
3122 140 : }
3123 : }
3124 :
3125 : // Step 1: construct a k-merge iterator over all layers.
3126 : // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
3127 108 : let layer_names = job_desc
3128 108 : .selected_layers
3129 108 : .iter()
3130 316 : .map(|layer| layer.layer_desc().layer_name())
3131 108 : .collect_vec();
3132 108 : if let Some(err) = check_valid_layermap(&layer_names) {
3133 0 : return Err(CompactionError::Other(anyhow!(
3134 0 : "gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss",
3135 0 : err
3136 0 : )));
3137 108 : }
3138 108 : // The maximum LSN we are processing in this compaction loop
3139 108 : let end_lsn = job_desc
3140 108 : .selected_layers
3141 108 : .iter()
3142 316 : .map(|l| l.layer_desc().lsn_range.end)
3143 108 : .max()
3144 108 : .unwrap();
3145 108 : let mut delta_layers = Vec::new();
3146 108 : let mut image_layers = Vec::new();
3147 108 : let mut downloaded_layers = Vec::new();
3148 108 : let mut total_downloaded_size = 0;
3149 108 : let mut total_layer_size = 0;
3150 424 : for layer in &job_desc.selected_layers {
3151 316 : if layer
3152 316 : .needs_download()
3153 316 : .await
3154 316 : .context("failed to check if layer needs download")
3155 316 : .map_err(CompactionError::Other)?
3156 316 : .is_some()
3157 0 : {
3158 0 : total_downloaded_size += layer.layer_desc().file_size;
3159 316 : }
3160 316 : total_layer_size += layer.layer_desc().file_size;
3161 316 : if cancel.is_cancelled() {
3162 0 : return Err(CompactionError::ShuttingDown);
3163 316 : }
3164 316 : let should_yield = yield_for_l0
3165 0 : && self
3166 0 : .l0_compaction_trigger
3167 0 : .notified()
3168 0 : .now_or_never()
3169 0 : .is_some();
3170 316 : if should_yield {
3171 0 : tracing::info!("preempt gc-compaction when downloading layers: too many L0 layers");
3172 0 : return Ok(CompactionOutcome::YieldForL0);
3173 316 : }
3174 316 : let resident_layer = layer
3175 316 : .download_and_keep_resident(ctx)
3176 316 : .await
3177 316 : .context("failed to download and keep resident layer")
3178 316 : .map_err(CompactionError::Other)?;
3179 316 : downloaded_layers.push(resident_layer);
3180 : }
3181 108 : info!(
3182 0 : "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
3183 0 : total_downloaded_size,
3184 0 : total_layer_size,
3185 0 : total_downloaded_size as f64 / total_layer_size as f64
3186 : );
3187 424 : for resident_layer in &downloaded_layers {
3188 316 : if resident_layer.layer_desc().is_delta() {
3189 176 : let layer = resident_layer
3190 176 : .get_as_delta(ctx)
3191 176 : .await
3192 176 : .context("failed to get delta layer")
3193 176 : .map_err(CompactionError::Other)?;
3194 176 : delta_layers.push(layer);
3195 : } else {
3196 140 : let layer = resident_layer
3197 140 : .get_as_image(ctx)
3198 140 : .await
3199 140 : .context("failed to get image layer")
3200 140 : .map_err(CompactionError::Other)?;
3201 140 : image_layers.push(layer);
3202 : }
3203 : }
3204 108 : let (dense_ks, sparse_ks) = self
3205 108 : .collect_gc_compaction_keyspace()
3206 108 : .await
3207 108 : .context("failed to collect gc compaction keyspace")
3208 108 : .map_err(CompactionError::Other)?;
3209 108 : let mut merge_iter = FilterIterator::create(
3210 108 : MergeIterator::create(&delta_layers, &image_layers, ctx),
3211 108 : dense_ks,
3212 108 : sparse_ks,
3213 108 : )
3214 108 : .context("failed to create filter iterator")
3215 108 : .map_err(CompactionError::Other)?;
3216 :
3217 108 : let time_download_layer = timer.elapsed();
3218 108 : let mut timer = Instant::now();
3219 108 :
3220 108 : // Step 2: Produce images+deltas.
3221 108 : let mut accumulated_values = Vec::new();
3222 108 : let mut last_key: Option<Key> = None;
3223 :
3224 : // Only create image layers when there is no ancestor branches. TODO: create covering image layer
3225 : // when some condition meet.
3226 108 : let mut image_layer_writer = if !has_data_below {
3227 : Some(
3228 88 : SplitImageLayerWriter::new(
3229 88 : self.conf,
3230 88 : self.timeline_id,
3231 88 : self.tenant_shard_id,
3232 88 : job_desc.compaction_key_range.start,
3233 88 : lowest_retain_lsn,
3234 88 : self.get_compaction_target_size(),
3235 88 : ctx,
3236 88 : )
3237 88 : .await
3238 88 : .context("failed to create image layer writer")
3239 88 : .map_err(CompactionError::Other)?,
3240 : )
3241 : } else {
3242 20 : None
3243 : };
3244 :
3245 108 : let mut delta_layer_writer = SplitDeltaLayerWriter::new(
3246 108 : self.conf,
3247 108 : self.timeline_id,
3248 108 : self.tenant_shard_id,
3249 108 : lowest_retain_lsn..end_lsn,
3250 108 : self.get_compaction_target_size(),
3251 108 : )
3252 108 : .await
3253 108 : .context("failed to create delta layer writer")
3254 108 : .map_err(CompactionError::Other)?;
3255 :
3256 : #[derive(Default)]
3257 : struct RewritingLayers {
3258 : before: Option<DeltaLayerWriter>,
3259 : after: Option<DeltaLayerWriter>,
3260 : }
3261 108 : let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
3262 :
3263 : /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
3264 : /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
3265 : /// In those cases, we need to pull up data from below the LSN range we're compaction.
3266 : ///
3267 : /// This function unifies the cases so that later code doesn't have to think about it.
3268 : ///
3269 : /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
3270 : /// is needed for reconstruction. This should be fixed in the future.
3271 : ///
3272 : /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
3273 : /// images.
3274 1280 : async fn get_ancestor_image(
3275 1280 : this_tline: &Arc<Timeline>,
3276 1280 : key: Key,
3277 1280 : ctx: &RequestContext,
3278 1280 : has_data_below: bool,
3279 1280 : history_lsn_point: Lsn,
3280 1280 : ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
3281 1280 : if !has_data_below {
3282 1204 : return Ok(None);
3283 76 : };
3284 : // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
3285 : // as much existing code as possible.
3286 76 : let img = this_tline.get(key, history_lsn_point, ctx).await?;
3287 76 : Ok(Some((key, history_lsn_point, img)))
3288 1280 : }
3289 :
3290 : // Actually, we can decide not to write to the image layer at all at this point because
3291 : // the key and LSN range are determined. However, to keep things simple here, we still
3292 : // create this writer, and discard the writer in the end.
3293 108 : let mut time_to_first_kv_pair = None;
3294 :
3295 1984 : while let Some(((key, lsn, val), desc)) = merge_iter
3296 1984 : .next_with_trace()
3297 1984 : .await
3298 1984 : .context("failed to get next key-value pair")
3299 1984 : .map_err(CompactionError::Other)?
3300 : {
3301 1880 : if time_to_first_kv_pair.is_none() {
3302 108 : time_to_first_kv_pair = Some(timer.elapsed());
3303 108 : timer = Instant::now();
3304 1772 : }
3305 :
3306 1880 : if cancel.is_cancelled() {
3307 0 : return Err(CompactionError::ShuttingDown);
3308 1880 : }
3309 :
3310 1880 : let should_yield = yield_for_l0
3311 0 : && self
3312 0 : .l0_compaction_trigger
3313 0 : .notified()
3314 0 : .now_or_never()
3315 0 : .is_some();
3316 1880 : if should_yield {
3317 0 : tracing::info!("preempt gc-compaction in the main loop: too many L0 layers");
3318 0 : return Ok(CompactionOutcome::YieldForL0);
3319 1880 : }
3320 1880 : if self.shard_identity.is_key_disposable(&key) {
3321 : // If this shard does not need to store this key, simply skip it.
3322 : //
3323 : // This is not handled in the filter iterator because shard is determined by hash.
3324 : // Therefore, it does not give us any performance benefit to do things like skip
3325 : // a whole layer file as handling key spaces (ranges).
3326 0 : if cfg!(debug_assertions) {
3327 0 : let shard = self.shard_identity.shard_index();
3328 0 : let owner = self.shard_identity.get_shard_number(&key);
3329 0 : panic!("key {key} does not belong on shard {shard}, owned by {owner}");
3330 0 : }
3331 0 : continue;
3332 1880 : }
3333 1880 : if !job_desc.compaction_key_range.contains(&key) {
3334 128 : if !desc.is_delta {
3335 120 : continue;
3336 8 : }
3337 8 : let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
3338 8 : let rewriter = if key < job_desc.compaction_key_range.start {
3339 0 : if rewriter.before.is_none() {
3340 0 : rewriter.before = Some(
3341 0 : DeltaLayerWriter::new(
3342 0 : self.conf,
3343 0 : self.timeline_id,
3344 0 : self.tenant_shard_id,
3345 0 : desc.key_range.start,
3346 0 : desc.lsn_range.clone(),
3347 0 : ctx,
3348 0 : )
3349 0 : .await
3350 0 : .context("failed to create delta layer writer")
3351 0 : .map_err(CompactionError::Other)?,
3352 : );
3353 0 : }
3354 0 : rewriter.before.as_mut().unwrap()
3355 8 : } else if key >= job_desc.compaction_key_range.end {
3356 8 : if rewriter.after.is_none() {
3357 4 : rewriter.after = Some(
3358 4 : DeltaLayerWriter::new(
3359 4 : self.conf,
3360 4 : self.timeline_id,
3361 4 : self.tenant_shard_id,
3362 4 : job_desc.compaction_key_range.end,
3363 4 : desc.lsn_range.clone(),
3364 4 : ctx,
3365 4 : )
3366 4 : .await
3367 4 : .context("failed to create delta layer writer")
3368 4 : .map_err(CompactionError::Other)?,
3369 : );
3370 4 : }
3371 8 : rewriter.after.as_mut().unwrap()
3372 : } else {
3373 0 : unreachable!()
3374 : };
3375 8 : rewriter
3376 8 : .put_value(key, lsn, val, ctx)
3377 8 : .await
3378 8 : .context("failed to put value")
3379 8 : .map_err(CompactionError::Other)?;
3380 8 : continue;
3381 1752 : }
3382 1752 : match val {
3383 1260 : Value::Image(_) => stat.visit_image_key(&val),
3384 492 : Value::WalRecord(_) => stat.visit_wal_key(&val),
3385 : }
3386 1752 : if last_key.is_none() || last_key.as_ref() == Some(&key) {
3387 576 : if last_key.is_none() {
3388 108 : last_key = Some(key);
3389 468 : }
3390 576 : accumulated_values.push((key, lsn, val));
3391 : } else {
3392 1176 : let last_key: &mut Key = last_key.as_mut().unwrap();
3393 1176 : stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
3394 1176 : let retention = self
3395 1176 : .generate_key_retention(
3396 1176 : *last_key,
3397 1176 : &accumulated_values,
3398 1176 : job_desc.gc_cutoff,
3399 1176 : &job_desc.retain_lsns_below_horizon,
3400 1176 : COMPACTION_DELTA_THRESHOLD,
3401 1176 : get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
3402 1176 : .await
3403 1176 : .context("failed to get ancestor image")
3404 1176 : .map_err(CompactionError::Other)?,
3405 1176 : verification,
3406 1176 : )
3407 1176 : .await
3408 1176 : .context("failed to generate key retention")
3409 1176 : .map_err(CompactionError::Other)?;
3410 1172 : retention
3411 1172 : .pipe_to(
3412 1172 : *last_key,
3413 1172 : &mut delta_layer_writer,
3414 1172 : image_layer_writer.as_mut(),
3415 1172 : &mut stat,
3416 1172 : ctx,
3417 1172 : )
3418 1172 : .await
3419 1172 : .context("failed to pipe to delta layer writer")
3420 1172 : .map_err(CompactionError::Other)?;
3421 1172 : accumulated_values.clear();
3422 1172 : *last_key = key;
3423 1172 : accumulated_values.push((key, lsn, val));
3424 : }
3425 : }
3426 :
3427 : // TODO: move the below part to the loop body
3428 104 : let Some(last_key) = last_key else {
3429 0 : return Err(CompactionError::Other(anyhow!(
3430 0 : "no keys produced during compaction"
3431 0 : )));
3432 : };
3433 104 : stat.on_unique_key_visited();
3434 :
3435 104 : let retention = self
3436 104 : .generate_key_retention(
3437 104 : last_key,
3438 104 : &accumulated_values,
3439 104 : job_desc.gc_cutoff,
3440 104 : &job_desc.retain_lsns_below_horizon,
3441 104 : COMPACTION_DELTA_THRESHOLD,
3442 104 : get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn)
3443 104 : .await
3444 104 : .context("failed to get ancestor image")
3445 104 : .map_err(CompactionError::Other)?,
3446 104 : verification,
3447 104 : )
3448 104 : .await
3449 104 : .context("failed to generate key retention")
3450 104 : .map_err(CompactionError::Other)?;
3451 104 : retention
3452 104 : .pipe_to(
3453 104 : last_key,
3454 104 : &mut delta_layer_writer,
3455 104 : image_layer_writer.as_mut(),
3456 104 : &mut stat,
3457 104 : ctx,
3458 104 : )
3459 104 : .await
3460 104 : .context("failed to pipe to delta layer writer")
3461 104 : .map_err(CompactionError::Other)?;
3462 : // end: move the above part to the loop body
3463 :
3464 104 : let time_main_loop = timer.elapsed();
3465 104 : let timer = Instant::now();
3466 104 :
3467 104 : let mut rewrote_delta_layers = Vec::new();
3468 108 : for (key, writers) in delta_layer_rewriters {
3469 4 : if let Some(delta_writer_before) = writers.before {
3470 0 : let (desc, path) = delta_writer_before
3471 0 : .finish(job_desc.compaction_key_range.start, ctx)
3472 0 : .await
3473 0 : .context("failed to finish delta layer writer")
3474 0 : .map_err(CompactionError::Other)?;
3475 0 : let layer = Layer::finish_creating(self.conf, self, desc, &path)
3476 0 : .context("failed to finish creating delta layer")
3477 0 : .map_err(CompactionError::Other)?;
3478 0 : rewrote_delta_layers.push(layer);
3479 4 : }
3480 4 : if let Some(delta_writer_after) = writers.after {
3481 4 : let (desc, path) = delta_writer_after
3482 4 : .finish(key.key_range.end, ctx)
3483 4 : .await
3484 4 : .context("failed to finish delta layer writer")
3485 4 : .map_err(CompactionError::Other)?;
3486 4 : let layer = Layer::finish_creating(self.conf, self, desc, &path)
3487 4 : .context("failed to finish creating delta layer")
3488 4 : .map_err(CompactionError::Other)?;
3489 4 : rewrote_delta_layers.push(layer);
3490 0 : }
3491 : }
3492 :
3493 148 : let discard = |key: &PersistentLayerKey| {
3494 148 : let key = key.clone();
3495 148 : async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
3496 148 : };
3497 :
3498 104 : let produced_image_layers = if let Some(writer) = image_layer_writer {
3499 84 : if !dry_run {
3500 76 : let end_key = job_desc.compaction_key_range.end;
3501 76 : writer
3502 76 : .finish_with_discard_fn(self, ctx, end_key, discard)
3503 76 : .await
3504 76 : .context("failed to finish image layer writer")
3505 76 : .map_err(CompactionError::Other)?
3506 : } else {
3507 8 : drop(writer);
3508 8 : Vec::new()
3509 : }
3510 : } else {
3511 20 : Vec::new()
3512 : };
3513 :
3514 104 : let produced_delta_layers = if !dry_run {
3515 96 : delta_layer_writer
3516 96 : .finish_with_discard_fn(self, ctx, discard)
3517 96 : .await
3518 96 : .context("failed to finish delta layer writer")
3519 96 : .map_err(CompactionError::Other)?
3520 : } else {
3521 8 : drop(delta_layer_writer);
3522 8 : Vec::new()
3523 : };
3524 :
3525 : // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
3526 : // compaction is cancelled at this point, we might have some layers that are not cleaned up.
3527 104 : let mut compact_to = Vec::new();
3528 104 : let mut keep_layers = HashSet::new();
3529 104 : let produced_delta_layers_len = produced_delta_layers.len();
3530 104 : let produced_image_layers_len = produced_image_layers.len();
3531 104 :
3532 104 : let layer_selection_by_key = job_desc
3533 104 : .selected_layers
3534 104 : .iter()
3535 304 : .map(|l| (l.layer_desc().key(), l.layer_desc().clone()))
3536 104 : .collect::<HashMap<_, _>>();
3537 :
3538 176 : for action in produced_delta_layers {
3539 72 : match action {
3540 44 : BatchWriterResult::Produced(layer) => {
3541 44 : if cfg!(debug_assertions) {
3542 44 : info!("produced delta layer: {}", layer.layer_desc().key());
3543 0 : }
3544 44 : stat.produce_delta_layer(layer.layer_desc().file_size());
3545 44 : compact_to.push(layer);
3546 : }
3547 28 : BatchWriterResult::Discarded(l) => {
3548 28 : if cfg!(debug_assertions) {
3549 28 : info!("discarded delta layer: {}", l);
3550 0 : }
3551 28 : if let Some(layer_desc) = layer_selection_by_key.get(&l) {
3552 28 : stat.discard_delta_layer(layer_desc.file_size());
3553 28 : } else {
3554 0 : tracing::warn!(
3555 0 : "discarded delta layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
3556 : l
3557 : );
3558 0 : stat.discard_delta_layer(0);
3559 : }
3560 28 : keep_layers.insert(l);
3561 : }
3562 : }
3563 : }
3564 108 : for layer in &rewrote_delta_layers {
3565 4 : debug!(
3566 0 : "produced rewritten delta layer: {}",
3567 0 : layer.layer_desc().key()
3568 : );
3569 : // For now, we include rewritten delta layer size in the "produce_delta_layer". We could
3570 : // make it a separate statistics in the future.
3571 4 : stat.produce_delta_layer(layer.layer_desc().file_size());
3572 : }
3573 104 : compact_to.extend(rewrote_delta_layers);
3574 180 : for action in produced_image_layers {
3575 76 : match action {
3576 60 : BatchWriterResult::Produced(layer) => {
3577 60 : debug!("produced image layer: {}", layer.layer_desc().key());
3578 60 : stat.produce_image_layer(layer.layer_desc().file_size());
3579 60 : compact_to.push(layer);
3580 : }
3581 16 : BatchWriterResult::Discarded(l) => {
3582 16 : debug!("discarded image layer: {}", l);
3583 16 : if let Some(layer_desc) = layer_selection_by_key.get(&l) {
3584 16 : stat.discard_image_layer(layer_desc.file_size());
3585 16 : } else {
3586 0 : tracing::warn!(
3587 0 : "discarded image layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
3588 : l
3589 : );
3590 0 : stat.discard_image_layer(0);
3591 : }
3592 16 : keep_layers.insert(l);
3593 : }
3594 : }
3595 : }
3596 :
3597 104 : let mut layer_selection = job_desc.selected_layers;
3598 :
3599 : // Partial compaction might select more data than it processes, e.g., if
3600 : // the compaction_key_range only partially overlaps:
3601 : //
3602 : // [---compaction_key_range---]
3603 : // [---A----][----B----][----C----][----D----]
3604 : //
3605 : // For delta layers, we will rewrite the layers so that it is cut exactly at
3606 : // the compaction key range, so we can always discard them. However, for image
3607 : // layers, as we do not rewrite them for now, we need to handle them differently.
3608 : // Assume image layers A, B, C, D are all in the `layer_selection`.
3609 : //
3610 : // The created image layers contain whatever is needed from B, C, and from
3611 : // `----]` of A, and from `[---` of D.
3612 : //
3613 : // In contrast, `[---A` and `D----]` have not been processed, so, we must
3614 : // keep that data.
3615 : //
3616 : // The solution for now is to keep A and D completely if they are image layers.
3617 : // (layer_selection is what we'll remove from the layer map, so, retain what
3618 : // is _not_ fully covered by compaction_key_range).
3619 408 : for layer in &layer_selection {
3620 304 : if !layer.layer_desc().is_delta() {
3621 132 : if !overlaps_with(
3622 132 : &layer.layer_desc().key_range,
3623 132 : &job_desc.compaction_key_range,
3624 132 : ) {
3625 0 : return Err(CompactionError::Other(anyhow!(
3626 0 : "violated constraint: image layer outside of compaction key range"
3627 0 : )));
3628 132 : }
3629 132 : if !fully_contains(
3630 132 : &job_desc.compaction_key_range,
3631 132 : &layer.layer_desc().key_range,
3632 132 : ) {
3633 16 : keep_layers.insert(layer.layer_desc().key());
3634 116 : }
3635 172 : }
3636 : }
3637 :
3638 304 : layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
3639 104 :
3640 104 : let time_final_phase = timer.elapsed();
3641 104 :
3642 104 : stat.time_final_phase_secs = time_final_phase.as_secs_f64();
3643 104 : stat.time_to_first_kv_pair_secs = time_to_first_kv_pair
3644 104 : .unwrap_or(Duration::ZERO)
3645 104 : .as_secs_f64();
3646 104 : stat.time_main_loop_secs = time_main_loop.as_secs_f64();
3647 104 : stat.time_acquire_lock_secs = time_acquire_lock.as_secs_f64();
3648 104 : stat.time_download_layer_secs = time_download_layer.as_secs_f64();
3649 104 : stat.time_analyze_secs = time_analyze.as_secs_f64();
3650 104 : stat.time_total_secs = begin_timer.elapsed().as_secs_f64();
3651 104 : stat.finalize();
3652 104 :
3653 104 : info!(
3654 0 : "gc-compaction statistics: {}",
3655 0 : serde_json::to_string(&stat)
3656 0 : .context("failed to serialize gc-compaction statistics")
3657 0 : .map_err(CompactionError::Other)?
3658 : );
3659 :
3660 104 : if dry_run {
3661 8 : return Ok(CompactionOutcome::Done);
3662 96 : }
3663 96 :
3664 96 : info!(
3665 0 : "produced {} delta layers and {} image layers, {} layers are kept",
3666 0 : produced_delta_layers_len,
3667 0 : produced_image_layers_len,
3668 0 : keep_layers.len()
3669 : );
3670 :
3671 : // Step 3: Place back to the layer map.
3672 :
3673 : // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
3674 96 : let all_layers = {
3675 96 : let guard = self.layers.read().await;
3676 96 : let layer_map = guard.layer_map()?;
3677 96 : layer_map.iter_historic_layers().collect_vec()
3678 96 : };
3679 96 :
3680 96 : let mut final_layers = all_layers
3681 96 : .iter()
3682 428 : .map(|layer| layer.layer_name())
3683 96 : .collect::<HashSet<_>>();
3684 304 : for layer in &layer_selection {
3685 208 : final_layers.remove(&layer.layer_desc().layer_name());
3686 208 : }
3687 204 : for layer in &compact_to {
3688 108 : final_layers.insert(layer.layer_desc().layer_name());
3689 108 : }
3690 96 : let final_layers = final_layers.into_iter().collect_vec();
3691 :
3692 : // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
3693 : // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
3694 : // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
3695 96 : if let Some(err) = check_valid_layermap(&final_layers) {
3696 0 : return Err(CompactionError::Other(anyhow!(
3697 0 : "gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss",
3698 0 : err
3699 0 : )));
3700 96 : }
3701 :
3702 : // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
3703 : // operate on L1 layers.
3704 : {
3705 : // Gc-compaction will rewrite the history of a key. This could happen in two ways:
3706 : //
3707 : // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
3708 : // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
3709 : // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
3710 : // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
3711 : // now gets stored in I at the compact LSN.
3712 : //
3713 : // --------------- ---------------
3714 : // delta1@LSN20 image1@LSN20
3715 : // --------------- (read path collects delta@LSN20, => --------------- (read path cannot find anything
3716 : // delta1@LSN10 yields) below LSN 20)
3717 : // ---------------
3718 : //
3719 : // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
3720 : // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
3721 : // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
3722 : //
3723 : // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
3724 : // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
3725 : // layer containing 4, yields, and we update the layer map to put the delta layer.
3726 : //
3727 : // --------------- ---------------
3728 : // delta1@LSN4 image1@LSN4
3729 : // --------------- (read path collects delta@LSN4, => --------------- (read path collects LSN4 and LSN1,
3730 : // delta1@LSN1-3 yields) delta1@LSN1 which is an invalid history)
3731 : // --------------- ---------------
3732 : //
3733 : // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
3734 : // and only allow reads to continue after the update is finished.
3735 :
3736 96 : let update_guard = self.gc_compaction_layer_update_lock.write().await;
3737 : // Acquiring the update guard ensures current read operations end and new read operations are blocked.
3738 : // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
3739 96 : let mut guard = self.layers.write().await;
3740 96 : guard
3741 96 : .open_mut()?
3742 96 : .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
3743 96 : drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
3744 96 : };
3745 96 :
3746 96 : // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
3747 96 : // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
3748 96 : // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
3749 96 : // be batched into `schedule_compaction_update`.
3750 96 : let disk_consistent_lsn = self.disk_consistent_lsn.load();
3751 96 : self.schedule_uploads(disk_consistent_lsn, None)
3752 96 : .context("failed to schedule uploads")
3753 96 : .map_err(CompactionError::Other)?;
3754 : // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
3755 : // of `compact_from`.
3756 96 : let compact_from = {
3757 96 : let mut compact_from = Vec::new();
3758 96 : let mut compact_to_set = HashMap::new();
3759 204 : for layer in &compact_to {
3760 108 : compact_to_set.insert(layer.layer_desc().key(), layer);
3761 108 : }
3762 304 : for layer in &layer_selection {
3763 208 : if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
3764 0 : tracing::info!(
3765 0 : "skipping delete {} because found same layer key at different generation {}",
3766 : layer,
3767 : to
3768 : );
3769 208 : } else {
3770 208 : compact_from.push(layer.clone());
3771 208 : }
3772 : }
3773 96 : compact_from
3774 96 : };
3775 96 : self.remote_client
3776 96 : .schedule_compaction_update(&compact_from, &compact_to)?;
3777 :
3778 96 : drop(gc_lock);
3779 96 :
3780 96 : Ok(CompactionOutcome::Done)
3781 112 : }
3782 : }
3783 :
3784 : struct TimelineAdaptor {
3785 : timeline: Arc<Timeline>,
3786 :
3787 : keyspace: (Lsn, KeySpace),
3788 :
3789 : new_deltas: Vec<ResidentLayer>,
3790 : new_images: Vec<ResidentLayer>,
3791 : layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
3792 : }
3793 :
3794 : impl TimelineAdaptor {
3795 0 : pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
3796 0 : Self {
3797 0 : timeline: timeline.clone(),
3798 0 : keyspace,
3799 0 : new_images: Vec::new(),
3800 0 : new_deltas: Vec::new(),
3801 0 : layers_to_delete: Vec::new(),
3802 0 : }
3803 0 : }
3804 :
3805 0 : pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
3806 0 : let layers_to_delete = {
3807 0 : let guard = self.timeline.layers.read().await;
3808 0 : self.layers_to_delete
3809 0 : .iter()
3810 0 : .map(|x| guard.get_from_desc(x))
3811 0 : .collect::<Vec<Layer>>()
3812 0 : };
3813 0 : self.timeline
3814 0 : .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
3815 0 : .await?;
3816 :
3817 0 : self.timeline
3818 0 : .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
3819 :
3820 0 : self.new_deltas.clear();
3821 0 : self.layers_to_delete.clear();
3822 0 : Ok(())
3823 0 : }
3824 : }
3825 :
3826 : #[derive(Clone)]
3827 : struct ResidentDeltaLayer(ResidentLayer);
3828 : #[derive(Clone)]
3829 : struct ResidentImageLayer(ResidentLayer);
3830 :
3831 : impl CompactionJobExecutor for TimelineAdaptor {
3832 : type Key = pageserver_api::key::Key;
3833 :
3834 : type Layer = OwnArc<PersistentLayerDesc>;
3835 : type DeltaLayer = ResidentDeltaLayer;
3836 : type ImageLayer = ResidentImageLayer;
3837 :
3838 : type RequestContext = crate::context::RequestContext;
3839 :
3840 0 : fn get_shard_identity(&self) -> &ShardIdentity {
3841 0 : self.timeline.get_shard_identity()
3842 0 : }
3843 :
3844 0 : async fn get_layers(
3845 0 : &mut self,
3846 0 : key_range: &Range<Key>,
3847 0 : lsn_range: &Range<Lsn>,
3848 0 : _ctx: &RequestContext,
3849 0 : ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
3850 0 : self.flush_updates().await?;
3851 :
3852 0 : let guard = self.timeline.layers.read().await;
3853 0 : let layer_map = guard.layer_map()?;
3854 :
3855 0 : let result = layer_map
3856 0 : .iter_historic_layers()
3857 0 : .filter(|l| {
3858 0 : overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
3859 0 : })
3860 0 : .map(OwnArc)
3861 0 : .collect();
3862 0 : Ok(result)
3863 0 : }
3864 :
3865 0 : async fn get_keyspace(
3866 0 : &mut self,
3867 0 : key_range: &Range<Key>,
3868 0 : lsn: Lsn,
3869 0 : _ctx: &RequestContext,
3870 0 : ) -> anyhow::Result<Vec<Range<Key>>> {
3871 0 : if lsn == self.keyspace.0 {
3872 0 : Ok(pageserver_compaction::helpers::intersect_keyspace(
3873 0 : &self.keyspace.1.ranges,
3874 0 : key_range,
3875 0 : ))
3876 : } else {
3877 : // The current compaction implementation only ever requests the key space
3878 : // at the compaction end LSN.
3879 0 : anyhow::bail!("keyspace not available for requested lsn");
3880 : }
3881 0 : }
3882 :
3883 0 : async fn downcast_delta_layer(
3884 0 : &self,
3885 0 : layer: &OwnArc<PersistentLayerDesc>,
3886 0 : ctx: &RequestContext,
3887 0 : ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
3888 0 : // this is a lot more complex than a simple downcast...
3889 0 : if layer.is_delta() {
3890 0 : let l = {
3891 0 : let guard = self.timeline.layers.read().await;
3892 0 : guard.get_from_desc(layer)
3893 : };
3894 0 : let result = l.download_and_keep_resident(ctx).await?;
3895 :
3896 0 : Ok(Some(ResidentDeltaLayer(result)))
3897 : } else {
3898 0 : Ok(None)
3899 : }
3900 0 : }
3901 :
3902 0 : async fn create_image(
3903 0 : &mut self,
3904 0 : lsn: Lsn,
3905 0 : key_range: &Range<Key>,
3906 0 : ctx: &RequestContext,
3907 0 : ) -> anyhow::Result<()> {
3908 0 : Ok(self.create_image_impl(lsn, key_range, ctx).await?)
3909 0 : }
3910 :
3911 0 : async fn create_delta(
3912 0 : &mut self,
3913 0 : lsn_range: &Range<Lsn>,
3914 0 : key_range: &Range<Key>,
3915 0 : input_layers: &[ResidentDeltaLayer],
3916 0 : ctx: &RequestContext,
3917 0 : ) -> anyhow::Result<()> {
3918 0 : debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
3919 :
3920 0 : let mut all_entries = Vec::new();
3921 0 : for dl in input_layers.iter() {
3922 0 : all_entries.extend(dl.load_keys(ctx).await?);
3923 : }
3924 :
3925 : // The current stdlib sorting implementation is designed in a way where it is
3926 : // particularly fast where the slice is made up of sorted sub-ranges.
3927 0 : all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
3928 :
3929 0 : let mut writer = DeltaLayerWriter::new(
3930 0 : self.timeline.conf,
3931 0 : self.timeline.timeline_id,
3932 0 : self.timeline.tenant_shard_id,
3933 0 : key_range.start,
3934 0 : lsn_range.clone(),
3935 0 : ctx,
3936 0 : )
3937 0 : .await?;
3938 :
3939 0 : let mut dup_values = 0;
3940 0 :
3941 0 : // This iterator walks through all key-value pairs from all the layers
3942 0 : // we're compacting, in key, LSN order.
3943 0 : let mut prev: Option<(Key, Lsn)> = None;
3944 : for &DeltaEntry {
3945 0 : key, lsn, ref val, ..
3946 0 : } in all_entries.iter()
3947 : {
3948 0 : if prev == Some((key, lsn)) {
3949 : // This is a duplicate. Skip it.
3950 : //
3951 : // It can happen if compaction is interrupted after writing some
3952 : // layers but not all, and we are compacting the range again.
3953 : // The calculations in the algorithm assume that there are no
3954 : // duplicates, so the math on targeted file size is likely off,
3955 : // and we will create smaller files than expected.
3956 0 : dup_values += 1;
3957 0 : continue;
3958 0 : }
3959 :
3960 0 : let value = val.load(ctx).await?;
3961 :
3962 0 : writer.put_value(key, lsn, value, ctx).await?;
3963 :
3964 0 : prev = Some((key, lsn));
3965 : }
3966 :
3967 0 : if dup_values > 0 {
3968 0 : warn!("delta layer created with {} duplicate values", dup_values);
3969 0 : }
3970 :
3971 0 : fail_point!("delta-layer-writer-fail-before-finish", |_| {
3972 0 : Err(anyhow::anyhow!(
3973 0 : "failpoint delta-layer-writer-fail-before-finish"
3974 0 : ))
3975 0 : });
3976 :
3977 0 : let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
3978 0 : let new_delta_layer =
3979 0 : Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
3980 :
3981 0 : self.new_deltas.push(new_delta_layer);
3982 0 : Ok(())
3983 0 : }
3984 :
3985 0 : async fn delete_layer(
3986 0 : &mut self,
3987 0 : layer: &OwnArc<PersistentLayerDesc>,
3988 0 : _ctx: &RequestContext,
3989 0 : ) -> anyhow::Result<()> {
3990 0 : self.layers_to_delete.push(layer.clone().0);
3991 0 : Ok(())
3992 0 : }
3993 : }
3994 :
3995 : impl TimelineAdaptor {
3996 0 : async fn create_image_impl(
3997 0 : &mut self,
3998 0 : lsn: Lsn,
3999 0 : key_range: &Range<Key>,
4000 0 : ctx: &RequestContext,
4001 0 : ) -> Result<(), CreateImageLayersError> {
4002 0 : let timer = self.timeline.metrics.create_images_time_histo.start_timer();
4003 :
4004 0 : let image_layer_writer = ImageLayerWriter::new(
4005 0 : self.timeline.conf,
4006 0 : self.timeline.timeline_id,
4007 0 : self.timeline.tenant_shard_id,
4008 0 : key_range,
4009 0 : lsn,
4010 0 : ctx,
4011 0 : )
4012 0 : .await?;
4013 :
4014 0 : fail_point!("image-layer-writer-fail-before-finish", |_| {
4015 0 : Err(CreateImageLayersError::Other(anyhow::anyhow!(
4016 0 : "failpoint image-layer-writer-fail-before-finish"
4017 0 : )))
4018 0 : });
4019 :
4020 0 : let keyspace = KeySpace {
4021 0 : ranges: self.get_keyspace(key_range, lsn, ctx).await?,
4022 : };
4023 : // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
4024 0 : let outcome = self
4025 0 : .timeline
4026 0 : .create_image_layer_for_rel_blocks(
4027 0 : &keyspace,
4028 0 : image_layer_writer,
4029 0 : lsn,
4030 0 : ctx,
4031 0 : key_range.clone(),
4032 0 : IoConcurrency::sequential(),
4033 0 : )
4034 0 : .await?;
4035 :
4036 : if let ImageLayerCreationOutcome::Generated {
4037 0 : unfinished_image_layer,
4038 0 : } = outcome
4039 : {
4040 0 : let (desc, path) = unfinished_image_layer.finish(ctx).await?;
4041 0 : let image_layer =
4042 0 : Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
4043 0 : self.new_images.push(image_layer);
4044 0 : }
4045 :
4046 0 : timer.stop_and_record();
4047 0 :
4048 0 : Ok(())
4049 0 : }
4050 : }
4051 :
4052 : impl CompactionRequestContext for crate::context::RequestContext {}
4053 :
4054 : #[derive(Debug, Clone)]
4055 : pub struct OwnArc<T>(pub Arc<T>);
4056 :
4057 : impl<T> Deref for OwnArc<T> {
4058 : type Target = <Arc<T> as Deref>::Target;
4059 0 : fn deref(&self) -> &Self::Target {
4060 0 : &self.0
4061 0 : }
4062 : }
4063 :
4064 : impl<T> AsRef<T> for OwnArc<T> {
4065 0 : fn as_ref(&self) -> &T {
4066 0 : self.0.as_ref()
4067 0 : }
4068 : }
4069 :
4070 : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
4071 0 : fn key_range(&self) -> &Range<Key> {
4072 0 : &self.key_range
4073 0 : }
4074 0 : fn lsn_range(&self) -> &Range<Lsn> {
4075 0 : &self.lsn_range
4076 0 : }
4077 0 : fn file_size(&self) -> u64 {
4078 0 : self.file_size
4079 0 : }
4080 0 : fn short_id(&self) -> std::string::String {
4081 0 : self.as_ref().short_id().to_string()
4082 0 : }
4083 0 : fn is_delta(&self) -> bool {
4084 0 : self.as_ref().is_delta()
4085 0 : }
4086 : }
4087 :
4088 : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
4089 0 : fn key_range(&self) -> &Range<Key> {
4090 0 : &self.layer_desc().key_range
4091 0 : }
4092 0 : fn lsn_range(&self) -> &Range<Lsn> {
4093 0 : &self.layer_desc().lsn_range
4094 0 : }
4095 0 : fn file_size(&self) -> u64 {
4096 0 : self.layer_desc().file_size
4097 0 : }
4098 0 : fn short_id(&self) -> std::string::String {
4099 0 : self.layer_desc().short_id().to_string()
4100 0 : }
4101 0 : fn is_delta(&self) -> bool {
4102 0 : true
4103 0 : }
4104 : }
4105 :
4106 : impl CompactionLayer<Key> for ResidentDeltaLayer {
4107 0 : fn key_range(&self) -> &Range<Key> {
4108 0 : &self.0.layer_desc().key_range
4109 0 : }
4110 0 : fn lsn_range(&self) -> &Range<Lsn> {
4111 0 : &self.0.layer_desc().lsn_range
4112 0 : }
4113 0 : fn file_size(&self) -> u64 {
4114 0 : self.0.layer_desc().file_size
4115 0 : }
4116 0 : fn short_id(&self) -> std::string::String {
4117 0 : self.0.layer_desc().short_id().to_string()
4118 0 : }
4119 0 : fn is_delta(&self) -> bool {
4120 0 : true
4121 0 : }
4122 : }
4123 :
4124 : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
4125 : type DeltaEntry<'a> = DeltaEntry<'a>;
4126 :
4127 0 : async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
4128 0 : self.0.get_as_delta(ctx).await?.index_entries(ctx).await
4129 0 : }
4130 : }
4131 :
4132 : impl CompactionLayer<Key> for ResidentImageLayer {
4133 0 : fn key_range(&self) -> &Range<Key> {
4134 0 : &self.0.layer_desc().key_range
4135 0 : }
4136 0 : fn lsn_range(&self) -> &Range<Lsn> {
4137 0 : &self.0.layer_desc().lsn_range
4138 0 : }
4139 0 : fn file_size(&self) -> u64 {
4140 0 : self.0.layer_desc().file_size
4141 0 : }
4142 0 : fn short_id(&self) -> std::string::String {
4143 0 : self.0.layer_desc().short_id().to_string()
4144 0 : }
4145 0 : fn is_delta(&self) -> bool {
4146 0 : false
4147 0 : }
4148 : }
4149 : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
|