LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: 553e39c2773e5840c720c90d86e56f89a4330d43.info Lines: 52.1 % 3108 1619
Test Date: 2025-06-13 20:01:21 Functions: 41.1 % 190 78

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : use std::time::{Duration, Instant};
      11              : 
      12              : use super::layer_manager::{LayerManagerLockHolder, LayerManagerReadGuard};
      13              : use super::{
      14              :     CompactFlags, CompactOptions, CompactionError, CreateImageLayersError, DurationRecorder,
      15              :     GetVectoredError, ImageLayerCreationMode, LastImageLayerCreationStatus, RecordedDuration,
      16              :     Timeline,
      17              : };
      18              : 
      19              : use crate::tenant::timeline::DeltaEntry;
      20              : use crate::walredo::RedoAttemptType;
      21              : use anyhow::{Context, anyhow};
      22              : use bytes::Bytes;
      23              : use enumset::EnumSet;
      24              : use fail::fail_point;
      25              : use futures::FutureExt;
      26              : use itertools::Itertools;
      27              : use once_cell::sync::Lazy;
      28              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
      29              : use pageserver_api::key::{KEY_SIZE, Key};
      30              : use pageserver_api::keyspace::{KeySpace, ShardedRange};
      31              : use pageserver_api::models::{CompactInfoResponse, CompactKeyRange};
      32              : use pageserver_api::record::NeonWalRecord;
      33              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      34              : use pageserver_api::value::Value;
      35              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      36              : use pageserver_compaction::interface::*;
      37              : use serde::Serialize;
      38              : use tokio::sync::{OwnedSemaphorePermit, Semaphore};
      39              : use tokio_util::sync::CancellationToken;
      40              : use tracing::{Instrument, debug, error, info, info_span, trace, warn};
      41              : use utils::critical;
      42              : use utils::id::TimelineId;
      43              : use utils::lsn::Lsn;
      44              : 
      45              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      46              : use crate::page_cache;
      47              : use crate::statvfs::Statvfs;
      48              : use crate::tenant::checks::check_valid_layermap;
      49              : use crate::tenant::gc_block::GcBlock;
      50              : use crate::tenant::layer_map::LayerMap;
      51              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      52              : use crate::tenant::remote_timeline_client::index::GcCompactionState;
      53              : use crate::tenant::storage_layer::batch_split_writer::{
      54              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      55              : };
      56              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      57              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      58              : use crate::tenant::storage_layer::{
      59              :     AsLayerDesc, LayerVisibilityHint, PersistentLayerDesc, PersistentLayerKey,
      60              :     ValueReconstructState,
      61              : };
      62              : use crate::tenant::tasks::log_compaction_error;
      63              : use crate::tenant::timeline::{
      64              :     DeltaLayerWriter, ImageLayerCreationOutcome, ImageLayerWriter, IoConcurrency, Layer,
      65              :     ResidentLayer, drop_layer_manager_rlock,
      66              : };
      67              : use crate::tenant::{DeltaLayer, MaybeOffloaded};
      68              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      69              : 
      70              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      71              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      72              : 
      73              : /// Ratio of shard-local pages below which we trigger shard ancestor layer rewrites. 0.3 means that
      74              : /// <= 30% of layer pages must belong to the descendant shard to rewrite the layer.
      75              : ///
      76              : /// We choose a value < 0.5 to avoid rewriting all visible layers every time we do a power-of-two
      77              : /// shard split, which gets expensive for large tenants.
      78              : const ANCESTOR_COMPACTION_REWRITE_THRESHOLD: f64 = 0.3;
      79              : 
      80              : #[derive(Default, Debug, Clone, Copy, Hash, PartialEq, Eq, Serialize)]
      81              : pub struct GcCompactionJobId(pub usize);
      82              : 
      83              : impl std::fmt::Display for GcCompactionJobId {
      84            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      85            0 :         write!(f, "{}", self.0)
      86            0 :     }
      87              : }
      88              : 
      89              : pub struct GcCompactionCombinedSettings {
      90              :     pub gc_compaction_enabled: bool,
      91              :     pub gc_compaction_verification: bool,
      92              :     pub gc_compaction_initial_threshold_kb: u64,
      93              :     pub gc_compaction_ratio_percent: u64,
      94              : }
      95              : 
      96              : #[derive(Debug, Clone)]
      97              : pub enum GcCompactionQueueItem {
      98              :     MetaJob {
      99              :         /// Compaction options
     100              :         options: CompactOptions,
     101              :         /// Whether the compaction is triggered automatically (determines whether we need to update L2 LSN)
     102              :         auto: bool,
     103              :     },
     104              :     SubCompactionJob(CompactOptions),
     105              :     Notify(GcCompactionJobId, Option<Lsn>),
     106              : }
     107              : 
     108              : /// Statistics for gc-compaction meta jobs, which contains several sub compaction jobs.
     109              : #[derive(Debug, Clone, Serialize, Default)]
     110              : pub struct GcCompactionMetaStatistics {
     111              :     /// The total number of sub compaction jobs.
     112              :     pub total_sub_compaction_jobs: usize,
     113              :     /// The total number of sub compaction jobs that failed.
     114              :     pub failed_sub_compaction_jobs: usize,
     115              :     /// The total number of sub compaction jobs that succeeded.
     116              :     pub succeeded_sub_compaction_jobs: usize,
     117              :     /// The layer size before compaction.
     118              :     pub before_compaction_layer_size: u64,
     119              :     /// The layer size after compaction.
     120              :     pub after_compaction_layer_size: u64,
     121              :     /// The start time of the meta job.
     122              :     pub start_time: Option<chrono::DateTime<chrono::Utc>>,
     123              :     /// The end time of the meta job.
     124              :     pub end_time: Option<chrono::DateTime<chrono::Utc>>,
     125              :     /// The duration of the meta job.
     126              :     pub duration_secs: f64,
     127              :     /// The id of the meta job.
     128              :     pub meta_job_id: GcCompactionJobId,
     129              :     /// The LSN below which the layers are compacted, used to compute the statistics.
     130              :     pub below_lsn: Lsn,
     131              :     /// The retention ratio of the meta job (after_compaction_layer_size / before_compaction_layer_size)
     132              :     pub retention_ratio: f64,
     133              : }
     134              : 
     135              : impl GcCompactionMetaStatistics {
     136            0 :     fn finalize(&mut self) {
     137            0 :         let end_time = chrono::Utc::now();
     138            0 :         if let Some(start_time) = self.start_time {
     139            0 :             if end_time > start_time {
     140            0 :                 let delta = end_time - start_time;
     141            0 :                 if let Ok(std_dur) = delta.to_std() {
     142            0 :                     self.duration_secs = std_dur.as_secs_f64();
     143            0 :                 }
     144            0 :             }
     145            0 :         }
     146            0 :         self.retention_ratio = self.after_compaction_layer_size as f64
     147            0 :             / (self.before_compaction_layer_size as f64 + 1.0);
     148            0 :         self.end_time = Some(end_time);
     149            0 :     }
     150              : }
     151              : 
     152              : impl GcCompactionQueueItem {
     153            0 :     pub fn into_compact_info_resp(
     154            0 :         self,
     155            0 :         id: GcCompactionJobId,
     156            0 :         running: bool,
     157            0 :     ) -> Option<CompactInfoResponse> {
     158            0 :         match self {
     159            0 :             GcCompactionQueueItem::MetaJob { options, .. } => Some(CompactInfoResponse {
     160            0 :                 compact_key_range: options.compact_key_range,
     161            0 :                 compact_lsn_range: options.compact_lsn_range,
     162            0 :                 sub_compaction: options.sub_compaction,
     163            0 :                 running,
     164            0 :                 job_id: id.0,
     165            0 :             }),
     166            0 :             GcCompactionQueueItem::SubCompactionJob(options) => Some(CompactInfoResponse {
     167            0 :                 compact_key_range: options.compact_key_range,
     168            0 :                 compact_lsn_range: options.compact_lsn_range,
     169            0 :                 sub_compaction: options.sub_compaction,
     170            0 :                 running,
     171            0 :                 job_id: id.0,
     172            0 :             }),
     173            0 :             GcCompactionQueueItem::Notify(_, _) => None,
     174              :         }
     175            0 :     }
     176              : }
     177              : 
     178              : #[derive(Default)]
     179              : struct GcCompactionGuardItems {
     180              :     notify: Option<tokio::sync::oneshot::Sender<()>>,
     181              :     permit: Option<OwnedSemaphorePermit>,
     182              : }
     183              : 
     184              : struct GcCompactionQueueInner {
     185              :     running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     186              :     queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     187              :     guards: HashMap<GcCompactionJobId, GcCompactionGuardItems>,
     188              :     last_id: GcCompactionJobId,
     189              :     meta_statistics: Option<GcCompactionMetaStatistics>,
     190              : }
     191              : 
     192              : impl GcCompactionQueueInner {
     193            0 :     fn next_id(&mut self) -> GcCompactionJobId {
     194            0 :         let id = self.last_id;
     195            0 :         self.last_id = GcCompactionJobId(id.0 + 1);
     196            0 :         id
     197            0 :     }
     198              : }
     199              : 
     200              : /// A structure to store gc_compaction jobs.
     201              : pub struct GcCompactionQueue {
     202              :     /// All items in the queue, and the currently-running job.
     203              :     inner: std::sync::Mutex<GcCompactionQueueInner>,
     204              :     /// Ensure only one thread is consuming the queue.
     205              :     consumer_lock: tokio::sync::Mutex<()>,
     206              : }
     207              : 
     208            0 : static CONCURRENT_GC_COMPACTION_TASKS: Lazy<Arc<Semaphore>> = Lazy::new(|| {
     209            0 :     // Only allow one timeline on one pageserver to run gc compaction at a time.
     210            0 :     Arc::new(Semaphore::new(1))
     211            0 : });
     212              : 
     213              : impl GcCompactionQueue {
     214            0 :     pub fn new() -> Self {
     215            0 :         GcCompactionQueue {
     216            0 :             inner: std::sync::Mutex::new(GcCompactionQueueInner {
     217            0 :                 running: None,
     218            0 :                 queued: VecDeque::new(),
     219            0 :                 guards: HashMap::new(),
     220            0 :                 last_id: GcCompactionJobId(0),
     221            0 :                 meta_statistics: None,
     222            0 :             }),
     223            0 :             consumer_lock: tokio::sync::Mutex::new(()),
     224            0 :         }
     225            0 :     }
     226              : 
     227            0 :     pub fn cancel_scheduled(&self) {
     228            0 :         let mut guard = self.inner.lock().unwrap();
     229            0 :         guard.queued.clear();
     230            0 :         // TODO: if there is a running job, we should keep the gc guard. However, currently, the cancel
     231            0 :         // API is only used for testing purposes, so we can drop everything here.
     232            0 :         guard.guards.clear();
     233            0 :     }
     234              : 
     235              :     /// Schedule a manual compaction job.
     236            0 :     pub fn schedule_manual_compaction(
     237            0 :         &self,
     238            0 :         options: CompactOptions,
     239            0 :         notify: Option<tokio::sync::oneshot::Sender<()>>,
     240            0 :     ) -> GcCompactionJobId {
     241            0 :         let mut guard = self.inner.lock().unwrap();
     242            0 :         let id = guard.next_id();
     243            0 :         guard.queued.push_back((
     244            0 :             id,
     245            0 :             GcCompactionQueueItem::MetaJob {
     246            0 :                 options,
     247            0 :                 auto: false,
     248            0 :             },
     249            0 :         ));
     250            0 :         guard.guards.entry(id).or_default().notify = notify;
     251            0 :         info!("scheduled compaction job id={}", id);
     252            0 :         id
     253            0 :     }
     254              : 
     255              :     /// Schedule an auto compaction job.
     256            0 :     fn schedule_auto_compaction(
     257            0 :         &self,
     258            0 :         options: CompactOptions,
     259            0 :         permit: OwnedSemaphorePermit,
     260            0 :     ) -> GcCompactionJobId {
     261            0 :         let mut guard = self.inner.lock().unwrap();
     262            0 :         let id = guard.next_id();
     263            0 :         guard.queued.push_back((
     264            0 :             id,
     265            0 :             GcCompactionQueueItem::MetaJob {
     266            0 :                 options,
     267            0 :                 auto: true,
     268            0 :             },
     269            0 :         ));
     270            0 :         guard.guards.entry(id).or_default().permit = Some(permit);
     271            0 :         id
     272            0 :     }
     273              : 
     274              :     /// Trigger an auto compaction.
     275            0 :     pub async fn trigger_auto_compaction(
     276            0 :         &self,
     277            0 :         timeline: &Arc<Timeline>,
     278            0 :     ) -> Result<(), CompactionError> {
     279            0 :         let GcCompactionCombinedSettings {
     280            0 :             gc_compaction_enabled,
     281            0 :             gc_compaction_initial_threshold_kb,
     282            0 :             gc_compaction_ratio_percent,
     283            0 :             ..
     284            0 :         } = timeline.get_gc_compaction_settings();
     285            0 :         if !gc_compaction_enabled {
     286            0 :             return Ok(());
     287            0 :         }
     288            0 :         if self.remaining_jobs_num() > 0 {
     289              :             // Only schedule auto compaction when the queue is empty
     290            0 :             return Ok(());
     291            0 :         }
     292            0 :         if timeline.ancestor_timeline().is_some() {
     293              :             // Do not trigger auto compaction for child timelines. We haven't tested
     294              :             // it enough in staging yet.
     295            0 :             return Ok(());
     296            0 :         }
     297            0 :         if timeline.get_gc_compaction_watermark() == Lsn::INVALID {
     298              :             // If the gc watermark is not set, we don't need to trigger auto compaction.
     299              :             // This check is the same as in `gc_compaction_split_jobs` but we don't log
     300              :             // here and we can also skip the computation of the trigger condition earlier.
     301            0 :             return Ok(());
     302            0 :         }
     303              : 
     304            0 :         let Ok(permit) = CONCURRENT_GC_COMPACTION_TASKS.clone().try_acquire_owned() else {
     305              :             // Only allow one compaction run at a time. TODO: As we do `try_acquire_owned`, we cannot ensure
     306              :             // the fairness of the lock across timelines. We should listen for both `acquire` and `l0_compaction_trigger`
     307              :             // to ensure the fairness while avoid starving other tasks.
     308            0 :             return Ok(());
     309              :         };
     310              : 
     311            0 :         let gc_compaction_state = timeline.get_gc_compaction_state();
     312            0 :         let l2_lsn = gc_compaction_state
     313            0 :             .map(|x| x.last_completed_lsn)
     314            0 :             .unwrap_or(Lsn::INVALID);
     315              : 
     316            0 :         let layers = {
     317            0 :             let guard = timeline
     318            0 :                 .layers
     319            0 :                 .read(LayerManagerLockHolder::GetLayerMapInfo)
     320            0 :                 .await;
     321            0 :             let layer_map = guard.layer_map()?;
     322            0 :             layer_map.iter_historic_layers().collect_vec()
     323            0 :         };
     324            0 :         let mut l2_size: u64 = 0;
     325            0 :         let mut l1_size = 0;
     326            0 :         let gc_cutoff = *timeline.get_applied_gc_cutoff_lsn();
     327            0 :         for layer in layers {
     328            0 :             if layer.lsn_range.start <= l2_lsn {
     329            0 :                 l2_size += layer.file_size();
     330            0 :             } else if layer.lsn_range.start <= gc_cutoff {
     331            0 :                 l1_size += layer.file_size();
     332            0 :             }
     333              :         }
     334              : 
     335            0 :         fn trigger_compaction(
     336            0 :             l1_size: u64,
     337            0 :             l2_size: u64,
     338            0 :             gc_compaction_initial_threshold_kb: u64,
     339            0 :             gc_compaction_ratio_percent: u64,
     340            0 :         ) -> bool {
     341              :             const AUTO_TRIGGER_LIMIT: u64 = 150 * 1024 * 1024 * 1024; // 150GB
     342            0 :             if l1_size + l2_size >= AUTO_TRIGGER_LIMIT {
     343              :                 // Do not auto-trigger when physical size >= 150GB
     344            0 :                 return false;
     345            0 :             }
     346            0 :             // initial trigger
     347            0 :             if l2_size == 0 && l1_size >= gc_compaction_initial_threshold_kb * 1024 {
     348            0 :                 info!(
     349            0 :                     "trigger auto-compaction because l1_size={} >= gc_compaction_initial_threshold_kb={}",
     350              :                     l1_size, gc_compaction_initial_threshold_kb
     351              :                 );
     352            0 :                 return true;
     353            0 :             }
     354            0 :             // size ratio trigger
     355            0 :             if l2_size == 0 {
     356            0 :                 return false;
     357            0 :             }
     358            0 :             if l1_size as f64 / l2_size as f64 >= (gc_compaction_ratio_percent as f64 / 100.0) {
     359            0 :                 info!(
     360            0 :                     "trigger auto-compaction because l1_size={} / l2_size={} > gc_compaction_ratio_percent={}",
     361              :                     l1_size, l2_size, gc_compaction_ratio_percent
     362              :                 );
     363            0 :                 return true;
     364            0 :             }
     365            0 :             false
     366            0 :         }
     367              : 
     368            0 :         if trigger_compaction(
     369            0 :             l1_size,
     370            0 :             l2_size,
     371            0 :             gc_compaction_initial_threshold_kb,
     372            0 :             gc_compaction_ratio_percent,
     373            0 :         ) {
     374            0 :             self.schedule_auto_compaction(
     375            0 :                 CompactOptions {
     376            0 :                     flags: {
     377            0 :                         let mut flags = EnumSet::new();
     378            0 :                         flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     379            0 :                         if timeline.get_compaction_l0_first() {
     380            0 :                             flags |= CompactFlags::YieldForL0;
     381            0 :                         }
     382            0 :                         flags
     383            0 :                     },
     384            0 :                     sub_compaction: true,
     385            0 :                     // Only auto-trigger gc-compaction over the data keyspace due to concerns in
     386            0 :                     // https://github.com/neondatabase/neon/issues/11318.
     387            0 :                     compact_key_range: Some(CompactKeyRange {
     388            0 :                         start: Key::MIN,
     389            0 :                         end: Key::metadata_key_range().start,
     390            0 :                     }),
     391            0 :                     compact_lsn_range: None,
     392            0 :                     sub_compaction_max_job_size_mb: None,
     393            0 :                 },
     394            0 :                 permit,
     395            0 :             );
     396            0 :             info!(
     397            0 :                 "scheduled auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     398              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     399              :             );
     400              :         } else {
     401            0 :             debug!(
     402            0 :                 "did not trigger auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     403              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     404              :             );
     405              :         }
     406            0 :         Ok(())
     407            0 :     }
     408              : 
     409            0 :     async fn collect_layer_below_lsn(
     410            0 :         &self,
     411            0 :         timeline: &Arc<Timeline>,
     412            0 :         lsn: Lsn,
     413            0 :     ) -> Result<u64, CompactionError> {
     414            0 :         let guard = timeline
     415            0 :             .layers
     416            0 :             .read(LayerManagerLockHolder::GetLayerMapInfo)
     417            0 :             .await;
     418            0 :         let layer_map = guard.layer_map()?;
     419            0 :         let layers = layer_map.iter_historic_layers().collect_vec();
     420            0 :         let mut size = 0;
     421            0 :         for layer in layers {
     422            0 :             if layer.lsn_range.start <= lsn {
     423            0 :                 size += layer.file_size();
     424            0 :             }
     425              :         }
     426            0 :         Ok(size)
     427            0 :     }
     428              : 
     429              :     /// Notify the caller the job has finished and unblock GC.
     430            0 :     fn notify_and_unblock(&self, id: GcCompactionJobId) {
     431            0 :         info!("compaction job id={} finished", id);
     432            0 :         let mut guard = self.inner.lock().unwrap();
     433            0 :         if let Some(items) = guard.guards.remove(&id) {
     434            0 :             if let Some(tx) = items.notify {
     435            0 :                 let _ = tx.send(());
     436            0 :             }
     437            0 :         }
     438            0 :         if let Some(ref meta_statistics) = guard.meta_statistics {
     439            0 :             if meta_statistics.meta_job_id == id {
     440            0 :                 if let Ok(stats) = serde_json::to_string(&meta_statistics) {
     441            0 :                     info!(
     442            0 :                         "gc-compaction meta statistics for job id = {}: {}",
     443              :                         id, stats
     444              :                     );
     445            0 :                 }
     446            0 :             }
     447            0 :         }
     448            0 :     }
     449              : 
     450            0 :     fn clear_running_job(&self) {
     451            0 :         let mut guard = self.inner.lock().unwrap();
     452            0 :         guard.running = None;
     453            0 :     }
     454              : 
     455            0 :     async fn handle_sub_compaction(
     456            0 :         &self,
     457            0 :         id: GcCompactionJobId,
     458            0 :         options: CompactOptions,
     459            0 :         timeline: &Arc<Timeline>,
     460            0 :         auto: bool,
     461            0 :     ) -> Result<(), CompactionError> {
     462            0 :         info!(
     463            0 :             "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     464              :         );
     465            0 :         let res = timeline
     466            0 :             .gc_compaction_split_jobs(
     467            0 :                 GcCompactJob::from_compact_options(options.clone()),
     468            0 :                 options.sub_compaction_max_job_size_mb,
     469            0 :             )
     470            0 :             .await;
     471            0 :         let jobs = match res {
     472            0 :             Ok(jobs) => jobs,
     473            0 :             Err(err) => {
     474            0 :                 warn!("cannot split gc-compaction jobs: {}, unblocked gc", err);
     475            0 :                 self.notify_and_unblock(id);
     476            0 :                 return Err(err);
     477              :             }
     478              :         };
     479            0 :         if jobs.is_empty() {
     480            0 :             info!("no jobs to run, skipping scheduled compaction task");
     481            0 :             self.notify_and_unblock(id);
     482              :         } else {
     483            0 :             let jobs_len = jobs.len();
     484            0 :             let mut pending_tasks = Vec::new();
     485            0 :             // gc-compaction might pick more layers or fewer layers to compact. The L2 LSN does not need to be accurate.
     486            0 :             // And therefore, we simply assume the maximum LSN of all jobs is the expected L2 LSN.
     487            0 :             let expected_l2_lsn = jobs
     488            0 :                 .iter()
     489            0 :                 .map(|job| job.compact_lsn_range.end)
     490            0 :                 .max()
     491            0 :                 .unwrap();
     492            0 :             for job in jobs {
     493              :                 // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
     494              :                 // until we do further refactors to allow directly call `compact_with_gc`.
     495            0 :                 let mut flags: EnumSet<CompactFlags> = EnumSet::default();
     496            0 :                 flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     497            0 :                 if job.dry_run {
     498            0 :                     flags |= CompactFlags::DryRun;
     499            0 :                 }
     500            0 :                 if options.flags.contains(CompactFlags::YieldForL0) {
     501            0 :                     flags |= CompactFlags::YieldForL0;
     502            0 :                 }
     503            0 :                 let options = CompactOptions {
     504            0 :                     flags,
     505            0 :                     sub_compaction: false,
     506            0 :                     compact_key_range: Some(job.compact_key_range.into()),
     507            0 :                     compact_lsn_range: Some(job.compact_lsn_range.into()),
     508            0 :                     sub_compaction_max_job_size_mb: None,
     509            0 :                 };
     510            0 :                 pending_tasks.push(GcCompactionQueueItem::SubCompactionJob(options));
     511              :             }
     512              : 
     513            0 :             if !auto {
     514            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, None));
     515            0 :             } else {
     516            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, Some(expected_l2_lsn)));
     517            0 :             }
     518              : 
     519            0 :             let layer_size = self
     520            0 :                 .collect_layer_below_lsn(timeline, expected_l2_lsn)
     521            0 :                 .await?;
     522              : 
     523              :             {
     524            0 :                 let mut guard = self.inner.lock().unwrap();
     525            0 :                 let mut tasks = Vec::new();
     526            0 :                 for task in pending_tasks {
     527            0 :                     let id = guard.next_id();
     528            0 :                     tasks.push((id, task));
     529            0 :                 }
     530            0 :                 tasks.reverse();
     531            0 :                 for item in tasks {
     532            0 :                     guard.queued.push_front(item);
     533            0 :                 }
     534            0 :                 guard.meta_statistics = Some(GcCompactionMetaStatistics {
     535            0 :                     meta_job_id: id,
     536            0 :                     start_time: Some(chrono::Utc::now()),
     537            0 :                     before_compaction_layer_size: layer_size,
     538            0 :                     below_lsn: expected_l2_lsn,
     539            0 :                     total_sub_compaction_jobs: jobs_len,
     540            0 :                     ..Default::default()
     541            0 :                 });
     542            0 :             }
     543            0 : 
     544            0 :             info!(
     545            0 :                 "scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs",
     546              :                 jobs_len
     547              :             );
     548              :         }
     549            0 :         Ok(())
     550            0 :     }
     551              : 
     552              :     /// Take a job from the queue and process it. Returns if there are still pending tasks.
     553            0 :     pub async fn iteration(
     554            0 :         &self,
     555            0 :         cancel: &CancellationToken,
     556            0 :         ctx: &RequestContext,
     557            0 :         gc_block: &GcBlock,
     558            0 :         timeline: &Arc<Timeline>,
     559            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     560            0 :         let res = self.iteration_inner(cancel, ctx, gc_block, timeline).await;
     561            0 :         if let Err(err) = &res {
     562            0 :             log_compaction_error(err, None, cancel.is_cancelled(), true);
     563            0 :         }
     564            0 :         match res {
     565            0 :             Ok(res) => Ok(res),
     566            0 :             Err(CompactionError::ShuttingDown) => Err(CompactionError::ShuttingDown),
     567              :             Err(_) => {
     568              :                 // There are some cases where traditional gc might collect some layer
     569              :                 // files causing gc-compaction cannot read the full history of the key.
     570              :                 // This needs to be resolved in the long-term by improving the compaction
     571              :                 // process. For now, let's simply avoid such errors triggering the
     572              :                 // circuit breaker.
     573            0 :                 Ok(CompactionOutcome::Skipped)
     574              :             }
     575              :         }
     576            0 :     }
     577              : 
     578            0 :     async fn iteration_inner(
     579            0 :         &self,
     580            0 :         cancel: &CancellationToken,
     581            0 :         ctx: &RequestContext,
     582            0 :         gc_block: &GcBlock,
     583            0 :         timeline: &Arc<Timeline>,
     584            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     585            0 :         let Ok(_one_op_at_a_time_guard) = self.consumer_lock.try_lock() else {
     586            0 :             return Err(CompactionError::AlreadyRunning(
     587            0 :                 "cannot run gc-compaction because another gc-compaction is running. This should not happen because we only call this function from the gc-compaction queue.",
     588            0 :             ));
     589              :         };
     590              :         let has_pending_tasks;
     591            0 :         let mut yield_for_l0 = false;
     592            0 :         let Some((id, item)) = ({
     593            0 :             let mut guard = self.inner.lock().unwrap();
     594            0 :             if let Some((id, item)) = guard.queued.pop_front() {
     595            0 :                 guard.running = Some((id, item.clone()));
     596            0 :                 has_pending_tasks = !guard.queued.is_empty();
     597            0 :                 Some((id, item))
     598              :             } else {
     599            0 :                 has_pending_tasks = false;
     600            0 :                 None
     601              :             }
     602              :         }) else {
     603            0 :             self.trigger_auto_compaction(timeline).await?;
     604              :             // Always yield after triggering auto-compaction. Gc-compaction is a low-priority task and we
     605              :             // have not implemented preemption mechanism yet. We always want to yield it to more important
     606              :             // tasks if there is one.
     607            0 :             return Ok(CompactionOutcome::Done);
     608              :         };
     609            0 :         match item {
     610            0 :             GcCompactionQueueItem::MetaJob { options, auto } => {
     611            0 :                 if !options
     612            0 :                     .flags
     613            0 :                     .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     614              :                 {
     615            0 :                     warn!(
     616            0 :                         "ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}",
     617              :                         options
     618              :                     );
     619            0 :                 } else if options.sub_compaction {
     620            0 :                     info!(
     621            0 :                         "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     622              :                     );
     623            0 :                     self.handle_sub_compaction(id, options, timeline, auto)
     624            0 :                         .await?;
     625              :                 } else {
     626              :                     // Auto compaction always enables sub-compaction so we don't need to handle update_l2_lsn
     627              :                     // in this branch.
     628            0 :                     let _gc_guard = match gc_block.start().await {
     629            0 :                         Ok(guard) => guard,
     630            0 :                         Err(e) => {
     631            0 :                             self.notify_and_unblock(id);
     632            0 :                             self.clear_running_job();
     633            0 :                             return Err(CompactionError::Other(anyhow!(
     634            0 :                                 "cannot run gc-compaction because gc is blocked: {}",
     635            0 :                                 e
     636            0 :                             )));
     637              :                         }
     638              :                     };
     639            0 :                     let res = timeline.compact_with_options(cancel, options, ctx).await;
     640            0 :                     let compaction_result = match res {
     641            0 :                         Ok(res) => res,
     642            0 :                         Err(err) => {
     643            0 :                             warn!(%err, "failed to run gc-compaction");
     644            0 :                             self.notify_and_unblock(id);
     645            0 :                             self.clear_running_job();
     646            0 :                             return Err(err);
     647              :                         }
     648              :                     };
     649            0 :                     if compaction_result == CompactionOutcome::YieldForL0 {
     650            0 :                         yield_for_l0 = true;
     651            0 :                     }
     652              :                 }
     653              :             }
     654            0 :             GcCompactionQueueItem::SubCompactionJob(options) => {
     655              :                 // TODO: error handling, clear the queue if any task fails?
     656            0 :                 let _gc_guard = match gc_block.start().await {
     657            0 :                     Ok(guard) => guard,
     658            0 :                     Err(e) => {
     659            0 :                         self.clear_running_job();
     660            0 :                         return Err(CompactionError::Other(anyhow!(
     661            0 :                             "cannot run gc-compaction because gc is blocked: {}",
     662            0 :                             e
     663            0 :                         )));
     664              :                     }
     665              :                 };
     666            0 :                 let res = timeline.compact_with_options(cancel, options, ctx).await;
     667            0 :                 let compaction_result = match res {
     668            0 :                     Ok(res) => res,
     669            0 :                     Err(err) => {
     670            0 :                         warn!(%err, "failed to run gc-compaction subcompaction job");
     671            0 :                         self.clear_running_job();
     672            0 :                         let mut guard = self.inner.lock().unwrap();
     673            0 :                         if let Some(ref mut meta_statistics) = guard.meta_statistics {
     674            0 :                             meta_statistics.failed_sub_compaction_jobs += 1;
     675            0 :                         }
     676            0 :                         return Err(err);
     677              :                     }
     678              :                 };
     679            0 :                 if compaction_result == CompactionOutcome::YieldForL0 {
     680            0 :                     // We will permenantly give up a task if we yield for L0 compaction: the preempted subcompaction job won't be running
     681            0 :                     // again. This ensures that we don't keep doing duplicated work within gc-compaction. Not directly returning here because
     682            0 :                     // we need to clean things up before returning from the function.
     683            0 :                     yield_for_l0 = true;
     684            0 :                 }
     685              :                 {
     686            0 :                     let mut guard = self.inner.lock().unwrap();
     687            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     688            0 :                         meta_statistics.succeeded_sub_compaction_jobs += 1;
     689            0 :                     }
     690              :                 }
     691              :             }
     692            0 :             GcCompactionQueueItem::Notify(id, l2_lsn) => {
     693            0 :                 let below_lsn = {
     694            0 :                     let mut guard = self.inner.lock().unwrap();
     695            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     696            0 :                         meta_statistics.below_lsn
     697              :                     } else {
     698            0 :                         Lsn::INVALID
     699              :                     }
     700              :                 };
     701            0 :                 let layer_size = if below_lsn != Lsn::INVALID {
     702            0 :                     self.collect_layer_below_lsn(timeline, below_lsn).await?
     703              :                 } else {
     704            0 :                     0
     705              :                 };
     706              :                 {
     707            0 :                     let mut guard = self.inner.lock().unwrap();
     708            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     709            0 :                         meta_statistics.after_compaction_layer_size = layer_size;
     710            0 :                         meta_statistics.finalize();
     711            0 :                     }
     712              :                 }
     713            0 :                 self.notify_and_unblock(id);
     714            0 :                 if let Some(l2_lsn) = l2_lsn {
     715            0 :                     let current_l2_lsn = timeline
     716            0 :                         .get_gc_compaction_state()
     717            0 :                         .map(|x| x.last_completed_lsn)
     718            0 :                         .unwrap_or(Lsn::INVALID);
     719            0 :                     if l2_lsn >= current_l2_lsn {
     720            0 :                         info!("l2_lsn updated to {}", l2_lsn);
     721            0 :                         timeline
     722            0 :                             .update_gc_compaction_state(GcCompactionState {
     723            0 :                                 last_completed_lsn: l2_lsn,
     724            0 :                             })
     725            0 :                             .map_err(CompactionError::Other)?;
     726              :                     } else {
     727            0 :                         warn!(
     728            0 :                             "l2_lsn updated to {} but it is less than the current l2_lsn {}",
     729              :                             l2_lsn, current_l2_lsn
     730              :                         );
     731              :                     }
     732            0 :                 }
     733              :             }
     734              :         }
     735            0 :         self.clear_running_job();
     736            0 :         Ok(if yield_for_l0 {
     737            0 :             tracing::info!("give up gc-compaction: yield for L0 compaction");
     738            0 :             CompactionOutcome::YieldForL0
     739            0 :         } else if has_pending_tasks {
     740            0 :             CompactionOutcome::Pending
     741              :         } else {
     742            0 :             CompactionOutcome::Done
     743              :         })
     744            0 :     }
     745              : 
     746              :     #[allow(clippy::type_complexity)]
     747            0 :     pub fn remaining_jobs(
     748            0 :         &self,
     749            0 :     ) -> (
     750            0 :         Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     751            0 :         VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     752            0 :     ) {
     753            0 :         let guard = self.inner.lock().unwrap();
     754            0 :         (guard.running.clone(), guard.queued.clone())
     755            0 :     }
     756              : 
     757            0 :     pub fn remaining_jobs_num(&self) -> usize {
     758            0 :         let guard = self.inner.lock().unwrap();
     759            0 :         guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
     760            0 :     }
     761              : }
     762              : 
     763              : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
     764              : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
     765              : /// called.
     766              : #[derive(Debug, Clone)]
     767              : pub(crate) struct GcCompactJob {
     768              :     pub dry_run: bool,
     769              :     /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
     770              :     /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
     771              :     pub compact_key_range: Range<Key>,
     772              :     /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
     773              :     /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
     774              :     /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
     775              :     /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
     776              :     pub compact_lsn_range: Range<Lsn>,
     777              : }
     778              : 
     779              : impl GcCompactJob {
     780           28 :     pub fn from_compact_options(options: CompactOptions) -> Self {
     781           28 :         GcCompactJob {
     782           28 :             dry_run: options.flags.contains(CompactFlags::DryRun),
     783           28 :             compact_key_range: options
     784           28 :                 .compact_key_range
     785           28 :                 .map(|x| x.into())
     786           28 :                 .unwrap_or(Key::MIN..Key::MAX),
     787           28 :             compact_lsn_range: options
     788           28 :                 .compact_lsn_range
     789           28 :                 .map(|x| x.into())
     790           28 :                 .unwrap_or(Lsn::INVALID..Lsn::MAX),
     791           28 :         }
     792           28 :     }
     793              : }
     794              : 
     795              : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
     796              : /// and contains the exact layers we want to compact.
     797              : pub struct GcCompactionJobDescription {
     798              :     /// All layers to read in the compaction job
     799              :     selected_layers: Vec<Layer>,
     800              :     /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
     801              :     /// keep all deltas <= this LSN or generate an image == this LSN.
     802              :     gc_cutoff: Lsn,
     803              :     /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
     804              :     /// generate an image == this LSN.
     805              :     retain_lsns_below_horizon: Vec<Lsn>,
     806              :     /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
     807              :     /// \>= this LSN will be kept and will not be rewritten.
     808              :     max_layer_lsn: Lsn,
     809              :     /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
     810              :     /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
     811              :     /// k-merge within gc-compaction.
     812              :     min_layer_lsn: Lsn,
     813              :     /// Only compact layers overlapping with this range.
     814              :     compaction_key_range: Range<Key>,
     815              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
     816              :     /// This field is here solely for debugging. The field will not be read once the compaction
     817              :     /// description is generated.
     818              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
     819              : }
     820              : 
     821              : /// The result of bottom-most compaction for a single key at each LSN.
     822              : #[derive(Debug)]
     823              : #[cfg_attr(test, derive(PartialEq))]
     824              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
     825              : 
     826              : /// The result of bottom-most compaction.
     827              : #[derive(Debug)]
     828              : #[cfg_attr(test, derive(PartialEq))]
     829              : pub(crate) struct KeyHistoryRetention {
     830              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
     831              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
     832              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
     833              :     pub(crate) above_horizon: KeyLogAtLsn,
     834              : }
     835              : 
     836              : impl KeyHistoryRetention {
     837              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     838              :     ///
     839              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     840              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     841              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     842              :     /// Then we delete branch @ 0x20.
     843              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     844              :     /// And that wouldnt' change the shape of the layer.
     845              :     ///
     846              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     847              :     ///
     848              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     849           37 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     850           37 :         if dry_run {
     851            0 :             return true;
     852           37 :         }
     853           37 :         if LayerMap::is_l0(&key.key_range, key.is_delta) {
     854              :             // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
     855              :             // We should ignore such layers.
     856            0 :             return true;
     857           37 :         }
     858              :         let layer_generation;
     859              :         {
     860           37 :             let guard = tline.layers.read(LayerManagerLockHolder::Compaction).await;
     861           37 :             if !guard.contains_key(key) {
     862           26 :                 return false;
     863           11 :             }
     864           11 :             layer_generation = guard.get_from_key(key).metadata().generation;
     865           11 :         }
     866           11 :         if layer_generation == tline.generation {
     867           11 :             info!(
     868              :                 key=%key,
     869              :                 ?layer_generation,
     870            0 :                 "discard layer due to duplicated layer key in the same generation",
     871              :             );
     872           11 :             true
     873              :         } else {
     874            0 :             false
     875              :         }
     876           37 :     }
     877              : 
     878              :     /// Pipe a history of a single key to the writers.
     879              :     ///
     880              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     881              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     882              :     #[allow(clippy::too_many_arguments)]
     883          319 :     async fn pipe_to(
     884          319 :         self,
     885          319 :         key: Key,
     886          319 :         delta_writer: &mut SplitDeltaLayerWriter<'_>,
     887          319 :         mut image_writer: Option<&mut SplitImageLayerWriter<'_>>,
     888          319 :         stat: &mut CompactionStatistics,
     889          319 :         ctx: &RequestContext,
     890          319 :     ) -> anyhow::Result<()> {
     891          319 :         let mut first_batch = true;
     892         1022 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     893          703 :             if first_batch {
     894          319 :                 if logs.len() == 1 && logs[0].1.is_image() {
     895          300 :                     let Value::Image(img) = &logs[0].1 else {
     896            0 :                         unreachable!()
     897              :                     };
     898          300 :                     stat.produce_image_key(img);
     899          300 :                     if let Some(image_writer) = image_writer.as_mut() {
     900          300 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     901              :                     } else {
     902            0 :                         delta_writer
     903            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     904            0 :                             .await?;
     905              :                     }
     906              :                 } else {
     907           33 :                     for (lsn, val) in logs {
     908           14 :                         stat.produce_key(&val);
     909           14 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     910              :                     }
     911              :                 }
     912          319 :                 first_batch = false;
     913              :             } else {
     914          442 :                 for (lsn, val) in logs {
     915           58 :                     stat.produce_key(&val);
     916           58 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     917              :                 }
     918              :             }
     919              :         }
     920          319 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     921          348 :         for (lsn, val) in above_horizon_logs {
     922           29 :             stat.produce_key(&val);
     923           29 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     924              :         }
     925          319 :         Ok(())
     926          319 :     }
     927              : 
     928              :     /// Verify if every key in the retention is readable by replaying the logs.
     929          323 :     async fn verify(
     930          323 :         &self,
     931          323 :         key: Key,
     932          323 :         base_img_from_ancestor: &Option<(Key, Lsn, Bytes)>,
     933          323 :         full_history: &[(Key, Lsn, Value)],
     934          323 :         tline: &Arc<Timeline>,
     935          323 :     ) -> anyhow::Result<()> {
     936              :         // Usually the min_lsn should be the first record but we do a full iteration to be safe.
     937          458 :         let Some(min_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).min() else {
     938              :             // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
     939            0 :             return Ok(());
     940              :         };
     941          458 :         let Some(max_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).max() else {
     942              :             // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
     943            0 :             return Ok(());
     944              :         };
     945          323 :         let mut base_img = base_img_from_ancestor
     946          323 :             .as_ref()
     947          323 :             .map(|(_, lsn, img)| (*lsn, img));
     948          323 :         let mut history = Vec::new();
     949              : 
     950         1027 :         async fn collect_and_verify(
     951         1027 :             key: Key,
     952         1027 :             lsn: Lsn,
     953         1027 :             base_img: &Option<(Lsn, &Bytes)>,
     954         1027 :             history: &[(Lsn, &NeonWalRecord)],
     955         1027 :             tline: &Arc<Timeline>,
     956         1027 :             skip_empty: bool,
     957         1027 :         ) -> anyhow::Result<()> {
     958         1027 :             if base_img.is_none() && history.is_empty() {
     959            0 :                 if skip_empty {
     960            0 :                     return Ok(());
     961            0 :                 }
     962            0 :                 anyhow::bail!("verification failed: key {} has no history at {}", key, lsn);
     963         1027 :             };
     964         1027 : 
     965         1027 :             let mut records = history
     966         1027 :                 .iter()
     967         1027 :                 .map(|(lsn, val)| (*lsn, (*val).clone()))
     968         1027 :                 .collect::<Vec<_>>();
     969         1027 : 
     970         1027 :             // WAL redo requires records in the reverse LSN order
     971         1027 :             records.reverse();
     972         1027 :             let data = ValueReconstructState {
     973         1027 :                 img: base_img.as_ref().map(|(lsn, img)| (*lsn, (*img).clone())),
     974         1027 :                 records,
     975         1027 :             };
     976         1027 : 
     977         1027 :             tline
     978         1027 :                 .reconstruct_value(key, lsn, data, RedoAttemptType::GcCompaction)
     979         1027 :                 .await
     980         1027 :                 .with_context(|| format!("verification failed for key {} at lsn {}", key, lsn))?;
     981              : 
     982         1027 :             Ok(())
     983         1027 :         }
     984              : 
     985         1036 :         for (retain_lsn, KeyLogAtLsn(logs)) in &self.below_horizon {
     986         1096 :             for (lsn, val) in logs {
     987           76 :                 match val {
     988          307 :                     Value::Image(img) => {
     989          307 :                         base_img = Some((*lsn, img));
     990          307 :                         history.clear();
     991          307 :                     }
     992           76 :                     Value::WalRecord(rec) if val.will_init() => {
     993            0 :                         base_img = None;
     994            0 :                         history.clear();
     995            0 :                         history.push((*lsn, rec));
     996            0 :                     }
     997           76 :                     Value::WalRecord(rec) => {
     998           76 :                         history.push((*lsn, rec));
     999           76 :                     }
    1000              :                 }
    1001              :             }
    1002          713 :             if *retain_lsn >= min_lsn {
    1003              :                 // Only verify after the key appears in the full history for the first time.
    1004              : 
    1005              :                 // We don't modify history: in theory, we could replace the history with a single
    1006              :                 // image as in `generate_key_retention` to make redos at later LSNs faster. But we
    1007              :                 // want to verify everything as if they are read from the real layer map.
    1008          699 :                 collect_and_verify(key, *retain_lsn, &base_img, &history, tline, false)
    1009          699 :                     .await
    1010          699 :                     .context("below horizon retain_lsn")?;
    1011           14 :             }
    1012              :         }
    1013              : 
    1014          360 :         for (lsn, val) in &self.above_horizon.0 {
    1015           32 :             match val {
    1016            5 :                 Value::Image(img) => {
    1017            5 :                     // Above the GC horizon, we verify every time we see an image.
    1018            5 :                     collect_and_verify(key, *lsn, &base_img, &history, tline, true)
    1019            5 :                         .await
    1020            5 :                         .context("above horizon full image")?;
    1021            5 :                     base_img = Some((*lsn, img));
    1022            5 :                     history.clear();
    1023              :                 }
    1024           32 :                 Value::WalRecord(rec) if val.will_init() => {
    1025            0 :                     // Above the GC horizon, we verify every time we see an init record.
    1026            0 :                     collect_and_verify(key, *lsn, &base_img, &history, tline, true)
    1027            0 :                         .await
    1028            0 :                         .context("above horizon init record")?;
    1029            0 :                     base_img = None;
    1030            0 :                     history.clear();
    1031            0 :                     history.push((*lsn, rec));
    1032              :                 }
    1033           32 :                 Value::WalRecord(rec) => {
    1034           32 :                     history.push((*lsn, rec));
    1035           32 :                 }
    1036              :             }
    1037              :         }
    1038              :         // Ensure the latest record is readable.
    1039          323 :         collect_and_verify(key, max_lsn, &base_img, &history, tline, false)
    1040          323 :             .await
    1041          323 :             .context("latest record")?;
    1042          323 :         Ok(())
    1043          323 :     }
    1044              : }
    1045              : 
    1046              : #[derive(Debug, Serialize, Default)]
    1047              : struct CompactionStatisticsNumSize {
    1048              :     num: u64,
    1049              :     size: u64,
    1050              : }
    1051              : 
    1052              : #[derive(Debug, Serialize, Default)]
    1053              : pub struct CompactionStatistics {
    1054              :     /// Delta layer visited (maybe compressed, physical size)
    1055              :     delta_layer_visited: CompactionStatisticsNumSize,
    1056              :     /// Image layer visited (maybe compressed, physical size)
    1057              :     image_layer_visited: CompactionStatisticsNumSize,
    1058              :     /// Delta layer produced (maybe compressed, physical size)
    1059              :     delta_layer_produced: CompactionStatisticsNumSize,
    1060              :     /// Image layer produced (maybe compressed, physical size)
    1061              :     image_layer_produced: CompactionStatisticsNumSize,
    1062              :     /// Delta layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
    1063              :     delta_layer_discarded: CompactionStatisticsNumSize,
    1064              :     /// Image layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
    1065              :     image_layer_discarded: CompactionStatisticsNumSize,
    1066              :     num_unique_keys_visited: usize,
    1067              :     /// Delta visited (uncompressed, original size)
    1068              :     wal_keys_visited: CompactionStatisticsNumSize,
    1069              :     /// Image visited (uncompressed, original size)
    1070              :     image_keys_visited: CompactionStatisticsNumSize,
    1071              :     /// Delta produced (uncompressed, original size)
    1072              :     wal_produced: CompactionStatisticsNumSize,
    1073              :     /// Image produced (uncompressed, original size)
    1074              :     image_produced: CompactionStatisticsNumSize,
    1075              : 
    1076              :     // Time spent in each phase
    1077              :     time_acquire_lock_secs: f64,
    1078              :     time_analyze_secs: f64,
    1079              :     time_download_layer_secs: f64,
    1080              :     time_to_first_kv_pair_secs: f64,
    1081              :     time_main_loop_secs: f64,
    1082              :     time_final_phase_secs: f64,
    1083              :     time_total_secs: f64,
    1084              : 
    1085              :     // Summary
    1086              :     /// Ratio of the key-value size after/before gc-compaction.
    1087              :     uncompressed_retention_ratio: f64,
    1088              :     /// Ratio of the physical size after/before gc-compaction.
    1089              :     compressed_retention_ratio: f64,
    1090              : }
    1091              : 
    1092              : impl CompactionStatistics {
    1093          534 :     fn estimated_size_of_value(val: &Value) -> usize {
    1094          219 :         match val {
    1095          315 :             Value::Image(img) => img.len(),
    1096            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
    1097          219 :             _ => std::mem::size_of::<NeonWalRecord>(),
    1098              :         }
    1099          534 :     }
    1100          839 :     fn estimated_size_of_key() -> usize {
    1101          839 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
    1102          839 :     }
    1103           44 :     fn visit_delta_layer(&mut self, size: u64) {
    1104           44 :         self.delta_layer_visited.num += 1;
    1105           44 :         self.delta_layer_visited.size += size;
    1106           44 :     }
    1107           35 :     fn visit_image_layer(&mut self, size: u64) {
    1108           35 :         self.image_layer_visited.num += 1;
    1109           35 :         self.image_layer_visited.size += size;
    1110           35 :     }
    1111          320 :     fn on_unique_key_visited(&mut self) {
    1112          320 :         self.num_unique_keys_visited += 1;
    1113          320 :     }
    1114          123 :     fn visit_wal_key(&mut self, val: &Value) {
    1115          123 :         self.wal_keys_visited.num += 1;
    1116          123 :         self.wal_keys_visited.size +=
    1117          123 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1118          123 :     }
    1119          315 :     fn visit_image_key(&mut self, val: &Value) {
    1120          315 :         self.image_keys_visited.num += 1;
    1121          315 :         self.image_keys_visited.size +=
    1122          315 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1123          315 :     }
    1124          101 :     fn produce_key(&mut self, val: &Value) {
    1125          101 :         match val {
    1126            5 :             Value::Image(img) => self.produce_image_key(img),
    1127           96 :             Value::WalRecord(_) => self.produce_wal_key(val),
    1128              :         }
    1129          101 :     }
    1130           96 :     fn produce_wal_key(&mut self, val: &Value) {
    1131           96 :         self.wal_produced.num += 1;
    1132           96 :         self.wal_produced.size +=
    1133           96 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1134           96 :     }
    1135          305 :     fn produce_image_key(&mut self, val: &Bytes) {
    1136          305 :         self.image_produced.num += 1;
    1137          305 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
    1138          305 :     }
    1139            7 :     fn discard_delta_layer(&mut self, original_size: u64) {
    1140            7 :         self.delta_layer_discarded.num += 1;
    1141            7 :         self.delta_layer_discarded.size += original_size;
    1142            7 :     }
    1143            4 :     fn discard_image_layer(&mut self, original_size: u64) {
    1144            4 :         self.image_layer_discarded.num += 1;
    1145            4 :         self.image_layer_discarded.size += original_size;
    1146            4 :     }
    1147           12 :     fn produce_delta_layer(&mut self, size: u64) {
    1148           12 :         self.delta_layer_produced.num += 1;
    1149           12 :         self.delta_layer_produced.size += size;
    1150           12 :     }
    1151           15 :     fn produce_image_layer(&mut self, size: u64) {
    1152           15 :         self.image_layer_produced.num += 1;
    1153           15 :         self.image_layer_produced.size += size;
    1154           15 :     }
    1155           26 :     fn finalize(&mut self) {
    1156           26 :         let original_key_value_size = self.image_keys_visited.size + self.wal_keys_visited.size;
    1157           26 :         let produced_key_value_size = self.image_produced.size + self.wal_produced.size;
    1158           26 :         self.uncompressed_retention_ratio =
    1159           26 :             produced_key_value_size as f64 / (original_key_value_size as f64 + 1.0); // avoid div by 0
    1160           26 :         let original_physical_size = self.image_layer_visited.size + self.delta_layer_visited.size;
    1161           26 :         let produced_physical_size = self.image_layer_produced.size
    1162           26 :             + self.delta_layer_produced.size
    1163           26 :             + self.image_layer_discarded.size
    1164           26 :             + self.delta_layer_discarded.size; // Also include the discarded layers to make the ratio accurate
    1165           26 :         self.compressed_retention_ratio =
    1166           26 :             produced_physical_size as f64 / (original_physical_size as f64 + 1.0); // avoid div by 0
    1167           26 :     }
    1168              : }
    1169              : 
    1170              : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
    1171              : pub enum CompactionOutcome {
    1172              :     #[default]
    1173              :     /// No layers need to be compacted after this round. Compaction doesn't need
    1174              :     /// to be immediately scheduled.
    1175              :     Done,
    1176              :     /// Still has pending layers to be compacted after this round. Ideally, the scheduler
    1177              :     /// should immediately schedule another compaction.
    1178              :     Pending,
    1179              :     /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
    1180              :     /// guaranteed when `compaction_l0_first` is enabled).
    1181              :     YieldForL0,
    1182              :     /// Compaction was skipped, because the timeline is ineligible for compaction.
    1183              :     Skipped,
    1184              : }
    1185              : 
    1186              : impl Timeline {
    1187              :     /// TODO: cancellation
    1188              :     ///
    1189              :     /// Returns whether the compaction has pending tasks.
    1190          192 :     pub(crate) async fn compact_legacy(
    1191          192 :         self: &Arc<Self>,
    1192          192 :         cancel: &CancellationToken,
    1193          192 :         options: CompactOptions,
    1194          192 :         ctx: &RequestContext,
    1195          192 :     ) -> Result<CompactionOutcome, CompactionError> {
    1196          192 :         if options
    1197          192 :             .flags
    1198          192 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
    1199              :         {
    1200            0 :             self.compact_with_gc(cancel, options, ctx).await?;
    1201            0 :             return Ok(CompactionOutcome::Done);
    1202          192 :         }
    1203          192 : 
    1204          192 :         if options.flags.contains(CompactFlags::DryRun) {
    1205            0 :             return Err(CompactionError::Other(anyhow!(
    1206            0 :                 "dry-run mode is not supported for legacy compaction for now"
    1207            0 :             )));
    1208          192 :         }
    1209          192 : 
    1210          192 :         if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
    1211              :             // maybe useful in the future? could implement this at some point
    1212            0 :             return Err(CompactionError::Other(anyhow!(
    1213            0 :                 "compaction range is not supported for legacy compaction for now"
    1214            0 :             )));
    1215          192 :         }
    1216          192 : 
    1217          192 :         // High level strategy for compaction / image creation:
    1218          192 :         //
    1219          192 :         // 1. First, do a L0 compaction to ensure we move the L0
    1220          192 :         // layers into the historic layer map get flat levels of
    1221          192 :         // layers. If we did not compact all L0 layers, we will
    1222          192 :         // prioritize compacting the timeline again and not do
    1223          192 :         // any of the compactions below.
    1224          192 :         //
    1225          192 :         // 2. Then, calculate the desired "partitioning" of the
    1226          192 :         // currently in-use key space. The goal is to partition the
    1227          192 :         // key space into roughly fixed-size chunks, but also take into
    1228          192 :         // account any existing image layers, and try to align the
    1229          192 :         // chunk boundaries with the existing image layers to avoid
    1230          192 :         // too much churn. Also try to align chunk boundaries with
    1231          192 :         // relation boundaries.  In principle, we don't know about
    1232          192 :         // relation boundaries here, we just deal with key-value
    1233          192 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
    1234          192 :         // map relations into key-value pairs. But in practice we know
    1235          192 :         // that 'field6' is the block number, and the fields 1-5
    1236          192 :         // identify a relation. This is just an optimization,
    1237          192 :         // though.
    1238          192 :         //
    1239          192 :         // 3. Once we know the partitioning, for each partition,
    1240          192 :         // decide if it's time to create a new image layer. The
    1241          192 :         // criteria is: there has been too much "churn" since the last
    1242          192 :         // image layer? The "churn" is fuzzy concept, it's a
    1243          192 :         // combination of too many delta files, or too much WAL in
    1244          192 :         // total in the delta file. Or perhaps: if creating an image
    1245          192 :         // file would allow to delete some older files.
    1246          192 :         //
    1247          192 :         // 4. In the end, if the tenant gets auto-sharded, we will run
    1248          192 :         // a shard-ancestor compaction.
    1249          192 : 
    1250          192 :         // Is the timeline being deleted?
    1251          192 :         if self.is_stopping() {
    1252            0 :             trace!("Dropping out of compaction on timeline shutdown");
    1253            0 :             return Err(CompactionError::ShuttingDown);
    1254          192 :         }
    1255          192 : 
    1256          192 :         let target_file_size = self.get_checkpoint_distance();
    1257              : 
    1258              :         // Define partitioning schema if needed
    1259              : 
    1260              :         // 1. L0 Compact
    1261          192 :         let l0_outcome = {
    1262          192 :             let timer = self.metrics.compact_time_histo.start_timer();
    1263          192 :             let l0_outcome = self
    1264          192 :                 .compact_level0(
    1265          192 :                     target_file_size,
    1266          192 :                     options.flags.contains(CompactFlags::ForceL0Compaction),
    1267          192 :                     ctx,
    1268          192 :                 )
    1269          192 :                 .await?;
    1270          192 :             timer.stop_and_record();
    1271          192 :             l0_outcome
    1272          192 :         };
    1273          192 : 
    1274          192 :         if options.flags.contains(CompactFlags::OnlyL0Compaction) {
    1275            0 :             return Ok(l0_outcome);
    1276          192 :         }
    1277          192 : 
    1278          192 :         // Yield if we have pending L0 compaction. The scheduler will do another pass.
    1279          192 :         if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
    1280            0 :             && options.flags.contains(CompactFlags::YieldForL0)
    1281              :         {
    1282            0 :             info!("image/ancestor compaction yielding for L0 compaction");
    1283            0 :             return Ok(CompactionOutcome::YieldForL0);
    1284          192 :         }
    1285          192 : 
    1286          192 :         let gc_cutoff = *self.applied_gc_cutoff_lsn.read();
    1287          192 :         let l0_l1_boundary_lsn = {
    1288          192 :             // We do the repartition on the L0-L1 boundary. All data below the boundary
    1289          192 :             // are compacted by L0 with low read amplification, thus making the `repartition`
    1290          192 :             // function run fast.
    1291          192 :             let guard = self
    1292          192 :                 .layers
    1293          192 :                 .read(LayerManagerLockHolder::GetLayerMapInfo)
    1294          192 :                 .await;
    1295          192 :             guard
    1296          192 :                 .all_persistent_layers()
    1297          192 :                 .iter()
    1298         1256 :                 .map(|x| {
    1299         1256 :                     // Use the end LSN of delta layers OR the start LSN of image layers.
    1300         1256 :                     if x.is_delta {
    1301         1035 :                         x.lsn_range.end
    1302              :                     } else {
    1303          221 :                         x.lsn_range.start
    1304              :                     }
    1305         1256 :                 })
    1306          192 :                 .max()
    1307              :         };
    1308              : 
    1309          192 :         let (partition_mode, partition_lsn) = if cfg!(test)
    1310            0 :             || cfg!(feature = "testing")
    1311            0 :             || self
    1312            0 :                 .feature_resolver
    1313            0 :                 .evaluate_boolean("image-compaction-boundary", self.tenant_shard_id.tenant_id)
    1314            0 :                 .is_ok()
    1315              :         {
    1316          192 :             let last_repartition_lsn = self.partitioning.read().1;
    1317          192 :             let lsn = match l0_l1_boundary_lsn {
    1318          192 :                 Some(boundary) => gc_cutoff
    1319          192 :                     .max(boundary)
    1320          192 :                     .max(last_repartition_lsn)
    1321          192 :                     .max(self.initdb_lsn)
    1322          192 :                     .max(self.ancestor_lsn),
    1323            0 :                 None => self.get_last_record_lsn(),
    1324              :             };
    1325          192 :             if lsn <= self.initdb_lsn || lsn <= self.ancestor_lsn {
    1326              :                 // Do not attempt to create image layers below the initdb or ancestor LSN -- no data below it
    1327            0 :                 ("l0_l1_boundary", self.get_last_record_lsn())
    1328              :             } else {
    1329          192 :                 ("l0_l1_boundary", lsn)
    1330              :             }
    1331              :         } else {
    1332            0 :             ("latest_record", self.get_last_record_lsn())
    1333              :         };
    1334              : 
    1335              :         // 2. Repartition and create image layers if necessary
    1336          192 :         match self
    1337          192 :             .repartition(
    1338          192 :                 partition_lsn,
    1339          192 :                 self.get_compaction_target_size(),
    1340          192 :                 options.flags,
    1341          192 :                 ctx,
    1342          192 :             )
    1343          192 :             .await
    1344              :         {
    1345          192 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) if lsn >= gc_cutoff => {
    1346          192 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
    1347          192 :                 let image_ctx = RequestContextBuilder::from(ctx)
    1348          192 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
    1349          192 :                     .attached_child();
    1350          192 : 
    1351          192 :                 let mut partitioning = dense_partitioning;
    1352          192 :                 partitioning
    1353          192 :                     .parts
    1354          192 :                     .extend(sparse_partitioning.into_dense().parts);
    1355              : 
    1356              :                 // 3. Create new image layers for partitions that have been modified "enough".
    1357          192 :                 let mode = if options
    1358          192 :                     .flags
    1359          192 :                     .contains(CompactFlags::ForceImageLayerCreation)
    1360              :                 {
    1361            7 :                     ImageLayerCreationMode::Force
    1362              :                 } else {
    1363          185 :                     ImageLayerCreationMode::Try
    1364              :                 };
    1365          192 :                 let (image_layers, outcome) = self
    1366          192 :                     .create_image_layers(
    1367          192 :                         &partitioning,
    1368          192 :                         lsn,
    1369          192 :                         mode,
    1370          192 :                         &image_ctx,
    1371          192 :                         self.last_image_layer_creation_status
    1372          192 :                             .load()
    1373          192 :                             .as_ref()
    1374          192 :                             .clone(),
    1375          192 :                         options.flags.contains(CompactFlags::YieldForL0),
    1376          192 :                     )
    1377          192 :                     .instrument(info_span!("create_image_layers", mode = %mode, partition_mode = %partition_mode, lsn = %lsn))
    1378          192 :                     .await
    1379          192 :                     .inspect_err(|err| {
    1380              :                         if let CreateImageLayersError::GetVectoredError(
    1381              :                             GetVectoredError::MissingKey(_),
    1382            0 :                         ) = err
    1383              :                         {
    1384            0 :                             critical!("missing key during compaction: {err:?}");
    1385            0 :                         }
    1386          192 :                     })?;
    1387              : 
    1388          192 :                 self.last_image_layer_creation_status
    1389          192 :                     .store(Arc::new(outcome.clone()));
    1390          192 : 
    1391          192 :                 self.upload_new_image_layers(image_layers)?;
    1392          192 :                 if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
    1393              :                     // Yield and do not do any other kind of compaction.
    1394            0 :                     info!(
    1395            0 :                         "skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction)."
    1396              :                     );
    1397            0 :                     return Ok(CompactionOutcome::YieldForL0);
    1398          192 :                 }
    1399              :             }
    1400              : 
    1401              :             Ok(_) => {
    1402              :                 // This happens very frequently so we don't want to log it.
    1403            0 :                 debug!("skipping repartitioning due to image compaction LSN being below GC cutoff");
    1404              :             }
    1405              : 
    1406              :             // Suppress errors when cancelled.
    1407            0 :             Err(_) if self.cancel.is_cancelled() => {}
    1408            0 :             Err(err) if err.is_cancel() => {}
    1409              : 
    1410              :             // Alert on critical errors that indicate data corruption.
    1411            0 :             Err(err) if err.is_critical() => {
    1412            0 :                 critical!("could not compact, repartitioning keyspace failed: {err:?}");
    1413              :             }
    1414              : 
    1415              :             // Log other errors. No partitioning? This is normal, if the timeline was just created
    1416              :             // as an empty timeline. Also in unit tests, when we use the timeline as a simple
    1417              :             // key-value store, ignoring the datadir layout. Log the error but continue.
    1418            0 :             Err(err) => error!("could not compact, repartitioning keyspace failed: {err:?}"),
    1419              :         };
    1420              : 
    1421          192 :         let partition_count = self.partitioning.read().0.0.parts.len();
    1422          192 : 
    1423          192 :         // 4. Shard ancestor compaction
    1424          192 :         if self.get_compaction_shard_ancestor() && self.shard_identity.count >= ShardCount::new(2) {
    1425              :             // Limit the number of layer rewrites to the number of partitions: this means its
    1426              :             // runtime should be comparable to a full round of image layer creations, rather than
    1427              :             // being potentially much longer.
    1428            0 :             let rewrite_max = partition_count;
    1429              : 
    1430            0 :             let outcome = self
    1431            0 :                 .compact_shard_ancestors(
    1432            0 :                     rewrite_max,
    1433            0 :                     options.flags.contains(CompactFlags::YieldForL0),
    1434            0 :                     ctx,
    1435            0 :                 )
    1436            0 :                 .await?;
    1437            0 :             match outcome {
    1438            0 :                 CompactionOutcome::Pending | CompactionOutcome::YieldForL0 => return Ok(outcome),
    1439            0 :                 CompactionOutcome::Done | CompactionOutcome::Skipped => {}
    1440              :             }
    1441          192 :         }
    1442              : 
    1443          192 :         Ok(CompactionOutcome::Done)
    1444          192 :     }
    1445              : 
    1446              :     /// Check for layers that are elegible to be rewritten:
    1447              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
    1448              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
    1449              :     /// - For future use: layers beyond pitr_interval that are in formats we would
    1450              :     ///   rather not maintain compatibility with indefinitely.
    1451              :     ///
    1452              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
    1453              :     /// how much work it will try to do in each compaction pass.
    1454            0 :     async fn compact_shard_ancestors(
    1455            0 :         self: &Arc<Self>,
    1456            0 :         rewrite_max: usize,
    1457            0 :         yield_for_l0: bool,
    1458            0 :         ctx: &RequestContext,
    1459            0 :     ) -> Result<CompactionOutcome, CompactionError> {
    1460            0 :         let mut outcome = CompactionOutcome::Done;
    1461            0 :         let mut drop_layers = Vec::new();
    1462            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
    1463            0 : 
    1464            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
    1465            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
    1466            0 :         // pitr_interval, for example because a branchpoint references it.
    1467            0 :         //
    1468            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
    1469            0 :         // are rewriting layers.
    1470            0 :         let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
    1471            0 :         let pitr_cutoff = self.gc_info.read().unwrap().cutoffs.time;
    1472              : 
    1473            0 :         let layers = self.layers.read(LayerManagerLockHolder::Compaction).await;
    1474            0 :         let layers_iter = layers.layer_map()?.iter_historic_layers();
    1475            0 :         let (layers_total, mut layers_checked) = (layers_iter.len(), 0);
    1476            0 :         for layer_desc in layers_iter {
    1477            0 :             layers_checked += 1;
    1478            0 :             let layer = layers.get_from_desc(&layer_desc);
    1479            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
    1480              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
    1481            0 :                 continue;
    1482            0 :             }
    1483            0 : 
    1484            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
    1485            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
    1486            0 :             let layer_local_page_count = sharded_range.page_count();
    1487            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
    1488            0 :             if layer_local_page_count == 0 {
    1489              :                 // This ancestral layer only covers keys that belong to other shards.
    1490              :                 // We include the full metadata in the log: if we had some critical bug that caused
    1491              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
    1492            0 :                 debug!(%layer, old_metadata=?layer.metadata(),
    1493            0 :                     "dropping layer after shard split, contains no keys for this shard",
    1494              :                 );
    1495              : 
    1496            0 :                 if cfg!(debug_assertions) {
    1497              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
    1498              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
    1499              :                     // should be !is_key_disposable()
    1500              :                     // TODO: exclude sparse keyspace from this check, otherwise it will infinitely loop.
    1501            0 :                     let range = layer_desc.get_key_range();
    1502            0 :                     let mut key = range.start;
    1503            0 :                     while key < range.end {
    1504            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
    1505            0 :                         key = key.next();
    1506              :                     }
    1507            0 :                 }
    1508              : 
    1509            0 :                 drop_layers.push(layer);
    1510            0 :                 continue;
    1511            0 :             } else if layer_local_page_count != u32::MAX
    1512            0 :                 && layer_local_page_count == layer_raw_page_count
    1513              :             {
    1514            0 :                 debug!(%layer,
    1515            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
    1516              :                     layer_local_page_count
    1517              :                 );
    1518            0 :                 continue;
    1519            0 :             }
    1520            0 : 
    1521            0 :             // Only rewrite a layer if we can reclaim significant space.
    1522            0 :             if layer_local_page_count != u32::MAX
    1523            0 :                 && layer_local_page_count as f64 / layer_raw_page_count as f64
    1524            0 :                     <= ANCESTOR_COMPACTION_REWRITE_THRESHOLD
    1525              :             {
    1526            0 :                 debug!(%layer,
    1527            0 :                     "layer has a large share of local pages \
    1528            0 :                         ({layer_local_page_count}/{layer_raw_page_count} > \
    1529            0 :                         {ANCESTOR_COMPACTION_REWRITE_THRESHOLD}), not rewriting",
    1530              :                 );
    1531            0 :             }
    1532              : 
    1533              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
    1534              :             // without incurring the I/O cost of a rewrite.
    1535            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
    1536            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
    1537            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
    1538            0 :                 continue;
    1539            0 :             }
    1540            0 : 
    1541            0 :             // We do not yet implement rewrite of delta layers.
    1542            0 :             if layer_desc.is_delta() {
    1543            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
    1544            0 :                 continue;
    1545            0 :             }
    1546            0 : 
    1547            0 :             // We don't bother rewriting layers that aren't visible, since these won't be needed by
    1548            0 :             // reads and will likely be garbage collected soon.
    1549            0 :             if layer.visibility() != LayerVisibilityHint::Visible {
    1550            0 :                 debug!(%layer, "Skipping rewrite of invisible layer");
    1551            0 :                 continue;
    1552            0 :             }
    1553            0 : 
    1554            0 :             // Only rewrite layers if their generations differ.  This guarantees:
    1555            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
    1556            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
    1557            0 :             if layer.metadata().generation == self.generation {
    1558            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
    1559            0 :                 continue;
    1560            0 :             }
    1561            0 : 
    1562            0 :             if layers_to_rewrite.len() >= rewrite_max {
    1563            0 :                 debug!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
    1564            0 :                     layers_to_rewrite.len()
    1565              :                 );
    1566            0 :                 outcome = CompactionOutcome::Pending;
    1567            0 :                 break;
    1568            0 :             }
    1569            0 : 
    1570            0 :             // Fall through: all our conditions for doing a rewrite passed.
    1571            0 :             layers_to_rewrite.push(layer);
    1572              :         }
    1573              : 
    1574              :         // Drop read lock on layer map before we start doing time-consuming I/O.
    1575            0 :         drop(layers);
    1576            0 : 
    1577            0 :         // Drop out early if there's nothing to do.
    1578            0 :         if layers_to_rewrite.is_empty() && drop_layers.is_empty() {
    1579            0 :             return Ok(CompactionOutcome::Done);
    1580            0 :         }
    1581            0 : 
    1582            0 :         info!(
    1583            0 :             "starting shard ancestor compaction, rewriting {} layers and dropping {} layers, \
    1584            0 :                 checked {layers_checked}/{layers_total} layers \
    1585            0 :                 (latest_gc_cutoff={} pitr_cutoff={:?})",
    1586            0 :             layers_to_rewrite.len(),
    1587            0 :             drop_layers.len(),
    1588            0 :             *latest_gc_cutoff,
    1589              :             pitr_cutoff,
    1590              :         );
    1591            0 :         let started = Instant::now();
    1592            0 : 
    1593            0 :         let mut replace_image_layers = Vec::new();
    1594              : 
    1595            0 :         for layer in layers_to_rewrite {
    1596            0 :             if self.cancel.is_cancelled() {
    1597            0 :                 return Err(CompactionError::ShuttingDown);
    1598            0 :             }
    1599            0 : 
    1600            0 :             info!(layer=%layer, "rewriting layer after shard split");
    1601            0 :             let mut image_layer_writer = ImageLayerWriter::new(
    1602            0 :                 self.conf,
    1603            0 :                 self.timeline_id,
    1604            0 :                 self.tenant_shard_id,
    1605            0 :                 &layer.layer_desc().key_range,
    1606            0 :                 layer.layer_desc().image_layer_lsn(),
    1607            0 :                 &self.gate,
    1608            0 :                 self.cancel.clone(),
    1609            0 :                 ctx,
    1610            0 :             )
    1611            0 :             .await
    1612            0 :             .map_err(CompactionError::Other)?;
    1613              : 
    1614              :             // Safety of layer rewrites:
    1615              :             // - We are writing to a different local file path than we are reading from, so the old Layer
    1616              :             //   cannot interfere with the new one.
    1617              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
    1618              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
    1619              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
    1620              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
    1621              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
    1622              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
    1623              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
    1624              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
    1625              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
    1626              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
    1627            0 :             let resident = layer.download_and_keep_resident(ctx).await?;
    1628              : 
    1629            0 :             let keys_written = resident
    1630            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
    1631            0 :                 .await?;
    1632              : 
    1633            0 :             if keys_written > 0 {
    1634            0 :                 let (desc, path) = image_layer_writer
    1635            0 :                     .finish(ctx)
    1636            0 :                     .await
    1637            0 :                     .map_err(CompactionError::Other)?;
    1638            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
    1639            0 :                     .map_err(CompactionError::Other)?;
    1640            0 :                 info!(layer=%new_layer, "rewrote layer, {} -> {} bytes",
    1641            0 :                     layer.metadata().file_size,
    1642            0 :                     new_layer.metadata().file_size);
    1643              : 
    1644            0 :                 replace_image_layers.push((layer, new_layer));
    1645            0 :             } else {
    1646            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
    1647            0 :                 // the layer has no data for us with the ShardedRange check above, but
    1648            0 :                 drop_layers.push(layer);
    1649            0 :             }
    1650              : 
    1651              :             // Yield for L0 compaction if necessary, but make sure we update the layer map below
    1652              :             // with the work we've already done.
    1653            0 :             if yield_for_l0
    1654            0 :                 && self
    1655            0 :                     .l0_compaction_trigger
    1656            0 :                     .notified()
    1657            0 :                     .now_or_never()
    1658            0 :                     .is_some()
    1659              :             {
    1660            0 :                 info!("shard ancestor compaction yielding for L0 compaction");
    1661            0 :                 outcome = CompactionOutcome::YieldForL0;
    1662            0 :                 break;
    1663            0 :             }
    1664              :         }
    1665              : 
    1666            0 :         for layer in &drop_layers {
    1667            0 :             info!(%layer, old_metadata=?layer.metadata(),
    1668            0 :                 "dropping layer after shard split (no keys for this shard)",
    1669              :             );
    1670              :         }
    1671              : 
    1672              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
    1673              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
    1674              :         // to remote index) and be removed. This is inefficient but safe.
    1675            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
    1676            0 : 
    1677            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
    1678            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
    1679            0 :             .await?;
    1680              : 
    1681            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
    1682            0 : 
    1683            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
    1684            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
    1685            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
    1686            0 :         // load.
    1687            0 :         if outcome != CompactionOutcome::YieldForL0 {
    1688            0 :             info!("shard ancestor compaction waiting for uploads");
    1689            0 :             tokio::select! {
    1690            0 :                 result = self.remote_client.wait_completion() => match result {
    1691            0 :                     Ok(()) => {},
    1692            0 :                     Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
    1693              :                     Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
    1694            0 :                         return Err(CompactionError::ShuttingDown);
    1695              :                     }
    1696              :                 },
    1697              :                 // Don't wait if there's L0 compaction to do. We don't need to update the outcome
    1698              :                 // here, because we've already done the actual work.
    1699            0 :                 _ = self.l0_compaction_trigger.notified(), if yield_for_l0 => {},
    1700              :             }
    1701            0 :         }
    1702              : 
    1703            0 :         info!(
    1704            0 :             "shard ancestor compaction done in {:.3}s{}",
    1705            0 :             started.elapsed().as_secs_f64(),
    1706            0 :             match outcome {
    1707              :                 CompactionOutcome::Pending =>
    1708            0 :                     format!(", with pending work (rewrite_max={rewrite_max})"),
    1709            0 :                 CompactionOutcome::YieldForL0 => String::from(", yielding for L0 compaction"),
    1710            0 :                 CompactionOutcome::Skipped | CompactionOutcome::Done => String::new(),
    1711              :             }
    1712              :         );
    1713              : 
    1714            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
    1715            0 : 
    1716            0 :         Ok(outcome)
    1717            0 :     }
    1718              : 
    1719              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
    1720              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
    1721              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
    1722              :     ///
    1723              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
    1724              :     /// that we know won't be needed for reads.
    1725          122 :     pub(crate) async fn update_layer_visibility(
    1726          122 :         &self,
    1727          122 :     ) -> Result<(), super::layer_manager::Shutdown> {
    1728          122 :         let head_lsn = self.get_last_record_lsn();
    1729              : 
    1730              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
    1731              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
    1732              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
    1733              :         // they will be subject to L0->L1 compaction in the near future.
    1734          122 :         let layer_manager = self
    1735          122 :             .layers
    1736          122 :             .read(LayerManagerLockHolder::GetLayerMapInfo)
    1737          122 :             .await;
    1738          122 :         let layer_map = layer_manager.layer_map()?;
    1739              : 
    1740          122 :         let readable_points = {
    1741          122 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
    1742          122 : 
    1743          122 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
    1744          122 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
    1745            0 :                 if *is_offloaded == MaybeOffloaded::Yes {
    1746            0 :                     continue;
    1747            0 :                 }
    1748            0 :                 readable_points.push(*child_lsn);
    1749              :             }
    1750          122 :             readable_points.push(head_lsn);
    1751          122 :             readable_points
    1752          122 :         };
    1753          122 : 
    1754          122 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
    1755          315 :         for (layer_desc, visibility) in layer_visibility {
    1756          193 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
    1757          193 :             let layer = layer_manager.get_from_desc(&layer_desc);
    1758          193 :             layer.set_visibility(visibility);
    1759          193 :         }
    1760              : 
    1761              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
    1762              :         // avoid assuming that everything at a branch point is visible.
    1763          122 :         drop(covered);
    1764          122 :         Ok(())
    1765          122 :     }
    1766              : 
    1767              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
    1768              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
    1769          192 :     async fn compact_level0(
    1770          192 :         self: &Arc<Self>,
    1771          192 :         target_file_size: u64,
    1772          192 :         force_compaction_ignore_threshold: bool,
    1773          192 :         ctx: &RequestContext,
    1774          192 :     ) -> Result<CompactionOutcome, CompactionError> {
    1775              :         let CompactLevel0Phase1Result {
    1776          192 :             new_layers,
    1777          192 :             deltas_to_compact,
    1778          192 :             outcome,
    1779              :         } = {
    1780          192 :             let phase1_span = info_span!("compact_level0_phase1");
    1781          192 :             let ctx = ctx.attached_child();
    1782          192 :             let mut stats = CompactLevel0Phase1StatsBuilder {
    1783          192 :                 version: Some(2),
    1784          192 :                 tenant_id: Some(self.tenant_shard_id),
    1785          192 :                 timeline_id: Some(self.timeline_id),
    1786          192 :                 ..Default::default()
    1787          192 :             };
    1788          192 : 
    1789          192 :             let begin = tokio::time::Instant::now();
    1790          192 :             let phase1_layers_locked = self.layers.read(LayerManagerLockHolder::Compaction).await;
    1791          192 :             let now = tokio::time::Instant::now();
    1792          192 :             stats.read_lock_acquisition_micros =
    1793          192 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
    1794          192 :             self.compact_level0_phase1(
    1795          192 :                 phase1_layers_locked,
    1796          192 :                 stats,
    1797          192 :                 target_file_size,
    1798          192 :                 force_compaction_ignore_threshold,
    1799          192 :                 &ctx,
    1800          192 :             )
    1801          192 :             .instrument(phase1_span)
    1802          192 :             .await?
    1803              :         };
    1804              : 
    1805          192 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
    1806              :             // nothing to do
    1807          169 :             return Ok(CompactionOutcome::Done);
    1808           23 :         }
    1809           23 : 
    1810           23 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
    1811           23 :             .await?;
    1812           23 :         Ok(outcome)
    1813          192 :     }
    1814              : 
    1815              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
    1816          192 :     async fn compact_level0_phase1<'a>(
    1817          192 :         self: &'a Arc<Self>,
    1818          192 :         guard: LayerManagerReadGuard<'a>,
    1819          192 :         mut stats: CompactLevel0Phase1StatsBuilder,
    1820          192 :         target_file_size: u64,
    1821          192 :         force_compaction_ignore_threshold: bool,
    1822          192 :         ctx: &RequestContext,
    1823          192 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
    1824          192 :         stats.read_lock_held_spawn_blocking_startup_micros =
    1825          192 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
    1826          192 :         let layers = guard.layer_map()?;
    1827          192 :         let level0_deltas = layers.level0_deltas();
    1828          192 :         stats.level0_deltas_count = Some(level0_deltas.len());
    1829          192 : 
    1830          192 :         // Only compact if enough layers have accumulated.
    1831          192 :         let threshold = self.get_compaction_threshold();
    1832          192 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
    1833          179 :             if force_compaction_ignore_threshold {
    1834           12 :                 if !level0_deltas.is_empty() {
    1835           10 :                     info!(
    1836            0 :                         level0_deltas = level0_deltas.len(),
    1837            0 :                         threshold, "too few deltas to compact, but forcing compaction"
    1838              :                     );
    1839              :                 } else {
    1840            2 :                     info!(
    1841            0 :                         level0_deltas = level0_deltas.len(),
    1842            0 :                         threshold, "too few deltas to compact, cannot force compaction"
    1843              :                     );
    1844            2 :                     return Ok(CompactLevel0Phase1Result::default());
    1845              :                 }
    1846              :             } else {
    1847          167 :                 debug!(
    1848            0 :                     level0_deltas = level0_deltas.len(),
    1849            0 :                     threshold, "too few deltas to compact"
    1850              :                 );
    1851          167 :                 return Ok(CompactLevel0Phase1Result::default());
    1852              :             }
    1853           13 :         }
    1854              : 
    1855           23 :         let mut level0_deltas = level0_deltas
    1856           23 :             .iter()
    1857          201 :             .map(|x| guard.get_from_desc(x))
    1858           23 :             .collect::<Vec<_>>();
    1859           23 : 
    1860           23 :         // Gather the files to compact in this iteration.
    1861           23 :         //
    1862           23 :         // Start with the oldest Level 0 delta file, and collect any other
    1863           23 :         // level 0 files that form a contiguous sequence, such that the end
    1864           23 :         // LSN of previous file matches the start LSN of the next file.
    1865           23 :         //
    1866           23 :         // Note that if the files don't form such a sequence, we might
    1867           23 :         // "compact" just a single file. That's a bit pointless, but it allows
    1868           23 :         // us to get rid of the level 0 file, and compact the other files on
    1869           23 :         // the next iteration. This could probably made smarter, but such
    1870           23 :         // "gaps" in the sequence of level 0 files should only happen in case
    1871           23 :         // of a crash, partial download from cloud storage, or something like
    1872           23 :         // that, so it's not a big deal in practice.
    1873          356 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
    1874           23 :         let mut level0_deltas_iter = level0_deltas.iter();
    1875           23 : 
    1876           23 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
    1877           23 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
    1878           23 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
    1879           23 : 
    1880           23 :         // Accumulate the size of layers in `deltas_to_compact`
    1881           23 :         let mut deltas_to_compact_bytes = 0;
    1882           23 : 
    1883           23 :         // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
    1884           23 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
    1885           23 :         // work in this function to only operate on this much delta data at once.
    1886           23 :         //
    1887           23 :         // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
    1888           23 :         // the constraint is not respected, we use the larger of the two.
    1889           23 :         let delta_size_limit = std::cmp::max(
    1890           23 :             self.get_compaction_upper_limit(),
    1891           23 :             self.get_compaction_threshold(),
    1892           23 :         ) as u64
    1893           23 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
    1894           23 : 
    1895           23 :         let mut fully_compacted = true;
    1896           23 : 
    1897           23 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident(ctx).await?);
    1898          201 :         for l in level0_deltas_iter {
    1899          178 :             let lsn_range = &l.layer_desc().lsn_range;
    1900          178 : 
    1901          178 :             if lsn_range.start != prev_lsn_end {
    1902            0 :                 break;
    1903          178 :             }
    1904          178 :             deltas_to_compact.push(l.download_and_keep_resident(ctx).await?);
    1905          178 :             deltas_to_compact_bytes += l.metadata().file_size;
    1906          178 :             prev_lsn_end = lsn_range.end;
    1907          178 : 
    1908          178 :             if deltas_to_compact_bytes >= delta_size_limit {
    1909            0 :                 info!(
    1910            0 :                     l0_deltas_selected = deltas_to_compact.len(),
    1911            0 :                     l0_deltas_total = level0_deltas.len(),
    1912            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
    1913              :                     delta_size_limit
    1914              :                 );
    1915            0 :                 fully_compacted = false;
    1916            0 : 
    1917            0 :                 // Proceed with compaction, but only a subset of L0s
    1918            0 :                 break;
    1919          178 :             }
    1920              :         }
    1921           23 :         let lsn_range = Range {
    1922           23 :             start: deltas_to_compact
    1923           23 :                 .first()
    1924           23 :                 .unwrap()
    1925           23 :                 .layer_desc()
    1926           23 :                 .lsn_range
    1927           23 :                 .start,
    1928           23 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
    1929           23 :         };
    1930           23 : 
    1931           23 :         info!(
    1932            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
    1933            0 :             lsn_range.start,
    1934            0 :             lsn_range.end,
    1935            0 :             deltas_to_compact.len(),
    1936            0 :             level0_deltas.len()
    1937              :         );
    1938              : 
    1939          201 :         for l in deltas_to_compact.iter() {
    1940          201 :             info!("compact includes {l}");
    1941              :         }
    1942              : 
    1943              :         // We don't need the original list of layers anymore. Drop it so that
    1944              :         // we don't accidentally use it later in the function.
    1945           23 :         drop(level0_deltas);
    1946           23 : 
    1947           23 :         stats.read_lock_held_prerequisites_micros = stats
    1948           23 :             .read_lock_held_spawn_blocking_startup_micros
    1949           23 :             .till_now();
    1950              : 
    1951              :         // TODO: replace with streaming k-merge
    1952           23 :         let all_keys = {
    1953           23 :             let mut all_keys = Vec::new();
    1954          201 :             for l in deltas_to_compact.iter() {
    1955          201 :                 if self.cancel.is_cancelled() {
    1956            0 :                     return Err(CompactionError::ShuttingDown);
    1957          201 :                 }
    1958          201 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1959          201 :                 let keys = delta
    1960          201 :                     .index_entries(ctx)
    1961          201 :                     .await
    1962          201 :                     .map_err(CompactionError::Other)?;
    1963          201 :                 all_keys.extend(keys);
    1964              :             }
    1965              :             // The current stdlib sorting implementation is designed in a way where it is
    1966              :             // particularly fast where the slice is made up of sorted sub-ranges.
    1967      2137960 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    1968           23 :             all_keys
    1969           23 :         };
    1970           23 : 
    1971           23 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
    1972              : 
    1973              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
    1974              :         //
    1975              :         // A hole is a key range for which this compaction doesn't have any WAL records.
    1976              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
    1977              :         // cover the hole, but actually don't contain any WAL records for that key range.
    1978              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
    1979              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
    1980              :         //
    1981              :         // The algorithm chooses holes as follows.
    1982              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
    1983              :         // - Filter: min threshold on range length
    1984              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
    1985              :         //
    1986              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
    1987              :         #[derive(PartialEq, Eq)]
    1988              :         struct Hole {
    1989              :             key_range: Range<Key>,
    1990              :             coverage_size: usize,
    1991              :         }
    1992           23 :         let holes: Vec<Hole> = {
    1993              :             use std::cmp::Ordering;
    1994              :             impl Ord for Hole {
    1995            0 :                 fn cmp(&self, other: &Self) -> Ordering {
    1996            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
    1997            0 :                 }
    1998              :             }
    1999              :             impl PartialOrd for Hole {
    2000            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    2001            0 :                     Some(self.cmp(other))
    2002            0 :                 }
    2003              :             }
    2004           23 :             let max_holes = deltas_to_compact.len();
    2005           23 :             let last_record_lsn = self.get_last_record_lsn();
    2006           23 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
    2007           23 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
    2008           23 :             // min-heap (reserve space for one more element added before eviction)
    2009           23 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
    2010           23 :             let mut prev: Option<Key> = None;
    2011              : 
    2012      1032019 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
    2013      1032019 :                 if let Some(prev_key) = prev {
    2014              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
    2015              :                     // compaction is the gap between data key and metadata keys.
    2016      1031996 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
    2017          261 :                         && !Key::is_metadata_key(&prev_key)
    2018              :                     {
    2019            0 :                         let key_range = prev_key..next_key;
    2020            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
    2021            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
    2022            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
    2023            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
    2024            0 :                         let coverage_size =
    2025            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
    2026            0 :                         if coverage_size >= min_hole_coverage_size {
    2027            0 :                             heap.push(Hole {
    2028            0 :                                 key_range,
    2029            0 :                                 coverage_size,
    2030            0 :                             });
    2031            0 :                             if heap.len() > max_holes {
    2032            0 :                                 heap.pop(); // remove smallest hole
    2033            0 :                             }
    2034            0 :                         }
    2035      1031996 :                     }
    2036           23 :                 }
    2037      1032019 :                 prev = Some(next_key.next());
    2038              :             }
    2039           23 :             let mut holes = heap.into_vec();
    2040           23 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
    2041           23 :             holes
    2042           23 :         };
    2043           23 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
    2044           23 :         drop_layer_manager_rlock(guard);
    2045           23 : 
    2046           23 :         if self.cancel.is_cancelled() {
    2047            0 :             return Err(CompactionError::ShuttingDown);
    2048           23 :         }
    2049           23 : 
    2050           23 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
    2051              : 
    2052              :         // This iterator walks through all key-value pairs from all the layers
    2053              :         // we're compacting, in key, LSN order.
    2054              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
    2055              :         // then the Value::Image is ordered before Value::WalRecord.
    2056           23 :         let mut all_values_iter = {
    2057           23 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
    2058          201 :             for l in deltas_to_compact.iter() {
    2059          201 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    2060          201 :                 deltas.push(l);
    2061              :             }
    2062           23 :             MergeIterator::create_with_options(
    2063           23 :                 &deltas,
    2064           23 :                 &[],
    2065           23 :                 ctx,
    2066           23 :                 1024 * 8192, /* 8 MiB buffer per layer iterator */
    2067           23 :                 1024,
    2068           23 :             )
    2069           23 :         };
    2070           23 : 
    2071           23 :         // This iterator walks through all keys and is needed to calculate size used by each key
    2072           23 :         let mut all_keys_iter = all_keys
    2073           23 :             .iter()
    2074      1032019 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
    2075      1031996 :             .coalesce(|mut prev, cur| {
    2076      1031996 :                 // Coalesce keys that belong to the same key pair.
    2077      1031996 :                 // This ensures that compaction doesn't put them
    2078      1031996 :                 // into different layer files.
    2079      1031996 :                 // Still limit this by the target file size,
    2080      1031996 :                 // so that we keep the size of the files in
    2081      1031996 :                 // check.
    2082      1031996 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
    2083        14272 :                     prev.2 += cur.2;
    2084        14272 :                     Ok(prev)
    2085              :                 } else {
    2086      1017724 :                     Err((prev, cur))
    2087              :                 }
    2088      1031996 :             });
    2089           23 : 
    2090           23 :         // Merge the contents of all the input delta layers into a new set
    2091           23 :         // of delta layers, based on the current partitioning.
    2092           23 :         //
    2093           23 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
    2094           23 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
    2095           23 :         // would be too large. In that case, we also split on the LSN dimension.
    2096           23 :         //
    2097           23 :         // LSN
    2098           23 :         //  ^
    2099           23 :         //  |
    2100           23 :         //  | +-----------+            +--+--+--+--+
    2101           23 :         //  | |           |            |  |  |  |  |
    2102           23 :         //  | +-----------+            |  |  |  |  |
    2103           23 :         //  | |           |            |  |  |  |  |
    2104           23 :         //  | +-----------+     ==>    |  |  |  |  |
    2105           23 :         //  | |           |            |  |  |  |  |
    2106           23 :         //  | +-----------+            |  |  |  |  |
    2107           23 :         //  | |           |            |  |  |  |  |
    2108           23 :         //  | +-----------+            +--+--+--+--+
    2109           23 :         //  |
    2110           23 :         //  +--------------> key
    2111           23 :         //
    2112           23 :         //
    2113           23 :         // If one key (X) has a lot of page versions:
    2114           23 :         //
    2115           23 :         // LSN
    2116           23 :         //  ^
    2117           23 :         //  |                                 (X)
    2118           23 :         //  | +-----------+            +--+--+--+--+
    2119           23 :         //  | |           |            |  |  |  |  |
    2120           23 :         //  | +-----------+            |  |  +--+  |
    2121           23 :         //  | |           |            |  |  |  |  |
    2122           23 :         //  | +-----------+     ==>    |  |  |  |  |
    2123           23 :         //  | |           |            |  |  +--+  |
    2124           23 :         //  | +-----------+            |  |  |  |  |
    2125           23 :         //  | |           |            |  |  |  |  |
    2126           23 :         //  | +-----------+            +--+--+--+--+
    2127           23 :         //  |
    2128           23 :         //  +--------------> key
    2129           23 :         // TODO: this actually divides the layers into fixed-size chunks, not
    2130           23 :         // based on the partitioning.
    2131           23 :         //
    2132           23 :         // TODO: we should also opportunistically materialize and
    2133           23 :         // garbage collect what we can.
    2134           23 :         let mut new_layers = Vec::new();
    2135           23 :         let mut prev_key: Option<Key> = None;
    2136           23 :         let mut writer: Option<DeltaLayerWriter> = None;
    2137           23 :         let mut key_values_total_size = 0u64;
    2138           23 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    2139           23 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    2140           23 :         let mut next_hole = 0; // index of next hole in holes vector
    2141           23 : 
    2142           23 :         let mut keys = 0;
    2143              : 
    2144      1032042 :         while let Some((key, lsn, value)) = all_values_iter
    2145      1032042 :             .next()
    2146      1032042 :             .await
    2147      1032042 :             .map_err(CompactionError::Other)?
    2148              :         {
    2149      1032019 :             keys += 1;
    2150      1032019 : 
    2151      1032019 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    2152              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    2153              :                 // shuffling an order of million keys per layer, this means we'll check it
    2154              :                 // around tens of times per layer.
    2155            0 :                 return Err(CompactionError::ShuttingDown);
    2156      1032019 :             }
    2157      1032019 : 
    2158      1032019 :             let same_key = prev_key == Some(key);
    2159      1032019 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    2160      1032019 :             if !same_key || lsn == dup_end_lsn {
    2161      1017747 :                 let mut next_key_size = 0u64;
    2162      1017747 :                 let is_dup_layer = dup_end_lsn.is_valid();
    2163      1017747 :                 dup_start_lsn = Lsn::INVALID;
    2164      1017747 :                 if !same_key {
    2165      1017747 :                     dup_end_lsn = Lsn::INVALID;
    2166      1017747 :                 }
    2167              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    2168      1017747 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    2169      1017747 :                     next_key_size = next_size;
    2170      1017747 :                     if key != next_key {
    2171      1017724 :                         if dup_end_lsn.is_valid() {
    2172            0 :                             // We are writting segment with duplicates:
    2173            0 :                             // place all remaining values of this key in separate segment
    2174            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    2175            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    2176      1017724 :                         }
    2177      1017724 :                         break;
    2178           23 :                     }
    2179           23 :                     key_values_total_size += next_size;
    2180           23 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    2181           23 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    2182           23 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    2183              :                         // Split key between multiple layers: such layer can contain only single key
    2184            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    2185            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    2186              :                         } else {
    2187            0 :                             lsn // start with the first LSN for this key
    2188              :                         };
    2189            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    2190            0 :                         break;
    2191           23 :                     }
    2192              :                 }
    2193              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    2194      1017747 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    2195            0 :                     dup_start_lsn = dup_end_lsn;
    2196            0 :                     dup_end_lsn = lsn_range.end;
    2197      1017747 :                 }
    2198      1017747 :                 if writer.is_some() {
    2199      1017724 :                     let written_size = writer.as_mut().unwrap().size();
    2200      1017724 :                     let contains_hole =
    2201      1017724 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    2202              :                     // check if key cause layer overflow or contains hole...
    2203      1017724 :                     if is_dup_layer
    2204      1017724 :                         || dup_end_lsn.is_valid()
    2205      1017724 :                         || written_size + key_values_total_size > target_file_size
    2206      1017584 :                         || contains_hole
    2207              :                     {
    2208              :                         // ... if so, flush previous layer and prepare to write new one
    2209          140 :                         let (desc, path) = writer
    2210          140 :                             .take()
    2211          140 :                             .unwrap()
    2212          140 :                             .finish(prev_key.unwrap().next(), ctx)
    2213          140 :                             .await
    2214          140 :                             .map_err(CompactionError::Other)?;
    2215          140 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    2216          140 :                             .map_err(CompactionError::Other)?;
    2217              : 
    2218          140 :                         new_layers.push(new_delta);
    2219          140 :                         writer = None;
    2220          140 : 
    2221          140 :                         if contains_hole {
    2222            0 :                             // skip hole
    2223            0 :                             next_hole += 1;
    2224          140 :                         }
    2225      1017584 :                     }
    2226           23 :                 }
    2227              :                 // Remember size of key value because at next iteration we will access next item
    2228      1017747 :                 key_values_total_size = next_key_size;
    2229        14272 :             }
    2230      1032019 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    2231            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    2232            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    2233            0 :                 )))
    2234      1032019 :             });
    2235              : 
    2236      1032019 :             if !self.shard_identity.is_key_disposable(&key) {
    2237      1032019 :                 if writer.is_none() {
    2238          163 :                     if self.cancel.is_cancelled() {
    2239              :                         // to be somewhat responsive to cancellation, check for each new layer
    2240            0 :                         return Err(CompactionError::ShuttingDown);
    2241          163 :                     }
    2242              :                     // Create writer if not initiaized yet
    2243          163 :                     writer = Some(
    2244              :                         DeltaLayerWriter::new(
    2245          163 :                             self.conf,
    2246          163 :                             self.timeline_id,
    2247          163 :                             self.tenant_shard_id,
    2248          163 :                             key,
    2249          163 :                             if dup_end_lsn.is_valid() {
    2250              :                                 // this is a layer containing slice of values of the same key
    2251            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    2252            0 :                                 dup_start_lsn..dup_end_lsn
    2253              :                             } else {
    2254          163 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    2255          163 :                                 lsn_range.clone()
    2256              :                             },
    2257          163 :                             &self.gate,
    2258          163 :                             self.cancel.clone(),
    2259          163 :                             ctx,
    2260          163 :                         )
    2261          163 :                         .await
    2262          163 :                         .map_err(CompactionError::Other)?,
    2263              :                     );
    2264              : 
    2265          163 :                     keys = 0;
    2266      1031856 :                 }
    2267              : 
    2268      1032019 :                 writer
    2269      1032019 :                     .as_mut()
    2270      1032019 :                     .unwrap()
    2271      1032019 :                     .put_value(key, lsn, value, ctx)
    2272      1032019 :                     .await?;
    2273              :             } else {
    2274            0 :                 let owner = self.shard_identity.get_shard_number(&key);
    2275            0 : 
    2276            0 :                 // This happens after a shard split, when we're compacting an L0 created by our parent shard
    2277            0 :                 debug!("dropping key {key} during compaction (it belongs on shard {owner})");
    2278              :             }
    2279              : 
    2280      1032019 :             if !new_layers.is_empty() {
    2281         9893 :                 fail_point!("after-timeline-compacted-first-L1");
    2282      1022126 :             }
    2283              : 
    2284      1032019 :             prev_key = Some(key);
    2285              :         }
    2286           23 :         if let Some(writer) = writer {
    2287           23 :             let (desc, path) = writer
    2288           23 :                 .finish(prev_key.unwrap().next(), ctx)
    2289           23 :                 .await
    2290           23 :                 .map_err(CompactionError::Other)?;
    2291           23 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    2292           23 :                 .map_err(CompactionError::Other)?;
    2293           23 :             new_layers.push(new_delta);
    2294            0 :         }
    2295              : 
    2296              :         // Sync layers
    2297           23 :         if !new_layers.is_empty() {
    2298              :             // Print a warning if the created layer is larger than double the target size
    2299              :             // Add two pages for potential overhead. This should in theory be already
    2300              :             // accounted for in the target calculation, but for very small targets,
    2301              :             // we still might easily hit the limit otherwise.
    2302           23 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    2303          163 :             for layer in new_layers.iter() {
    2304          163 :                 if layer.layer_desc().file_size > warn_limit {
    2305            0 :                     warn!(
    2306              :                         %layer,
    2307            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    2308              :                     );
    2309          163 :                 }
    2310              :             }
    2311              : 
    2312              :             // The writer.finish() above already did the fsync of the inodes.
    2313              :             // We just need to fsync the directory in which these inodes are linked,
    2314              :             // which we know to be the timeline directory.
    2315              :             //
    2316              :             // We use fatal_err() below because the after writer.finish() returns with success,
    2317              :             // the in-memory state of the filesystem already has the layer file in its final place,
    2318              :             // and subsequent pageserver code could think it's durable while it really isn't.
    2319           23 :             let timeline_dir = VirtualFile::open(
    2320           23 :                 &self
    2321           23 :                     .conf
    2322           23 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    2323           23 :                 ctx,
    2324           23 :             )
    2325           23 :             .await
    2326           23 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    2327           23 :             timeline_dir
    2328           23 :                 .sync_all()
    2329           23 :                 .await
    2330           23 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    2331            0 :         }
    2332              : 
    2333           23 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    2334           23 :         stats.new_deltas_count = Some(new_layers.len());
    2335          163 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    2336           23 : 
    2337           23 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    2338           23 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    2339              :         {
    2340           23 :             Ok(stats_json) => {
    2341           23 :                 info!(
    2342            0 :                     stats_json = stats_json.as_str(),
    2343            0 :                     "compact_level0_phase1 stats available"
    2344              :                 )
    2345              :             }
    2346            0 :             Err(e) => {
    2347            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    2348              :             }
    2349              :         }
    2350              : 
    2351              :         // Without this, rustc complains about deltas_to_compact still
    2352              :         // being borrowed when we `.into_iter()` below.
    2353           23 :         drop(all_values_iter);
    2354           23 : 
    2355           23 :         Ok(CompactLevel0Phase1Result {
    2356           23 :             new_layers,
    2357           23 :             deltas_to_compact: deltas_to_compact
    2358           23 :                 .into_iter()
    2359          201 :                 .map(|x| x.drop_eviction_guard())
    2360           23 :                 .collect::<Vec<_>>(),
    2361           23 :             outcome: if fully_compacted {
    2362           23 :                 CompactionOutcome::Done
    2363              :             } else {
    2364            0 :                 CompactionOutcome::Pending
    2365              :             },
    2366              :         })
    2367          192 :     }
    2368              : }
    2369              : 
    2370              : #[derive(Default)]
    2371              : struct CompactLevel0Phase1Result {
    2372              :     new_layers: Vec<ResidentLayer>,
    2373              :     deltas_to_compact: Vec<Layer>,
    2374              :     // Whether we have included all L0 layers, or selected only part of them due to the
    2375              :     // L0 compaction size limit.
    2376              :     outcome: CompactionOutcome,
    2377              : }
    2378              : 
    2379              : #[derive(Default)]
    2380              : struct CompactLevel0Phase1StatsBuilder {
    2381              :     version: Option<u64>,
    2382              :     tenant_id: Option<TenantShardId>,
    2383              :     timeline_id: Option<TimelineId>,
    2384              :     read_lock_acquisition_micros: DurationRecorder,
    2385              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    2386              :     read_lock_held_key_sort_micros: DurationRecorder,
    2387              :     read_lock_held_prerequisites_micros: DurationRecorder,
    2388              :     read_lock_held_compute_holes_micros: DurationRecorder,
    2389              :     read_lock_drop_micros: DurationRecorder,
    2390              :     write_layer_files_micros: DurationRecorder,
    2391              :     level0_deltas_count: Option<usize>,
    2392              :     new_deltas_count: Option<usize>,
    2393              :     new_deltas_size: Option<u64>,
    2394              : }
    2395              : 
    2396              : #[derive(serde::Serialize)]
    2397              : struct CompactLevel0Phase1Stats {
    2398              :     version: u64,
    2399              :     tenant_id: TenantShardId,
    2400              :     timeline_id: TimelineId,
    2401              :     read_lock_acquisition_micros: RecordedDuration,
    2402              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    2403              :     read_lock_held_key_sort_micros: RecordedDuration,
    2404              :     read_lock_held_prerequisites_micros: RecordedDuration,
    2405              :     read_lock_held_compute_holes_micros: RecordedDuration,
    2406              :     read_lock_drop_micros: RecordedDuration,
    2407              :     write_layer_files_micros: RecordedDuration,
    2408              :     level0_deltas_count: usize,
    2409              :     new_deltas_count: usize,
    2410              :     new_deltas_size: u64,
    2411              : }
    2412              : 
    2413              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    2414              :     type Error = anyhow::Error;
    2415              : 
    2416           23 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    2417           23 :         Ok(Self {
    2418           23 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    2419           23 :             tenant_id: value
    2420           23 :                 .tenant_id
    2421           23 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    2422           23 :             timeline_id: value
    2423           23 :                 .timeline_id
    2424           23 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    2425           23 :             read_lock_acquisition_micros: value
    2426           23 :                 .read_lock_acquisition_micros
    2427           23 :                 .into_recorded()
    2428           23 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    2429           23 :             read_lock_held_spawn_blocking_startup_micros: value
    2430           23 :                 .read_lock_held_spawn_blocking_startup_micros
    2431           23 :                 .into_recorded()
    2432           23 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    2433           23 :             read_lock_held_key_sort_micros: value
    2434           23 :                 .read_lock_held_key_sort_micros
    2435           23 :                 .into_recorded()
    2436           23 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    2437           23 :             read_lock_held_prerequisites_micros: value
    2438           23 :                 .read_lock_held_prerequisites_micros
    2439           23 :                 .into_recorded()
    2440           23 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    2441           23 :             read_lock_held_compute_holes_micros: value
    2442           23 :                 .read_lock_held_compute_holes_micros
    2443           23 :                 .into_recorded()
    2444           23 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    2445           23 :             read_lock_drop_micros: value
    2446           23 :                 .read_lock_drop_micros
    2447           23 :                 .into_recorded()
    2448           23 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    2449           23 :             write_layer_files_micros: value
    2450           23 :                 .write_layer_files_micros
    2451           23 :                 .into_recorded()
    2452           23 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    2453           23 :             level0_deltas_count: value
    2454           23 :                 .level0_deltas_count
    2455           23 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    2456           23 :             new_deltas_count: value
    2457           23 :                 .new_deltas_count
    2458           23 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    2459           23 :             new_deltas_size: value
    2460           23 :                 .new_deltas_size
    2461           23 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    2462              :         })
    2463           23 :     }
    2464              : }
    2465              : 
    2466              : impl Timeline {
    2467              :     /// Entry point for new tiered compaction algorithm.
    2468              :     ///
    2469              :     /// All the real work is in the implementation in the pageserver_compaction
    2470              :     /// crate. The code here would apply to any algorithm implemented by the
    2471              :     /// same interface, but tiered is the only one at the moment.
    2472              :     ///
    2473              :     /// TODO: cancellation
    2474            0 :     pub(crate) async fn compact_tiered(
    2475            0 :         self: &Arc<Self>,
    2476            0 :         _cancel: &CancellationToken,
    2477            0 :         ctx: &RequestContext,
    2478            0 :     ) -> Result<(), CompactionError> {
    2479            0 :         let fanout = self.get_compaction_threshold() as u64;
    2480            0 :         let target_file_size = self.get_checkpoint_distance();
    2481              : 
    2482              :         // Find the top of the historical layers
    2483            0 :         let end_lsn = {
    2484            0 :             let guard = self.layers.read(LayerManagerLockHolder::Compaction).await;
    2485            0 :             let layers = guard.layer_map()?;
    2486              : 
    2487            0 :             let l0_deltas = layers.level0_deltas();
    2488            0 : 
    2489            0 :             // As an optimization, if we find that there are too few L0 layers,
    2490            0 :             // bail out early. We know that the compaction algorithm would do
    2491            0 :             // nothing in that case.
    2492            0 :             if l0_deltas.len() < fanout as usize {
    2493              :                 // doesn't need compacting
    2494            0 :                 return Ok(());
    2495            0 :             }
    2496            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    2497            0 :         };
    2498            0 : 
    2499            0 :         // Is the timeline being deleted?
    2500            0 :         if self.is_stopping() {
    2501            0 :             trace!("Dropping out of compaction on timeline shutdown");
    2502            0 :             return Err(CompactionError::ShuttingDown);
    2503            0 :         }
    2504              : 
    2505            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    2506              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    2507            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    2508            0 : 
    2509            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    2510            0 :             &mut adaptor,
    2511            0 :             end_lsn,
    2512            0 :             target_file_size,
    2513            0 :             fanout,
    2514            0 :             ctx,
    2515            0 :         )
    2516            0 :         .await
    2517              :         // TODO: compact_tiered needs to return CompactionError
    2518            0 :         .map_err(CompactionError::Other)?;
    2519              : 
    2520            0 :         adaptor.flush_updates().await?;
    2521            0 :         Ok(())
    2522            0 :     }
    2523              : 
    2524              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    2525              :     ///
    2526              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    2527              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    2528              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    2529              :     ///
    2530              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    2531              :     ///
    2532              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    2533              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    2534              :     ///
    2535              :     /// The function will produce:
    2536              :     ///
    2537              :     /// ```plain
    2538              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    2539              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    2540              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    2541              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    2542              :     /// ```
    2543              :     ///
    2544              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    2545              :     #[allow(clippy::too_many_arguments)]
    2546          324 :     pub(crate) async fn generate_key_retention(
    2547          324 :         self: &Arc<Timeline>,
    2548          324 :         key: Key,
    2549          324 :         full_history: &[(Key, Lsn, Value)],
    2550          324 :         horizon: Lsn,
    2551          324 :         retain_lsn_below_horizon: &[Lsn],
    2552          324 :         delta_threshold_cnt: usize,
    2553          324 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    2554          324 :         verification: bool,
    2555          324 :     ) -> anyhow::Result<KeyHistoryRetention> {
    2556              :         // Pre-checks for the invariants
    2557              : 
    2558          324 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2559              : 
    2560          324 :         if debug_mode {
    2561          786 :             for (log_key, _, _) in full_history {
    2562          462 :                 assert_eq!(log_key, &key, "mismatched key");
    2563              :             }
    2564          324 :             for i in 1..full_history.len() {
    2565          138 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    2566          138 :                 if full_history[i - 1].1 == full_history[i].1 {
    2567            0 :                     assert!(
    2568            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    2569            0 :                         "unordered delta/image, or duplicated delta"
    2570              :                     );
    2571          138 :                 }
    2572              :             }
    2573              :             // There was an assertion for no base image that checks if the first
    2574              :             // record in the history is `will_init` before, but it was removed.
    2575              :             // This is explained in the test cases for generate_key_retention.
    2576              :             // Search "incomplete history" for more information.
    2577          714 :             for lsn in retain_lsn_below_horizon {
    2578          390 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    2579              :             }
    2580          324 :             for i in 1..retain_lsn_below_horizon.len() {
    2581          178 :                 assert!(
    2582          178 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    2583            0 :                     "unordered LSN"
    2584              :                 );
    2585              :             }
    2586            0 :         }
    2587          324 :         let has_ancestor = base_img_from_ancestor.is_some();
    2588              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    2589              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    2590          324 :         let (mut split_history, lsn_split_points) = {
    2591          324 :             let mut split_history = Vec::new();
    2592          324 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    2593          324 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    2594          714 :             for lsn in retain_lsn_below_horizon {
    2595          390 :                 lsn_split_points.push(*lsn);
    2596          390 :             }
    2597          324 :             lsn_split_points.push(horizon);
    2598          324 :             let mut current_idx = 0;
    2599          786 :             for item @ (_, lsn, _) in full_history {
    2600          584 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    2601          122 :                     current_idx += 1;
    2602          122 :                 }
    2603          462 :                 split_history[current_idx].push(item);
    2604              :             }
    2605          324 :             (split_history, lsn_split_points)
    2606              :         };
    2607              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    2608         1362 :         for split_for_lsn in &mut split_history {
    2609         1038 :             let mut prev_lsn = None;
    2610         1038 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    2611         1038 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    2612          462 :                 if let Some(prev_lsn) = &prev_lsn {
    2613           62 :                     if *prev_lsn == lsn {
    2614              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    2615              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    2616              :                         // drop this delta and keep the image.
    2617              :                         //
    2618              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    2619              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    2620              :                         // dropped.
    2621              :                         //
    2622              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    2623              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    2624            0 :                         continue;
    2625           62 :                     }
    2626          400 :                 }
    2627          462 :                 prev_lsn = Some(lsn);
    2628          462 :                 new_split_for_lsn.push(record);
    2629              :             }
    2630         1038 :             *split_for_lsn = new_split_for_lsn;
    2631              :         }
    2632              :         // Step 3: generate images when necessary
    2633          324 :         let mut retention = Vec::with_capacity(split_history.len());
    2634          324 :         let mut records_since_last_image = 0;
    2635          324 :         let batch_cnt = split_history.len();
    2636          324 :         assert!(
    2637          324 :             batch_cnt >= 2,
    2638            0 :             "should have at least below + above horizon batches"
    2639              :         );
    2640          324 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    2641          324 :         if let Some((key, lsn, ref img)) = base_img_from_ancestor {
    2642           21 :             replay_history.push((key, lsn, Value::Image(img.clone())));
    2643          303 :         }
    2644              : 
    2645              :         /// Generate debug information for the replay history
    2646            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    2647              :             use std::fmt::Write;
    2648            0 :             let mut output = String::new();
    2649            0 :             if let Some((key, _, _)) = replay_history.first() {
    2650            0 :                 write!(output, "key={} ", key).unwrap();
    2651            0 :                 let mut cnt = 0;
    2652            0 :                 for (_, lsn, val) in replay_history {
    2653            0 :                     if val.is_image() {
    2654            0 :                         write!(output, "i@{} ", lsn).unwrap();
    2655            0 :                     } else if val.will_init() {
    2656            0 :                         write!(output, "di@{} ", lsn).unwrap();
    2657            0 :                     } else {
    2658            0 :                         write!(output, "d@{} ", lsn).unwrap();
    2659            0 :                     }
    2660            0 :                     cnt += 1;
    2661            0 :                     if cnt >= 128 {
    2662            0 :                         write!(output, "... and more").unwrap();
    2663            0 :                         break;
    2664            0 :                     }
    2665              :                 }
    2666            0 :             } else {
    2667            0 :                 write!(output, "<no history>").unwrap();
    2668            0 :             }
    2669            0 :             output
    2670            0 :         }
    2671              : 
    2672            0 :         fn generate_debug_trace(
    2673            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    2674            0 :             full_history: &[(Key, Lsn, Value)],
    2675            0 :             lsns: &[Lsn],
    2676            0 :             horizon: Lsn,
    2677            0 :         ) -> String {
    2678              :             use std::fmt::Write;
    2679            0 :             let mut output = String::new();
    2680            0 :             if let Some(replay_history) = replay_history {
    2681            0 :                 writeln!(
    2682            0 :                     output,
    2683            0 :                     "replay_history: {}",
    2684            0 :                     generate_history_trace(replay_history)
    2685            0 :                 )
    2686            0 :                 .unwrap();
    2687            0 :             } else {
    2688            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    2689            0 :             }
    2690            0 :             writeln!(
    2691            0 :                 output,
    2692            0 :                 "full_history: {}",
    2693            0 :                 generate_history_trace(full_history)
    2694            0 :             )
    2695            0 :             .unwrap();
    2696            0 :             writeln!(
    2697            0 :                 output,
    2698            0 :                 "when processing: [{}] horizon={}",
    2699            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    2700            0 :                 horizon
    2701            0 :             )
    2702            0 :             .unwrap();
    2703            0 :             output
    2704            0 :         }
    2705              : 
    2706          324 :         let mut key_exists = false;
    2707         1037 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    2708              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    2709         1037 :             records_since_last_image += split_for_lsn.len();
    2710              :             // Whether to produce an image into the final layer files
    2711         1037 :             let produce_image = if i == 0 && !has_ancestor {
    2712              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    2713          303 :                 true
    2714          734 :             } else if i == batch_cnt - 1 {
    2715              :                 // Do not generate images for the last batch (above horizon)
    2716          323 :                 false
    2717          411 :             } else if records_since_last_image == 0 {
    2718          322 :                 false
    2719           89 :             } else if records_since_last_image >= delta_threshold_cnt {
    2720              :                 // Generate images when there are too many records
    2721            3 :                 true
    2722              :             } else {
    2723           86 :                 false
    2724              :             };
    2725         1037 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    2726              :             // Only retain the items after the last image record
    2727         1277 :             for idx in (0..replay_history.len()).rev() {
    2728         1277 :                 if replay_history[idx].2.will_init() {
    2729         1037 :                     replay_history = replay_history[idx..].to_vec();
    2730         1037 :                     break;
    2731          240 :                 }
    2732              :             }
    2733         1037 :             if replay_history.is_empty() && !key_exists {
    2734              :                 // The key does not exist at earlier LSN, we can skip this iteration.
    2735            0 :                 retention.push(Vec::new());
    2736            0 :                 continue;
    2737         1037 :             } else {
    2738         1037 :                 key_exists = true;
    2739         1037 :             }
    2740         1037 :             let Some((_, _, val)) = replay_history.first() else {
    2741            0 :                 unreachable!("replay history should not be empty once it exists")
    2742              :             };
    2743         1037 :             if !val.will_init() {
    2744            0 :                 return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
    2745            0 :                     generate_debug_trace(
    2746            0 :                         Some(&replay_history),
    2747            0 :                         full_history,
    2748            0 :                         retain_lsn_below_horizon,
    2749            0 :                         horizon,
    2750            0 :                     )
    2751            0 :                 });
    2752         1037 :             }
    2753              :             // Whether to reconstruct the image. In debug mode, we will generate an image
    2754              :             // at every retain_lsn to ensure data is not corrupted, but we won't put the
    2755              :             // image into the final layer.
    2756         1037 :             let img_and_lsn = if produce_image {
    2757          306 :                 records_since_last_image = 0;
    2758          306 :                 let replay_history_for_debug = if debug_mode {
    2759          306 :                     Some(replay_history.clone())
    2760              :                 } else {
    2761            0 :                     None
    2762              :                 };
    2763          306 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    2764          306 :                 let history = std::mem::take(&mut replay_history);
    2765          306 :                 let mut img = None;
    2766          306 :                 let mut records = Vec::with_capacity(history.len());
    2767          306 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    2768          295 :                     img = Some((*lsn, val.clone()));
    2769          295 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    2770           20 :                         let Value::WalRecord(rec) = val else {
    2771            0 :                             return Err(anyhow::anyhow!(
    2772            0 :                                 "invalid record, first record is image, expect walrecords"
    2773            0 :                             ))
    2774            0 :                             .with_context(|| {
    2775            0 :                                 generate_debug_trace(
    2776            0 :                                     replay_history_for_debug_ref,
    2777            0 :                                     full_history,
    2778            0 :                                     retain_lsn_below_horizon,
    2779            0 :                                     horizon,
    2780            0 :                                 )
    2781            0 :                             });
    2782              :                         };
    2783           20 :                         records.push((lsn, rec));
    2784              :                     }
    2785              :                 } else {
    2786           18 :                     for (_, lsn, val) in history.into_iter() {
    2787           18 :                         let Value::WalRecord(rec) = val else {
    2788            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    2789            0 :                                 .with_context(|| generate_debug_trace(
    2790            0 :                                     replay_history_for_debug_ref,
    2791            0 :                                     full_history,
    2792            0 :                                     retain_lsn_below_horizon,
    2793            0 :                                     horizon,
    2794            0 :                                 ));
    2795              :                         };
    2796           18 :                         records.push((lsn, rec));
    2797              :                     }
    2798              :                 }
    2799              :                 // WAL redo requires records in the reverse LSN order
    2800          306 :                 records.reverse();
    2801          306 :                 let state = ValueReconstructState { img, records };
    2802              :                 // last batch does not generate image so i is always in range, unless we force generate
    2803              :                 // an image during testing
    2804          306 :                 let request_lsn = if i >= lsn_split_points.len() {
    2805            0 :                     Lsn::MAX
    2806              :                 } else {
    2807          306 :                     lsn_split_points[i]
    2808              :                 };
    2809          306 :                 let img = self
    2810          306 :                     .reconstruct_value(key, request_lsn, state, RedoAttemptType::GcCompaction)
    2811          306 :                     .await?;
    2812          305 :                 Some((request_lsn, img))
    2813              :             } else {
    2814          731 :                 None
    2815              :             };
    2816         1036 :             if produce_image {
    2817          305 :                 let (request_lsn, img) = img_and_lsn.unwrap();
    2818          305 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    2819          305 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    2820          731 :             } else {
    2821          731 :                 let deltas = split_for_lsn
    2822          731 :                     .iter()
    2823          731 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    2824          731 :                     .collect_vec();
    2825          731 :                 retention.push(deltas);
    2826          731 :             }
    2827              :         }
    2828          323 :         let mut result = Vec::with_capacity(retention.len());
    2829          323 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    2830         1036 :         for (idx, logs) in retention.into_iter().enumerate() {
    2831         1036 :             if idx == lsn_split_points.len() {
    2832          323 :                 let retention = KeyHistoryRetention {
    2833          323 :                     below_horizon: result,
    2834          323 :                     above_horizon: KeyLogAtLsn(logs),
    2835          323 :                 };
    2836          323 :                 if verification {
    2837          323 :                     retention
    2838          323 :                         .verify(key, &base_img_from_ancestor, full_history, self)
    2839          323 :                         .await?;
    2840            0 :                 }
    2841          323 :                 return Ok(retention);
    2842          713 :             } else {
    2843          713 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    2844          713 :             }
    2845              :         }
    2846            0 :         unreachable!("key retention is empty")
    2847          324 :     }
    2848              : 
    2849              :     /// Check how much space is left on the disk
    2850           27 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    2851           27 :         let tenants_dir = self.conf.tenants_path();
    2852              : 
    2853           27 :         let stat = Statvfs::get(&tenants_dir, None)
    2854           27 :             .context("statvfs failed, presumably directory got unlinked")?;
    2855              : 
    2856           27 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    2857           27 : 
    2858           27 :         Ok(avail_bytes)
    2859           27 :     }
    2860              : 
    2861              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    2862              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    2863              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    2864              :     /// compaction.
    2865           27 :     async fn check_compaction_space(
    2866           27 :         self: &Arc<Self>,
    2867           27 :         layer_selection: &[Layer],
    2868           27 :     ) -> Result<(), CompactionError> {
    2869           27 :         let available_space = self
    2870           27 :             .check_available_space()
    2871           27 :             .await
    2872           27 :             .map_err(CompactionError::Other)?;
    2873           27 :         let mut remote_layer_size = 0;
    2874           27 :         let mut all_layer_size = 0;
    2875          106 :         for layer in layer_selection {
    2876           79 :             let needs_download = layer
    2877           79 :                 .needs_download()
    2878           79 :                 .await
    2879           79 :                 .context("failed to check if layer needs download")
    2880           79 :                 .map_err(CompactionError::Other)?;
    2881           79 :             if needs_download.is_some() {
    2882            0 :                 remote_layer_size += layer.layer_desc().file_size;
    2883           79 :             }
    2884           79 :             all_layer_size += layer.layer_desc().file_size;
    2885              :         }
    2886           27 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    2887           27 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    2888              :         {
    2889            0 :             return Err(CompactionError::Other(anyhow!(
    2890            0 :                 "not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    2891            0 :                 available_space,
    2892            0 :                 allocated_space,
    2893            0 :                 all_layer_size,
    2894            0 :                 remote_layer_size,
    2895            0 :                 all_layer_size + remote_layer_size
    2896            0 :             )));
    2897           27 :         }
    2898           27 :         Ok(())
    2899           27 :     }
    2900              : 
    2901              :     /// Check to bail out of gc compaction early if it would use too much memory.
    2902           27 :     async fn check_memory_usage(
    2903           27 :         self: &Arc<Self>,
    2904           27 :         layer_selection: &[Layer],
    2905           27 :     ) -> Result<(), CompactionError> {
    2906           27 :         let mut estimated_memory_usage_mb = 0.0;
    2907           27 :         let mut num_image_layers = 0;
    2908           27 :         let mut num_delta_layers = 0;
    2909           27 :         let target_layer_size_bytes = 256 * 1024 * 1024;
    2910          106 :         for layer in layer_selection {
    2911           79 :             let layer_desc = layer.layer_desc();
    2912           79 :             if layer_desc.is_delta() {
    2913           44 :                 // Delta layers at most have 1MB buffer; 3x to make it safe (there're deltas as large as 16KB).
    2914           44 :                 // Scale it by target_layer_size_bytes so that tests can pass (some tests, e.g., `test_pageserver_gc_compaction_preempt
    2915           44 :                 // use 3MB layer size and we need to account for that).
    2916           44 :                 estimated_memory_usage_mb +=
    2917           44 :                     3.0 * (layer_desc.file_size / target_layer_size_bytes) as f64;
    2918           44 :                 num_delta_layers += 1;
    2919           44 :             } else {
    2920           35 :                 // Image layers at most have 1MB buffer but it might be compressed; assume 5x compression ratio.
    2921           35 :                 estimated_memory_usage_mb +=
    2922           35 :                     5.0 * (layer_desc.file_size / target_layer_size_bytes) as f64;
    2923           35 :                 num_image_layers += 1;
    2924           35 :             }
    2925              :         }
    2926           27 :         if estimated_memory_usage_mb > 1024.0 {
    2927            0 :             return Err(CompactionError::Other(anyhow!(
    2928            0 :                 "estimated memory usage is too high: {}MB, giving up compaction; num_image_layers={}, num_delta_layers={}",
    2929            0 :                 estimated_memory_usage_mb,
    2930            0 :                 num_image_layers,
    2931            0 :                 num_delta_layers
    2932            0 :             )));
    2933           27 :         }
    2934           27 :         Ok(())
    2935           27 :     }
    2936              : 
    2937              :     /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
    2938              :     /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
    2939              :     /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
    2940              :     /// here.
    2941           28 :     pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
    2942           28 :         let gc_cutoff_lsn = {
    2943           28 :             let gc_info = self.gc_info.read().unwrap();
    2944           28 :             gc_info.min_cutoff()
    2945           28 :         };
    2946           28 : 
    2947           28 :         // TODO: standby horizon should use leases so we don't really need to consider it here.
    2948           28 :         // let watermark = watermark.min(self.standby_horizon.load());
    2949           28 : 
    2950           28 :         // TODO: ensure the child branches will not use anything below the watermark, or consider
    2951           28 :         // them when computing the watermark.
    2952           28 :         gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
    2953           28 :     }
    2954              : 
    2955              :     /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
    2956              :     /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
    2957              :     /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
    2958              :     /// like a full compaction of the specified keyspace.
    2959            0 :     pub(crate) async fn gc_compaction_split_jobs(
    2960            0 :         self: &Arc<Self>,
    2961            0 :         job: GcCompactJob,
    2962            0 :         sub_compaction_max_job_size_mb: Option<u64>,
    2963            0 :     ) -> Result<Vec<GcCompactJob>, CompactionError> {
    2964            0 :         let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
    2965            0 :             job.compact_lsn_range.end
    2966              :         } else {
    2967            0 :             self.get_gc_compaction_watermark()
    2968              :         };
    2969              : 
    2970            0 :         if compact_below_lsn == Lsn::INVALID {
    2971            0 :             tracing::warn!(
    2972            0 :                 "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    2973              :             );
    2974            0 :             return Ok(vec![]);
    2975            0 :         }
    2976              : 
    2977              :         // Split compaction job to about 4GB each
    2978              :         const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
    2979            0 :         let sub_compaction_max_job_size_mb =
    2980            0 :             sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
    2981            0 : 
    2982            0 :         let mut compact_jobs = Vec::<GcCompactJob>::new();
    2983            0 :         // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
    2984            0 :         // by estimating the amount of files read for a compaction job. We should also partition on LSN.
    2985            0 :         let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
    2986              :         // Truncate the key range to be within user specified compaction range.
    2987            0 :         fn truncate_to(
    2988            0 :             source_start: &Key,
    2989            0 :             source_end: &Key,
    2990            0 :             target_start: &Key,
    2991            0 :             target_end: &Key,
    2992            0 :         ) -> Option<(Key, Key)> {
    2993            0 :             let start = source_start.max(target_start);
    2994            0 :             let end = source_end.min(target_end);
    2995            0 :             if start < end {
    2996            0 :                 Some((*start, *end))
    2997              :             } else {
    2998            0 :                 None
    2999              :             }
    3000            0 :         }
    3001            0 :         let mut split_key_ranges = Vec::new();
    3002            0 :         let ranges = dense_ks
    3003            0 :             .parts
    3004            0 :             .iter()
    3005            0 :             .map(|partition| partition.ranges.iter())
    3006            0 :             .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
    3007            0 :             .flatten()
    3008            0 :             .cloned()
    3009            0 :             .collect_vec();
    3010            0 :         for range in ranges.iter() {
    3011            0 :             let Some((start, end)) = truncate_to(
    3012            0 :                 &range.start,
    3013            0 :                 &range.end,
    3014            0 :                 &job.compact_key_range.start,
    3015            0 :                 &job.compact_key_range.end,
    3016            0 :             ) else {
    3017            0 :                 continue;
    3018              :             };
    3019            0 :             split_key_ranges.push((start, end));
    3020              :         }
    3021            0 :         split_key_ranges.sort();
    3022            0 :         let all_layers = {
    3023            0 :             let guard = self.layers.read(LayerManagerLockHolder::Compaction).await;
    3024            0 :             let layer_map = guard.layer_map()?;
    3025            0 :             layer_map.iter_historic_layers().collect_vec()
    3026            0 :         };
    3027            0 :         let mut current_start = None;
    3028            0 :         let ranges_num = split_key_ranges.len();
    3029            0 :         for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
    3030            0 :             if current_start.is_none() {
    3031            0 :                 current_start = Some(start);
    3032            0 :             }
    3033            0 :             let start = current_start.unwrap();
    3034            0 :             if start >= end {
    3035              :                 // We have already processed this partition.
    3036            0 :                 continue;
    3037            0 :             }
    3038            0 :             let overlapping_layers = {
    3039            0 :                 let mut desc = Vec::new();
    3040            0 :                 for layer in all_layers.iter() {
    3041            0 :                     if overlaps_with(&layer.get_key_range(), &(start..end))
    3042            0 :                         && layer.get_lsn_range().start <= compact_below_lsn
    3043            0 :                     {
    3044            0 :                         desc.push(layer.clone());
    3045            0 :                     }
    3046              :                 }
    3047            0 :                 desc
    3048            0 :             };
    3049            0 :             let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
    3050            0 :             if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
    3051              :                 // Try to extend the compaction range so that we include at least one full layer file.
    3052            0 :                 let extended_end = overlapping_layers
    3053            0 :                     .iter()
    3054            0 :                     .map(|layer| layer.key_range.end)
    3055            0 :                     .min();
    3056              :                 // It is possible that the search range does not contain any layer files when we reach the end of the loop.
    3057              :                 // In this case, we simply use the specified key range end.
    3058            0 :                 let end = if let Some(extended_end) = extended_end {
    3059            0 :                     extended_end.max(end)
    3060              :                 } else {
    3061            0 :                     end
    3062              :                 };
    3063            0 :                 let end = if ranges_num == idx + 1 {
    3064              :                     // extend the compaction range to the end of the key range if it's the last partition
    3065            0 :                     end.max(job.compact_key_range.end)
    3066              :                 } else {
    3067            0 :                     end
    3068              :                 };
    3069            0 :                 if total_size == 0 && !compact_jobs.is_empty() {
    3070            0 :                     info!(
    3071            0 :                         "splitting compaction job: {}..{}, estimated_size={}, extending the previous job",
    3072              :                         start, end, total_size
    3073              :                     );
    3074            0 :                     compact_jobs.last_mut().unwrap().compact_key_range.end = end;
    3075            0 :                     current_start = Some(end);
    3076              :                 } else {
    3077            0 :                     info!(
    3078            0 :                         "splitting compaction job: {}..{}, estimated_size={}",
    3079              :                         start, end, total_size
    3080              :                     );
    3081            0 :                     compact_jobs.push(GcCompactJob {
    3082            0 :                         dry_run: job.dry_run,
    3083            0 :                         compact_key_range: start..end,
    3084            0 :                         compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
    3085            0 :                     });
    3086            0 :                     current_start = Some(end);
    3087              :                 }
    3088            0 :             }
    3089              :         }
    3090            0 :         Ok(compact_jobs)
    3091            0 :     }
    3092              : 
    3093              :     /// An experimental compaction building block that combines compaction with garbage collection.
    3094              :     ///
    3095              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    3096              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    3097              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    3098              :     /// and create delta layers with all deltas >= gc horizon.
    3099              :     ///
    3100              :     /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
    3101              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    3102              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    3103              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    3104              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    3105              :     /// part of the range.
    3106              :     ///
    3107              :     /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
    3108              :     /// the LSN. Otherwise, it will use the gc cutoff by default.
    3109           28 :     pub(crate) async fn compact_with_gc(
    3110           28 :         self: &Arc<Self>,
    3111           28 :         cancel: &CancellationToken,
    3112           28 :         options: CompactOptions,
    3113           28 :         ctx: &RequestContext,
    3114           28 :     ) -> Result<CompactionOutcome, CompactionError> {
    3115           28 :         let sub_compaction = options.sub_compaction;
    3116           28 :         let job = GcCompactJob::from_compact_options(options.clone());
    3117           28 :         let yield_for_l0 = options.flags.contains(CompactFlags::YieldForL0);
    3118           28 :         if sub_compaction {
    3119            0 :             info!(
    3120            0 :                 "running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
    3121              :             );
    3122            0 :             let jobs = self
    3123            0 :                 .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
    3124            0 :                 .await?;
    3125            0 :             let jobs_len = jobs.len();
    3126            0 :             for (idx, job) in jobs.into_iter().enumerate() {
    3127            0 :                 let sub_compaction_progress = format!("{}/{}", idx + 1, jobs_len);
    3128            0 :                 self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
    3129            0 :                     .instrument(info_span!(
    3130            0 :                         "sub_compaction",
    3131            0 :                         sub_compaction_progress = sub_compaction_progress
    3132            0 :                     ))
    3133            0 :                     .await?;
    3134              :             }
    3135            0 :             if jobs_len == 0 {
    3136            0 :                 info!("no jobs to run, skipping gc bottom-most compaction");
    3137            0 :             }
    3138            0 :             return Ok(CompactionOutcome::Done);
    3139           28 :         }
    3140           28 :         self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
    3141           28 :             .await
    3142           28 :     }
    3143              : 
    3144           28 :     async fn compact_with_gc_inner(
    3145           28 :         self: &Arc<Self>,
    3146           28 :         cancel: &CancellationToken,
    3147           28 :         job: GcCompactJob,
    3148           28 :         ctx: &RequestContext,
    3149           28 :         yield_for_l0: bool,
    3150           28 :     ) -> Result<CompactionOutcome, CompactionError> {
    3151           28 :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    3152           28 :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    3153           28 :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    3154           28 : 
    3155           28 :         let timer = Instant::now();
    3156           28 :         let begin_timer = timer;
    3157           28 : 
    3158           28 :         let gc_lock = async {
    3159           28 :             tokio::select! {
    3160           28 :                 guard = self.gc_lock.lock() => Ok(guard),
    3161           28 :                 _ = cancel.cancelled() => Err(CompactionError::ShuttingDown),
    3162              :             }
    3163           28 :         };
    3164              : 
    3165           28 :         let time_acquire_lock = timer.elapsed();
    3166           28 :         let timer = Instant::now();
    3167              : 
    3168           28 :         let gc_lock = crate::timed(
    3169           28 :             gc_lock,
    3170           28 :             "acquires gc lock",
    3171           28 :             std::time::Duration::from_secs(5),
    3172           28 :         )
    3173           28 :         .await?;
    3174              : 
    3175           28 :         let dry_run = job.dry_run;
    3176           28 :         let compact_key_range = job.compact_key_range;
    3177           28 :         let compact_lsn_range = job.compact_lsn_range;
    3178              : 
    3179           28 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    3180              : 
    3181           28 :         info!(
    3182            0 :             "running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}",
    3183              :             compact_key_range.start,
    3184              :             compact_key_range.end,
    3185              :             compact_lsn_range.start,
    3186              :             compact_lsn_range.end
    3187              :         );
    3188              : 
    3189           28 :         scopeguard::defer! {
    3190           28 :             info!("done enhanced gc bottom-most compaction");
    3191           28 :         };
    3192           28 : 
    3193           28 :         let mut stat = CompactionStatistics::default();
    3194              : 
    3195              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    3196              :         // The layer selection has the following properties:
    3197              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    3198              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    3199           27 :         let job_desc = {
    3200           28 :             let guard = self
    3201           28 :                 .layers
    3202           28 :                 .read(LayerManagerLockHolder::GarbageCollection)
    3203           28 :                 .await;
    3204           28 :             let layers = guard.layer_map()?;
    3205           28 :             let gc_info = self.gc_info.read().unwrap();
    3206           28 :             let mut retain_lsns_below_horizon = Vec::new();
    3207           28 :             let gc_cutoff = {
    3208              :                 // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
    3209              :                 // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
    3210              :                 // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
    3211              :                 // to get the truth data.
    3212           28 :                 let real_gc_cutoff = self.get_gc_compaction_watermark();
    3213              :                 // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
    3214              :                 // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
    3215              :                 // the real cutoff.
    3216           28 :                 let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
    3217           25 :                     if real_gc_cutoff == Lsn::INVALID {
    3218              :                         // If the gc_cutoff is not generated yet, we should not compact anything.
    3219            0 :                         tracing::warn!(
    3220            0 :                             "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    3221              :                         );
    3222            0 :                         return Ok(CompactionOutcome::Skipped);
    3223           25 :                     }
    3224           25 :                     real_gc_cutoff
    3225              :                 } else {
    3226            3 :                     compact_lsn_range.end
    3227              :                 };
    3228           28 :                 if gc_cutoff > real_gc_cutoff {
    3229            2 :                     warn!(
    3230            0 :                         "provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff",
    3231              :                         gc_cutoff, real_gc_cutoff
    3232              :                     );
    3233            2 :                     gc_cutoff = real_gc_cutoff;
    3234           26 :                 }
    3235           28 :                 gc_cutoff
    3236              :             };
    3237           35 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    3238           35 :                 if lsn < &gc_cutoff {
    3239           35 :                     retain_lsns_below_horizon.push(*lsn);
    3240           35 :                 }
    3241              :             }
    3242           28 :             for lsn in gc_info.leases.keys() {
    3243            0 :                 if lsn < &gc_cutoff {
    3244            0 :                     retain_lsns_below_horizon.push(*lsn);
    3245            0 :                 }
    3246              :             }
    3247           28 :             let mut selected_layers: Vec<Layer> = Vec::new();
    3248           28 :             drop(gc_info);
    3249              :             // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    3250           28 :             let Some(max_layer_lsn) = layers
    3251           28 :                 .iter_historic_layers()
    3252          125 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    3253          107 :                 .map(|desc| desc.get_lsn_range().end)
    3254           28 :                 .max()
    3255              :             else {
    3256            0 :                 info!(
    3257            0 :                     "no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}",
    3258              :                     gc_cutoff
    3259              :                 );
    3260            0 :                 return Ok(CompactionOutcome::Done);
    3261              :             };
    3262              :             // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
    3263              :             // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
    3264              :             // it is a branch.
    3265           28 :             let Some(min_layer_lsn) = layers
    3266           28 :                 .iter_historic_layers()
    3267          125 :                 .filter(|desc| {
    3268          125 :                     if compact_lsn_range.start == Lsn::INVALID {
    3269          102 :                         true // select all layers below if start == Lsn(0)
    3270              :                     } else {
    3271           23 :                         desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
    3272              :                     }
    3273          125 :                 })
    3274          116 :                 .map(|desc| desc.get_lsn_range().start)
    3275           28 :                 .min()
    3276              :             else {
    3277            0 :                 info!(
    3278            0 :                     "no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}",
    3279              :                     compact_lsn_range.end
    3280              :                 );
    3281            0 :                 return Ok(CompactionOutcome::Done);
    3282              :             };
    3283              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    3284              :             // layers to compact.
    3285           28 :             let mut rewrite_layers = Vec::new();
    3286          125 :             for desc in layers.iter_historic_layers() {
    3287          125 :                 if desc.get_lsn_range().end <= max_layer_lsn
    3288          107 :                     && desc.get_lsn_range().start >= min_layer_lsn
    3289           98 :                     && overlaps_with(&desc.get_key_range(), &compact_key_range)
    3290              :                 {
    3291              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    3292              :                     // even if it might contain extra keys
    3293           79 :                     selected_layers.push(guard.get_from_desc(&desc));
    3294           79 :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    3295           79 :                     // to overlap image layers)
    3296           79 :                     if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
    3297            1 :                     {
    3298            1 :                         rewrite_layers.push(desc);
    3299           78 :                     }
    3300           46 :                 }
    3301              :             }
    3302           28 :             if selected_layers.is_empty() {
    3303            1 :                 info!(
    3304            0 :                     "no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}",
    3305              :                     gc_cutoff, compact_key_range.start, compact_key_range.end
    3306              :                 );
    3307            1 :                 return Ok(CompactionOutcome::Done);
    3308           27 :             }
    3309           27 :             retain_lsns_below_horizon.sort();
    3310           27 :             GcCompactionJobDescription {
    3311           27 :                 selected_layers,
    3312           27 :                 gc_cutoff,
    3313           27 :                 retain_lsns_below_horizon,
    3314           27 :                 min_layer_lsn,
    3315           27 :                 max_layer_lsn,
    3316           27 :                 compaction_key_range: compact_key_range,
    3317           27 :                 rewrite_layers,
    3318           27 :             }
    3319              :         };
    3320           27 :         let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
    3321              :             // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
    3322              :             // We use job_desc.min_layer_lsn as if it's the lowest branch point.
    3323            4 :             (true, job_desc.min_layer_lsn)
    3324           23 :         } else if self.ancestor_timeline.is_some() {
    3325              :             // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
    3326              :             // LSN ranges all the way to the ancestor timeline.
    3327            1 :             (true, self.ancestor_lsn)
    3328              :         } else {
    3329           22 :             let res = job_desc
    3330           22 :                 .retain_lsns_below_horizon
    3331           22 :                 .first()
    3332           22 :                 .copied()
    3333           22 :                 .unwrap_or(job_desc.gc_cutoff);
    3334           22 :             if debug_mode {
    3335           22 :                 assert_eq!(
    3336           22 :                     res,
    3337           22 :                     job_desc
    3338           22 :                         .retain_lsns_below_horizon
    3339           22 :                         .iter()
    3340           22 :                         .min()
    3341           22 :                         .copied()
    3342           22 :                         .unwrap_or(job_desc.gc_cutoff)
    3343           22 :                 );
    3344            0 :             }
    3345           22 :             (false, res)
    3346              :         };
    3347              : 
    3348           27 :         let verification = self.get_gc_compaction_settings().gc_compaction_verification;
    3349           27 : 
    3350           27 :         info!(
    3351            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
    3352            0 :             job_desc.selected_layers.len(),
    3353            0 :             job_desc.rewrite_layers.len(),
    3354              :             job_desc.max_layer_lsn,
    3355              :             job_desc.min_layer_lsn,
    3356              :             job_desc.gc_cutoff,
    3357              :             lowest_retain_lsn,
    3358              :             job_desc.compaction_key_range.start,
    3359              :             job_desc.compaction_key_range.end,
    3360              :             has_data_below,
    3361              :         );
    3362              : 
    3363           27 :         let time_analyze = timer.elapsed();
    3364           27 :         let timer = Instant::now();
    3365              : 
    3366          106 :         for layer in &job_desc.selected_layers {
    3367           79 :             debug!("read layer: {}", layer.layer_desc().key());
    3368              :         }
    3369           28 :         for layer in &job_desc.rewrite_layers {
    3370            1 :             debug!("rewrite layer: {}", layer.key());
    3371              :         }
    3372              : 
    3373           27 :         self.check_compaction_space(&job_desc.selected_layers)
    3374           27 :             .await?;
    3375              : 
    3376           27 :         self.check_memory_usage(&job_desc.selected_layers).await?;
    3377           27 :         if job_desc.selected_layers.len() > 100
    3378            0 :             && job_desc.rewrite_layers.len() as f64 >= job_desc.selected_layers.len() as f64 * 0.7
    3379              :         {
    3380            0 :             return Err(CompactionError::Other(anyhow!(
    3381            0 :                 "too many layers to rewrite: {} / {}, giving up compaction",
    3382            0 :                 job_desc.rewrite_layers.len(),
    3383            0 :                 job_desc.selected_layers.len()
    3384            0 :             )));
    3385           27 :         }
    3386              : 
    3387              :         // Generate statistics for the compaction
    3388          106 :         for layer in &job_desc.selected_layers {
    3389           79 :             let desc = layer.layer_desc();
    3390           79 :             if desc.is_delta() {
    3391           44 :                 stat.visit_delta_layer(desc.file_size());
    3392           44 :             } else {
    3393           35 :                 stat.visit_image_layer(desc.file_size());
    3394           35 :             }
    3395              :         }
    3396              : 
    3397              :         // Step 1: construct a k-merge iterator over all layers.
    3398              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    3399           27 :         let layer_names = job_desc
    3400           27 :             .selected_layers
    3401           27 :             .iter()
    3402           79 :             .map(|layer| layer.layer_desc().layer_name())
    3403           27 :             .collect_vec();
    3404           27 :         if let Some(err) = check_valid_layermap(&layer_names) {
    3405            0 :             return Err(CompactionError::Other(anyhow!(
    3406            0 :                 "gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss",
    3407            0 :                 err
    3408            0 :             )));
    3409           27 :         }
    3410           27 :         // The maximum LSN we are processing in this compaction loop
    3411           27 :         let end_lsn = job_desc
    3412           27 :             .selected_layers
    3413           27 :             .iter()
    3414           79 :             .map(|l| l.layer_desc().lsn_range.end)
    3415           27 :             .max()
    3416           27 :             .unwrap();
    3417           27 :         let mut delta_layers = Vec::new();
    3418           27 :         let mut image_layers = Vec::new();
    3419           27 :         let mut downloaded_layers = Vec::new();
    3420           27 :         let mut total_downloaded_size = 0;
    3421           27 :         let mut total_layer_size = 0;
    3422          106 :         for layer in &job_desc.selected_layers {
    3423           79 :             if layer
    3424           79 :                 .needs_download()
    3425           79 :                 .await
    3426           79 :                 .context("failed to check if layer needs download")
    3427           79 :                 .map_err(CompactionError::Other)?
    3428           79 :                 .is_some()
    3429            0 :             {
    3430            0 :                 total_downloaded_size += layer.layer_desc().file_size;
    3431           79 :             }
    3432           79 :             total_layer_size += layer.layer_desc().file_size;
    3433           79 :             if cancel.is_cancelled() {
    3434            0 :                 return Err(CompactionError::ShuttingDown);
    3435           79 :             }
    3436           79 :             let should_yield = yield_for_l0
    3437            0 :                 && self
    3438            0 :                     .l0_compaction_trigger
    3439            0 :                     .notified()
    3440            0 :                     .now_or_never()
    3441            0 :                     .is_some();
    3442           79 :             if should_yield {
    3443            0 :                 tracing::info!("preempt gc-compaction when downloading layers: too many L0 layers");
    3444            0 :                 return Ok(CompactionOutcome::YieldForL0);
    3445           79 :             }
    3446           79 :             let resident_layer = layer
    3447           79 :                 .download_and_keep_resident(ctx)
    3448           79 :                 .await
    3449           79 :                 .context("failed to download and keep resident layer")
    3450           79 :                 .map_err(CompactionError::Other)?;
    3451           79 :             downloaded_layers.push(resident_layer);
    3452              :         }
    3453           27 :         info!(
    3454            0 :             "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
    3455            0 :             total_downloaded_size,
    3456            0 :             total_layer_size,
    3457            0 :             total_downloaded_size as f64 / total_layer_size as f64
    3458              :         );
    3459          106 :         for resident_layer in &downloaded_layers {
    3460           79 :             if resident_layer.layer_desc().is_delta() {
    3461           44 :                 let layer = resident_layer
    3462           44 :                     .get_as_delta(ctx)
    3463           44 :                     .await
    3464           44 :                     .context("failed to get delta layer")
    3465           44 :                     .map_err(CompactionError::Other)?;
    3466           44 :                 delta_layers.push(layer);
    3467              :             } else {
    3468           35 :                 let layer = resident_layer
    3469           35 :                     .get_as_image(ctx)
    3470           35 :                     .await
    3471           35 :                     .context("failed to get image layer")
    3472           35 :                     .map_err(CompactionError::Other)?;
    3473           35 :                 image_layers.push(layer);
    3474              :             }
    3475              :         }
    3476           27 :         let (dense_ks, sparse_ks) = self
    3477           27 :             .collect_gc_compaction_keyspace()
    3478           27 :             .await
    3479           27 :             .context("failed to collect gc compaction keyspace")
    3480           27 :             .map_err(CompactionError::Other)?;
    3481           27 :         let mut merge_iter = FilterIterator::create(
    3482           27 :             MergeIterator::create_with_options(
    3483           27 :                 &delta_layers,
    3484           27 :                 &image_layers,
    3485           27 :                 ctx,
    3486           27 :                 128 * 8192, /* 1MB buffer for each of the inner iterators */
    3487           27 :                 128,
    3488           27 :             ),
    3489           27 :             dense_ks,
    3490           27 :             sparse_ks,
    3491           27 :         )
    3492           27 :         .context("failed to create filter iterator")
    3493           27 :         .map_err(CompactionError::Other)?;
    3494              : 
    3495           27 :         let time_download_layer = timer.elapsed();
    3496           27 :         let mut timer = Instant::now();
    3497           27 : 
    3498           27 :         // Step 2: Produce images+deltas.
    3499           27 :         let mut accumulated_values = Vec::new();
    3500           27 :         let mut accumulated_values_estimated_size = 0;
    3501           27 :         let mut last_key: Option<Key> = None;
    3502              : 
    3503              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    3504              :         // when some condition meet.
    3505           27 :         let mut image_layer_writer = if !has_data_below {
    3506              :             Some(
    3507           22 :                 SplitImageLayerWriter::new(
    3508           22 :                     self.conf,
    3509           22 :                     self.timeline_id,
    3510           22 :                     self.tenant_shard_id,
    3511           22 :                     job_desc.compaction_key_range.start,
    3512           22 :                     lowest_retain_lsn,
    3513           22 :                     self.get_compaction_target_size(),
    3514           22 :                     &self.gate,
    3515           22 :                     self.cancel.clone(),
    3516           22 :                     ctx,
    3517           22 :                 )
    3518           22 :                 .await
    3519           22 :                 .context("failed to create image layer writer")
    3520           22 :                 .map_err(CompactionError::Other)?,
    3521              :             )
    3522              :         } else {
    3523            5 :             None
    3524              :         };
    3525              : 
    3526           27 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    3527           27 :             self.conf,
    3528           27 :             self.timeline_id,
    3529           27 :             self.tenant_shard_id,
    3530           27 :             lowest_retain_lsn..end_lsn,
    3531           27 :             self.get_compaction_target_size(),
    3532           27 :             &self.gate,
    3533           27 :             self.cancel.clone(),
    3534           27 :         )
    3535           27 :         .await
    3536           27 :         .context("failed to create delta layer writer")
    3537           27 :         .map_err(CompactionError::Other)?;
    3538              : 
    3539              :         #[derive(Default)]
    3540              :         struct RewritingLayers {
    3541              :             before: Option<DeltaLayerWriter>,
    3542              :             after: Option<DeltaLayerWriter>,
    3543              :         }
    3544           27 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    3545              : 
    3546              :         /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
    3547              :         /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
    3548              :         /// In those cases, we need to pull up data from below the LSN range we're compaction.
    3549              :         ///
    3550              :         /// This function unifies the cases so that later code doesn't have to think about it.
    3551              :         ///
    3552              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    3553              :         /// is needed for reconstruction. This should be fixed in the future.
    3554              :         ///
    3555              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    3556              :         /// images.
    3557          320 :         async fn get_ancestor_image(
    3558          320 :             this_tline: &Arc<Timeline>,
    3559          320 :             key: Key,
    3560          320 :             ctx: &RequestContext,
    3561          320 :             has_data_below: bool,
    3562          320 :             history_lsn_point: Lsn,
    3563          320 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    3564          320 :             if !has_data_below {
    3565          301 :                 return Ok(None);
    3566           19 :             };
    3567              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    3568              :             // as much existing code as possible.
    3569           19 :             let img = this_tline.get(key, history_lsn_point, ctx).await?;
    3570           19 :             Ok(Some((key, history_lsn_point, img)))
    3571          320 :         }
    3572              : 
    3573              :         // Actually, we can decide not to write to the image layer at all at this point because
    3574              :         // the key and LSN range are determined. However, to keep things simple here, we still
    3575              :         // create this writer, and discard the writer in the end.
    3576           27 :         let mut time_to_first_kv_pair = None;
    3577              : 
    3578          496 :         while let Some(((key, lsn, val), desc)) = merge_iter
    3579          496 :             .next_with_trace()
    3580          496 :             .await
    3581          496 :             .context("failed to get next key-value pair")
    3582          496 :             .map_err(CompactionError::Other)?
    3583              :         {
    3584          470 :             if time_to_first_kv_pair.is_none() {
    3585           27 :                 time_to_first_kv_pair = Some(timer.elapsed());
    3586           27 :                 timer = Instant::now();
    3587          443 :             }
    3588              : 
    3589          470 :             if cancel.is_cancelled() {
    3590            0 :                 return Err(CompactionError::ShuttingDown);
    3591          470 :             }
    3592              : 
    3593          470 :             let should_yield = yield_for_l0
    3594            0 :                 && self
    3595            0 :                     .l0_compaction_trigger
    3596            0 :                     .notified()
    3597            0 :                     .now_or_never()
    3598            0 :                     .is_some();
    3599          470 :             if should_yield {
    3600            0 :                 tracing::info!("preempt gc-compaction in the main loop: too many L0 layers");
    3601            0 :                 return Ok(CompactionOutcome::YieldForL0);
    3602          470 :             }
    3603          470 :             if self.shard_identity.is_key_disposable(&key) {
    3604              :                 // If this shard does not need to store this key, simply skip it.
    3605              :                 //
    3606              :                 // This is not handled in the filter iterator because shard is determined by hash.
    3607              :                 // Therefore, it does not give us any performance benefit to do things like skip
    3608              :                 // a whole layer file as handling key spaces (ranges).
    3609            0 :                 if cfg!(debug_assertions) {
    3610            0 :                     let shard = self.shard_identity.shard_index();
    3611            0 :                     let owner = self.shard_identity.get_shard_number(&key);
    3612            0 :                     panic!("key {key} does not belong on shard {shard}, owned by {owner}");
    3613            0 :                 }
    3614            0 :                 continue;
    3615          470 :             }
    3616          470 :             if !job_desc.compaction_key_range.contains(&key) {
    3617           32 :                 if !desc.is_delta {
    3618           30 :                     continue;
    3619            2 :                 }
    3620            2 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    3621            2 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    3622            0 :                     if rewriter.before.is_none() {
    3623            0 :                         rewriter.before = Some(
    3624            0 :                             DeltaLayerWriter::new(
    3625            0 :                                 self.conf,
    3626            0 :                                 self.timeline_id,
    3627            0 :                                 self.tenant_shard_id,
    3628            0 :                                 desc.key_range.start,
    3629            0 :                                 desc.lsn_range.clone(),
    3630            0 :                                 &self.gate,
    3631            0 :                                 self.cancel.clone(),
    3632            0 :                                 ctx,
    3633            0 :                             )
    3634            0 :                             .await
    3635            0 :                             .context("failed to create delta layer writer")
    3636            0 :                             .map_err(CompactionError::Other)?,
    3637              :                         );
    3638            0 :                     }
    3639            0 :                     rewriter.before.as_mut().unwrap()
    3640            2 :                 } else if key >= job_desc.compaction_key_range.end {
    3641            2 :                     if rewriter.after.is_none() {
    3642            1 :                         rewriter.after = Some(
    3643            1 :                             DeltaLayerWriter::new(
    3644            1 :                                 self.conf,
    3645            1 :                                 self.timeline_id,
    3646            1 :                                 self.tenant_shard_id,
    3647            1 :                                 job_desc.compaction_key_range.end,
    3648            1 :                                 desc.lsn_range.clone(),
    3649            1 :                                 &self.gate,
    3650            1 :                                 self.cancel.clone(),
    3651            1 :                                 ctx,
    3652            1 :                             )
    3653            1 :                             .await
    3654            1 :                             .context("failed to create delta layer writer")
    3655            1 :                             .map_err(CompactionError::Other)?,
    3656              :                         );
    3657            1 :                     }
    3658            2 :                     rewriter.after.as_mut().unwrap()
    3659              :                 } else {
    3660            0 :                     unreachable!()
    3661              :                 };
    3662            2 :                 rewriter
    3663            2 :                     .put_value(key, lsn, val, ctx)
    3664            2 :                     .await
    3665            2 :                     .context("failed to put value")
    3666            2 :                     .map_err(CompactionError::Other)?;
    3667            2 :                 continue;
    3668          438 :             }
    3669          438 :             match val {
    3670          315 :                 Value::Image(_) => stat.visit_image_key(&val),
    3671          123 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    3672              :             }
    3673          438 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    3674          144 :                 if last_key.is_none() {
    3675           27 :                     last_key = Some(key);
    3676          117 :                 }
    3677          144 :                 accumulated_values_estimated_size += val.estimated_size();
    3678          144 :                 accumulated_values.push((key, lsn, val));
    3679          144 : 
    3680          144 :                 // Accumulated values should never exceed 512MB.
    3681          144 :                 if accumulated_values_estimated_size >= 1024 * 1024 * 512 {
    3682            0 :                     return Err(CompactionError::Other(anyhow!(
    3683            0 :                         "too many values for a single key: {} for key {}, {} items",
    3684            0 :                         accumulated_values_estimated_size,
    3685            0 :                         key,
    3686            0 :                         accumulated_values.len()
    3687            0 :                     )));
    3688          144 :                 }
    3689              :             } else {
    3690          294 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    3691          294 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    3692          294 :                 let retention = self
    3693          294 :                     .generate_key_retention(
    3694          294 :                         *last_key,
    3695          294 :                         &accumulated_values,
    3696          294 :                         job_desc.gc_cutoff,
    3697          294 :                         &job_desc.retain_lsns_below_horizon,
    3698          294 :                         COMPACTION_DELTA_THRESHOLD,
    3699          294 :                         get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
    3700          294 :                             .await
    3701          294 :                             .context("failed to get ancestor image")
    3702          294 :                             .map_err(CompactionError::Other)?,
    3703          294 :                         verification,
    3704          294 :                     )
    3705          294 :                     .await
    3706          294 :                     .context("failed to generate key retention")
    3707          294 :                     .map_err(CompactionError::Other)?;
    3708          293 :                 retention
    3709          293 :                     .pipe_to(
    3710          293 :                         *last_key,
    3711          293 :                         &mut delta_layer_writer,
    3712          293 :                         image_layer_writer.as_mut(),
    3713          293 :                         &mut stat,
    3714          293 :                         ctx,
    3715          293 :                     )
    3716          293 :                     .await
    3717          293 :                     .context("failed to pipe to delta layer writer")
    3718          293 :                     .map_err(CompactionError::Other)?;
    3719          293 :                 accumulated_values.clear();
    3720          293 :                 *last_key = key;
    3721          293 :                 accumulated_values_estimated_size = val.estimated_size();
    3722          293 :                 accumulated_values.push((key, lsn, val));
    3723              :             }
    3724              :         }
    3725              : 
    3726              :         // TODO: move the below part to the loop body
    3727           26 :         let Some(last_key) = last_key else {
    3728            0 :             return Err(CompactionError::Other(anyhow!(
    3729            0 :                 "no keys produced during compaction"
    3730            0 :             )));
    3731              :         };
    3732           26 :         stat.on_unique_key_visited();
    3733              : 
    3734           26 :         let retention = self
    3735           26 :             .generate_key_retention(
    3736           26 :                 last_key,
    3737           26 :                 &accumulated_values,
    3738           26 :                 job_desc.gc_cutoff,
    3739           26 :                 &job_desc.retain_lsns_below_horizon,
    3740           26 :                 COMPACTION_DELTA_THRESHOLD,
    3741           26 :                 get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn)
    3742           26 :                     .await
    3743           26 :                     .context("failed to get ancestor image")
    3744           26 :                     .map_err(CompactionError::Other)?,
    3745           26 :                 verification,
    3746           26 :             )
    3747           26 :             .await
    3748           26 :             .context("failed to generate key retention")
    3749           26 :             .map_err(CompactionError::Other)?;
    3750           26 :         retention
    3751           26 :             .pipe_to(
    3752           26 :                 last_key,
    3753           26 :                 &mut delta_layer_writer,
    3754           26 :                 image_layer_writer.as_mut(),
    3755           26 :                 &mut stat,
    3756           26 :                 ctx,
    3757           26 :             )
    3758           26 :             .await
    3759           26 :             .context("failed to pipe to delta layer writer")
    3760           26 :             .map_err(CompactionError::Other)?;
    3761              :         // end: move the above part to the loop body
    3762              : 
    3763           26 :         let time_main_loop = timer.elapsed();
    3764           26 :         let timer = Instant::now();
    3765           26 : 
    3766           26 :         let mut rewrote_delta_layers = Vec::new();
    3767           27 :         for (key, writers) in delta_layer_rewriters {
    3768            1 :             if let Some(delta_writer_before) = writers.before {
    3769            0 :                 let (desc, path) = delta_writer_before
    3770            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    3771            0 :                     .await
    3772            0 :                     .context("failed to finish delta layer writer")
    3773            0 :                     .map_err(CompactionError::Other)?;
    3774            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3775            0 :                     .context("failed to finish creating delta layer")
    3776            0 :                     .map_err(CompactionError::Other)?;
    3777            0 :                 rewrote_delta_layers.push(layer);
    3778            1 :             }
    3779            1 :             if let Some(delta_writer_after) = writers.after {
    3780            1 :                 let (desc, path) = delta_writer_after
    3781            1 :                     .finish(key.key_range.end, ctx)
    3782            1 :                     .await
    3783            1 :                     .context("failed to finish delta layer writer")
    3784            1 :                     .map_err(CompactionError::Other)?;
    3785            1 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3786            1 :                     .context("failed to finish creating delta layer")
    3787            1 :                     .map_err(CompactionError::Other)?;
    3788            1 :                 rewrote_delta_layers.push(layer);
    3789            0 :             }
    3790              :         }
    3791              : 
    3792           37 :         let discard = |key: &PersistentLayerKey| {
    3793           37 :             let key = key.clone();
    3794           37 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    3795           37 :         };
    3796              : 
    3797           26 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    3798           21 :             if !dry_run {
    3799           19 :                 let end_key = job_desc.compaction_key_range.end;
    3800           19 :                 writer
    3801           19 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    3802           19 :                     .await
    3803           19 :                     .context("failed to finish image layer writer")
    3804           19 :                     .map_err(CompactionError::Other)?
    3805              :             } else {
    3806            2 :                 drop(writer);
    3807            2 :                 Vec::new()
    3808              :             }
    3809              :         } else {
    3810            5 :             Vec::new()
    3811              :         };
    3812              : 
    3813           26 :         let produced_delta_layers = if !dry_run {
    3814           24 :             delta_layer_writer
    3815           24 :                 .finish_with_discard_fn(self, ctx, discard)
    3816           24 :                 .await
    3817           24 :                 .context("failed to finish delta layer writer")
    3818           24 :                 .map_err(CompactionError::Other)?
    3819              :         } else {
    3820            2 :             drop(delta_layer_writer);
    3821            2 :             Vec::new()
    3822              :         };
    3823              : 
    3824              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    3825              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    3826           26 :         let mut compact_to = Vec::new();
    3827           26 :         let mut keep_layers = HashSet::new();
    3828           26 :         let produced_delta_layers_len = produced_delta_layers.len();
    3829           26 :         let produced_image_layers_len = produced_image_layers.len();
    3830           26 : 
    3831           26 :         let layer_selection_by_key = job_desc
    3832           26 :             .selected_layers
    3833           26 :             .iter()
    3834           76 :             .map(|l| (l.layer_desc().key(), l.layer_desc().clone()))
    3835           26 :             .collect::<HashMap<_, _>>();
    3836              : 
    3837           44 :         for action in produced_delta_layers {
    3838           18 :             match action {
    3839           11 :                 BatchWriterResult::Produced(layer) => {
    3840           11 :                     if cfg!(debug_assertions) {
    3841           11 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    3842            0 :                     }
    3843           11 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    3844           11 :                     compact_to.push(layer);
    3845              :                 }
    3846            7 :                 BatchWriterResult::Discarded(l) => {
    3847            7 :                     if cfg!(debug_assertions) {
    3848            7 :                         info!("discarded delta layer: {}", l);
    3849            0 :                     }
    3850            7 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3851            7 :                         stat.discard_delta_layer(layer_desc.file_size());
    3852            7 :                     } else {
    3853            0 :                         tracing::warn!(
    3854            0 :                             "discarded delta layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3855              :                             l
    3856              :                         );
    3857            0 :                         stat.discard_delta_layer(0);
    3858              :                     }
    3859            7 :                     keep_layers.insert(l);
    3860              :                 }
    3861              :             }
    3862              :         }
    3863           27 :         for layer in &rewrote_delta_layers {
    3864            1 :             debug!(
    3865            0 :                 "produced rewritten delta layer: {}",
    3866            0 :                 layer.layer_desc().key()
    3867              :             );
    3868              :             // For now, we include rewritten delta layer size in the "produce_delta_layer". We could
    3869              :             // make it a separate statistics in the future.
    3870            1 :             stat.produce_delta_layer(layer.layer_desc().file_size());
    3871              :         }
    3872           26 :         compact_to.extend(rewrote_delta_layers);
    3873           45 :         for action in produced_image_layers {
    3874           19 :             match action {
    3875           15 :                 BatchWriterResult::Produced(layer) => {
    3876           15 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    3877           15 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    3878           15 :                     compact_to.push(layer);
    3879              :                 }
    3880            4 :                 BatchWriterResult::Discarded(l) => {
    3881            4 :                     debug!("discarded image layer: {}", l);
    3882            4 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3883            4 :                         stat.discard_image_layer(layer_desc.file_size());
    3884            4 :                     } else {
    3885            0 :                         tracing::warn!(
    3886            0 :                             "discarded image layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3887              :                             l
    3888              :                         );
    3889            0 :                         stat.discard_image_layer(0);
    3890              :                     }
    3891            4 :                     keep_layers.insert(l);
    3892              :                 }
    3893              :             }
    3894              :         }
    3895              : 
    3896           26 :         let mut layer_selection = job_desc.selected_layers;
    3897              : 
    3898              :         // Partial compaction might select more data than it processes, e.g., if
    3899              :         // the compaction_key_range only partially overlaps:
    3900              :         //
    3901              :         //         [---compaction_key_range---]
    3902              :         //   [---A----][----B----][----C----][----D----]
    3903              :         //
    3904              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    3905              :         // the compaction key range, so we can always discard them. However, for image
    3906              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    3907              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    3908              :         //
    3909              :         // The created image layers contain whatever is needed from B, C, and from
    3910              :         // `----]` of A, and from  `[---` of D.
    3911              :         //
    3912              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    3913              :         // keep that data.
    3914              :         //
    3915              :         // The solution for now is to keep A and D completely if they are image layers.
    3916              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    3917              :         // is _not_ fully covered by compaction_key_range).
    3918          102 :         for layer in &layer_selection {
    3919           76 :             if !layer.layer_desc().is_delta() {
    3920           33 :                 if !overlaps_with(
    3921           33 :                     &layer.layer_desc().key_range,
    3922           33 :                     &job_desc.compaction_key_range,
    3923           33 :                 ) {
    3924            0 :                     return Err(CompactionError::Other(anyhow!(
    3925            0 :                         "violated constraint: image layer outside of compaction key range"
    3926            0 :                     )));
    3927           33 :                 }
    3928           33 :                 if !fully_contains(
    3929           33 :                     &job_desc.compaction_key_range,
    3930           33 :                     &layer.layer_desc().key_range,
    3931           33 :                 ) {
    3932            4 :                     keep_layers.insert(layer.layer_desc().key());
    3933           29 :                 }
    3934           43 :             }
    3935              :         }
    3936              : 
    3937           76 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    3938           26 : 
    3939           26 :         let time_final_phase = timer.elapsed();
    3940           26 : 
    3941           26 :         stat.time_final_phase_secs = time_final_phase.as_secs_f64();
    3942           26 :         stat.time_to_first_kv_pair_secs = time_to_first_kv_pair
    3943           26 :             .unwrap_or(Duration::ZERO)
    3944           26 :             .as_secs_f64();
    3945           26 :         stat.time_main_loop_secs = time_main_loop.as_secs_f64();
    3946           26 :         stat.time_acquire_lock_secs = time_acquire_lock.as_secs_f64();
    3947           26 :         stat.time_download_layer_secs = time_download_layer.as_secs_f64();
    3948           26 :         stat.time_analyze_secs = time_analyze.as_secs_f64();
    3949           26 :         stat.time_total_secs = begin_timer.elapsed().as_secs_f64();
    3950           26 :         stat.finalize();
    3951           26 : 
    3952           26 :         info!(
    3953            0 :             "gc-compaction statistics: {}",
    3954            0 :             serde_json::to_string(&stat)
    3955            0 :                 .context("failed to serialize gc-compaction statistics")
    3956            0 :                 .map_err(CompactionError::Other)?
    3957              :         );
    3958              : 
    3959           26 :         if dry_run {
    3960            2 :             return Ok(CompactionOutcome::Done);
    3961           24 :         }
    3962           24 : 
    3963           24 :         info!(
    3964            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    3965            0 :             produced_delta_layers_len,
    3966            0 :             produced_image_layers_len,
    3967            0 :             keep_layers.len()
    3968              :         );
    3969              : 
    3970              :         // Step 3: Place back to the layer map.
    3971              : 
    3972              :         // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
    3973           24 :         let all_layers = {
    3974           24 :             let guard = self
    3975           24 :                 .layers
    3976           24 :                 .read(LayerManagerLockHolder::GarbageCollection)
    3977           24 :                 .await;
    3978           24 :             let layer_map = guard.layer_map()?;
    3979           24 :             layer_map.iter_historic_layers().collect_vec()
    3980           24 :         };
    3981           24 : 
    3982           24 :         let mut final_layers = all_layers
    3983           24 :             .iter()
    3984          107 :             .map(|layer| layer.layer_name())
    3985           24 :             .collect::<HashSet<_>>();
    3986           76 :         for layer in &layer_selection {
    3987           52 :             final_layers.remove(&layer.layer_desc().layer_name());
    3988           52 :         }
    3989           51 :         for layer in &compact_to {
    3990           27 :             final_layers.insert(layer.layer_desc().layer_name());
    3991           27 :         }
    3992           24 :         let final_layers = final_layers.into_iter().collect_vec();
    3993              : 
    3994              :         // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
    3995              :         // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
    3996              :         // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
    3997           24 :         if let Some(err) = check_valid_layermap(&final_layers) {
    3998            0 :             return Err(CompactionError::Other(anyhow!(
    3999            0 :                 "gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss",
    4000            0 :                 err
    4001            0 :             )));
    4002           24 :         }
    4003              : 
    4004              :         // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
    4005              :         // operate on L1 layers.
    4006              :         {
    4007              :             // Gc-compaction will rewrite the history of a key. This could happen in two ways:
    4008              :             //
    4009              :             // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
    4010              :             // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
    4011              :             // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
    4012              :             // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
    4013              :             // now gets stored in I at the compact LSN.
    4014              :             //
    4015              :             // ---------------                                       ---------------
    4016              :             //   delta1@LSN20                                         image1@LSN20
    4017              :             // ---------------  (read path collects delta@LSN20,  => ---------------  (read path cannot find anything
    4018              :             //   delta1@LSN10    yields)                                               below LSN 20)
    4019              :             // ---------------
    4020              :             //
    4021              :             // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
    4022              :             // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
    4023              :             // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
    4024              :             //
    4025              :             // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
    4026              :             // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
    4027              :             // layer containing 4, yields, and we update the layer map to put the delta layer.
    4028              :             //
    4029              :             // ---------------                                      ---------------
    4030              :             //   delta1@LSN4                                          image1@LSN4
    4031              :             // ---------------  (read path collects delta@LSN4,  => ---------------  (read path collects LSN4 and LSN1,
    4032              :             //  delta1@LSN1-3    yields)                              delta1@LSN1     which is an invalid history)
    4033              :             // ---------------                                      ---------------
    4034              :             //
    4035              :             // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
    4036              :             // and only allow reads to continue after the update is finished.
    4037              : 
    4038           24 :             let update_guard = self.gc_compaction_layer_update_lock.write().await;
    4039              :             // Acquiring the update guard ensures current read operations end and new read operations are blocked.
    4040              :             // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
    4041           24 :             let mut guard = self
    4042           24 :                 .layers
    4043           24 :                 .write(LayerManagerLockHolder::GarbageCollection)
    4044           24 :                 .await;
    4045           24 :             guard
    4046           24 :                 .open_mut()?
    4047           24 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
    4048           24 :             drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
    4049           24 :         };
    4050           24 : 
    4051           24 :         // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
    4052           24 :         // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
    4053           24 :         // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
    4054           24 :         // be batched into `schedule_compaction_update`.
    4055           24 :         let disk_consistent_lsn = self.disk_consistent_lsn.load();
    4056           24 :         self.schedule_uploads(disk_consistent_lsn, None)
    4057           24 :             .context("failed to schedule uploads")
    4058           24 :             .map_err(CompactionError::Other)?;
    4059              :         // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
    4060              :         // of `compact_from`.
    4061           24 :         let compact_from = {
    4062           24 :             let mut compact_from = Vec::new();
    4063           24 :             let mut compact_to_set = HashMap::new();
    4064           51 :             for layer in &compact_to {
    4065           27 :                 compact_to_set.insert(layer.layer_desc().key(), layer);
    4066           27 :             }
    4067           76 :             for layer in &layer_selection {
    4068           52 :                 if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
    4069            0 :                     tracing::info!(
    4070            0 :                         "skipping delete {} because found same layer key at different generation {}",
    4071              :                         layer,
    4072              :                         to
    4073              :                     );
    4074           52 :                 } else {
    4075           52 :                     compact_from.push(layer.clone());
    4076           52 :                 }
    4077              :             }
    4078           24 :             compact_from
    4079           24 :         };
    4080           24 :         self.remote_client
    4081           24 :             .schedule_compaction_update(&compact_from, &compact_to)?;
    4082              : 
    4083           24 :         drop(gc_lock);
    4084           24 : 
    4085           24 :         Ok(CompactionOutcome::Done)
    4086           28 :     }
    4087              : }
    4088              : 
    4089              : struct TimelineAdaptor {
    4090              :     timeline: Arc<Timeline>,
    4091              : 
    4092              :     keyspace: (Lsn, KeySpace),
    4093              : 
    4094              :     new_deltas: Vec<ResidentLayer>,
    4095              :     new_images: Vec<ResidentLayer>,
    4096              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    4097              : }
    4098              : 
    4099              : impl TimelineAdaptor {
    4100            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    4101            0 :         Self {
    4102            0 :             timeline: timeline.clone(),
    4103            0 :             keyspace,
    4104            0 :             new_images: Vec::new(),
    4105            0 :             new_deltas: Vec::new(),
    4106            0 :             layers_to_delete: Vec::new(),
    4107            0 :         }
    4108            0 :     }
    4109              : 
    4110            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    4111            0 :         let layers_to_delete = {
    4112            0 :             let guard = self
    4113            0 :                 .timeline
    4114            0 :                 .layers
    4115            0 :                 .read(LayerManagerLockHolder::Compaction)
    4116            0 :                 .await;
    4117            0 :             self.layers_to_delete
    4118            0 :                 .iter()
    4119            0 :                 .map(|x| guard.get_from_desc(x))
    4120            0 :                 .collect::<Vec<Layer>>()
    4121            0 :         };
    4122            0 :         self.timeline
    4123            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    4124            0 :             .await?;
    4125              : 
    4126            0 :         self.timeline
    4127            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    4128              : 
    4129            0 :         self.new_deltas.clear();
    4130            0 :         self.layers_to_delete.clear();
    4131            0 :         Ok(())
    4132            0 :     }
    4133              : }
    4134              : 
    4135              : #[derive(Clone)]
    4136              : struct ResidentDeltaLayer(ResidentLayer);
    4137              : #[derive(Clone)]
    4138              : struct ResidentImageLayer(ResidentLayer);
    4139              : 
    4140              : impl CompactionJobExecutor for TimelineAdaptor {
    4141              :     type Key = pageserver_api::key::Key;
    4142              : 
    4143              :     type Layer = OwnArc<PersistentLayerDesc>;
    4144              :     type DeltaLayer = ResidentDeltaLayer;
    4145              :     type ImageLayer = ResidentImageLayer;
    4146              : 
    4147              :     type RequestContext = crate::context::RequestContext;
    4148              : 
    4149            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    4150            0 :         self.timeline.get_shard_identity()
    4151            0 :     }
    4152              : 
    4153            0 :     async fn get_layers(
    4154            0 :         &mut self,
    4155            0 :         key_range: &Range<Key>,
    4156            0 :         lsn_range: &Range<Lsn>,
    4157            0 :         _ctx: &RequestContext,
    4158            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    4159            0 :         self.flush_updates().await?;
    4160              : 
    4161            0 :         let guard = self
    4162            0 :             .timeline
    4163            0 :             .layers
    4164            0 :             .read(LayerManagerLockHolder::Compaction)
    4165            0 :             .await;
    4166            0 :         let layer_map = guard.layer_map()?;
    4167              : 
    4168            0 :         let result = layer_map
    4169            0 :             .iter_historic_layers()
    4170            0 :             .filter(|l| {
    4171            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    4172            0 :             })
    4173            0 :             .map(OwnArc)
    4174            0 :             .collect();
    4175            0 :         Ok(result)
    4176            0 :     }
    4177              : 
    4178            0 :     async fn get_keyspace(
    4179            0 :         &mut self,
    4180            0 :         key_range: &Range<Key>,
    4181            0 :         lsn: Lsn,
    4182            0 :         _ctx: &RequestContext,
    4183            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    4184            0 :         if lsn == self.keyspace.0 {
    4185            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    4186            0 :                 &self.keyspace.1.ranges,
    4187            0 :                 key_range,
    4188            0 :             ))
    4189              :         } else {
    4190              :             // The current compaction implementation only ever requests the key space
    4191              :             // at the compaction end LSN.
    4192            0 :             anyhow::bail!("keyspace not available for requested lsn");
    4193              :         }
    4194            0 :     }
    4195              : 
    4196            0 :     async fn downcast_delta_layer(
    4197            0 :         &self,
    4198            0 :         layer: &OwnArc<PersistentLayerDesc>,
    4199            0 :         ctx: &RequestContext,
    4200            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    4201            0 :         // this is a lot more complex than a simple downcast...
    4202            0 :         if layer.is_delta() {
    4203            0 :             let l = {
    4204            0 :                 let guard = self
    4205            0 :                     .timeline
    4206            0 :                     .layers
    4207            0 :                     .read(LayerManagerLockHolder::Compaction)
    4208            0 :                     .await;
    4209            0 :                 guard.get_from_desc(layer)
    4210              :             };
    4211            0 :             let result = l.download_and_keep_resident(ctx).await?;
    4212              : 
    4213            0 :             Ok(Some(ResidentDeltaLayer(result)))
    4214              :         } else {
    4215            0 :             Ok(None)
    4216              :         }
    4217            0 :     }
    4218              : 
    4219            0 :     async fn create_image(
    4220            0 :         &mut self,
    4221            0 :         lsn: Lsn,
    4222            0 :         key_range: &Range<Key>,
    4223            0 :         ctx: &RequestContext,
    4224            0 :     ) -> anyhow::Result<()> {
    4225            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    4226            0 :     }
    4227              : 
    4228            0 :     async fn create_delta(
    4229            0 :         &mut self,
    4230            0 :         lsn_range: &Range<Lsn>,
    4231            0 :         key_range: &Range<Key>,
    4232            0 :         input_layers: &[ResidentDeltaLayer],
    4233            0 :         ctx: &RequestContext,
    4234            0 :     ) -> anyhow::Result<()> {
    4235            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    4236              : 
    4237            0 :         let mut all_entries = Vec::new();
    4238            0 :         for dl in input_layers.iter() {
    4239            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    4240              :         }
    4241              : 
    4242              :         // The current stdlib sorting implementation is designed in a way where it is
    4243              :         // particularly fast where the slice is made up of sorted sub-ranges.
    4244            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    4245              : 
    4246            0 :         let mut writer = DeltaLayerWriter::new(
    4247            0 :             self.timeline.conf,
    4248            0 :             self.timeline.timeline_id,
    4249            0 :             self.timeline.tenant_shard_id,
    4250            0 :             key_range.start,
    4251            0 :             lsn_range.clone(),
    4252            0 :             &self.timeline.gate,
    4253            0 :             self.timeline.cancel.clone(),
    4254            0 :             ctx,
    4255            0 :         )
    4256            0 :         .await?;
    4257              : 
    4258            0 :         let mut dup_values = 0;
    4259            0 : 
    4260            0 :         // This iterator walks through all key-value pairs from all the layers
    4261            0 :         // we're compacting, in key, LSN order.
    4262            0 :         let mut prev: Option<(Key, Lsn)> = None;
    4263              :         for &DeltaEntry {
    4264            0 :             key, lsn, ref val, ..
    4265            0 :         } in all_entries.iter()
    4266              :         {
    4267            0 :             if prev == Some((key, lsn)) {
    4268              :                 // This is a duplicate. Skip it.
    4269              :                 //
    4270              :                 // It can happen if compaction is interrupted after writing some
    4271              :                 // layers but not all, and we are compacting the range again.
    4272              :                 // The calculations in the algorithm assume that there are no
    4273              :                 // duplicates, so the math on targeted file size is likely off,
    4274              :                 // and we will create smaller files than expected.
    4275            0 :                 dup_values += 1;
    4276            0 :                 continue;
    4277            0 :             }
    4278              : 
    4279            0 :             let value = val.load(ctx).await?;
    4280              : 
    4281            0 :             writer.put_value(key, lsn, value, ctx).await?;
    4282              : 
    4283            0 :             prev = Some((key, lsn));
    4284              :         }
    4285              : 
    4286            0 :         if dup_values > 0 {
    4287            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    4288            0 :         }
    4289              : 
    4290            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    4291            0 :             Err(anyhow::anyhow!(
    4292            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    4293            0 :             ))
    4294            0 :         });
    4295              : 
    4296            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    4297            0 :         let new_delta_layer =
    4298            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    4299              : 
    4300            0 :         self.new_deltas.push(new_delta_layer);
    4301            0 :         Ok(())
    4302            0 :     }
    4303              : 
    4304            0 :     async fn delete_layer(
    4305            0 :         &mut self,
    4306            0 :         layer: &OwnArc<PersistentLayerDesc>,
    4307            0 :         _ctx: &RequestContext,
    4308            0 :     ) -> anyhow::Result<()> {
    4309            0 :         self.layers_to_delete.push(layer.clone().0);
    4310            0 :         Ok(())
    4311            0 :     }
    4312              : }
    4313              : 
    4314              : impl TimelineAdaptor {
    4315            0 :     async fn create_image_impl(
    4316            0 :         &mut self,
    4317            0 :         lsn: Lsn,
    4318            0 :         key_range: &Range<Key>,
    4319            0 :         ctx: &RequestContext,
    4320            0 :     ) -> Result<(), CreateImageLayersError> {
    4321            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    4322              : 
    4323            0 :         let image_layer_writer = ImageLayerWriter::new(
    4324            0 :             self.timeline.conf,
    4325            0 :             self.timeline.timeline_id,
    4326            0 :             self.timeline.tenant_shard_id,
    4327            0 :             key_range,
    4328            0 :             lsn,
    4329            0 :             &self.timeline.gate,
    4330            0 :             self.timeline.cancel.clone(),
    4331            0 :             ctx,
    4332            0 :         )
    4333            0 :         .await?;
    4334              : 
    4335            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    4336            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    4337            0 :                 "failpoint image-layer-writer-fail-before-finish"
    4338            0 :             )))
    4339            0 :         });
    4340              : 
    4341            0 :         let keyspace = KeySpace {
    4342            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    4343              :         };
    4344              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    4345            0 :         let outcome = self
    4346            0 :             .timeline
    4347            0 :             .create_image_layer_for_rel_blocks(
    4348            0 :                 &keyspace,
    4349            0 :                 image_layer_writer,
    4350            0 :                 lsn,
    4351            0 :                 ctx,
    4352            0 :                 key_range.clone(),
    4353            0 :                 IoConcurrency::sequential(),
    4354            0 :             )
    4355            0 :             .await?;
    4356              : 
    4357              :         if let ImageLayerCreationOutcome::Generated {
    4358            0 :             unfinished_image_layer,
    4359            0 :         } = outcome
    4360              :         {
    4361            0 :             let (desc, path) = unfinished_image_layer.finish(ctx).await?;
    4362            0 :             let image_layer =
    4363            0 :                 Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    4364            0 :             self.new_images.push(image_layer);
    4365            0 :         }
    4366              : 
    4367            0 :         timer.stop_and_record();
    4368            0 : 
    4369            0 :         Ok(())
    4370            0 :     }
    4371              : }
    4372              : 
    4373              : impl CompactionRequestContext for crate::context::RequestContext {}
    4374              : 
    4375              : #[derive(Debug, Clone)]
    4376              : pub struct OwnArc<T>(pub Arc<T>);
    4377              : 
    4378              : impl<T> Deref for OwnArc<T> {
    4379              :     type Target = <Arc<T> as Deref>::Target;
    4380            0 :     fn deref(&self) -> &Self::Target {
    4381            0 :         &self.0
    4382            0 :     }
    4383              : }
    4384              : 
    4385              : impl<T> AsRef<T> for OwnArc<T> {
    4386            0 :     fn as_ref(&self) -> &T {
    4387            0 :         self.0.as_ref()
    4388            0 :     }
    4389              : }
    4390              : 
    4391              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    4392            0 :     fn key_range(&self) -> &Range<Key> {
    4393            0 :         &self.key_range
    4394            0 :     }
    4395            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4396            0 :         &self.lsn_range
    4397            0 :     }
    4398            0 :     fn file_size(&self) -> u64 {
    4399            0 :         self.file_size
    4400            0 :     }
    4401            0 :     fn short_id(&self) -> std::string::String {
    4402            0 :         self.as_ref().short_id().to_string()
    4403            0 :     }
    4404            0 :     fn is_delta(&self) -> bool {
    4405            0 :         self.as_ref().is_delta()
    4406            0 :     }
    4407              : }
    4408              : 
    4409              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    4410            0 :     fn key_range(&self) -> &Range<Key> {
    4411            0 :         &self.layer_desc().key_range
    4412            0 :     }
    4413            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4414            0 :         &self.layer_desc().lsn_range
    4415            0 :     }
    4416            0 :     fn file_size(&self) -> u64 {
    4417            0 :         self.layer_desc().file_size
    4418            0 :     }
    4419            0 :     fn short_id(&self) -> std::string::String {
    4420            0 :         self.layer_desc().short_id().to_string()
    4421            0 :     }
    4422            0 :     fn is_delta(&self) -> bool {
    4423            0 :         true
    4424            0 :     }
    4425              : }
    4426              : 
    4427              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    4428            0 :     fn key_range(&self) -> &Range<Key> {
    4429            0 :         &self.0.layer_desc().key_range
    4430            0 :     }
    4431            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4432            0 :         &self.0.layer_desc().lsn_range
    4433            0 :     }
    4434            0 :     fn file_size(&self) -> u64 {
    4435            0 :         self.0.layer_desc().file_size
    4436            0 :     }
    4437            0 :     fn short_id(&self) -> std::string::String {
    4438            0 :         self.0.layer_desc().short_id().to_string()
    4439            0 :     }
    4440            0 :     fn is_delta(&self) -> bool {
    4441            0 :         true
    4442            0 :     }
    4443              : }
    4444              : 
    4445              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    4446              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    4447              : 
    4448            0 :     async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    4449            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    4450            0 :     }
    4451              : }
    4452              : 
    4453              : impl CompactionLayer<Key> for ResidentImageLayer {
    4454            0 :     fn key_range(&self) -> &Range<Key> {
    4455            0 :         &self.0.layer_desc().key_range
    4456            0 :     }
    4457            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4458            0 :         &self.0.layer_desc().lsn_range
    4459            0 :     }
    4460            0 :     fn file_size(&self) -> u64 {
    4461            0 :         self.0.layer_desc().file_size
    4462            0 :     }
    4463            0 :     fn short_id(&self) -> std::string::String {
    4464            0 :         self.0.layer_desc().short_id().to_string()
    4465            0 :     }
    4466            0 :     fn is_delta(&self) -> bool {
    4467            0 :         false
    4468            0 :     }
    4469              : }
    4470              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta