LCOV - code coverage report
Current view: top level - libs/pageserver_api/src - shard.rs (source / functions) Coverage Total Hit
Test: 4be46b1c0003aa3bbac9ade362c676b419df4c20.info Lines: 90.4 % 356 322
Test Date: 2025-07-22 17:50:06 Functions: 60.9 % 46 28

            Line data    Source code
       1              : //! See docs/rfcs/031-sharding-static.md for an overview of sharding.
       2              : //!
       3              : //! This module contains a variety of types used to represent the concept of sharding
       4              : //! a Neon tenant across multiple physical shards.  Since there are quite a few of these,
       5              : //! we provide an summary here.
       6              : //!
       7              : //! Types used to describe shards:
       8              : //! - [`ShardCount`] describes how many shards make up a tenant, plus the magic `unsharded` value
       9              : //!   which identifies a tenant which is not shard-aware.  This means its storage paths do not include
      10              : //!   a shard suffix.
      11              : //! - [`ShardNumber`] is simply the zero-based index of a shard within a tenant.
      12              : //! - [`ShardIndex`] is the 2-tuple of `ShardCount` and `ShardNumber`, it's just like a `TenantShardId`
      13              : //!   without the tenant ID.  This is useful for things that are implicitly scoped to a particular
      14              : //!   tenant, such as layer files.
      15              : //! - [`ShardIdentity`]` is the full description of a particular shard's parameters, in sufficient
      16              : //!   detail to convert a [`Key`] to a [`ShardNumber`] when deciding where to write/read.
      17              : //! - The [`ShardSlug`] is a terse formatter for ShardCount and ShardNumber, written as
      18              : //!   four hex digits.  An unsharded tenant is `0000`.
      19              : //! - [`TenantShardId`] is the unique ID of a particular shard within a particular tenant
      20              : //!
      21              : //! Types used to describe the parameters for data distribution in a sharded tenant:
      22              : //! - [`ShardStripeSize`] controls how long contiguous runs of [`Key`]s (stripes) are when distributed across
      23              : //!   multiple shards.  Its value is given in 8kiB pages.
      24              : //! - [`ShardLayout`] describes the data distribution scheme, and at time of writing is
      25              : //!   always zero: this is provided for future upgrades that might introduce different
      26              : //!   data distribution schemes.
      27              : //!
      28              : //! Examples:
      29              : //! - A legacy unsharded tenant has one shard with ShardCount(0), ShardNumber(0), and its slug is 0000
      30              : //! - A single sharded tenant has one shard with ShardCount(1), ShardNumber(0), and its slug is 0001
      31              : //! - In a tenant with 4 shards, each shard has ShardCount(N), ShardNumber(i) where i in 0..N-1 (inclusive),
      32              : //!   and their slugs are 0004, 0104, 0204, and 0304.
      33              : 
      34              : use std::hash::{Hash, Hasher};
      35              : 
      36              : #[doc(inline)]
      37              : pub use ::utils::shard::*;
      38              : use postgres_ffi_types::forknum::INIT_FORKNUM;
      39              : use serde::{Deserialize, Serialize};
      40              : use utils::critical;
      41              : 
      42              : use crate::key::Key;
      43              : use crate::models::ShardParameters;
      44              : 
      45              : /// The ShardIdentity contains enough information to map a [`Key`] to a [`ShardNumber`],
      46              : /// and to check whether that [`ShardNumber`] is the same as the current shard.
      47            0 : #[derive(Clone, Copy, Serialize, Deserialize, Eq, PartialEq, Debug)]
      48              : pub struct ShardIdentity {
      49              :     pub number: ShardNumber,
      50              :     pub count: ShardCount,
      51              :     pub stripe_size: ShardStripeSize,
      52              :     layout: ShardLayout,
      53              : }
      54              : 
      55              : /// Hash implementation
      56              : ///
      57              : /// The stripe size cannot change dynamically, so it can be ignored for efficiency reasons.
      58              : impl Hash for ShardIdentity {
      59       148146 :     fn hash<H: Hasher>(&self, state: &mut H) {
      60              :         let ShardIdentity {
      61       148146 :             number,
      62       148146 :             count,
      63              :             stripe_size: _,
      64              :             layout: _,
      65       148146 :         } = self;
      66              : 
      67       148146 :         number.0.hash(state);
      68       148146 :         count.0.hash(state);
      69            0 :     }
      70              : }
      71              : 
      72              : /// Layout version: for future upgrades where we might change how the key->shard mapping works
      73            0 : #[derive(Clone, Copy, Serialize, Deserialize, Eq, PartialEq, Hash, Debug)]
      74              : pub struct ShardLayout(u8);
      75              : 
      76              : const LAYOUT_V1: ShardLayout = ShardLayout(1);
      77              : /// ShardIdentity uses a magic layout value to indicate if it is unusable
      78              : const LAYOUT_BROKEN: ShardLayout = ShardLayout(255);
      79              : 
      80              : /// The default stripe size in pages. 16 MiB divided by 8 kiB page size.
      81              : ///
      82              : /// A lower stripe size distributes ingest load better across shards, but reduces IO amortization.
      83              : /// 16 MiB appears to be a reasonable balance: <https://github.com/neondatabase/neon/pull/10510>.
      84              : pub const DEFAULT_STRIPE_SIZE: ShardStripeSize = ShardStripeSize(16 * 1024 / 8);
      85              : 
      86              : #[derive(thiserror::Error, Debug, PartialEq, Eq)]
      87              : pub enum ShardConfigError {
      88              :     #[error("Invalid shard count")]
      89              :     InvalidCount,
      90              :     #[error("Invalid shard number")]
      91              :     InvalidNumber,
      92              :     #[error("Invalid stripe size")]
      93              :     InvalidStripeSize,
      94              : }
      95              : 
      96              : impl ShardIdentity {
      97              :     /// An identity with number=0 count=0 is a "none" identity, which represents legacy
      98              :     /// tenants.  Modern single-shard tenants should not use this: they should
      99              :     /// have number=0 count=1.
     100          646 :     pub const fn unsharded() -> Self {
     101          646 :         Self {
     102          646 :             number: ShardNumber(0),
     103          646 :             count: ShardCount(0),
     104          646 :             layout: LAYOUT_V1,
     105          646 :             stripe_size: DEFAULT_STRIPE_SIZE,
     106          646 :         }
     107          646 :     }
     108              : 
     109              :     /// An unsharded identity with the given stripe size (if non-zero). This is typically used to
     110              :     /// carry over a stripe size for an unsharded tenant from persistent storage.
     111            0 :     pub fn unsharded_with_stripe_size(stripe_size: ShardStripeSize) -> Self {
     112            0 :         let mut shard_identity = Self::unsharded();
     113            0 :         if stripe_size.0 > 0 {
     114            0 :             shard_identity.stripe_size = stripe_size;
     115            0 :         }
     116            0 :         shard_identity
     117            0 :     }
     118              : 
     119              :     /// A broken instance of this type is only used for `TenantState::Broken` tenants,
     120              :     /// which are constructed in code paths that don't have access to proper configuration.
     121              :     ///
     122              :     /// A ShardIdentity in this state may not be used for anything, and should not be persisted.
     123              :     /// Enforcement is via assertions, to avoid making our interface fallible for this
     124              :     /// edge case: it is the Tenant's responsibility to avoid trying to do any I/O when in a broken
     125              :     /// state, and by extension to avoid trying to do any page->shard resolution.
     126            0 :     pub fn broken(number: ShardNumber, count: ShardCount) -> Self {
     127            0 :         Self {
     128            0 :             number,
     129            0 :             count,
     130            0 :             layout: LAYOUT_BROKEN,
     131            0 :             stripe_size: DEFAULT_STRIPE_SIZE,
     132            0 :         }
     133            0 :     }
     134              : 
     135              :     /// The "unsharded" value is distinct from simply having a single shard: it represents
     136              :     /// a tenant which is not shard-aware at all, and whose storage paths will not include
     137              :     /// a shard suffix.
     138          191 :     pub fn is_unsharded(&self) -> bool {
     139          191 :         self.number == ShardNumber(0) && self.count == ShardCount(0)
     140          191 :     }
     141              : 
     142              :     /// Count must be nonzero, and number must be < count. To construct
     143              :     /// the legacy case (count==0), use Self::unsharded instead.
     144        13358 :     pub fn new(
     145        13358 :         number: ShardNumber,
     146        13358 :         count: ShardCount,
     147        13358 :         stripe_size: ShardStripeSize,
     148        13358 :     ) -> Result<Self, ShardConfigError> {
     149        13358 :         if count.0 == 0 {
     150            1 :             Err(ShardConfigError::InvalidCount)
     151        13357 :         } else if number.0 > count.0 - 1 {
     152            3 :             Err(ShardConfigError::InvalidNumber)
     153        13354 :         } else if stripe_size.0 == 0 {
     154            1 :             Err(ShardConfigError::InvalidStripeSize)
     155              :         } else {
     156        13353 :             Ok(Self {
     157        13353 :                 number,
     158        13353 :                 count,
     159        13353 :                 layout: LAYOUT_V1,
     160        13353 :                 stripe_size,
     161        13353 :             })
     162              :         }
     163        13358 :     }
     164              : 
     165              :     /// For use when creating ShardIdentity instances for new shards, where a creation request
     166              :     /// specifies the ShardParameters that apply to all shards.
     167          122 :     pub fn from_params(number: ShardNumber, params: ShardParameters) -> Self {
     168          122 :         Self {
     169          122 :             number,
     170          122 :             count: params.count,
     171          122 :             layout: LAYOUT_V1,
     172          122 :             stripe_size: params.stripe_size,
     173          122 :         }
     174          122 :     }
     175              : 
     176              :     /// Asserts that the given shard identities are equal. Changes to shard parameters will likely
     177              :     /// result in data corruption.
     178            0 :     pub fn assert_equal(&self, other: ShardIdentity) {
     179            0 :         if self != &other {
     180              :             // TODO: for now, we're conservative and just log errors in production. Turn this into a
     181              :             // real assertion when we're confident it doesn't misfire, and also reject requests that
     182              :             // attempt to change it with an error response.
     183            0 :             critical!("shard identity mismatch: {self:?} != {other:?}");
     184            0 :         }
     185            0 :     }
     186              : 
     187      2731458 :     fn is_broken(&self) -> bool {
     188      2731458 :         self.layout == LAYOUT_BROKEN
     189      2731458 :     }
     190              : 
     191         1542 :     pub fn get_shard_number(&self, key: &Key) -> ShardNumber {
     192         1542 :         assert!(!self.is_broken());
     193         1542 :         key_to_shard_number(self.count, self.stripe_size, key)
     194         1542 :     }
     195              : 
     196              :     /// Return true if the key is stored only on this shard. This does not include
     197              :     /// global keys, see is_key_global().
     198              :     ///
     199              :     /// Shards must ingest _at least_ keys which return true from this check.
     200      2729916 :     pub fn is_key_local(&self, key: &Key) -> bool {
     201      2729916 :         assert!(!self.is_broken());
     202      2729916 :         if self.count < ShardCount(2) || (key_is_shard0(key) && self.number == ShardNumber(0)) {
     203      2693817 :             true
     204              :         } else {
     205        36099 :             key_to_shard_number(self.count, self.stripe_size, key) == self.number
     206              :         }
     207      2729916 :     }
     208              : 
     209              :     /// Return true if the key should be stored on all shards, not just one.
     210        36192 :     pub fn is_key_global(&self, key: &Key) -> bool {
     211        36192 :         if key.is_slru_block_key()
     212        36192 :             || key.is_slru_segment_size_key()
     213        36192 :             || key.is_aux_file_key()
     214        36192 :             || key.is_slru_dir_key()
     215              :         {
     216              :             // Special keys that are only stored on shard 0
     217           24 :             false
     218        36168 :         } else if key.is_rel_block_key() {
     219              :             // Ordinary relation blocks are distributed across shards
     220        36086 :             false
     221           82 :         } else if key.is_rel_size_key() {
     222              :             // All shards maintain rel size keys (although only shard 0 is responsible for
     223              :             // keeping it strictly accurate, other shards just reflect the highest block they've ingested)
     224            5 :             true
     225              :         } else {
     226              :             // For everything else, we assume it must be kept everywhere, because ingest code
     227              :             // might assume this -- this covers functionality where the ingest code has
     228              :             // not (yet) been made fully shard aware.
     229           77 :             true
     230              :         }
     231        36192 :     }
     232              : 
     233              :     /// Return true if the key should be discarded if found in this shard's
     234              :     /// data store, e.g. during compaction after a split.
     235              :     ///
     236              :     /// Shards _may_ drop keys which return false here, but are not obliged to.
     237      1414890 :     pub fn is_key_disposable(&self, key: &Key) -> bool {
     238      1414890 :         if self.count < ShardCount(2) {
     239              :             // Fast path: unsharded tenant doesn't dispose of anything
     240      1378710 :             return false;
     241        36180 :         }
     242              : 
     243        36180 :         if self.is_key_global(key) {
     244           70 :             false
     245              :         } else {
     246        36110 :             !self.is_key_local(key)
     247              :         }
     248      1414890 :     }
     249              : 
     250              :     /// Obtains the shard number and count combined into a `ShardIndex`.
     251          189 :     pub fn shard_index(&self) -> ShardIndex {
     252          189 :         ShardIndex {
     253          189 :             shard_count: self.count,
     254          189 :             shard_number: self.number,
     255          189 :         }
     256          189 :     }
     257              : 
     258            4 :     pub fn shard_slug(&self) -> String {
     259            4 :         if self.count > ShardCount(0) {
     260            4 :             format!("-{:02x}{:02x}", self.number.0, self.count.0)
     261              :         } else {
     262            0 :             String::new()
     263              :         }
     264            4 :     }
     265              : 
     266              :     /// Convenience for checking if this identity is the 0th shard in a tenant,
     267              :     /// for special cases on shard 0 such as ingesting relation sizes.
     268         1487 :     pub fn is_shard_zero(&self) -> bool {
     269         1487 :         self.number == ShardNumber(0)
     270         1487 :     }
     271              : }
     272              : 
     273              : /// Whether this key is always held on shard 0 (e.g. shard 0 holds all SLRU keys
     274              : /// in order to be able to serve basebackup requests without peer communication).
     275        72248 : fn key_is_shard0(key: &Key) -> bool {
     276              :     // To decide what to shard out to shards >0, we apply a simple rule that only
     277              :     // relation pages are distributed to shards other than shard zero. Everything else gets
     278              :     // stored on shard 0.  This guarantees that shard 0 can independently serve basebackup
     279              :     // requests, and any request other than those for particular blocks in relations.
     280              :     //
     281              :     // The only exception to this rule is "initfork" data -- this relates to postgres's UNLOGGED table
     282              :     // type. These are special relations, usually with only 0 or 1 blocks, and we store them on shard 0
     283              :     // because they must be included in basebackups.
     284        72248 :     let is_initfork = key.field5 == INIT_FORKNUM;
     285              : 
     286        72248 :     !key.is_rel_block_key() || is_initfork
     287        72248 : }
     288              : 
     289              : /// Provide the same result as the function in postgres `hashfn.h` with the same name
     290        72195 : fn murmurhash32(mut h: u32) -> u32 {
     291        72195 :     h ^= h >> 16;
     292        72195 :     h = h.wrapping_mul(0x85ebca6b);
     293        72195 :     h ^= h >> 13;
     294        72195 :     h = h.wrapping_mul(0xc2b2ae35);
     295        72195 :     h ^= h >> 16;
     296        72195 :     h
     297        72195 : }
     298              : 
     299              : /// Provide the same result as the function in postgres `hashfn.h` with the same name
     300        36098 : fn hash_combine(mut a: u32, mut b: u32) -> u32 {
     301        36098 :     b = b.wrapping_add(0x9e3779b9);
     302        36098 :     b = b.wrapping_add(a << 6);
     303        36098 :     b = b.wrapping_add(a >> 2);
     304              : 
     305        36098 :     a ^= b;
     306        36098 :     a
     307        36098 : }
     308              : 
     309              : /// Where a Key is to be distributed across shards, select the shard.  This function
     310              : /// does not account for keys that should be broadcast across shards.
     311              : ///
     312              : /// The hashing in this function must exactly match what we do in postgres smgr
     313              : /// code.  The resulting distribution of pages is intended to preserve locality within
     314              : /// `stripe_size` ranges of contiguous block numbers in the same relation, while otherwise
     315              : /// distributing data pseudo-randomly.
     316              : ///
     317              : /// The mapping of key to shard is not stable across changes to ShardCount: this is intentional
     318              : /// and will be handled at higher levels when shards are split.
     319        37642 : pub fn key_to_shard_number(
     320        37642 :     count: ShardCount,
     321        37642 :     stripe_size: ShardStripeSize,
     322        37642 :     key: &Key,
     323        37642 : ) -> ShardNumber {
     324              :     // Fast path for un-sharded tenants or broadcast keys
     325        37642 :     if count < ShardCount(2) || key_is_shard0(key) {
     326         1545 :         return ShardNumber(0);
     327        36097 :     }
     328              : 
     329              :     // relNode
     330        36097 :     let mut hash = murmurhash32(key.field4);
     331              :     // blockNum/stripe size
     332        36097 :     hash = hash_combine(hash, murmurhash32(key.field6 / stripe_size.0));
     333              : 
     334        36097 :     ShardNumber((hash % count.0 as u32) as u8)
     335        37642 : }
     336              : 
     337              : /// For debugging, while not exposing the internals.
     338              : #[derive(Debug)]
     339              : #[allow(unused)] // used by debug formatting by pagectl
     340              : struct KeyShardingInfo {
     341              :     shard0: bool,
     342              :     shard_number: ShardNumber,
     343              : }
     344              : 
     345            0 : pub fn describe(
     346            0 :     key: &Key,
     347            0 :     shard_count: ShardCount,
     348            0 :     stripe_size: ShardStripeSize,
     349            0 : ) -> impl std::fmt::Debug {
     350            0 :     KeyShardingInfo {
     351            0 :         shard0: key_is_shard0(key),
     352            0 :         shard_number: key_to_shard_number(shard_count, stripe_size, key),
     353            0 :     }
     354            0 : }
     355              : 
     356              : #[cfg(test)]
     357              : mod tests {
     358              :     use std::str::FromStr;
     359              : 
     360              :     use utils::Hex;
     361              :     use utils::id::TenantId;
     362              : 
     363              :     use super::*;
     364              : 
     365              :     const EXAMPLE_TENANT_ID: &str = "1f359dd625e519a1a4e8d7509690f6fc";
     366              : 
     367              :     #[test]
     368            1 :     fn tenant_shard_id_string() -> Result<(), hex::FromHexError> {
     369            1 :         let example = TenantShardId {
     370            1 :             tenant_id: TenantId::from_str(EXAMPLE_TENANT_ID).unwrap(),
     371            1 :             shard_count: ShardCount(10),
     372            1 :             shard_number: ShardNumber(7),
     373            1 :         };
     374              : 
     375            1 :         let encoded = format!("{example}");
     376              : 
     377            1 :         let expected = format!("{EXAMPLE_TENANT_ID}-070a");
     378            1 :         assert_eq!(&encoded, &expected);
     379              : 
     380            1 :         let decoded = TenantShardId::from_str(&encoded)?;
     381              : 
     382            1 :         assert_eq!(example, decoded);
     383              : 
     384            1 :         Ok(())
     385            1 :     }
     386              : 
     387              :     #[test]
     388            1 :     fn tenant_shard_id_binary() -> Result<(), hex::FromHexError> {
     389            1 :         let example = TenantShardId {
     390            1 :             tenant_id: TenantId::from_str(EXAMPLE_TENANT_ID).unwrap(),
     391            1 :             shard_count: ShardCount(10),
     392            1 :             shard_number: ShardNumber(7),
     393            1 :         };
     394              : 
     395            1 :         let encoded = bincode::serialize(&example).unwrap();
     396            1 :         let expected: [u8; 18] = [
     397            1 :             0x1f, 0x35, 0x9d, 0xd6, 0x25, 0xe5, 0x19, 0xa1, 0xa4, 0xe8, 0xd7, 0x50, 0x96, 0x90,
     398            1 :             0xf6, 0xfc, 0x07, 0x0a,
     399            1 :         ];
     400            1 :         assert_eq!(Hex(&encoded), Hex(&expected));
     401              : 
     402            1 :         let decoded = bincode::deserialize(&encoded).unwrap();
     403              : 
     404            1 :         assert_eq!(example, decoded);
     405              : 
     406            1 :         Ok(())
     407            1 :     }
     408              : 
     409              :     #[test]
     410            1 :     fn tenant_shard_id_backward_compat() -> Result<(), hex::FromHexError> {
     411              :         // Test that TenantShardId can decode a TenantId in human
     412              :         // readable form
     413            1 :         let example = TenantId::from_str(EXAMPLE_TENANT_ID).unwrap();
     414            1 :         let encoded = format!("{example}");
     415              : 
     416            1 :         assert_eq!(&encoded, EXAMPLE_TENANT_ID);
     417              : 
     418            1 :         let decoded = TenantShardId::from_str(&encoded)?;
     419              : 
     420            1 :         assert_eq!(example, decoded.tenant_id);
     421            1 :         assert_eq!(decoded.shard_count, ShardCount(0));
     422            1 :         assert_eq!(decoded.shard_number, ShardNumber(0));
     423              : 
     424            1 :         Ok(())
     425            1 :     }
     426              : 
     427              :     #[test]
     428            1 :     fn tenant_shard_id_forward_compat() -> Result<(), hex::FromHexError> {
     429              :         // Test that a legacy TenantShardId encodes into a form that
     430              :         // can be decoded as TenantId
     431            1 :         let example_tenant_id = TenantId::from_str(EXAMPLE_TENANT_ID).unwrap();
     432            1 :         let example = TenantShardId::unsharded(example_tenant_id);
     433            1 :         let encoded = format!("{example}");
     434              : 
     435            1 :         assert_eq!(&encoded, EXAMPLE_TENANT_ID);
     436              : 
     437            1 :         let decoded = TenantId::from_str(&encoded)?;
     438              : 
     439            1 :         assert_eq!(example_tenant_id, decoded);
     440              : 
     441            1 :         Ok(())
     442            1 :     }
     443              : 
     444              :     #[test]
     445            1 :     fn tenant_shard_id_legacy_binary() -> Result<(), hex::FromHexError> {
     446              :         // Unlike in human readable encoding, binary encoding does not
     447              :         // do any special handling of legacy unsharded TenantIds: this test
     448              :         // is equivalent to the main test for binary encoding, just verifying
     449              :         // that the same behavior applies when we have used `unsharded()` to
     450              :         // construct a TenantShardId.
     451            1 :         let example = TenantShardId::unsharded(TenantId::from_str(EXAMPLE_TENANT_ID).unwrap());
     452            1 :         let encoded = bincode::serialize(&example).unwrap();
     453              : 
     454            1 :         let expected: [u8; 18] = [
     455            1 :             0x1f, 0x35, 0x9d, 0xd6, 0x25, 0xe5, 0x19, 0xa1, 0xa4, 0xe8, 0xd7, 0x50, 0x96, 0x90,
     456            1 :             0xf6, 0xfc, 0x00, 0x00,
     457            1 :         ];
     458            1 :         assert_eq!(Hex(&encoded), Hex(&expected));
     459              : 
     460            1 :         let decoded = bincode::deserialize::<TenantShardId>(&encoded).unwrap();
     461            1 :         assert_eq!(example, decoded);
     462              : 
     463            1 :         Ok(())
     464            1 :     }
     465              : 
     466              :     #[test]
     467            1 :     fn shard_identity_validation() -> Result<(), ShardConfigError> {
     468              :         // Happy cases
     469            1 :         ShardIdentity::new(ShardNumber(0), ShardCount(1), DEFAULT_STRIPE_SIZE)?;
     470            1 :         ShardIdentity::new(ShardNumber(0), ShardCount(1), ShardStripeSize(1))?;
     471            1 :         ShardIdentity::new(ShardNumber(254), ShardCount(255), ShardStripeSize(1))?;
     472              : 
     473            1 :         assert_eq!(
     474            1 :             ShardIdentity::new(ShardNumber(0), ShardCount(0), DEFAULT_STRIPE_SIZE),
     475              :             Err(ShardConfigError::InvalidCount)
     476              :         );
     477            1 :         assert_eq!(
     478            1 :             ShardIdentity::new(ShardNumber(10), ShardCount(10), DEFAULT_STRIPE_SIZE),
     479              :             Err(ShardConfigError::InvalidNumber)
     480              :         );
     481            1 :         assert_eq!(
     482            1 :             ShardIdentity::new(ShardNumber(11), ShardCount(10), DEFAULT_STRIPE_SIZE),
     483              :             Err(ShardConfigError::InvalidNumber)
     484              :         );
     485            1 :         assert_eq!(
     486            1 :             ShardIdentity::new(ShardNumber(255), ShardCount(255), DEFAULT_STRIPE_SIZE),
     487              :             Err(ShardConfigError::InvalidNumber)
     488              :         );
     489            1 :         assert_eq!(
     490            1 :             ShardIdentity::new(ShardNumber(0), ShardCount(1), ShardStripeSize(0)),
     491              :             Err(ShardConfigError::InvalidStripeSize)
     492              :         );
     493              : 
     494            1 :         Ok(())
     495            1 :     }
     496              : 
     497              :     #[test]
     498            1 :     fn shard_index_human_encoding() -> Result<(), hex::FromHexError> {
     499            1 :         let example = ShardIndex {
     500            1 :             shard_number: ShardNumber(13),
     501            1 :             shard_count: ShardCount(17),
     502            1 :         };
     503            1 :         let expected: String = "0d11".to_string();
     504            1 :         let encoded = format!("{example}");
     505            1 :         assert_eq!(&encoded, &expected);
     506              : 
     507            1 :         let decoded = ShardIndex::from_str(&encoded)?;
     508            1 :         assert_eq!(example, decoded);
     509            1 :         Ok(())
     510            1 :     }
     511              : 
     512              :     #[test]
     513            1 :     fn shard_index_binary_encoding() -> Result<(), hex::FromHexError> {
     514            1 :         let example = ShardIndex {
     515            1 :             shard_number: ShardNumber(13),
     516            1 :             shard_count: ShardCount(17),
     517            1 :         };
     518            1 :         let expected: [u8; 2] = [0x0d, 0x11];
     519              : 
     520            1 :         let encoded = bincode::serialize(&example).unwrap();
     521            1 :         assert_eq!(Hex(&encoded), Hex(&expected));
     522            1 :         let decoded = bincode::deserialize(&encoded).unwrap();
     523            1 :         assert_eq!(example, decoded);
     524              : 
     525            1 :         Ok(())
     526            1 :     }
     527              : 
     528              :     // These are only smoke tests to spot check that our implementation doesn't
     529              :     // deviate from a few examples values: not aiming to validate the overall
     530              :     // hashing algorithm.
     531              :     #[test]
     532            1 :     fn murmur_hash() {
     533            1 :         assert_eq!(murmurhash32(0), 0);
     534              : 
     535            1 :         assert_eq!(hash_combine(0xb1ff3b40, 0), 0xfb7923c9);
     536            1 :     }
     537              : 
     538              :     #[test]
     539            1 :     fn shard_mapping() {
     540            1 :         let key = Key {
     541            1 :             field1: 0x00,
     542            1 :             field2: 0x67f,
     543            1 :             field3: 0x5,
     544            1 :             field4: 0x400c,
     545            1 :             field5: 0x00,
     546            1 :             field6: 0x7d06,
     547            1 :         };
     548              : 
     549            1 :         let shard = key_to_shard_number(ShardCount(10), ShardStripeSize(32768), &key);
     550            1 :         assert_eq!(shard, ShardNumber(8));
     551            1 :     }
     552              : 
     553              :     #[test]
     554            1 :     fn shard_id_split() {
     555            1 :         let tenant_id = TenantId::generate();
     556            1 :         let parent = TenantShardId::unsharded(tenant_id);
     557              : 
     558              :         // Unsharded into 2
     559            1 :         assert_eq!(
     560            1 :             parent.split(ShardCount(2)),
     561            1 :             vec![
     562            1 :                 TenantShardId {
     563            1 :                     tenant_id,
     564            1 :                     shard_count: ShardCount(2),
     565            1 :                     shard_number: ShardNumber(0)
     566            1 :                 },
     567            1 :                 TenantShardId {
     568            1 :                     tenant_id,
     569            1 :                     shard_count: ShardCount(2),
     570            1 :                     shard_number: ShardNumber(1)
     571            1 :                 }
     572              :             ]
     573              :         );
     574              : 
     575              :         // Unsharded into 4
     576            1 :         assert_eq!(
     577            1 :             parent.split(ShardCount(4)),
     578            1 :             vec![
     579            1 :                 TenantShardId {
     580            1 :                     tenant_id,
     581            1 :                     shard_count: ShardCount(4),
     582            1 :                     shard_number: ShardNumber(0)
     583            1 :                 },
     584            1 :                 TenantShardId {
     585            1 :                     tenant_id,
     586            1 :                     shard_count: ShardCount(4),
     587            1 :                     shard_number: ShardNumber(1)
     588            1 :                 },
     589            1 :                 TenantShardId {
     590            1 :                     tenant_id,
     591            1 :                     shard_count: ShardCount(4),
     592            1 :                     shard_number: ShardNumber(2)
     593            1 :                 },
     594            1 :                 TenantShardId {
     595            1 :                     tenant_id,
     596            1 :                     shard_count: ShardCount(4),
     597            1 :                     shard_number: ShardNumber(3)
     598            1 :                 }
     599              :             ]
     600              :         );
     601              : 
     602              :         // count=1 into 2 (check this works the same as unsharded.)
     603            1 :         let parent = TenantShardId {
     604            1 :             tenant_id,
     605            1 :             shard_count: ShardCount(1),
     606            1 :             shard_number: ShardNumber(0),
     607            1 :         };
     608            1 :         assert_eq!(
     609            1 :             parent.split(ShardCount(2)),
     610            1 :             vec![
     611            1 :                 TenantShardId {
     612            1 :                     tenant_id,
     613            1 :                     shard_count: ShardCount(2),
     614            1 :                     shard_number: ShardNumber(0)
     615            1 :                 },
     616            1 :                 TenantShardId {
     617            1 :                     tenant_id,
     618            1 :                     shard_count: ShardCount(2),
     619            1 :                     shard_number: ShardNumber(1)
     620            1 :                 }
     621              :             ]
     622              :         );
     623              : 
     624              :         // count=2 into count=8
     625            1 :         let parent = TenantShardId {
     626            1 :             tenant_id,
     627            1 :             shard_count: ShardCount(2),
     628            1 :             shard_number: ShardNumber(1),
     629            1 :         };
     630            1 :         assert_eq!(
     631            1 :             parent.split(ShardCount(8)),
     632            1 :             vec![
     633            1 :                 TenantShardId {
     634            1 :                     tenant_id,
     635            1 :                     shard_count: ShardCount(8),
     636            1 :                     shard_number: ShardNumber(1)
     637            1 :                 },
     638            1 :                 TenantShardId {
     639            1 :                     tenant_id,
     640            1 :                     shard_count: ShardCount(8),
     641            1 :                     shard_number: ShardNumber(3)
     642            1 :                 },
     643            1 :                 TenantShardId {
     644            1 :                     tenant_id,
     645            1 :                     shard_count: ShardCount(8),
     646            1 :                     shard_number: ShardNumber(5)
     647            1 :                 },
     648            1 :                 TenantShardId {
     649            1 :                     tenant_id,
     650            1 :                     shard_count: ShardCount(8),
     651            1 :                     shard_number: ShardNumber(7)
     652            1 :                 },
     653              :             ]
     654              :         );
     655            1 :     }
     656              : }
        

Generated by: LCOV version 2.1-beta