Line data Source code
1 : //! Timeline repository implementation that keeps old data in layer files, and
2 : //! the recent changes in ephemeral files.
3 : //!
4 : //! See tenant/*_layer.rs files. The functions here are responsible for locating
5 : //! the correct layer for the get/put call, walking back the timeline branching
6 : //! history as needed.
7 : //!
8 : //! The files are stored in the .neon/tenants/<tenant_id>/timelines/<timeline_id>
9 : //! directory. See docs/pageserver-storage.md for how the files are managed.
10 : //! In addition to the layer files, there is a metadata file in the same
11 : //! directory that contains information about the timeline, in particular its
12 : //! parent timeline, and the last LSN that has been written to disk.
13 : //!
14 :
15 : use anyhow::{bail, Context};
16 : use arc_swap::ArcSwap;
17 : use camino::Utf8Path;
18 : use camino::Utf8PathBuf;
19 : use chrono::NaiveDateTime;
20 : use enumset::EnumSet;
21 : use futures::stream::FuturesUnordered;
22 : use futures::StreamExt;
23 : use itertools::Itertools as _;
24 : use pageserver_api::models;
25 : use pageserver_api::models::CompactInfoResponse;
26 : use pageserver_api::models::LsnLease;
27 : use pageserver_api::models::TimelineArchivalState;
28 : use pageserver_api::models::TimelineState;
29 : use pageserver_api::models::TopTenantShardItem;
30 : use pageserver_api::models::WalRedoManagerStatus;
31 : use pageserver_api::shard::ShardIdentity;
32 : use pageserver_api::shard::ShardStripeSize;
33 : use pageserver_api::shard::TenantShardId;
34 : use remote_storage::DownloadError;
35 : use remote_storage::GenericRemoteStorage;
36 : use remote_storage::TimeoutOrCancel;
37 : use remote_timeline_client::manifest::{
38 : OffloadedTimelineManifest, TenantManifest, LATEST_TENANT_MANIFEST_VERSION,
39 : };
40 : use remote_timeline_client::UploadQueueNotReadyError;
41 : use remote_timeline_client::FAILED_REMOTE_OP_RETRIES;
42 : use remote_timeline_client::FAILED_UPLOAD_WARN_THRESHOLD;
43 : use secondary::heatmap::HeatMapTenant;
44 : use secondary::heatmap::HeatMapTimeline;
45 : use std::collections::BTreeMap;
46 : use std::fmt;
47 : use std::future::Future;
48 : use std::sync::atomic::AtomicBool;
49 : use std::sync::Weak;
50 : use std::time::SystemTime;
51 : use storage_broker::BrokerClientChannel;
52 : use timeline::compaction::CompactionOutcome;
53 : use timeline::compaction::GcCompactionQueue;
54 : use timeline::import_pgdata;
55 : use timeline::offload::offload_timeline;
56 : use timeline::offload::OffloadError;
57 : use timeline::CompactFlags;
58 : use timeline::CompactOptions;
59 : use timeline::CompactionError;
60 : use timeline::PreviousHeatmap;
61 : use timeline::ShutdownMode;
62 : use tokio::io::BufReader;
63 : use tokio::sync::watch;
64 : use tokio::sync::Notify;
65 : use tokio::task::JoinSet;
66 : use tokio_util::sync::CancellationToken;
67 : use tracing::*;
68 : use upload_queue::NotInitialized;
69 : use utils::backoff;
70 : use utils::circuit_breaker::CircuitBreaker;
71 : use utils::completion;
72 : use utils::crashsafe::path_with_suffix_extension;
73 : use utils::failpoint_support;
74 : use utils::fs_ext;
75 : use utils::pausable_failpoint;
76 : use utils::sync::gate::Gate;
77 : use utils::sync::gate::GateGuard;
78 : use utils::timeout::timeout_cancellable;
79 : use utils::timeout::TimeoutCancellableError;
80 : use utils::try_rcu::ArcSwapExt;
81 : use utils::zstd::create_zst_tarball;
82 : use utils::zstd::extract_zst_tarball;
83 :
84 : use self::config::AttachedLocationConfig;
85 : use self::config::AttachmentMode;
86 : use self::config::LocationConf;
87 : use self::config::TenantConf;
88 : use self::metadata::TimelineMetadata;
89 : use self::mgr::GetActiveTenantError;
90 : use self::mgr::GetTenantError;
91 : use self::remote_timeline_client::upload::{upload_index_part, upload_tenant_manifest};
92 : use self::remote_timeline_client::{RemoteTimelineClient, WaitCompletionError};
93 : use self::timeline::uninit::TimelineCreateGuard;
94 : use self::timeline::uninit::TimelineExclusionError;
95 : use self::timeline::uninit::UninitializedTimeline;
96 : use self::timeline::EvictionTaskTenantState;
97 : use self::timeline::GcCutoffs;
98 : use self::timeline::TimelineDeleteProgress;
99 : use self::timeline::TimelineResources;
100 : use self::timeline::WaitLsnError;
101 : use crate::config::PageServerConf;
102 : use crate::context::{DownloadBehavior, RequestContext};
103 : use crate::deletion_queue::DeletionQueueClient;
104 : use crate::deletion_queue::DeletionQueueError;
105 : use crate::import_datadir;
106 : use crate::l0_flush::L0FlushGlobalState;
107 : use crate::metrics::CONCURRENT_INITDBS;
108 : use crate::metrics::INITDB_RUN_TIME;
109 : use crate::metrics::INITDB_SEMAPHORE_ACQUISITION_TIME;
110 : use crate::metrics::TENANT;
111 : use crate::metrics::{
112 : remove_tenant_metrics, BROKEN_TENANTS_SET, CIRCUIT_BREAKERS_BROKEN, CIRCUIT_BREAKERS_UNBROKEN,
113 : TENANT_STATE_METRIC, TENANT_SYNTHETIC_SIZE_METRIC,
114 : };
115 : use crate::task_mgr;
116 : use crate::task_mgr::TaskKind;
117 : use crate::tenant::config::LocationMode;
118 : use crate::tenant::config::TenantConfOpt;
119 : use crate::tenant::gc_result::GcResult;
120 : pub use crate::tenant::remote_timeline_client::index::IndexPart;
121 : use crate::tenant::remote_timeline_client::remote_initdb_archive_path;
122 : use crate::tenant::remote_timeline_client::MaybeDeletedIndexPart;
123 : use crate::tenant::remote_timeline_client::INITDB_PATH;
124 : use crate::tenant::storage_layer::DeltaLayer;
125 : use crate::tenant::storage_layer::ImageLayer;
126 : use crate::walingest::WalLagCooldown;
127 : use crate::walredo;
128 : use crate::InitializationOrder;
129 : use std::collections::hash_map::Entry;
130 : use std::collections::HashMap;
131 : use std::collections::HashSet;
132 : use std::fmt::Debug;
133 : use std::fmt::Display;
134 : use std::fs;
135 : use std::fs::File;
136 : use std::sync::atomic::{AtomicU64, Ordering};
137 : use std::sync::Arc;
138 : use std::sync::Mutex;
139 : use std::time::{Duration, Instant};
140 :
141 : use crate::span;
142 : use crate::tenant::timeline::delete::DeleteTimelineFlow;
143 : use crate::tenant::timeline::uninit::cleanup_timeline_directory;
144 : use crate::virtual_file::VirtualFile;
145 : use crate::walredo::PostgresRedoManager;
146 : use crate::TEMP_FILE_SUFFIX;
147 : use once_cell::sync::Lazy;
148 : pub use pageserver_api::models::TenantState;
149 : use tokio::sync::Semaphore;
150 :
151 0 : static INIT_DB_SEMAPHORE: Lazy<Semaphore> = Lazy::new(|| Semaphore::new(8));
152 : use utils::{
153 : crashsafe,
154 : generation::Generation,
155 : id::TimelineId,
156 : lsn::{Lsn, RecordLsn},
157 : };
158 :
159 : pub mod blob_io;
160 : pub mod block_io;
161 : pub mod vectored_blob_io;
162 :
163 : pub mod disk_btree;
164 : pub(crate) mod ephemeral_file;
165 : pub mod layer_map;
166 :
167 : pub mod metadata;
168 : pub mod remote_timeline_client;
169 : pub mod storage_layer;
170 :
171 : pub mod checks;
172 : pub mod config;
173 : pub mod mgr;
174 : pub mod secondary;
175 : pub mod tasks;
176 : pub mod upload_queue;
177 :
178 : pub(crate) mod timeline;
179 :
180 : pub mod size;
181 :
182 : mod gc_block;
183 : mod gc_result;
184 : pub(crate) mod throttle;
185 :
186 : pub(crate) use crate::span::debug_assert_current_span_has_tenant_and_timeline_id;
187 : pub(crate) use timeline::{LogicalSizeCalculationCause, PageReconstructError, Timeline};
188 :
189 : // re-export for use in walreceiver
190 : pub use crate::tenant::timeline::WalReceiverInfo;
191 :
192 : /// The "tenants" part of `tenants/<tenant>/timelines...`
193 : pub const TENANTS_SEGMENT_NAME: &str = "tenants";
194 :
195 : /// Parts of the `.neon/tenants/<tenant_id>/timelines/<timeline_id>` directory prefix.
196 : pub const TIMELINES_SEGMENT_NAME: &str = "timelines";
197 :
198 : /// References to shared objects that are passed into each tenant, such
199 : /// as the shared remote storage client and process initialization state.
200 : #[derive(Clone)]
201 : pub struct TenantSharedResources {
202 : pub broker_client: storage_broker::BrokerClientChannel,
203 : pub remote_storage: GenericRemoteStorage,
204 : pub deletion_queue_client: DeletionQueueClient,
205 : pub l0_flush_global_state: L0FlushGlobalState,
206 : }
207 :
208 : /// A [`Tenant`] is really an _attached_ tenant. The configuration
209 : /// for an attached tenant is a subset of the [`LocationConf`], represented
210 : /// in this struct.
211 : #[derive(Clone)]
212 : pub(super) struct AttachedTenantConf {
213 : tenant_conf: TenantConfOpt,
214 : location: AttachedLocationConfig,
215 : /// The deadline before which we are blocked from GC so that
216 : /// leases have a chance to be renewed.
217 : lsn_lease_deadline: Option<tokio::time::Instant>,
218 : }
219 :
220 : impl AttachedTenantConf {
221 444 : fn new(tenant_conf: TenantConfOpt, location: AttachedLocationConfig) -> Self {
222 : // Sets a deadline before which we cannot proceed to GC due to lsn lease.
223 : //
224 : // We do this as the leases mapping are not persisted to disk. By delaying GC by lease
225 : // length, we guarantee that all the leases we granted before will have a chance to renew
226 : // when we run GC for the first time after restart / transition from AttachedMulti to AttachedSingle.
227 444 : let lsn_lease_deadline = if location.attach_mode == AttachmentMode::Single {
228 444 : Some(
229 444 : tokio::time::Instant::now()
230 444 : + tenant_conf
231 444 : .lsn_lease_length
232 444 : .unwrap_or(LsnLease::DEFAULT_LENGTH),
233 444 : )
234 : } else {
235 : // We don't use `lsn_lease_deadline` to delay GC in AttachedMulti and AttachedStale
236 : // because we don't do GC in these modes.
237 0 : None
238 : };
239 :
240 444 : Self {
241 444 : tenant_conf,
242 444 : location,
243 444 : lsn_lease_deadline,
244 444 : }
245 444 : }
246 :
247 444 : fn try_from(location_conf: LocationConf) -> anyhow::Result<Self> {
248 444 : match &location_conf.mode {
249 444 : LocationMode::Attached(attach_conf) => {
250 444 : Ok(Self::new(location_conf.tenant_conf, *attach_conf))
251 : }
252 : LocationMode::Secondary(_) => {
253 0 : anyhow::bail!("Attempted to construct AttachedTenantConf from a LocationConf in secondary mode")
254 : }
255 : }
256 444 : }
257 :
258 1524 : fn is_gc_blocked_by_lsn_lease_deadline(&self) -> bool {
259 1524 : self.lsn_lease_deadline
260 1524 : .map(|d| tokio::time::Instant::now() < d)
261 1524 : .unwrap_or(false)
262 1524 : }
263 : }
264 : struct TimelinePreload {
265 : timeline_id: TimelineId,
266 : client: RemoteTimelineClient,
267 : index_part: Result<MaybeDeletedIndexPart, DownloadError>,
268 : previous_heatmap: Option<PreviousHeatmap>,
269 : }
270 :
271 : pub(crate) struct TenantPreload {
272 : tenant_manifest: TenantManifest,
273 : /// Map from timeline ID to a possible timeline preload. It is None iff the timeline is offloaded according to the manifest.
274 : timelines: HashMap<TimelineId, Option<TimelinePreload>>,
275 : }
276 :
277 : /// When we spawn a tenant, there is a special mode for tenant creation that
278 : /// avoids trying to read anything from remote storage.
279 : pub(crate) enum SpawnMode {
280 : /// Activate as soon as possible
281 : Eager,
282 : /// Lazy activation in the background, with the option to skip the queue if the need comes up
283 : Lazy,
284 : }
285 :
286 : ///
287 : /// Tenant consists of multiple timelines. Keep them in a hash table.
288 : ///
289 : pub struct Tenant {
290 : // Global pageserver config parameters
291 : pub conf: &'static PageServerConf,
292 :
293 : /// The value creation timestamp, used to measure activation delay, see:
294 : /// <https://github.com/neondatabase/neon/issues/4025>
295 : constructed_at: Instant,
296 :
297 : state: watch::Sender<TenantState>,
298 :
299 : // Overridden tenant-specific config parameters.
300 : // We keep TenantConfOpt sturct here to preserve the information
301 : // about parameters that are not set.
302 : // This is necessary to allow global config updates.
303 : tenant_conf: Arc<ArcSwap<AttachedTenantConf>>,
304 :
305 : tenant_shard_id: TenantShardId,
306 :
307 : // The detailed sharding information, beyond the number/count in tenant_shard_id
308 : shard_identity: ShardIdentity,
309 :
310 : /// The remote storage generation, used to protect S3 objects from split-brain.
311 : /// Does not change over the lifetime of the [`Tenant`] object.
312 : ///
313 : /// This duplicates the generation stored in LocationConf, but that structure is mutable:
314 : /// this copy enforces the invariant that generatio doesn't change during a Tenant's lifetime.
315 : generation: Generation,
316 :
317 : timelines: Mutex<HashMap<TimelineId, Arc<Timeline>>>,
318 :
319 : /// During timeline creation, we first insert the TimelineId to the
320 : /// creating map, then `timelines`, then remove it from the creating map.
321 : /// **Lock order**: if acquiring all (or a subset), acquire them in order `timelines`, `timelines_offloaded`, `timelines_creating`
322 : timelines_creating: std::sync::Mutex<HashSet<TimelineId>>,
323 :
324 : /// Possibly offloaded and archived timelines
325 : /// **Lock order**: if acquiring all (or a subset), acquire them in order `timelines`, `timelines_offloaded`, `timelines_creating`
326 : timelines_offloaded: Mutex<HashMap<TimelineId, Arc<OffloadedTimeline>>>,
327 :
328 : /// Serialize writes of the tenant manifest to remote storage. If there are concurrent operations
329 : /// affecting the manifest, such as timeline deletion and timeline offload, they must wait for
330 : /// each other (this could be optimized to coalesce writes if necessary).
331 : ///
332 : /// The contents of the Mutex are the last manifest we successfully uploaded
333 : tenant_manifest_upload: tokio::sync::Mutex<Option<TenantManifest>>,
334 :
335 : // This mutex prevents creation of new timelines during GC.
336 : // Adding yet another mutex (in addition to `timelines`) is needed because holding
337 : // `timelines` mutex during all GC iteration
338 : // may block for a long time `get_timeline`, `get_timelines_state`,... and other operations
339 : // with timelines, which in turn may cause dropping replication connection, expiration of wait_for_lsn
340 : // timeout...
341 : gc_cs: tokio::sync::Mutex<()>,
342 : walredo_mgr: Option<Arc<WalRedoManager>>,
343 :
344 : // provides access to timeline data sitting in the remote storage
345 : pub(crate) remote_storage: GenericRemoteStorage,
346 :
347 : // Access to global deletion queue for when this tenant wants to schedule a deletion
348 : deletion_queue_client: DeletionQueueClient,
349 :
350 : /// Cached logical sizes updated updated on each [`Tenant::gather_size_inputs`].
351 : cached_logical_sizes: tokio::sync::Mutex<HashMap<(TimelineId, Lsn), u64>>,
352 : cached_synthetic_tenant_size: Arc<AtomicU64>,
353 :
354 : eviction_task_tenant_state: tokio::sync::Mutex<EvictionTaskTenantState>,
355 :
356 : /// Track repeated failures to compact, so that we can back off.
357 : /// Overhead of mutex is acceptable because compaction is done with a multi-second period.
358 : compaction_circuit_breaker: std::sync::Mutex<CircuitBreaker>,
359 :
360 : /// Signals the tenant compaction loop that there is L0 compaction work to be done.
361 : pub(crate) l0_compaction_trigger: Arc<Notify>,
362 :
363 : /// Scheduled gc-compaction tasks.
364 : scheduled_compaction_tasks: std::sync::Mutex<HashMap<TimelineId, Arc<GcCompactionQueue>>>,
365 :
366 : /// If the tenant is in Activating state, notify this to encourage it
367 : /// to proceed to Active as soon as possible, rather than waiting for lazy
368 : /// background warmup.
369 : pub(crate) activate_now_sem: tokio::sync::Semaphore,
370 :
371 : /// Time it took for the tenant to activate. Zero if not active yet.
372 : attach_wal_lag_cooldown: Arc<std::sync::OnceLock<WalLagCooldown>>,
373 :
374 : // Cancellation token fires when we have entered shutdown(). This is a parent of
375 : // Timelines' cancellation token.
376 : pub(crate) cancel: CancellationToken,
377 :
378 : // Users of the Tenant such as the page service must take this Gate to avoid
379 : // trying to use a Tenant which is shutting down.
380 : pub(crate) gate: Gate,
381 :
382 : /// Throttle applied at the top of [`Timeline::get`].
383 : /// All [`Tenant::timelines`] of a given [`Tenant`] instance share the same [`throttle::Throttle`] instance.
384 : pub(crate) pagestream_throttle: Arc<throttle::Throttle>,
385 :
386 : pub(crate) pagestream_throttle_metrics: Arc<crate::metrics::tenant_throttling::Pagestream>,
387 :
388 : /// An ongoing timeline detach concurrency limiter.
389 : ///
390 : /// As a tenant will likely be restarted as part of timeline detach ancestor it makes no sense
391 : /// to have two running at the same time. A different one can be started if an earlier one
392 : /// has failed for whatever reason.
393 : ongoing_timeline_detach: std::sync::Mutex<Option<(TimelineId, utils::completion::Barrier)>>,
394 :
395 : /// `index_part.json` based gc blocking reason tracking.
396 : ///
397 : /// New gc iterations must start a new iteration by acquiring `GcBlock::start` before
398 : /// proceeding.
399 : pub(crate) gc_block: gc_block::GcBlock,
400 :
401 : l0_flush_global_state: L0FlushGlobalState,
402 : }
403 : impl std::fmt::Debug for Tenant {
404 0 : fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
405 0 : write!(f, "{} ({})", self.tenant_shard_id, self.current_state())
406 0 : }
407 : }
408 :
409 : pub(crate) enum WalRedoManager {
410 : Prod(WalredoManagerId, PostgresRedoManager),
411 : #[cfg(test)]
412 : Test(harness::TestRedoManager),
413 : }
414 :
415 : #[derive(thiserror::Error, Debug)]
416 : #[error("pageserver is shutting down")]
417 : pub(crate) struct GlobalShutDown;
418 :
419 : impl WalRedoManager {
420 0 : pub(crate) fn new(mgr: PostgresRedoManager) -> Result<Arc<Self>, GlobalShutDown> {
421 0 : let id = WalredoManagerId::next();
422 0 : let arc = Arc::new(Self::Prod(id, mgr));
423 0 : let mut guard = WALREDO_MANAGERS.lock().unwrap();
424 0 : match &mut *guard {
425 0 : Some(map) => {
426 0 : map.insert(id, Arc::downgrade(&arc));
427 0 : Ok(arc)
428 : }
429 0 : None => Err(GlobalShutDown),
430 : }
431 0 : }
432 : }
433 :
434 : impl Drop for WalRedoManager {
435 20 : fn drop(&mut self) {
436 20 : match self {
437 0 : Self::Prod(id, _) => {
438 0 : let mut guard = WALREDO_MANAGERS.lock().unwrap();
439 0 : if let Some(map) = &mut *guard {
440 0 : map.remove(id).expect("new() registers, drop() unregisters");
441 0 : }
442 : }
443 : #[cfg(test)]
444 20 : Self::Test(_) => {
445 20 : // Not applicable to test redo manager
446 20 : }
447 : }
448 20 : }
449 : }
450 :
451 : /// Global registry of all walredo managers so that [`crate::shutdown_pageserver`] can shut down
452 : /// the walredo processes outside of the regular order.
453 : ///
454 : /// This is necessary to work around a systemd bug where it freezes if there are
455 : /// walredo processes left => <https://github.com/neondatabase/cloud/issues/11387>
456 : #[allow(clippy::type_complexity)]
457 : pub(crate) static WALREDO_MANAGERS: once_cell::sync::Lazy<
458 : Mutex<Option<HashMap<WalredoManagerId, Weak<WalRedoManager>>>>,
459 0 : > = once_cell::sync::Lazy::new(|| Mutex::new(Some(HashMap::new())));
460 : #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
461 : pub(crate) struct WalredoManagerId(u64);
462 : impl WalredoManagerId {
463 0 : pub fn next() -> Self {
464 : static NEXT: std::sync::atomic::AtomicU64 = std::sync::atomic::AtomicU64::new(1);
465 0 : let id = NEXT.fetch_add(1, std::sync::atomic::Ordering::Relaxed);
466 0 : if id == 0 {
467 0 : panic!("WalredoManagerId::new() returned 0, indicating wraparound, risking it's no longer unique");
468 0 : }
469 0 : Self(id)
470 0 : }
471 : }
472 :
473 : #[cfg(test)]
474 : impl From<harness::TestRedoManager> for WalRedoManager {
475 444 : fn from(mgr: harness::TestRedoManager) -> Self {
476 444 : Self::Test(mgr)
477 444 : }
478 : }
479 :
480 : impl WalRedoManager {
481 12 : pub(crate) async fn shutdown(&self) -> bool {
482 12 : match self {
483 0 : Self::Prod(_, mgr) => mgr.shutdown().await,
484 : #[cfg(test)]
485 : Self::Test(_) => {
486 : // Not applicable to test redo manager
487 12 : true
488 : }
489 : }
490 12 : }
491 :
492 0 : pub(crate) fn maybe_quiesce(&self, idle_timeout: Duration) {
493 0 : match self {
494 0 : Self::Prod(_, mgr) => mgr.maybe_quiesce(idle_timeout),
495 0 : #[cfg(test)]
496 0 : Self::Test(_) => {
497 0 : // Not applicable to test redo manager
498 0 : }
499 0 : }
500 0 : }
501 :
502 : /// # Cancel-Safety
503 : ///
504 : /// This method is cancellation-safe.
505 1636 : pub async fn request_redo(
506 1636 : &self,
507 1636 : key: pageserver_api::key::Key,
508 1636 : lsn: Lsn,
509 1636 : base_img: Option<(Lsn, bytes::Bytes)>,
510 1636 : records: Vec<(Lsn, pageserver_api::record::NeonWalRecord)>,
511 1636 : pg_version: u32,
512 1636 : ) -> Result<bytes::Bytes, walredo::Error> {
513 1636 : match self {
514 0 : Self::Prod(_, mgr) => {
515 0 : mgr.request_redo(key, lsn, base_img, records, pg_version)
516 0 : .await
517 : }
518 : #[cfg(test)]
519 1636 : Self::Test(mgr) => {
520 1636 : mgr.request_redo(key, lsn, base_img, records, pg_version)
521 1636 : .await
522 : }
523 : }
524 1636 : }
525 :
526 0 : pub(crate) fn status(&self) -> Option<WalRedoManagerStatus> {
527 0 : match self {
528 0 : WalRedoManager::Prod(_, m) => Some(m.status()),
529 0 : #[cfg(test)]
530 0 : WalRedoManager::Test(_) => None,
531 0 : }
532 0 : }
533 : }
534 :
535 : /// A very lightweight memory representation of an offloaded timeline.
536 : ///
537 : /// We need to store the list of offloaded timelines so that we can perform operations on them,
538 : /// like unoffloading them, or (at a later date), decide to perform flattening.
539 : /// This type has a much smaller memory impact than [`Timeline`], and thus we can store many
540 : /// more offloaded timelines than we can manage ones that aren't.
541 : pub struct OffloadedTimeline {
542 : pub tenant_shard_id: TenantShardId,
543 : pub timeline_id: TimelineId,
544 : pub ancestor_timeline_id: Option<TimelineId>,
545 : /// Whether to retain the branch lsn at the ancestor or not
546 : pub ancestor_retain_lsn: Option<Lsn>,
547 :
548 : /// When the timeline was archived.
549 : ///
550 : /// Present for future flattening deliberations.
551 : pub archived_at: NaiveDateTime,
552 :
553 : /// Prevent two tasks from deleting the timeline at the same time. If held, the
554 : /// timeline is being deleted. If 'true', the timeline has already been deleted.
555 : pub delete_progress: TimelineDeleteProgress,
556 :
557 : /// Part of the `OffloadedTimeline` object's lifecycle: this needs to be set before we drop it
558 : pub deleted_from_ancestor: AtomicBool,
559 : }
560 :
561 : impl OffloadedTimeline {
562 : /// Obtains an offloaded timeline from a given timeline object.
563 : ///
564 : /// Returns `None` if the `archived_at` flag couldn't be obtained, i.e.
565 : /// the timeline is not in a stopped state.
566 : /// Panics if the timeline is not archived.
567 4 : fn from_timeline(timeline: &Timeline) -> Result<Self, UploadQueueNotReadyError> {
568 4 : let (ancestor_retain_lsn, ancestor_timeline_id) =
569 4 : if let Some(ancestor_timeline) = timeline.ancestor_timeline() {
570 4 : let ancestor_lsn = timeline.get_ancestor_lsn();
571 4 : let ancestor_timeline_id = ancestor_timeline.timeline_id;
572 4 : let mut gc_info = ancestor_timeline.gc_info.write().unwrap();
573 4 : gc_info.insert_child(timeline.timeline_id, ancestor_lsn, MaybeOffloaded::Yes);
574 4 : (Some(ancestor_lsn), Some(ancestor_timeline_id))
575 : } else {
576 0 : (None, None)
577 : };
578 4 : let archived_at = timeline
579 4 : .remote_client
580 4 : .archived_at_stopped_queue()?
581 4 : .expect("must be called on an archived timeline");
582 4 : Ok(Self {
583 4 : tenant_shard_id: timeline.tenant_shard_id,
584 4 : timeline_id: timeline.timeline_id,
585 4 : ancestor_timeline_id,
586 4 : ancestor_retain_lsn,
587 4 : archived_at,
588 4 :
589 4 : delete_progress: timeline.delete_progress.clone(),
590 4 : deleted_from_ancestor: AtomicBool::new(false),
591 4 : })
592 4 : }
593 0 : fn from_manifest(tenant_shard_id: TenantShardId, manifest: &OffloadedTimelineManifest) -> Self {
594 0 : // We expect to reach this case in tenant loading, where the `retain_lsn` is populated in the parent's `gc_info`
595 0 : // by the `initialize_gc_info` function.
596 0 : let OffloadedTimelineManifest {
597 0 : timeline_id,
598 0 : ancestor_timeline_id,
599 0 : ancestor_retain_lsn,
600 0 : archived_at,
601 0 : } = *manifest;
602 0 : Self {
603 0 : tenant_shard_id,
604 0 : timeline_id,
605 0 : ancestor_timeline_id,
606 0 : ancestor_retain_lsn,
607 0 : archived_at,
608 0 : delete_progress: TimelineDeleteProgress::default(),
609 0 : deleted_from_ancestor: AtomicBool::new(false),
610 0 : }
611 0 : }
612 4 : fn manifest(&self) -> OffloadedTimelineManifest {
613 4 : let Self {
614 4 : timeline_id,
615 4 : ancestor_timeline_id,
616 4 : ancestor_retain_lsn,
617 4 : archived_at,
618 4 : ..
619 4 : } = self;
620 4 : OffloadedTimelineManifest {
621 4 : timeline_id: *timeline_id,
622 4 : ancestor_timeline_id: *ancestor_timeline_id,
623 4 : ancestor_retain_lsn: *ancestor_retain_lsn,
624 4 : archived_at: *archived_at,
625 4 : }
626 4 : }
627 : /// Delete this timeline's retain_lsn from its ancestor, if present in the given tenant
628 0 : fn delete_from_ancestor_with_timelines(
629 0 : &self,
630 0 : timelines: &std::sync::MutexGuard<'_, HashMap<TimelineId, Arc<Timeline>>>,
631 0 : ) {
632 0 : if let (Some(_retain_lsn), Some(ancestor_timeline_id)) =
633 0 : (self.ancestor_retain_lsn, self.ancestor_timeline_id)
634 : {
635 0 : if let Some((_, ancestor_timeline)) = timelines
636 0 : .iter()
637 0 : .find(|(tid, _tl)| **tid == ancestor_timeline_id)
638 : {
639 0 : let removal_happened = ancestor_timeline
640 0 : .gc_info
641 0 : .write()
642 0 : .unwrap()
643 0 : .remove_child_offloaded(self.timeline_id);
644 0 : if !removal_happened {
645 0 : tracing::error!(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), timeline_id = %self.timeline_id,
646 0 : "Couldn't remove retain_lsn entry from offloaded timeline's parent: already removed");
647 0 : }
648 0 : }
649 0 : }
650 0 : self.deleted_from_ancestor.store(true, Ordering::Release);
651 0 : }
652 : /// Call [`Self::delete_from_ancestor_with_timelines`] instead if possible.
653 : ///
654 : /// As the entire tenant is being dropped, don't bother deregistering the `retain_lsn` from the ancestor.
655 4 : fn defuse_for_tenant_drop(&self) {
656 4 : self.deleted_from_ancestor.store(true, Ordering::Release);
657 4 : }
658 : }
659 :
660 : impl fmt::Debug for OffloadedTimeline {
661 0 : fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
662 0 : write!(f, "OffloadedTimeline<{}>", self.timeline_id)
663 0 : }
664 : }
665 :
666 : impl Drop for OffloadedTimeline {
667 4 : fn drop(&mut self) {
668 4 : if !self.deleted_from_ancestor.load(Ordering::Acquire) {
669 0 : tracing::warn!(
670 0 : "offloaded timeline {} was dropped without having cleaned it up at the ancestor",
671 : self.timeline_id
672 : );
673 4 : }
674 4 : }
675 : }
676 :
677 : #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
678 : pub enum MaybeOffloaded {
679 : Yes,
680 : No,
681 : }
682 :
683 : #[derive(Clone, Debug)]
684 : pub enum TimelineOrOffloaded {
685 : Timeline(Arc<Timeline>),
686 : Offloaded(Arc<OffloadedTimeline>),
687 : }
688 :
689 : impl TimelineOrOffloaded {
690 0 : pub fn arc_ref(&self) -> TimelineOrOffloadedArcRef<'_> {
691 0 : match self {
692 0 : TimelineOrOffloaded::Timeline(timeline) => {
693 0 : TimelineOrOffloadedArcRef::Timeline(timeline)
694 : }
695 0 : TimelineOrOffloaded::Offloaded(offloaded) => {
696 0 : TimelineOrOffloadedArcRef::Offloaded(offloaded)
697 : }
698 : }
699 0 : }
700 0 : pub fn tenant_shard_id(&self) -> TenantShardId {
701 0 : self.arc_ref().tenant_shard_id()
702 0 : }
703 0 : pub fn timeline_id(&self) -> TimelineId {
704 0 : self.arc_ref().timeline_id()
705 0 : }
706 4 : pub fn delete_progress(&self) -> &Arc<tokio::sync::Mutex<DeleteTimelineFlow>> {
707 4 : match self {
708 4 : TimelineOrOffloaded::Timeline(timeline) => &timeline.delete_progress,
709 0 : TimelineOrOffloaded::Offloaded(offloaded) => &offloaded.delete_progress,
710 : }
711 4 : }
712 0 : fn maybe_remote_client(&self) -> Option<Arc<RemoteTimelineClient>> {
713 0 : match self {
714 0 : TimelineOrOffloaded::Timeline(timeline) => Some(timeline.remote_client.clone()),
715 0 : TimelineOrOffloaded::Offloaded(_offloaded) => None,
716 : }
717 0 : }
718 : }
719 :
720 : pub enum TimelineOrOffloadedArcRef<'a> {
721 : Timeline(&'a Arc<Timeline>),
722 : Offloaded(&'a Arc<OffloadedTimeline>),
723 : }
724 :
725 : impl TimelineOrOffloadedArcRef<'_> {
726 0 : pub fn tenant_shard_id(&self) -> TenantShardId {
727 0 : match self {
728 0 : TimelineOrOffloadedArcRef::Timeline(timeline) => timeline.tenant_shard_id,
729 0 : TimelineOrOffloadedArcRef::Offloaded(offloaded) => offloaded.tenant_shard_id,
730 : }
731 0 : }
732 0 : pub fn timeline_id(&self) -> TimelineId {
733 0 : match self {
734 0 : TimelineOrOffloadedArcRef::Timeline(timeline) => timeline.timeline_id,
735 0 : TimelineOrOffloadedArcRef::Offloaded(offloaded) => offloaded.timeline_id,
736 : }
737 0 : }
738 : }
739 :
740 : impl<'a> From<&'a Arc<Timeline>> for TimelineOrOffloadedArcRef<'a> {
741 0 : fn from(timeline: &'a Arc<Timeline>) -> Self {
742 0 : Self::Timeline(timeline)
743 0 : }
744 : }
745 :
746 : impl<'a> From<&'a Arc<OffloadedTimeline>> for TimelineOrOffloadedArcRef<'a> {
747 0 : fn from(timeline: &'a Arc<OffloadedTimeline>) -> Self {
748 0 : Self::Offloaded(timeline)
749 0 : }
750 : }
751 :
752 : #[derive(Debug, thiserror::Error, PartialEq, Eq)]
753 : pub enum GetTimelineError {
754 : #[error("Timeline is shutting down")]
755 : ShuttingDown,
756 : #[error("Timeline {tenant_id}/{timeline_id} is not active, state: {state:?}")]
757 : NotActive {
758 : tenant_id: TenantShardId,
759 : timeline_id: TimelineId,
760 : state: TimelineState,
761 : },
762 : #[error("Timeline {tenant_id}/{timeline_id} was not found")]
763 : NotFound {
764 : tenant_id: TenantShardId,
765 : timeline_id: TimelineId,
766 : },
767 : }
768 :
769 : #[derive(Debug, thiserror::Error)]
770 : pub enum LoadLocalTimelineError {
771 : #[error("FailedToLoad")]
772 : Load(#[source] anyhow::Error),
773 : #[error("FailedToResumeDeletion")]
774 : ResumeDeletion(#[source] anyhow::Error),
775 : }
776 :
777 : #[derive(thiserror::Error)]
778 : pub enum DeleteTimelineError {
779 : #[error("NotFound")]
780 : NotFound,
781 :
782 : #[error("HasChildren")]
783 : HasChildren(Vec<TimelineId>),
784 :
785 : #[error("Timeline deletion is already in progress")]
786 : AlreadyInProgress(Arc<tokio::sync::Mutex<DeleteTimelineFlow>>),
787 :
788 : #[error("Cancelled")]
789 : Cancelled,
790 :
791 : #[error(transparent)]
792 : Other(#[from] anyhow::Error),
793 : }
794 :
795 : impl Debug for DeleteTimelineError {
796 0 : fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
797 0 : match self {
798 0 : Self::NotFound => write!(f, "NotFound"),
799 0 : Self::HasChildren(c) => f.debug_tuple("HasChildren").field(c).finish(),
800 0 : Self::AlreadyInProgress(_) => f.debug_tuple("AlreadyInProgress").finish(),
801 0 : Self::Cancelled => f.debug_tuple("Cancelled").finish(),
802 0 : Self::Other(e) => f.debug_tuple("Other").field(e).finish(),
803 : }
804 0 : }
805 : }
806 :
807 : #[derive(thiserror::Error)]
808 : pub enum TimelineArchivalError {
809 : #[error("NotFound")]
810 : NotFound,
811 :
812 : #[error("Timeout")]
813 : Timeout,
814 :
815 : #[error("Cancelled")]
816 : Cancelled,
817 :
818 : #[error("ancestor is archived: {}", .0)]
819 : HasArchivedParent(TimelineId),
820 :
821 : #[error("HasUnarchivedChildren")]
822 : HasUnarchivedChildren(Vec<TimelineId>),
823 :
824 : #[error("Timeline archival is already in progress")]
825 : AlreadyInProgress,
826 :
827 : #[error(transparent)]
828 : Other(anyhow::Error),
829 : }
830 :
831 : #[derive(thiserror::Error, Debug)]
832 : pub(crate) enum TenantManifestError {
833 : #[error("Remote storage error: {0}")]
834 : RemoteStorage(anyhow::Error),
835 :
836 : #[error("Cancelled")]
837 : Cancelled,
838 : }
839 :
840 : impl From<TenantManifestError> for TimelineArchivalError {
841 0 : fn from(e: TenantManifestError) -> Self {
842 0 : match e {
843 0 : TenantManifestError::RemoteStorage(e) => Self::Other(e),
844 0 : TenantManifestError::Cancelled => Self::Cancelled,
845 : }
846 0 : }
847 : }
848 :
849 : impl Debug for TimelineArchivalError {
850 0 : fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
851 0 : match self {
852 0 : Self::NotFound => write!(f, "NotFound"),
853 0 : Self::Timeout => write!(f, "Timeout"),
854 0 : Self::Cancelled => write!(f, "Cancelled"),
855 0 : Self::HasArchivedParent(p) => f.debug_tuple("HasArchivedParent").field(p).finish(),
856 0 : Self::HasUnarchivedChildren(c) => {
857 0 : f.debug_tuple("HasUnarchivedChildren").field(c).finish()
858 : }
859 0 : Self::AlreadyInProgress => f.debug_tuple("AlreadyInProgress").finish(),
860 0 : Self::Other(e) => f.debug_tuple("Other").field(e).finish(),
861 : }
862 0 : }
863 : }
864 :
865 : pub enum SetStoppingError {
866 : AlreadyStopping(completion::Barrier),
867 : Broken,
868 : }
869 :
870 : impl Debug for SetStoppingError {
871 0 : fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
872 0 : match self {
873 0 : Self::AlreadyStopping(_) => f.debug_tuple("AlreadyStopping").finish(),
874 0 : Self::Broken => write!(f, "Broken"),
875 : }
876 0 : }
877 : }
878 :
879 : /// Arguments to [`Tenant::create_timeline`].
880 : ///
881 : /// Not usable as an idempotency key for timeline creation because if [`CreateTimelineParamsBranch::ancestor_start_lsn`]
882 : /// is `None`, the result of the timeline create call is not deterministic.
883 : ///
884 : /// See [`CreateTimelineIdempotency`] for an idempotency key.
885 : #[derive(Debug)]
886 : pub(crate) enum CreateTimelineParams {
887 : Bootstrap(CreateTimelineParamsBootstrap),
888 : Branch(CreateTimelineParamsBranch),
889 : ImportPgdata(CreateTimelineParamsImportPgdata),
890 : }
891 :
892 : #[derive(Debug)]
893 : pub(crate) struct CreateTimelineParamsBootstrap {
894 : pub(crate) new_timeline_id: TimelineId,
895 : pub(crate) existing_initdb_timeline_id: Option<TimelineId>,
896 : pub(crate) pg_version: u32,
897 : }
898 :
899 : /// NB: See comment on [`CreateTimelineIdempotency::Branch`] for why there's no `pg_version` here.
900 : #[derive(Debug)]
901 : pub(crate) struct CreateTimelineParamsBranch {
902 : pub(crate) new_timeline_id: TimelineId,
903 : pub(crate) ancestor_timeline_id: TimelineId,
904 : pub(crate) ancestor_start_lsn: Option<Lsn>,
905 : }
906 :
907 : #[derive(Debug)]
908 : pub(crate) struct CreateTimelineParamsImportPgdata {
909 : pub(crate) new_timeline_id: TimelineId,
910 : pub(crate) location: import_pgdata::index_part_format::Location,
911 : pub(crate) idempotency_key: import_pgdata::index_part_format::IdempotencyKey,
912 : }
913 :
914 : /// What is used to determine idempotency of a [`Tenant::create_timeline`] call in [`Tenant::start_creating_timeline`] in [`Tenant::start_creating_timeline`].
915 : ///
916 : /// Each [`Timeline`] object holds [`Self`] as an immutable property in [`Timeline::create_idempotency`].
917 : ///
918 : /// We lower timeline creation requests to [`Self`], and then use [`PartialEq::eq`] to compare [`Timeline::create_idempotency`] with the request.
919 : /// If they are equal, we return a reference to the existing timeline, otherwise it's an idempotency conflict.
920 : ///
921 : /// There is special treatment for [`Self::FailWithConflict`] to always return an idempotency conflict.
922 : /// It would be nice to have more advanced derive macros to make that special treatment declarative.
923 : ///
924 : /// Notes:
925 : /// - Unlike [`CreateTimelineParams`], ancestor LSN is fixed, so, branching will be at a deterministic LSN.
926 : /// - We make some trade-offs though, e.g., [`CreateTimelineParamsBootstrap::existing_initdb_timeline_id`]
927 : /// is not considered for idempotency. We can improve on this over time if we deem it necessary.
928 : ///
929 : #[derive(Debug, Clone, PartialEq, Eq)]
930 : pub(crate) enum CreateTimelineIdempotency {
931 : /// NB: special treatment, see comment in [`Self`].
932 : FailWithConflict,
933 : Bootstrap {
934 : pg_version: u32,
935 : },
936 : /// NB: branches always have the same `pg_version` as their ancestor.
937 : /// While [`pageserver_api::models::TimelineCreateRequestMode::Branch::pg_version`]
938 : /// exists as a field, and is set by cplane, it has always been ignored by pageserver when
939 : /// determining the child branch pg_version.
940 : Branch {
941 : ancestor_timeline_id: TimelineId,
942 : ancestor_start_lsn: Lsn,
943 : },
944 : ImportPgdata(CreatingTimelineIdempotencyImportPgdata),
945 : }
946 :
947 : #[derive(Debug, Clone, PartialEq, Eq)]
948 : pub(crate) struct CreatingTimelineIdempotencyImportPgdata {
949 : idempotency_key: import_pgdata::index_part_format::IdempotencyKey,
950 : }
951 :
952 : /// What is returned by [`Tenant::start_creating_timeline`].
953 : #[must_use]
954 : enum StartCreatingTimelineResult {
955 : CreateGuard(TimelineCreateGuard),
956 : Idempotent(Arc<Timeline>),
957 : }
958 :
959 : enum TimelineInitAndSyncResult {
960 : ReadyToActivate(Arc<Timeline>),
961 : NeedsSpawnImportPgdata(TimelineInitAndSyncNeedsSpawnImportPgdata),
962 : }
963 :
964 : impl TimelineInitAndSyncResult {
965 0 : fn ready_to_activate(self) -> Option<Arc<Timeline>> {
966 0 : match self {
967 0 : Self::ReadyToActivate(timeline) => Some(timeline),
968 0 : _ => None,
969 : }
970 0 : }
971 : }
972 :
973 : #[must_use]
974 : struct TimelineInitAndSyncNeedsSpawnImportPgdata {
975 : timeline: Arc<Timeline>,
976 : import_pgdata: import_pgdata::index_part_format::Root,
977 : guard: TimelineCreateGuard,
978 : }
979 :
980 : /// What is returned by [`Tenant::create_timeline`].
981 : enum CreateTimelineResult {
982 : Created(Arc<Timeline>),
983 : Idempotent(Arc<Timeline>),
984 : /// IMPORTANT: This [`Arc<Timeline>`] object is not in [`Tenant::timelines`] when
985 : /// we return this result, nor will this concrete object ever be added there.
986 : /// Cf method comment on [`Tenant::create_timeline_import_pgdata`].
987 : ImportSpawned(Arc<Timeline>),
988 : }
989 :
990 : impl CreateTimelineResult {
991 0 : fn discriminant(&self) -> &'static str {
992 0 : match self {
993 0 : Self::Created(_) => "Created",
994 0 : Self::Idempotent(_) => "Idempotent",
995 0 : Self::ImportSpawned(_) => "ImportSpawned",
996 : }
997 0 : }
998 0 : fn timeline(&self) -> &Arc<Timeline> {
999 0 : match self {
1000 0 : Self::Created(t) | Self::Idempotent(t) | Self::ImportSpawned(t) => t,
1001 0 : }
1002 0 : }
1003 : /// Unit test timelines aren't activated, test has to do it if it needs to.
1004 : #[cfg(test)]
1005 460 : fn into_timeline_for_test(self) -> Arc<Timeline> {
1006 460 : match self {
1007 460 : Self::Created(t) | Self::Idempotent(t) | Self::ImportSpawned(t) => t,
1008 460 : }
1009 460 : }
1010 : }
1011 :
1012 : #[derive(thiserror::Error, Debug)]
1013 : pub enum CreateTimelineError {
1014 : #[error("creation of timeline with the given ID is in progress")]
1015 : AlreadyCreating,
1016 : #[error("timeline already exists with different parameters")]
1017 : Conflict,
1018 : #[error(transparent)]
1019 : AncestorLsn(anyhow::Error),
1020 : #[error("ancestor timeline is not active")]
1021 : AncestorNotActive,
1022 : #[error("ancestor timeline is archived")]
1023 : AncestorArchived,
1024 : #[error("tenant shutting down")]
1025 : ShuttingDown,
1026 : #[error(transparent)]
1027 : Other(#[from] anyhow::Error),
1028 : }
1029 :
1030 : #[derive(thiserror::Error, Debug)]
1031 : pub enum InitdbError {
1032 : #[error("Operation was cancelled")]
1033 : Cancelled,
1034 : #[error(transparent)]
1035 : Other(anyhow::Error),
1036 : #[error(transparent)]
1037 : Inner(postgres_initdb::Error),
1038 : }
1039 :
1040 : enum CreateTimelineCause {
1041 : Load,
1042 : Delete,
1043 : }
1044 :
1045 : enum LoadTimelineCause {
1046 : Attach,
1047 : Unoffload,
1048 : ImportPgdata {
1049 : create_guard: TimelineCreateGuard,
1050 : activate: ActivateTimelineArgs,
1051 : },
1052 : }
1053 :
1054 : #[derive(thiserror::Error, Debug)]
1055 : pub(crate) enum GcError {
1056 : // The tenant is shutting down
1057 : #[error("tenant shutting down")]
1058 : TenantCancelled,
1059 :
1060 : // The tenant is shutting down
1061 : #[error("timeline shutting down")]
1062 : TimelineCancelled,
1063 :
1064 : // The tenant is in a state inelegible to run GC
1065 : #[error("not active")]
1066 : NotActive,
1067 :
1068 : // A requested GC cutoff LSN was invalid, for example it tried to move backwards
1069 : #[error("not active")]
1070 : BadLsn { why: String },
1071 :
1072 : // A remote storage error while scheduling updates after compaction
1073 : #[error(transparent)]
1074 : Remote(anyhow::Error),
1075 :
1076 : // An error reading while calculating GC cutoffs
1077 : #[error(transparent)]
1078 : GcCutoffs(PageReconstructError),
1079 :
1080 : // If GC was invoked for a particular timeline, this error means it didn't exist
1081 : #[error("timeline not found")]
1082 : TimelineNotFound,
1083 : }
1084 :
1085 : impl From<PageReconstructError> for GcError {
1086 0 : fn from(value: PageReconstructError) -> Self {
1087 0 : match value {
1088 0 : PageReconstructError::Cancelled => Self::TimelineCancelled,
1089 0 : other => Self::GcCutoffs(other),
1090 : }
1091 0 : }
1092 : }
1093 :
1094 : impl From<NotInitialized> for GcError {
1095 0 : fn from(value: NotInitialized) -> Self {
1096 0 : match value {
1097 0 : NotInitialized::Uninitialized => GcError::Remote(value.into()),
1098 0 : NotInitialized::Stopped | NotInitialized::ShuttingDown => GcError::TimelineCancelled,
1099 : }
1100 0 : }
1101 : }
1102 :
1103 : impl From<timeline::layer_manager::Shutdown> for GcError {
1104 0 : fn from(_: timeline::layer_manager::Shutdown) -> Self {
1105 0 : GcError::TimelineCancelled
1106 0 : }
1107 : }
1108 :
1109 : #[derive(thiserror::Error, Debug)]
1110 : pub(crate) enum LoadConfigError {
1111 : #[error("TOML deserialization error: '{0}'")]
1112 : DeserializeToml(#[from] toml_edit::de::Error),
1113 :
1114 : #[error("Config not found at {0}")]
1115 : NotFound(Utf8PathBuf),
1116 : }
1117 :
1118 : impl Tenant {
1119 : /// Yet another helper for timeline initialization.
1120 : ///
1121 : /// - Initializes the Timeline struct and inserts it into the tenant's hash map
1122 : /// - Scans the local timeline directory for layer files and builds the layer map
1123 : /// - Downloads remote index file and adds remote files to the layer map
1124 : /// - Schedules remote upload tasks for any files that are present locally but missing from remote storage.
1125 : ///
1126 : /// If the operation fails, the timeline is left in the tenant's hash map in Broken state. On success,
1127 : /// it is marked as Active.
1128 : #[allow(clippy::too_many_arguments)]
1129 12 : async fn timeline_init_and_sync(
1130 12 : self: &Arc<Self>,
1131 12 : timeline_id: TimelineId,
1132 12 : resources: TimelineResources,
1133 12 : mut index_part: IndexPart,
1134 12 : metadata: TimelineMetadata,
1135 12 : previous_heatmap: Option<PreviousHeatmap>,
1136 12 : ancestor: Option<Arc<Timeline>>,
1137 12 : cause: LoadTimelineCause,
1138 12 : ctx: &RequestContext,
1139 12 : ) -> anyhow::Result<TimelineInitAndSyncResult> {
1140 12 : let tenant_id = self.tenant_shard_id;
1141 12 :
1142 12 : let import_pgdata = index_part.import_pgdata.take();
1143 12 : let idempotency = match &import_pgdata {
1144 0 : Some(import_pgdata) => {
1145 0 : CreateTimelineIdempotency::ImportPgdata(CreatingTimelineIdempotencyImportPgdata {
1146 0 : idempotency_key: import_pgdata.idempotency_key().clone(),
1147 0 : })
1148 : }
1149 : None => {
1150 12 : if metadata.ancestor_timeline().is_none() {
1151 8 : CreateTimelineIdempotency::Bootstrap {
1152 8 : pg_version: metadata.pg_version(),
1153 8 : }
1154 : } else {
1155 4 : CreateTimelineIdempotency::Branch {
1156 4 : ancestor_timeline_id: metadata.ancestor_timeline().unwrap(),
1157 4 : ancestor_start_lsn: metadata.ancestor_lsn(),
1158 4 : }
1159 : }
1160 : }
1161 : };
1162 :
1163 12 : let timeline = self.create_timeline_struct(
1164 12 : timeline_id,
1165 12 : &metadata,
1166 12 : previous_heatmap,
1167 12 : ancestor.clone(),
1168 12 : resources,
1169 12 : CreateTimelineCause::Load,
1170 12 : idempotency.clone(),
1171 12 : )?;
1172 12 : let disk_consistent_lsn = timeline.get_disk_consistent_lsn();
1173 12 : anyhow::ensure!(
1174 12 : disk_consistent_lsn.is_valid(),
1175 0 : "Timeline {tenant_id}/{timeline_id} has invalid disk_consistent_lsn"
1176 : );
1177 12 : assert_eq!(
1178 12 : disk_consistent_lsn,
1179 12 : metadata.disk_consistent_lsn(),
1180 0 : "these are used interchangeably"
1181 : );
1182 :
1183 12 : timeline.remote_client.init_upload_queue(&index_part)?;
1184 :
1185 12 : timeline
1186 12 : .load_layer_map(disk_consistent_lsn, index_part)
1187 12 : .await
1188 12 : .with_context(|| {
1189 0 : format!("Failed to load layermap for timeline {tenant_id}/{timeline_id}")
1190 12 : })?;
1191 :
1192 0 : match import_pgdata {
1193 0 : Some(import_pgdata) if !import_pgdata.is_done() => {
1194 0 : match cause {
1195 0 : LoadTimelineCause::Attach | LoadTimelineCause::Unoffload => (),
1196 : LoadTimelineCause::ImportPgdata { .. } => {
1197 0 : unreachable!("ImportPgdata should not be reloading timeline import is done and persisted as such in s3")
1198 : }
1199 : }
1200 0 : let mut guard = self.timelines_creating.lock().unwrap();
1201 0 : if !guard.insert(timeline_id) {
1202 : // We should never try and load the same timeline twice during startup
1203 0 : unreachable!("Timeline {tenant_id}/{timeline_id} is already being created")
1204 0 : }
1205 0 : let timeline_create_guard = TimelineCreateGuard {
1206 0 : _tenant_gate_guard: self.gate.enter()?,
1207 0 : owning_tenant: self.clone(),
1208 0 : timeline_id,
1209 0 : idempotency,
1210 0 : // The users of this specific return value don't need the timline_path in there.
1211 0 : timeline_path: timeline
1212 0 : .conf
1213 0 : .timeline_path(&timeline.tenant_shard_id, &timeline.timeline_id),
1214 0 : };
1215 0 : Ok(TimelineInitAndSyncResult::NeedsSpawnImportPgdata(
1216 0 : TimelineInitAndSyncNeedsSpawnImportPgdata {
1217 0 : timeline,
1218 0 : import_pgdata,
1219 0 : guard: timeline_create_guard,
1220 0 : },
1221 0 : ))
1222 : }
1223 : Some(_) | None => {
1224 : {
1225 12 : let mut timelines_accessor = self.timelines.lock().unwrap();
1226 12 : match timelines_accessor.entry(timeline_id) {
1227 : // We should never try and load the same timeline twice during startup
1228 : Entry::Occupied(_) => {
1229 0 : unreachable!(
1230 0 : "Timeline {tenant_id}/{timeline_id} already exists in the tenant map"
1231 0 : );
1232 : }
1233 12 : Entry::Vacant(v) => {
1234 12 : v.insert(Arc::clone(&timeline));
1235 12 : timeline.maybe_spawn_flush_loop();
1236 12 : }
1237 : }
1238 : }
1239 :
1240 : // Sanity check: a timeline should have some content.
1241 12 : anyhow::ensure!(
1242 12 : ancestor.is_some()
1243 8 : || timeline
1244 8 : .layers
1245 8 : .read()
1246 8 : .await
1247 8 : .layer_map()
1248 8 : .expect("currently loading, layer manager cannot be shutdown already")
1249 8 : .iter_historic_layers()
1250 8 : .next()
1251 8 : .is_some(),
1252 0 : "Timeline has no ancestor and no layer files"
1253 : );
1254 :
1255 12 : match cause {
1256 12 : LoadTimelineCause::Attach | LoadTimelineCause::Unoffload => (),
1257 : LoadTimelineCause::ImportPgdata {
1258 0 : create_guard,
1259 0 : activate,
1260 0 : } => {
1261 0 : // TODO: see the comment in the task code above how I'm not so certain
1262 0 : // it is safe to activate here because of concurrent shutdowns.
1263 0 : match activate {
1264 0 : ActivateTimelineArgs::Yes { broker_client } => {
1265 0 : info!("activating timeline after reload from pgdata import task");
1266 0 : timeline.activate(self.clone(), broker_client, None, ctx);
1267 : }
1268 0 : ActivateTimelineArgs::No => (),
1269 : }
1270 0 : drop(create_guard);
1271 : }
1272 : }
1273 :
1274 12 : Ok(TimelineInitAndSyncResult::ReadyToActivate(timeline))
1275 : }
1276 : }
1277 12 : }
1278 :
1279 : /// Attach a tenant that's available in cloud storage.
1280 : ///
1281 : /// This returns quickly, after just creating the in-memory object
1282 : /// Tenant struct and launching a background task to download
1283 : /// the remote index files. On return, the tenant is most likely still in
1284 : /// Attaching state, and it will become Active once the background task
1285 : /// finishes. You can use wait_until_active() to wait for the task to
1286 : /// complete.
1287 : ///
1288 : #[allow(clippy::too_many_arguments)]
1289 0 : pub(crate) fn spawn(
1290 0 : conf: &'static PageServerConf,
1291 0 : tenant_shard_id: TenantShardId,
1292 0 : resources: TenantSharedResources,
1293 0 : attached_conf: AttachedTenantConf,
1294 0 : shard_identity: ShardIdentity,
1295 0 : init_order: Option<InitializationOrder>,
1296 0 : mode: SpawnMode,
1297 0 : ctx: &RequestContext,
1298 0 : ) -> Result<Arc<Tenant>, GlobalShutDown> {
1299 0 : let wal_redo_manager =
1300 0 : WalRedoManager::new(PostgresRedoManager::new(conf, tenant_shard_id))?;
1301 :
1302 : let TenantSharedResources {
1303 0 : broker_client,
1304 0 : remote_storage,
1305 0 : deletion_queue_client,
1306 0 : l0_flush_global_state,
1307 0 : } = resources;
1308 0 :
1309 0 : let attach_mode = attached_conf.location.attach_mode;
1310 0 : let generation = attached_conf.location.generation;
1311 0 :
1312 0 : let tenant = Arc::new(Tenant::new(
1313 0 : TenantState::Attaching,
1314 0 : conf,
1315 0 : attached_conf,
1316 0 : shard_identity,
1317 0 : Some(wal_redo_manager),
1318 0 : tenant_shard_id,
1319 0 : remote_storage.clone(),
1320 0 : deletion_queue_client,
1321 0 : l0_flush_global_state,
1322 0 : ));
1323 0 :
1324 0 : // The attach task will carry a GateGuard, so that shutdown() reliably waits for it to drop out if
1325 0 : // we shut down while attaching.
1326 0 : let attach_gate_guard = tenant
1327 0 : .gate
1328 0 : .enter()
1329 0 : .expect("We just created the Tenant: nothing else can have shut it down yet");
1330 0 :
1331 0 : // Do all the hard work in the background
1332 0 : let tenant_clone = Arc::clone(&tenant);
1333 0 : let ctx = ctx.detached_child(TaskKind::Attach, DownloadBehavior::Warn);
1334 0 : task_mgr::spawn(
1335 0 : &tokio::runtime::Handle::current(),
1336 0 : TaskKind::Attach,
1337 0 : tenant_shard_id,
1338 0 : None,
1339 0 : "attach tenant",
1340 0 : async move {
1341 0 :
1342 0 : info!(
1343 : ?attach_mode,
1344 0 : "Attaching tenant"
1345 : );
1346 :
1347 0 : let _gate_guard = attach_gate_guard;
1348 0 :
1349 0 : // Is this tenant being spawned as part of process startup?
1350 0 : let starting_up = init_order.is_some();
1351 0 : scopeguard::defer! {
1352 0 : if starting_up {
1353 0 : TENANT.startup_complete.inc();
1354 0 : }
1355 0 : }
1356 :
1357 : // Ideally we should use Tenant::set_broken_no_wait, but it is not supposed to be used when tenant is in loading state.
1358 : enum BrokenVerbosity {
1359 : Error,
1360 : Info
1361 : }
1362 0 : let make_broken =
1363 0 : |t: &Tenant, err: anyhow::Error, verbosity: BrokenVerbosity| {
1364 0 : match verbosity {
1365 : BrokenVerbosity::Info => {
1366 0 : info!("attach cancelled, setting tenant state to Broken: {err}");
1367 : },
1368 : BrokenVerbosity::Error => {
1369 0 : error!("attach failed, setting tenant state to Broken: {err:?}");
1370 : }
1371 : }
1372 0 : t.state.send_modify(|state| {
1373 0 : // The Stopping case is for when we have passed control on to DeleteTenantFlow:
1374 0 : // if it errors, we will call make_broken when tenant is already in Stopping.
1375 0 : assert!(
1376 0 : matches!(*state, TenantState::Attaching | TenantState::Stopping { .. }),
1377 0 : "the attach task owns the tenant state until activation is complete"
1378 : );
1379 :
1380 0 : *state = TenantState::broken_from_reason(err.to_string());
1381 0 : });
1382 0 : };
1383 :
1384 : // TODO: should also be rejecting tenant conf changes that violate this check.
1385 0 : if let Err(e) = crate::tenant::storage_layer::inmemory_layer::IndexEntry::validate_checkpoint_distance(tenant_clone.get_checkpoint_distance()) {
1386 0 : make_broken(&tenant_clone, anyhow::anyhow!(e), BrokenVerbosity::Error);
1387 0 : return Ok(());
1388 0 : }
1389 0 :
1390 0 : let mut init_order = init_order;
1391 0 : // take the completion because initial tenant loading will complete when all of
1392 0 : // these tasks complete.
1393 0 : let _completion = init_order
1394 0 : .as_mut()
1395 0 : .and_then(|x| x.initial_tenant_load.take());
1396 0 : let remote_load_completion = init_order
1397 0 : .as_mut()
1398 0 : .and_then(|x| x.initial_tenant_load_remote.take());
1399 :
1400 : enum AttachType<'a> {
1401 : /// We are attaching this tenant lazily in the background.
1402 : Warmup {
1403 : _permit: tokio::sync::SemaphorePermit<'a>,
1404 : during_startup: bool
1405 : },
1406 : /// We are attaching this tenant as soon as we can, because for example an
1407 : /// endpoint tried to access it.
1408 : OnDemand,
1409 : /// During normal operations after startup, we are attaching a tenant, and
1410 : /// eager attach was requested.
1411 : Normal,
1412 : }
1413 :
1414 0 : let attach_type = if matches!(mode, SpawnMode::Lazy) {
1415 : // Before doing any I/O, wait for at least one of:
1416 : // - A client attempting to access to this tenant (on-demand loading)
1417 : // - A permit becoming available in the warmup semaphore (background warmup)
1418 :
1419 0 : tokio::select!(
1420 0 : permit = tenant_clone.activate_now_sem.acquire() => {
1421 0 : let _ = permit.expect("activate_now_sem is never closed");
1422 0 : tracing::info!("Activating tenant (on-demand)");
1423 0 : AttachType::OnDemand
1424 : },
1425 0 : permit = conf.concurrent_tenant_warmup.inner().acquire() => {
1426 0 : let _permit = permit.expect("concurrent_tenant_warmup semaphore is never closed");
1427 0 : tracing::info!("Activating tenant (warmup)");
1428 0 : AttachType::Warmup {
1429 0 : _permit,
1430 0 : during_startup: init_order.is_some()
1431 0 : }
1432 : }
1433 0 : _ = tenant_clone.cancel.cancelled() => {
1434 : // This is safe, but should be pretty rare: it is interesting if a tenant
1435 : // stayed in Activating for such a long time that shutdown found it in
1436 : // that state.
1437 0 : tracing::info!(state=%tenant_clone.current_state(), "Tenant shut down before activation");
1438 : // Make the tenant broken so that set_stopping will not hang waiting for it to leave
1439 : // the Attaching state. This is an over-reaction (nothing really broke, the tenant is
1440 : // just shutting down), but ensures progress.
1441 0 : make_broken(&tenant_clone, anyhow::anyhow!("Shut down while Attaching"), BrokenVerbosity::Info);
1442 0 : return Ok(());
1443 : },
1444 : )
1445 : } else {
1446 : // SpawnMode::{Create,Eager} always cause jumping ahead of the
1447 : // concurrent_tenant_warmup queue
1448 0 : AttachType::Normal
1449 : };
1450 :
1451 0 : let preload = match &mode {
1452 : SpawnMode::Eager | SpawnMode::Lazy => {
1453 0 : let _preload_timer = TENANT.preload.start_timer();
1454 0 : let res = tenant_clone
1455 0 : .preload(&remote_storage, task_mgr::shutdown_token())
1456 0 : .await;
1457 0 : match res {
1458 0 : Ok(p) => Some(p),
1459 0 : Err(e) => {
1460 0 : make_broken(&tenant_clone, anyhow::anyhow!(e), BrokenVerbosity::Error);
1461 0 : return Ok(());
1462 : }
1463 : }
1464 : }
1465 :
1466 : };
1467 :
1468 : // Remote preload is complete.
1469 0 : drop(remote_load_completion);
1470 0 :
1471 0 :
1472 0 : // We will time the duration of the attach phase unless this is a creation (attach will do no work)
1473 0 : let attach_start = std::time::Instant::now();
1474 0 : let attached = {
1475 0 : let _attach_timer = Some(TENANT.attach.start_timer());
1476 0 : tenant_clone.attach(preload, &ctx).await
1477 : };
1478 0 : let attach_duration = attach_start.elapsed();
1479 0 : _ = tenant_clone.attach_wal_lag_cooldown.set(WalLagCooldown::new(attach_start, attach_duration));
1480 0 :
1481 0 : match attached {
1482 : Ok(()) => {
1483 0 : info!("attach finished, activating");
1484 0 : tenant_clone.activate(broker_client, None, &ctx);
1485 : }
1486 0 : Err(e) => {
1487 0 : make_broken(&tenant_clone, anyhow::anyhow!(e), BrokenVerbosity::Error);
1488 0 : }
1489 : }
1490 :
1491 : // If we are doing an opportunistic warmup attachment at startup, initialize
1492 : // logical size at the same time. This is better than starting a bunch of idle tenants
1493 : // with cold caches and then coming back later to initialize their logical sizes.
1494 : //
1495 : // It also prevents the warmup proccess competing with the concurrency limit on
1496 : // logical size calculations: if logical size calculation semaphore is saturated,
1497 : // then warmup will wait for that before proceeding to the next tenant.
1498 0 : if matches!(attach_type, AttachType::Warmup { during_startup: true, .. }) {
1499 0 : let mut futs: FuturesUnordered<_> = tenant_clone.timelines.lock().unwrap().values().cloned().map(|t| t.await_initial_logical_size()).collect();
1500 0 : tracing::info!("Waiting for initial logical sizes while warming up...");
1501 0 : while futs.next().await.is_some() {}
1502 0 : tracing::info!("Warm-up complete");
1503 0 : }
1504 :
1505 0 : Ok(())
1506 0 : }
1507 0 : .instrument(tracing::info_span!(parent: None, "attach", tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug(), gen=?generation)),
1508 : );
1509 0 : Ok(tenant)
1510 0 : }
1511 :
1512 : #[instrument(skip_all)]
1513 : pub(crate) async fn preload(
1514 : self: &Arc<Self>,
1515 : remote_storage: &GenericRemoteStorage,
1516 : cancel: CancellationToken,
1517 : ) -> anyhow::Result<TenantPreload> {
1518 : span::debug_assert_current_span_has_tenant_id();
1519 : // Get list of remote timelines
1520 : // download index files for every tenant timeline
1521 : info!("listing remote timelines");
1522 : let (mut remote_timeline_ids, other_keys) = remote_timeline_client::list_remote_timelines(
1523 : remote_storage,
1524 : self.tenant_shard_id,
1525 : cancel.clone(),
1526 : )
1527 : .await?;
1528 : let (offloaded_add, tenant_manifest) =
1529 : match remote_timeline_client::download_tenant_manifest(
1530 : remote_storage,
1531 : &self.tenant_shard_id,
1532 : self.generation,
1533 : &cancel,
1534 : )
1535 : .await
1536 : {
1537 : Ok((tenant_manifest, _generation, _manifest_mtime)) => (
1538 : format!("{} offloaded", tenant_manifest.offloaded_timelines.len()),
1539 : tenant_manifest,
1540 : ),
1541 : Err(DownloadError::NotFound) => {
1542 : ("no manifest".to_string(), TenantManifest::empty())
1543 : }
1544 : Err(e) => Err(e)?,
1545 : };
1546 :
1547 : info!(
1548 : "found {} timelines, and {offloaded_add}",
1549 : remote_timeline_ids.len()
1550 : );
1551 :
1552 : for k in other_keys {
1553 : warn!("Unexpected non timeline key {k}");
1554 : }
1555 :
1556 : // Avoid downloading IndexPart of offloaded timelines.
1557 : let mut offloaded_with_prefix = HashSet::new();
1558 : for offloaded in tenant_manifest.offloaded_timelines.iter() {
1559 : if remote_timeline_ids.remove(&offloaded.timeline_id) {
1560 : offloaded_with_prefix.insert(offloaded.timeline_id);
1561 : } else {
1562 : // We'll take care later of timelines in the manifest without a prefix
1563 : }
1564 : }
1565 :
1566 : // TODO(vlad): Could go to S3 if the secondary is freezing cold and hasn't even
1567 : // pulled the first heatmap. Not entirely necessary since the storage controller
1568 : // will kick the secondary in any case and cause a download.
1569 : let maybe_heatmap_at = self.read_on_disk_heatmap().await;
1570 :
1571 : let timelines = self
1572 : .load_timelines_metadata(
1573 : remote_timeline_ids,
1574 : remote_storage,
1575 : maybe_heatmap_at,
1576 : cancel,
1577 : )
1578 : .await?;
1579 :
1580 : Ok(TenantPreload {
1581 : tenant_manifest,
1582 : timelines: timelines
1583 : .into_iter()
1584 12 : .map(|(id, tl)| (id, Some(tl)))
1585 0 : .chain(offloaded_with_prefix.into_iter().map(|id| (id, None)))
1586 : .collect(),
1587 : })
1588 : }
1589 :
1590 444 : async fn read_on_disk_heatmap(&self) -> Option<(HeatMapTenant, std::time::Instant)> {
1591 444 : let on_disk_heatmap_path = self.conf.tenant_heatmap_path(&self.tenant_shard_id);
1592 444 : match tokio::fs::read_to_string(on_disk_heatmap_path).await {
1593 0 : Ok(heatmap) => match serde_json::from_str::<HeatMapTenant>(&heatmap) {
1594 0 : Ok(heatmap) => Some((heatmap, std::time::Instant::now())),
1595 0 : Err(err) => {
1596 0 : error!("Failed to deserialize old heatmap: {err}");
1597 0 : None
1598 : }
1599 : },
1600 444 : Err(err) => match err.kind() {
1601 444 : std::io::ErrorKind::NotFound => None,
1602 : _ => {
1603 0 : error!("Unexpected IO error reading old heatmap: {err}");
1604 0 : None
1605 : }
1606 : },
1607 : }
1608 444 : }
1609 :
1610 : ///
1611 : /// Background task that downloads all data for a tenant and brings it to Active state.
1612 : ///
1613 : /// No background tasks are started as part of this routine.
1614 : ///
1615 444 : async fn attach(
1616 444 : self: &Arc<Tenant>,
1617 444 : preload: Option<TenantPreload>,
1618 444 : ctx: &RequestContext,
1619 444 : ) -> anyhow::Result<()> {
1620 444 : span::debug_assert_current_span_has_tenant_id();
1621 444 :
1622 444 : failpoint_support::sleep_millis_async!("before-attaching-tenant");
1623 :
1624 444 : let Some(preload) = preload else {
1625 0 : anyhow::bail!("local-only deployment is no longer supported, https://github.com/neondatabase/neon/issues/5624");
1626 : };
1627 :
1628 444 : let mut offloaded_timeline_ids = HashSet::new();
1629 444 : let mut offloaded_timelines_list = Vec::new();
1630 444 : for timeline_manifest in preload.tenant_manifest.offloaded_timelines.iter() {
1631 0 : let timeline_id = timeline_manifest.timeline_id;
1632 0 : let offloaded_timeline =
1633 0 : OffloadedTimeline::from_manifest(self.tenant_shard_id, timeline_manifest);
1634 0 : offloaded_timelines_list.push((timeline_id, Arc::new(offloaded_timeline)));
1635 0 : offloaded_timeline_ids.insert(timeline_id);
1636 0 : }
1637 : // Complete deletions for offloaded timeline id's from manifest.
1638 : // The manifest will be uploaded later in this function.
1639 444 : offloaded_timelines_list
1640 444 : .retain(|(offloaded_id, offloaded)| {
1641 0 : // Existence of a timeline is finally determined by the existence of an index-part.json in remote storage.
1642 0 : // If there is dangling references in another location, they need to be cleaned up.
1643 0 : let delete = !preload.timelines.contains_key(offloaded_id);
1644 0 : if delete {
1645 0 : tracing::info!("Removing offloaded timeline {offloaded_id} from manifest as no remote prefix was found");
1646 0 : offloaded.defuse_for_tenant_drop();
1647 0 : }
1648 0 : !delete
1649 444 : });
1650 444 :
1651 444 : let mut timelines_to_resume_deletions = vec![];
1652 444 :
1653 444 : let mut remote_index_and_client = HashMap::new();
1654 444 : let mut timeline_ancestors = HashMap::new();
1655 444 : let mut existent_timelines = HashSet::new();
1656 456 : for (timeline_id, preload) in preload.timelines {
1657 12 : let Some(preload) = preload else { continue };
1658 : // This is an invariant of the `preload` function's API
1659 12 : assert!(!offloaded_timeline_ids.contains(&timeline_id));
1660 12 : let index_part = match preload.index_part {
1661 12 : Ok(i) => {
1662 12 : debug!("remote index part exists for timeline {timeline_id}");
1663 : // We found index_part on the remote, this is the standard case.
1664 12 : existent_timelines.insert(timeline_id);
1665 12 : i
1666 : }
1667 : Err(DownloadError::NotFound) => {
1668 : // There is no index_part on the remote. We only get here
1669 : // if there is some prefix for the timeline in the remote storage.
1670 : // This can e.g. be the initdb.tar.zst archive, maybe a
1671 : // remnant from a prior incomplete creation or deletion attempt.
1672 : // Delete the local directory as the deciding criterion for a
1673 : // timeline's existence is presence of index_part.
1674 0 : info!(%timeline_id, "index_part not found on remote");
1675 0 : continue;
1676 : }
1677 0 : Err(DownloadError::Fatal(why)) => {
1678 0 : // If, while loading one remote timeline, we saw an indication that our generation
1679 0 : // number is likely invalid, then we should not load the whole tenant.
1680 0 : error!(%timeline_id, "Fatal error loading timeline: {why}");
1681 0 : anyhow::bail!(why.to_string());
1682 : }
1683 0 : Err(e) => {
1684 0 : // Some (possibly ephemeral) error happened during index_part download.
1685 0 : // Pretend the timeline exists to not delete the timeline directory,
1686 0 : // as it might be a temporary issue and we don't want to re-download
1687 0 : // everything after it resolves.
1688 0 : warn!(%timeline_id, "Failed to load index_part from remote storage, failed creation? ({e})");
1689 :
1690 0 : existent_timelines.insert(timeline_id);
1691 0 : continue;
1692 : }
1693 : };
1694 12 : match index_part {
1695 12 : MaybeDeletedIndexPart::IndexPart(index_part) => {
1696 12 : timeline_ancestors.insert(timeline_id, index_part.metadata.clone());
1697 12 : remote_index_and_client.insert(
1698 12 : timeline_id,
1699 12 : (index_part, preload.client, preload.previous_heatmap),
1700 12 : );
1701 12 : }
1702 0 : MaybeDeletedIndexPart::Deleted(index_part) => {
1703 0 : info!(
1704 0 : "timeline {} is deleted, picking to resume deletion",
1705 : timeline_id
1706 : );
1707 0 : timelines_to_resume_deletions.push((timeline_id, index_part, preload.client));
1708 : }
1709 : }
1710 : }
1711 :
1712 444 : let mut gc_blocks = HashMap::new();
1713 :
1714 : // For every timeline, download the metadata file, scan the local directory,
1715 : // and build a layer map that contains an entry for each remote and local
1716 : // layer file.
1717 444 : let sorted_timelines = tree_sort_timelines(timeline_ancestors, |m| m.ancestor_timeline())?;
1718 456 : for (timeline_id, remote_metadata) in sorted_timelines {
1719 12 : let (index_part, remote_client, previous_heatmap) = remote_index_and_client
1720 12 : .remove(&timeline_id)
1721 12 : .expect("just put it in above");
1722 :
1723 12 : if let Some(blocking) = index_part.gc_blocking.as_ref() {
1724 : // could just filter these away, but it helps while testing
1725 0 : anyhow::ensure!(
1726 0 : !blocking.reasons.is_empty(),
1727 0 : "index_part for {timeline_id} is malformed: it should not have gc blocking with zero reasons"
1728 : );
1729 0 : let prev = gc_blocks.insert(timeline_id, blocking.reasons);
1730 0 : assert!(prev.is_none());
1731 12 : }
1732 :
1733 : // TODO again handle early failure
1734 12 : let effect = self
1735 12 : .load_remote_timeline(
1736 12 : timeline_id,
1737 12 : index_part,
1738 12 : remote_metadata,
1739 12 : previous_heatmap,
1740 12 : self.get_timeline_resources_for(remote_client),
1741 12 : LoadTimelineCause::Attach,
1742 12 : ctx,
1743 12 : )
1744 12 : .await
1745 12 : .with_context(|| {
1746 0 : format!(
1747 0 : "failed to load remote timeline {} for tenant {}",
1748 0 : timeline_id, self.tenant_shard_id
1749 0 : )
1750 12 : })?;
1751 :
1752 12 : match effect {
1753 12 : TimelineInitAndSyncResult::ReadyToActivate(_) => {
1754 12 : // activation happens later, on Tenant::activate
1755 12 : }
1756 : TimelineInitAndSyncResult::NeedsSpawnImportPgdata(
1757 : TimelineInitAndSyncNeedsSpawnImportPgdata {
1758 0 : timeline,
1759 0 : import_pgdata,
1760 0 : guard,
1761 0 : },
1762 0 : ) => {
1763 0 : tokio::task::spawn(self.clone().create_timeline_import_pgdata_task(
1764 0 : timeline,
1765 0 : import_pgdata,
1766 0 : ActivateTimelineArgs::No,
1767 0 : guard,
1768 0 : ));
1769 0 : }
1770 : }
1771 : }
1772 :
1773 : // Walk through deleted timelines, resume deletion
1774 444 : for (timeline_id, index_part, remote_timeline_client) in timelines_to_resume_deletions {
1775 0 : remote_timeline_client
1776 0 : .init_upload_queue_stopped_to_continue_deletion(&index_part)
1777 0 : .context("init queue stopped")
1778 0 : .map_err(LoadLocalTimelineError::ResumeDeletion)?;
1779 :
1780 0 : DeleteTimelineFlow::resume_deletion(
1781 0 : Arc::clone(self),
1782 0 : timeline_id,
1783 0 : &index_part.metadata,
1784 0 : remote_timeline_client,
1785 0 : )
1786 0 : .instrument(tracing::info_span!("timeline_delete", %timeline_id))
1787 0 : .await
1788 0 : .context("resume_deletion")
1789 0 : .map_err(LoadLocalTimelineError::ResumeDeletion)?;
1790 : }
1791 444 : let needs_manifest_upload =
1792 444 : offloaded_timelines_list.len() != preload.tenant_manifest.offloaded_timelines.len();
1793 444 : {
1794 444 : let mut offloaded_timelines_accessor = self.timelines_offloaded.lock().unwrap();
1795 444 : offloaded_timelines_accessor.extend(offloaded_timelines_list.into_iter());
1796 444 : }
1797 444 : if needs_manifest_upload {
1798 0 : self.store_tenant_manifest().await?;
1799 444 : }
1800 :
1801 : // The local filesystem contents are a cache of what's in the remote IndexPart;
1802 : // IndexPart is the source of truth.
1803 444 : self.clean_up_timelines(&existent_timelines)?;
1804 :
1805 444 : self.gc_block.set_scanned(gc_blocks);
1806 444 :
1807 444 : fail::fail_point!("attach-before-activate", |_| {
1808 0 : anyhow::bail!("attach-before-activate");
1809 444 : });
1810 444 : failpoint_support::sleep_millis_async!("attach-before-activate-sleep", &self.cancel);
1811 :
1812 444 : info!("Done");
1813 :
1814 444 : Ok(())
1815 444 : }
1816 :
1817 : /// Check for any local timeline directories that are temporary, or do not correspond to a
1818 : /// timeline that still exists: this can happen if we crashed during a deletion/creation, or
1819 : /// if a timeline was deleted while the tenant was attached to a different pageserver.
1820 444 : fn clean_up_timelines(&self, existent_timelines: &HashSet<TimelineId>) -> anyhow::Result<()> {
1821 444 : let timelines_dir = self.conf.timelines_path(&self.tenant_shard_id);
1822 :
1823 444 : let entries = match timelines_dir.read_dir_utf8() {
1824 444 : Ok(d) => d,
1825 0 : Err(e) => {
1826 0 : if e.kind() == std::io::ErrorKind::NotFound {
1827 0 : return Ok(());
1828 : } else {
1829 0 : return Err(e).context("list timelines directory for tenant");
1830 : }
1831 : }
1832 : };
1833 :
1834 460 : for entry in entries {
1835 16 : let entry = entry.context("read timeline dir entry")?;
1836 16 : let entry_path = entry.path();
1837 :
1838 16 : let purge = if crate::is_temporary(entry_path) {
1839 0 : true
1840 : } else {
1841 16 : match TimelineId::try_from(entry_path.file_name()) {
1842 16 : Ok(i) => {
1843 16 : // Purge if the timeline ID does not exist in remote storage: remote storage is the authority.
1844 16 : !existent_timelines.contains(&i)
1845 : }
1846 0 : Err(e) => {
1847 0 : tracing::warn!(
1848 0 : "Unparseable directory in timelines directory: {entry_path}, ignoring ({e})"
1849 : );
1850 : // Do not purge junk: if we don't recognize it, be cautious and leave it for a human.
1851 0 : false
1852 : }
1853 : }
1854 : };
1855 :
1856 16 : if purge {
1857 4 : tracing::info!("Purging stale timeline dentry {entry_path}");
1858 4 : if let Err(e) = match entry.file_type() {
1859 4 : Ok(t) => if t.is_dir() {
1860 4 : std::fs::remove_dir_all(entry_path)
1861 : } else {
1862 0 : std::fs::remove_file(entry_path)
1863 : }
1864 4 : .or_else(fs_ext::ignore_not_found),
1865 0 : Err(e) => Err(e),
1866 : } {
1867 0 : tracing::warn!("Failed to purge stale timeline dentry {entry_path}: {e}");
1868 4 : }
1869 12 : }
1870 : }
1871 :
1872 444 : Ok(())
1873 444 : }
1874 :
1875 : /// Get sum of all remote timelines sizes
1876 : ///
1877 : /// This function relies on the index_part instead of listing the remote storage
1878 0 : pub fn remote_size(&self) -> u64 {
1879 0 : let mut size = 0;
1880 :
1881 0 : for timeline in self.list_timelines() {
1882 0 : size += timeline.remote_client.get_remote_physical_size();
1883 0 : }
1884 :
1885 0 : size
1886 0 : }
1887 :
1888 : #[instrument(skip_all, fields(timeline_id=%timeline_id))]
1889 : #[allow(clippy::too_many_arguments)]
1890 : async fn load_remote_timeline(
1891 : self: &Arc<Self>,
1892 : timeline_id: TimelineId,
1893 : index_part: IndexPart,
1894 : remote_metadata: TimelineMetadata,
1895 : previous_heatmap: Option<PreviousHeatmap>,
1896 : resources: TimelineResources,
1897 : cause: LoadTimelineCause,
1898 : ctx: &RequestContext,
1899 : ) -> anyhow::Result<TimelineInitAndSyncResult> {
1900 : span::debug_assert_current_span_has_tenant_id();
1901 :
1902 : info!("downloading index file for timeline {}", timeline_id);
1903 : tokio::fs::create_dir_all(self.conf.timeline_path(&self.tenant_shard_id, &timeline_id))
1904 : .await
1905 : .context("Failed to create new timeline directory")?;
1906 :
1907 : let ancestor = if let Some(ancestor_id) = remote_metadata.ancestor_timeline() {
1908 : let timelines = self.timelines.lock().unwrap();
1909 : Some(Arc::clone(timelines.get(&ancestor_id).ok_or_else(
1910 0 : || {
1911 0 : anyhow::anyhow!(
1912 0 : "cannot find ancestor timeline {ancestor_id} for timeline {timeline_id}"
1913 0 : )
1914 0 : },
1915 : )?))
1916 : } else {
1917 : None
1918 : };
1919 :
1920 : self.timeline_init_and_sync(
1921 : timeline_id,
1922 : resources,
1923 : index_part,
1924 : remote_metadata,
1925 : previous_heatmap,
1926 : ancestor,
1927 : cause,
1928 : ctx,
1929 : )
1930 : .await
1931 : }
1932 :
1933 444 : async fn load_timelines_metadata(
1934 444 : self: &Arc<Tenant>,
1935 444 : timeline_ids: HashSet<TimelineId>,
1936 444 : remote_storage: &GenericRemoteStorage,
1937 444 : heatmap: Option<(HeatMapTenant, std::time::Instant)>,
1938 444 : cancel: CancellationToken,
1939 444 : ) -> anyhow::Result<HashMap<TimelineId, TimelinePreload>> {
1940 444 : let mut timeline_heatmaps = heatmap.map(|h| (h.0.into_timelines_index(), h.1));
1941 444 :
1942 444 : let mut part_downloads = JoinSet::new();
1943 456 : for timeline_id in timeline_ids {
1944 12 : let cancel_clone = cancel.clone();
1945 12 :
1946 12 : let previous_timeline_heatmap = timeline_heatmaps.as_mut().and_then(|hs| {
1947 0 : hs.0.remove(&timeline_id).map(|h| PreviousHeatmap::Active {
1948 0 : heatmap: h,
1949 0 : read_at: hs.1,
1950 0 : })
1951 12 : });
1952 12 : part_downloads.spawn(
1953 12 : self.load_timeline_metadata(
1954 12 : timeline_id,
1955 12 : remote_storage.clone(),
1956 12 : previous_timeline_heatmap,
1957 12 : cancel_clone,
1958 12 : )
1959 12 : .instrument(info_span!("download_index_part", %timeline_id)),
1960 : );
1961 : }
1962 :
1963 444 : let mut timeline_preloads: HashMap<TimelineId, TimelinePreload> = HashMap::new();
1964 :
1965 : loop {
1966 456 : tokio::select!(
1967 456 : next = part_downloads.join_next() => {
1968 456 : match next {
1969 12 : Some(result) => {
1970 12 : let preload = result.context("join preload task")?;
1971 12 : timeline_preloads.insert(preload.timeline_id, preload);
1972 : },
1973 : None => {
1974 444 : break;
1975 : }
1976 : }
1977 : },
1978 456 : _ = cancel.cancelled() => {
1979 0 : anyhow::bail!("Cancelled while waiting for remote index download")
1980 : }
1981 : )
1982 : }
1983 :
1984 444 : Ok(timeline_preloads)
1985 444 : }
1986 :
1987 12 : fn build_timeline_client(
1988 12 : &self,
1989 12 : timeline_id: TimelineId,
1990 12 : remote_storage: GenericRemoteStorage,
1991 12 : ) -> RemoteTimelineClient {
1992 12 : RemoteTimelineClient::new(
1993 12 : remote_storage.clone(),
1994 12 : self.deletion_queue_client.clone(),
1995 12 : self.conf,
1996 12 : self.tenant_shard_id,
1997 12 : timeline_id,
1998 12 : self.generation,
1999 12 : &self.tenant_conf.load().location,
2000 12 : )
2001 12 : }
2002 :
2003 12 : fn load_timeline_metadata(
2004 12 : self: &Arc<Tenant>,
2005 12 : timeline_id: TimelineId,
2006 12 : remote_storage: GenericRemoteStorage,
2007 12 : previous_heatmap: Option<PreviousHeatmap>,
2008 12 : cancel: CancellationToken,
2009 12 : ) -> impl Future<Output = TimelinePreload> {
2010 12 : let client = self.build_timeline_client(timeline_id, remote_storage);
2011 12 : async move {
2012 12 : debug_assert_current_span_has_tenant_and_timeline_id();
2013 12 : debug!("starting index part download");
2014 :
2015 12 : let index_part = client.download_index_file(&cancel).await;
2016 :
2017 12 : debug!("finished index part download");
2018 :
2019 12 : TimelinePreload {
2020 12 : client,
2021 12 : timeline_id,
2022 12 : index_part,
2023 12 : previous_heatmap,
2024 12 : }
2025 12 : }
2026 12 : }
2027 :
2028 0 : fn check_to_be_archived_has_no_unarchived_children(
2029 0 : timeline_id: TimelineId,
2030 0 : timelines: &std::sync::MutexGuard<'_, HashMap<TimelineId, Arc<Timeline>>>,
2031 0 : ) -> Result<(), TimelineArchivalError> {
2032 0 : let children: Vec<TimelineId> = timelines
2033 0 : .iter()
2034 0 : .filter_map(|(id, entry)| {
2035 0 : if entry.get_ancestor_timeline_id() != Some(timeline_id) {
2036 0 : return None;
2037 0 : }
2038 0 : if entry.is_archived() == Some(true) {
2039 0 : return None;
2040 0 : }
2041 0 : Some(*id)
2042 0 : })
2043 0 : .collect();
2044 0 :
2045 0 : if !children.is_empty() {
2046 0 : return Err(TimelineArchivalError::HasUnarchivedChildren(children));
2047 0 : }
2048 0 : Ok(())
2049 0 : }
2050 :
2051 0 : fn check_ancestor_of_to_be_unarchived_is_not_archived(
2052 0 : ancestor_timeline_id: TimelineId,
2053 0 : timelines: &std::sync::MutexGuard<'_, HashMap<TimelineId, Arc<Timeline>>>,
2054 0 : offloaded_timelines: &std::sync::MutexGuard<
2055 0 : '_,
2056 0 : HashMap<TimelineId, Arc<OffloadedTimeline>>,
2057 0 : >,
2058 0 : ) -> Result<(), TimelineArchivalError> {
2059 0 : let has_archived_parent =
2060 0 : if let Some(ancestor_timeline) = timelines.get(&ancestor_timeline_id) {
2061 0 : ancestor_timeline.is_archived() == Some(true)
2062 0 : } else if offloaded_timelines.contains_key(&ancestor_timeline_id) {
2063 0 : true
2064 : } else {
2065 0 : error!("ancestor timeline {ancestor_timeline_id} not found");
2066 0 : if cfg!(debug_assertions) {
2067 0 : panic!("ancestor timeline {ancestor_timeline_id} not found");
2068 0 : }
2069 0 : return Err(TimelineArchivalError::NotFound);
2070 : };
2071 0 : if has_archived_parent {
2072 0 : return Err(TimelineArchivalError::HasArchivedParent(
2073 0 : ancestor_timeline_id,
2074 0 : ));
2075 0 : }
2076 0 : Ok(())
2077 0 : }
2078 :
2079 0 : fn check_to_be_unarchived_timeline_has_no_archived_parent(
2080 0 : timeline: &Arc<Timeline>,
2081 0 : ) -> Result<(), TimelineArchivalError> {
2082 0 : if let Some(ancestor_timeline) = timeline.ancestor_timeline() {
2083 0 : if ancestor_timeline.is_archived() == Some(true) {
2084 0 : return Err(TimelineArchivalError::HasArchivedParent(
2085 0 : ancestor_timeline.timeline_id,
2086 0 : ));
2087 0 : }
2088 0 : }
2089 0 : Ok(())
2090 0 : }
2091 :
2092 : /// Loads the specified (offloaded) timeline from S3 and attaches it as a loaded timeline
2093 : ///
2094 : /// Counterpart to [`offload_timeline`].
2095 0 : async fn unoffload_timeline(
2096 0 : self: &Arc<Self>,
2097 0 : timeline_id: TimelineId,
2098 0 : broker_client: storage_broker::BrokerClientChannel,
2099 0 : ctx: RequestContext,
2100 0 : ) -> Result<Arc<Timeline>, TimelineArchivalError> {
2101 0 : info!("unoffloading timeline");
2102 :
2103 : // We activate the timeline below manually, so this must be called on an active tenant.
2104 : // We expect callers of this function to ensure this.
2105 0 : match self.current_state() {
2106 : TenantState::Activating { .. }
2107 : | TenantState::Attaching
2108 : | TenantState::Broken { .. } => {
2109 0 : panic!("Timeline expected to be active")
2110 : }
2111 0 : TenantState::Stopping { .. } => return Err(TimelineArchivalError::Cancelled),
2112 0 : TenantState::Active => {}
2113 0 : }
2114 0 : let cancel = self.cancel.clone();
2115 0 :
2116 0 : // Protect against concurrent attempts to use this TimelineId
2117 0 : // We don't care much about idempotency, as it's ensured a layer above.
2118 0 : let allow_offloaded = true;
2119 0 : let _create_guard = self
2120 0 : .create_timeline_create_guard(
2121 0 : timeline_id,
2122 0 : CreateTimelineIdempotency::FailWithConflict,
2123 0 : allow_offloaded,
2124 0 : )
2125 0 : .map_err(|err| match err {
2126 0 : TimelineExclusionError::AlreadyCreating => TimelineArchivalError::AlreadyInProgress,
2127 : TimelineExclusionError::AlreadyExists { .. } => {
2128 0 : TimelineArchivalError::Other(anyhow::anyhow!("Timeline already exists"))
2129 : }
2130 0 : TimelineExclusionError::Other(e) => TimelineArchivalError::Other(e),
2131 0 : TimelineExclusionError::ShuttingDown => TimelineArchivalError::Cancelled,
2132 0 : })?;
2133 :
2134 0 : let timeline_preload = self
2135 0 : .load_timeline_metadata(
2136 0 : timeline_id,
2137 0 : self.remote_storage.clone(),
2138 0 : None,
2139 0 : cancel.clone(),
2140 0 : )
2141 0 : .await;
2142 :
2143 0 : let index_part = match timeline_preload.index_part {
2144 0 : Ok(index_part) => {
2145 0 : debug!("remote index part exists for timeline {timeline_id}");
2146 0 : index_part
2147 : }
2148 : Err(DownloadError::NotFound) => {
2149 0 : error!(%timeline_id, "index_part not found on remote");
2150 0 : return Err(TimelineArchivalError::NotFound);
2151 : }
2152 0 : Err(DownloadError::Cancelled) => return Err(TimelineArchivalError::Cancelled),
2153 0 : Err(e) => {
2154 0 : // Some (possibly ephemeral) error happened during index_part download.
2155 0 : warn!(%timeline_id, "Failed to load index_part from remote storage, failed creation? ({e})");
2156 0 : return Err(TimelineArchivalError::Other(
2157 0 : anyhow::Error::new(e).context("downloading index_part from remote storage"),
2158 0 : ));
2159 : }
2160 : };
2161 0 : let index_part = match index_part {
2162 0 : MaybeDeletedIndexPart::IndexPart(index_part) => index_part,
2163 0 : MaybeDeletedIndexPart::Deleted(_index_part) => {
2164 0 : info!("timeline is deleted according to index_part.json");
2165 0 : return Err(TimelineArchivalError::NotFound);
2166 : }
2167 : };
2168 0 : let remote_metadata = index_part.metadata.clone();
2169 0 : let timeline_resources = self.build_timeline_resources(timeline_id);
2170 0 : self.load_remote_timeline(
2171 0 : timeline_id,
2172 0 : index_part,
2173 0 : remote_metadata,
2174 0 : None,
2175 0 : timeline_resources,
2176 0 : LoadTimelineCause::Unoffload,
2177 0 : &ctx,
2178 0 : )
2179 0 : .await
2180 0 : .with_context(|| {
2181 0 : format!(
2182 0 : "failed to load remote timeline {} for tenant {}",
2183 0 : timeline_id, self.tenant_shard_id
2184 0 : )
2185 0 : })
2186 0 : .map_err(TimelineArchivalError::Other)?;
2187 :
2188 0 : let timeline = {
2189 0 : let timelines = self.timelines.lock().unwrap();
2190 0 : let Some(timeline) = timelines.get(&timeline_id) else {
2191 0 : warn!("timeline not available directly after attach");
2192 : // This is not a panic because no locks are held between `load_remote_timeline`
2193 : // which puts the timeline into timelines, and our look into the timeline map.
2194 0 : return Err(TimelineArchivalError::Other(anyhow::anyhow!(
2195 0 : "timeline not available directly after attach"
2196 0 : )));
2197 : };
2198 0 : let mut offloaded_timelines = self.timelines_offloaded.lock().unwrap();
2199 0 : match offloaded_timelines.remove(&timeline_id) {
2200 0 : Some(offloaded) => {
2201 0 : offloaded.delete_from_ancestor_with_timelines(&timelines);
2202 0 : }
2203 0 : None => warn!("timeline already removed from offloaded timelines"),
2204 : }
2205 :
2206 0 : self.initialize_gc_info(&timelines, &offloaded_timelines, Some(timeline_id));
2207 0 :
2208 0 : Arc::clone(timeline)
2209 0 : };
2210 0 :
2211 0 : // Upload new list of offloaded timelines to S3
2212 0 : self.store_tenant_manifest().await?;
2213 :
2214 : // Activate the timeline (if it makes sense)
2215 0 : if !(timeline.is_broken() || timeline.is_stopping()) {
2216 0 : let background_jobs_can_start = None;
2217 0 : timeline.activate(
2218 0 : self.clone(),
2219 0 : broker_client.clone(),
2220 0 : background_jobs_can_start,
2221 0 : &ctx,
2222 0 : );
2223 0 : }
2224 :
2225 0 : info!("timeline unoffloading complete");
2226 0 : Ok(timeline)
2227 0 : }
2228 :
2229 0 : pub(crate) async fn apply_timeline_archival_config(
2230 0 : self: &Arc<Self>,
2231 0 : timeline_id: TimelineId,
2232 0 : new_state: TimelineArchivalState,
2233 0 : broker_client: storage_broker::BrokerClientChannel,
2234 0 : ctx: RequestContext,
2235 0 : ) -> Result<(), TimelineArchivalError> {
2236 0 : info!("setting timeline archival config");
2237 : // First part: figure out what is needed to do, and do validation
2238 0 : let timeline_or_unarchive_offloaded = 'outer: {
2239 0 : let timelines = self.timelines.lock().unwrap();
2240 :
2241 0 : let Some(timeline) = timelines.get(&timeline_id) else {
2242 0 : let offloaded_timelines = self.timelines_offloaded.lock().unwrap();
2243 0 : let Some(offloaded) = offloaded_timelines.get(&timeline_id) else {
2244 0 : return Err(TimelineArchivalError::NotFound);
2245 : };
2246 0 : if new_state == TimelineArchivalState::Archived {
2247 : // It's offloaded already, so nothing to do
2248 0 : return Ok(());
2249 0 : }
2250 0 : if let Some(ancestor_timeline_id) = offloaded.ancestor_timeline_id {
2251 0 : Self::check_ancestor_of_to_be_unarchived_is_not_archived(
2252 0 : ancestor_timeline_id,
2253 0 : &timelines,
2254 0 : &offloaded_timelines,
2255 0 : )?;
2256 0 : }
2257 0 : break 'outer None;
2258 : };
2259 :
2260 : // Do some validation. We release the timelines lock below, so there is potential
2261 : // for race conditions: these checks are more present to prevent misunderstandings of
2262 : // the API's capabilities, instead of serving as the sole way to defend their invariants.
2263 0 : match new_state {
2264 : TimelineArchivalState::Unarchived => {
2265 0 : Self::check_to_be_unarchived_timeline_has_no_archived_parent(timeline)?
2266 : }
2267 : TimelineArchivalState::Archived => {
2268 0 : Self::check_to_be_archived_has_no_unarchived_children(timeline_id, &timelines)?
2269 : }
2270 : }
2271 0 : Some(Arc::clone(timeline))
2272 : };
2273 :
2274 : // Second part: unoffload timeline (if needed)
2275 0 : let timeline = if let Some(timeline) = timeline_or_unarchive_offloaded {
2276 0 : timeline
2277 : } else {
2278 : // Turn offloaded timeline into a non-offloaded one
2279 0 : self.unoffload_timeline(timeline_id, broker_client, ctx)
2280 0 : .await?
2281 : };
2282 :
2283 : // Third part: upload new timeline archival state and block until it is present in S3
2284 0 : let upload_needed = match timeline
2285 0 : .remote_client
2286 0 : .schedule_index_upload_for_timeline_archival_state(new_state)
2287 : {
2288 0 : Ok(upload_needed) => upload_needed,
2289 0 : Err(e) => {
2290 0 : if timeline.cancel.is_cancelled() {
2291 0 : return Err(TimelineArchivalError::Cancelled);
2292 : } else {
2293 0 : return Err(TimelineArchivalError::Other(e));
2294 : }
2295 : }
2296 : };
2297 :
2298 0 : if upload_needed {
2299 0 : info!("Uploading new state");
2300 : const MAX_WAIT: Duration = Duration::from_secs(10);
2301 0 : let Ok(v) =
2302 0 : tokio::time::timeout(MAX_WAIT, timeline.remote_client.wait_completion()).await
2303 : else {
2304 0 : tracing::warn!("reached timeout for waiting on upload queue");
2305 0 : return Err(TimelineArchivalError::Timeout);
2306 : };
2307 0 : v.map_err(|e| match e {
2308 0 : WaitCompletionError::NotInitialized(e) => {
2309 0 : TimelineArchivalError::Other(anyhow::anyhow!(e))
2310 : }
2311 : WaitCompletionError::UploadQueueShutDownOrStopped => {
2312 0 : TimelineArchivalError::Cancelled
2313 : }
2314 0 : })?;
2315 0 : }
2316 0 : Ok(())
2317 0 : }
2318 :
2319 4 : pub fn get_offloaded_timeline(
2320 4 : &self,
2321 4 : timeline_id: TimelineId,
2322 4 : ) -> Result<Arc<OffloadedTimeline>, GetTimelineError> {
2323 4 : self.timelines_offloaded
2324 4 : .lock()
2325 4 : .unwrap()
2326 4 : .get(&timeline_id)
2327 4 : .map(Arc::clone)
2328 4 : .ok_or(GetTimelineError::NotFound {
2329 4 : tenant_id: self.tenant_shard_id,
2330 4 : timeline_id,
2331 4 : })
2332 4 : }
2333 :
2334 8 : pub(crate) fn tenant_shard_id(&self) -> TenantShardId {
2335 8 : self.tenant_shard_id
2336 8 : }
2337 :
2338 : /// Get Timeline handle for given Neon timeline ID.
2339 : /// This function is idempotent. It doesn't change internal state in any way.
2340 444 : pub fn get_timeline(
2341 444 : &self,
2342 444 : timeline_id: TimelineId,
2343 444 : active_only: bool,
2344 444 : ) -> Result<Arc<Timeline>, GetTimelineError> {
2345 444 : let timelines_accessor = self.timelines.lock().unwrap();
2346 444 : let timeline = timelines_accessor
2347 444 : .get(&timeline_id)
2348 444 : .ok_or(GetTimelineError::NotFound {
2349 444 : tenant_id: self.tenant_shard_id,
2350 444 : timeline_id,
2351 444 : })?;
2352 :
2353 440 : if active_only && !timeline.is_active() {
2354 0 : Err(GetTimelineError::NotActive {
2355 0 : tenant_id: self.tenant_shard_id,
2356 0 : timeline_id,
2357 0 : state: timeline.current_state(),
2358 0 : })
2359 : } else {
2360 440 : Ok(Arc::clone(timeline))
2361 : }
2362 444 : }
2363 :
2364 : /// Lists timelines the tenant contains.
2365 : /// It's up to callers to omit certain timelines that are not considered ready for use.
2366 0 : pub fn list_timelines(&self) -> Vec<Arc<Timeline>> {
2367 0 : self.timelines
2368 0 : .lock()
2369 0 : .unwrap()
2370 0 : .values()
2371 0 : .map(Arc::clone)
2372 0 : .collect()
2373 0 : }
2374 :
2375 : /// Lists timelines the tenant manages, including offloaded ones.
2376 : ///
2377 : /// It's up to callers to omit certain timelines that are not considered ready for use.
2378 0 : pub fn list_timelines_and_offloaded(
2379 0 : &self,
2380 0 : ) -> (Vec<Arc<Timeline>>, Vec<Arc<OffloadedTimeline>>) {
2381 0 : let timelines = self
2382 0 : .timelines
2383 0 : .lock()
2384 0 : .unwrap()
2385 0 : .values()
2386 0 : .map(Arc::clone)
2387 0 : .collect();
2388 0 : let offloaded = self
2389 0 : .timelines_offloaded
2390 0 : .lock()
2391 0 : .unwrap()
2392 0 : .values()
2393 0 : .map(Arc::clone)
2394 0 : .collect();
2395 0 : (timelines, offloaded)
2396 0 : }
2397 :
2398 0 : pub fn list_timeline_ids(&self) -> Vec<TimelineId> {
2399 0 : self.timelines.lock().unwrap().keys().cloned().collect()
2400 0 : }
2401 :
2402 : /// This is used by tests & import-from-basebackup.
2403 : ///
2404 : /// The returned [`UninitializedTimeline`] contains no data nor metadata and it is in
2405 : /// a state that will fail [`Tenant::load_remote_timeline`] because `disk_consistent_lsn=Lsn(0)`.
2406 : ///
2407 : /// The caller is responsible for getting the timeline into a state that will be accepted
2408 : /// by [`Tenant::load_remote_timeline`] / [`Tenant::attach`].
2409 : /// Then they may call [`UninitializedTimeline::finish_creation`] to add the timeline
2410 : /// to the [`Tenant::timelines`].
2411 : ///
2412 : /// Tests should use `Tenant::create_test_timeline` to set up the minimum required metadata keys.
2413 428 : pub(crate) async fn create_empty_timeline(
2414 428 : self: &Arc<Self>,
2415 428 : new_timeline_id: TimelineId,
2416 428 : initdb_lsn: Lsn,
2417 428 : pg_version: u32,
2418 428 : _ctx: &RequestContext,
2419 428 : ) -> anyhow::Result<UninitializedTimeline> {
2420 428 : anyhow::ensure!(
2421 428 : self.is_active(),
2422 0 : "Cannot create empty timelines on inactive tenant"
2423 : );
2424 :
2425 : // Protect against concurrent attempts to use this TimelineId
2426 428 : let create_guard = match self
2427 428 : .start_creating_timeline(new_timeline_id, CreateTimelineIdempotency::FailWithConflict)
2428 428 : .await?
2429 : {
2430 424 : StartCreatingTimelineResult::CreateGuard(guard) => guard,
2431 : StartCreatingTimelineResult::Idempotent(_) => {
2432 0 : unreachable!("FailWithConflict implies we get an error instead")
2433 : }
2434 : };
2435 :
2436 424 : let new_metadata = TimelineMetadata::new(
2437 424 : // Initialize disk_consistent LSN to 0, The caller must import some data to
2438 424 : // make it valid, before calling finish_creation()
2439 424 : Lsn(0),
2440 424 : None,
2441 424 : None,
2442 424 : Lsn(0),
2443 424 : initdb_lsn,
2444 424 : initdb_lsn,
2445 424 : pg_version,
2446 424 : );
2447 424 : self.prepare_new_timeline(
2448 424 : new_timeline_id,
2449 424 : &new_metadata,
2450 424 : create_guard,
2451 424 : initdb_lsn,
2452 424 : None,
2453 424 : )
2454 424 : .await
2455 428 : }
2456 :
2457 : /// Helper for unit tests to create an empty timeline.
2458 : ///
2459 : /// The timeline is has state value `Active` but its background loops are not running.
2460 : // This makes the various functions which anyhow::ensure! for Active state work in tests.
2461 : // Our current tests don't need the background loops.
2462 : #[cfg(test)]
2463 408 : pub async fn create_test_timeline(
2464 408 : self: &Arc<Self>,
2465 408 : new_timeline_id: TimelineId,
2466 408 : initdb_lsn: Lsn,
2467 408 : pg_version: u32,
2468 408 : ctx: &RequestContext,
2469 408 : ) -> anyhow::Result<Arc<Timeline>> {
2470 408 : let uninit_tl = self
2471 408 : .create_empty_timeline(new_timeline_id, initdb_lsn, pg_version, ctx)
2472 408 : .await?;
2473 408 : let tline = uninit_tl.raw_timeline().expect("we just created it");
2474 408 : assert_eq!(tline.get_last_record_lsn(), Lsn(0));
2475 :
2476 : // Setup minimum keys required for the timeline to be usable.
2477 408 : let mut modification = tline.begin_modification(initdb_lsn);
2478 408 : modification
2479 408 : .init_empty_test_timeline()
2480 408 : .context("init_empty_test_timeline")?;
2481 408 : modification
2482 408 : .commit(ctx)
2483 408 : .await
2484 408 : .context("commit init_empty_test_timeline modification")?;
2485 :
2486 : // Flush to disk so that uninit_tl's check for valid disk_consistent_lsn passes.
2487 408 : tline.maybe_spawn_flush_loop();
2488 408 : tline.freeze_and_flush().await.context("freeze_and_flush")?;
2489 :
2490 : // Make sure the freeze_and_flush reaches remote storage.
2491 408 : tline.remote_client.wait_completion().await.unwrap();
2492 :
2493 408 : let tl = uninit_tl.finish_creation().await?;
2494 : // The non-test code would call tl.activate() here.
2495 408 : tl.set_state(TimelineState::Active);
2496 408 : Ok(tl)
2497 408 : }
2498 :
2499 : /// Helper for unit tests to create a timeline with some pre-loaded states.
2500 : #[cfg(test)]
2501 : #[allow(clippy::too_many_arguments)]
2502 80 : pub async fn create_test_timeline_with_layers(
2503 80 : self: &Arc<Self>,
2504 80 : new_timeline_id: TimelineId,
2505 80 : initdb_lsn: Lsn,
2506 80 : pg_version: u32,
2507 80 : ctx: &RequestContext,
2508 80 : delta_layer_desc: Vec<timeline::DeltaLayerTestDesc>,
2509 80 : image_layer_desc: Vec<(Lsn, Vec<(pageserver_api::key::Key, bytes::Bytes)>)>,
2510 80 : end_lsn: Lsn,
2511 80 : ) -> anyhow::Result<Arc<Timeline>> {
2512 : use checks::check_valid_layermap;
2513 : use itertools::Itertools;
2514 :
2515 80 : let tline = self
2516 80 : .create_test_timeline(new_timeline_id, initdb_lsn, pg_version, ctx)
2517 80 : .await?;
2518 80 : tline.force_advance_lsn(end_lsn);
2519 252 : for deltas in delta_layer_desc {
2520 172 : tline
2521 172 : .force_create_delta_layer(deltas, Some(initdb_lsn), ctx)
2522 172 : .await?;
2523 : }
2524 192 : for (lsn, images) in image_layer_desc {
2525 112 : tline
2526 112 : .force_create_image_layer(lsn, images, Some(initdb_lsn), ctx)
2527 112 : .await?;
2528 : }
2529 80 : let layer_names = tline
2530 80 : .layers
2531 80 : .read()
2532 80 : .await
2533 80 : .layer_map()
2534 80 : .unwrap()
2535 80 : .iter_historic_layers()
2536 364 : .map(|layer| layer.layer_name())
2537 80 : .collect_vec();
2538 80 : if let Some(err) = check_valid_layermap(&layer_names) {
2539 0 : bail!("invalid layermap: {err}");
2540 80 : }
2541 80 : Ok(tline)
2542 80 : }
2543 :
2544 : /// Create a new timeline.
2545 : ///
2546 : /// Returns the new timeline ID and reference to its Timeline object.
2547 : ///
2548 : /// If the caller specified the timeline ID to use (`new_timeline_id`), and timeline with
2549 : /// the same timeline ID already exists, returns CreateTimelineError::AlreadyExists.
2550 : #[allow(clippy::too_many_arguments)]
2551 0 : pub(crate) async fn create_timeline(
2552 0 : self: &Arc<Tenant>,
2553 0 : params: CreateTimelineParams,
2554 0 : broker_client: storage_broker::BrokerClientChannel,
2555 0 : ctx: &RequestContext,
2556 0 : ) -> Result<Arc<Timeline>, CreateTimelineError> {
2557 0 : if !self.is_active() {
2558 0 : if matches!(self.current_state(), TenantState::Stopping { .. }) {
2559 0 : return Err(CreateTimelineError::ShuttingDown);
2560 : } else {
2561 0 : return Err(CreateTimelineError::Other(anyhow::anyhow!(
2562 0 : "Cannot create timelines on inactive tenant"
2563 0 : )));
2564 : }
2565 0 : }
2566 :
2567 0 : let _gate = self
2568 0 : .gate
2569 0 : .enter()
2570 0 : .map_err(|_| CreateTimelineError::ShuttingDown)?;
2571 :
2572 0 : let result: CreateTimelineResult = match params {
2573 : CreateTimelineParams::Bootstrap(CreateTimelineParamsBootstrap {
2574 0 : new_timeline_id,
2575 0 : existing_initdb_timeline_id,
2576 0 : pg_version,
2577 0 : }) => {
2578 0 : self.bootstrap_timeline(
2579 0 : new_timeline_id,
2580 0 : pg_version,
2581 0 : existing_initdb_timeline_id,
2582 0 : ctx,
2583 0 : )
2584 0 : .await?
2585 : }
2586 : CreateTimelineParams::Branch(CreateTimelineParamsBranch {
2587 0 : new_timeline_id,
2588 0 : ancestor_timeline_id,
2589 0 : mut ancestor_start_lsn,
2590 : }) => {
2591 0 : let ancestor_timeline = self
2592 0 : .get_timeline(ancestor_timeline_id, false)
2593 0 : .context("Cannot branch off the timeline that's not present in pageserver")?;
2594 :
2595 : // instead of waiting around, just deny the request because ancestor is not yet
2596 : // ready for other purposes either.
2597 0 : if !ancestor_timeline.is_active() {
2598 0 : return Err(CreateTimelineError::AncestorNotActive);
2599 0 : }
2600 0 :
2601 0 : if ancestor_timeline.is_archived() == Some(true) {
2602 0 : info!("tried to branch archived timeline");
2603 0 : return Err(CreateTimelineError::AncestorArchived);
2604 0 : }
2605 :
2606 0 : if let Some(lsn) = ancestor_start_lsn.as_mut() {
2607 0 : *lsn = lsn.align();
2608 0 :
2609 0 : let ancestor_ancestor_lsn = ancestor_timeline.get_ancestor_lsn();
2610 0 : if ancestor_ancestor_lsn > *lsn {
2611 : // can we safely just branch from the ancestor instead?
2612 0 : return Err(CreateTimelineError::AncestorLsn(anyhow::anyhow!(
2613 0 : "invalid start lsn {} for ancestor timeline {}: less than timeline ancestor lsn {}",
2614 0 : lsn,
2615 0 : ancestor_timeline_id,
2616 0 : ancestor_ancestor_lsn,
2617 0 : )));
2618 0 : }
2619 0 :
2620 0 : // Wait for the WAL to arrive and be processed on the parent branch up
2621 0 : // to the requested branch point. The repository code itself doesn't
2622 0 : // require it, but if we start to receive WAL on the new timeline,
2623 0 : // decoding the new WAL might need to look up previous pages, relation
2624 0 : // sizes etc. and that would get confused if the previous page versions
2625 0 : // are not in the repository yet.
2626 0 : ancestor_timeline
2627 0 : .wait_lsn(
2628 0 : *lsn,
2629 0 : timeline::WaitLsnWaiter::Tenant,
2630 0 : timeline::WaitLsnTimeout::Default,
2631 0 : ctx,
2632 0 : )
2633 0 : .await
2634 0 : .map_err(|e| match e {
2635 0 : e @ (WaitLsnError::Timeout(_) | WaitLsnError::BadState { .. }) => {
2636 0 : CreateTimelineError::AncestorLsn(anyhow::anyhow!(e))
2637 : }
2638 0 : WaitLsnError::Shutdown => CreateTimelineError::ShuttingDown,
2639 0 : })?;
2640 0 : }
2641 :
2642 0 : self.branch_timeline(&ancestor_timeline, new_timeline_id, ancestor_start_lsn, ctx)
2643 0 : .await?
2644 : }
2645 0 : CreateTimelineParams::ImportPgdata(params) => {
2646 0 : self.create_timeline_import_pgdata(
2647 0 : params,
2648 0 : ActivateTimelineArgs::Yes {
2649 0 : broker_client: broker_client.clone(),
2650 0 : },
2651 0 : ctx,
2652 0 : )
2653 0 : .await?
2654 : }
2655 : };
2656 :
2657 : // At this point we have dropped our guard on [`Self::timelines_creating`], and
2658 : // the timeline is visible in [`Self::timelines`], but it is _not_ durable yet. We must
2659 : // not send a success to the caller until it is. The same applies to idempotent retries.
2660 : //
2661 : // TODO: the timeline is already visible in [`Self::timelines`]; a caller could incorrectly
2662 : // assume that, because they can see the timeline via API, that the creation is done and
2663 : // that it is durable. Ideally, we would keep the timeline hidden (in [`Self::timelines_creating`])
2664 : // until it is durable, e.g., by extending the time we hold the creation guard. This also
2665 : // interacts with UninitializedTimeline and is generally a bit tricky.
2666 : //
2667 : // To re-emphasize: the only correct way to create a timeline is to repeat calling the
2668 : // creation API until it returns success. Only then is durability guaranteed.
2669 0 : info!(creation_result=%result.discriminant(), "waiting for timeline to be durable");
2670 0 : result
2671 0 : .timeline()
2672 0 : .remote_client
2673 0 : .wait_completion()
2674 0 : .await
2675 0 : .map_err(|e| match e {
2676 : WaitCompletionError::NotInitialized(
2677 0 : e, // If the queue is already stopped, it's a shutdown error.
2678 0 : ) if e.is_stopping() => CreateTimelineError::ShuttingDown,
2679 : WaitCompletionError::NotInitialized(_) => {
2680 : // This is a bug: we should never try to wait for uploads before initializing the timeline
2681 0 : debug_assert!(false);
2682 0 : CreateTimelineError::Other(anyhow::anyhow!("timeline not initialized"))
2683 : }
2684 : WaitCompletionError::UploadQueueShutDownOrStopped => {
2685 0 : CreateTimelineError::ShuttingDown
2686 : }
2687 0 : })?;
2688 :
2689 : // The creating task is responsible for activating the timeline.
2690 : // We do this after `wait_completion()` so that we don't spin up tasks that start
2691 : // doing stuff before the IndexPart is durable in S3, which is done by the previous section.
2692 0 : let activated_timeline = match result {
2693 0 : CreateTimelineResult::Created(timeline) => {
2694 0 : timeline.activate(self.clone(), broker_client, None, ctx);
2695 0 : timeline
2696 : }
2697 0 : CreateTimelineResult::Idempotent(timeline) => {
2698 0 : info!(
2699 0 : "request was deemed idempotent, activation will be done by the creating task"
2700 : );
2701 0 : timeline
2702 : }
2703 0 : CreateTimelineResult::ImportSpawned(timeline) => {
2704 0 : info!("import task spawned, timeline will become visible and activated once the import is done");
2705 0 : timeline
2706 : }
2707 : };
2708 :
2709 0 : Ok(activated_timeline)
2710 0 : }
2711 :
2712 : /// The returned [`Arc<Timeline>`] is NOT in the [`Tenant::timelines`] map until the import
2713 : /// completes in the background. A DIFFERENT [`Arc<Timeline>`] will be inserted into the
2714 : /// [`Tenant::timelines`] map when the import completes.
2715 : /// We only return an [`Arc<Timeline>`] here so the API handler can create a [`pageserver_api::models::TimelineInfo`]
2716 : /// for the response.
2717 0 : async fn create_timeline_import_pgdata(
2718 0 : self: &Arc<Tenant>,
2719 0 : params: CreateTimelineParamsImportPgdata,
2720 0 : activate: ActivateTimelineArgs,
2721 0 : ctx: &RequestContext,
2722 0 : ) -> Result<CreateTimelineResult, CreateTimelineError> {
2723 0 : let CreateTimelineParamsImportPgdata {
2724 0 : new_timeline_id,
2725 0 : location,
2726 0 : idempotency_key,
2727 0 : } = params;
2728 0 :
2729 0 : let started_at = chrono::Utc::now().naive_utc();
2730 :
2731 : //
2732 : // There's probably a simpler way to upload an index part, but, remote_timeline_client
2733 : // is the canonical way we do it.
2734 : // - create an empty timeline in-memory
2735 : // - use its remote_timeline_client to do the upload
2736 : // - dispose of the uninit timeline
2737 : // - keep the creation guard alive
2738 :
2739 0 : let timeline_create_guard = match self
2740 0 : .start_creating_timeline(
2741 0 : new_timeline_id,
2742 0 : CreateTimelineIdempotency::ImportPgdata(CreatingTimelineIdempotencyImportPgdata {
2743 0 : idempotency_key: idempotency_key.clone(),
2744 0 : }),
2745 0 : )
2746 0 : .await?
2747 : {
2748 0 : StartCreatingTimelineResult::CreateGuard(guard) => guard,
2749 0 : StartCreatingTimelineResult::Idempotent(timeline) => {
2750 0 : return Ok(CreateTimelineResult::Idempotent(timeline))
2751 : }
2752 : };
2753 :
2754 0 : let mut uninit_timeline = {
2755 0 : let this = &self;
2756 0 : let initdb_lsn = Lsn(0);
2757 0 : let _ctx = ctx;
2758 0 : async move {
2759 0 : let new_metadata = TimelineMetadata::new(
2760 0 : // Initialize disk_consistent LSN to 0, The caller must import some data to
2761 0 : // make it valid, before calling finish_creation()
2762 0 : Lsn(0),
2763 0 : None,
2764 0 : None,
2765 0 : Lsn(0),
2766 0 : initdb_lsn,
2767 0 : initdb_lsn,
2768 0 : 15,
2769 0 : );
2770 0 : this.prepare_new_timeline(
2771 0 : new_timeline_id,
2772 0 : &new_metadata,
2773 0 : timeline_create_guard,
2774 0 : initdb_lsn,
2775 0 : None,
2776 0 : )
2777 0 : .await
2778 0 : }
2779 0 : }
2780 0 : .await?;
2781 :
2782 0 : let in_progress = import_pgdata::index_part_format::InProgress {
2783 0 : idempotency_key,
2784 0 : location,
2785 0 : started_at,
2786 0 : };
2787 0 : let index_part = import_pgdata::index_part_format::Root::V1(
2788 0 : import_pgdata::index_part_format::V1::InProgress(in_progress),
2789 0 : );
2790 0 : uninit_timeline
2791 0 : .raw_timeline()
2792 0 : .unwrap()
2793 0 : .remote_client
2794 0 : .schedule_index_upload_for_import_pgdata_state_update(Some(index_part.clone()))?;
2795 :
2796 : // wait_completion happens in caller
2797 :
2798 0 : let (timeline, timeline_create_guard) = uninit_timeline.finish_creation_myself();
2799 0 :
2800 0 : tokio::spawn(self.clone().create_timeline_import_pgdata_task(
2801 0 : timeline.clone(),
2802 0 : index_part,
2803 0 : activate,
2804 0 : timeline_create_guard,
2805 0 : ));
2806 0 :
2807 0 : // NB: the timeline doesn't exist in self.timelines at this point
2808 0 : Ok(CreateTimelineResult::ImportSpawned(timeline))
2809 0 : }
2810 :
2811 : #[instrument(skip_all, fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), timeline_id=%timeline.timeline_id))]
2812 : async fn create_timeline_import_pgdata_task(
2813 : self: Arc<Tenant>,
2814 : timeline: Arc<Timeline>,
2815 : index_part: import_pgdata::index_part_format::Root,
2816 : activate: ActivateTimelineArgs,
2817 : timeline_create_guard: TimelineCreateGuard,
2818 : ) {
2819 : debug_assert_current_span_has_tenant_and_timeline_id();
2820 : info!("starting");
2821 : scopeguard::defer! {info!("exiting")};
2822 :
2823 : let res = self
2824 : .create_timeline_import_pgdata_task_impl(
2825 : timeline,
2826 : index_part,
2827 : activate,
2828 : timeline_create_guard,
2829 : )
2830 : .await;
2831 : if let Err(err) = &res {
2832 : error!(?err, "task failed");
2833 : // TODO sleep & retry, sensitive to tenant shutdown
2834 : // TODO: allow timeline deletion requests => should cancel the task
2835 : }
2836 : }
2837 :
2838 0 : async fn create_timeline_import_pgdata_task_impl(
2839 0 : self: Arc<Tenant>,
2840 0 : timeline: Arc<Timeline>,
2841 0 : index_part: import_pgdata::index_part_format::Root,
2842 0 : activate: ActivateTimelineArgs,
2843 0 : timeline_create_guard: TimelineCreateGuard,
2844 0 : ) -> Result<(), anyhow::Error> {
2845 0 : let ctx = RequestContext::new(TaskKind::ImportPgdata, DownloadBehavior::Warn);
2846 0 :
2847 0 : info!("importing pgdata");
2848 0 : import_pgdata::doit(&timeline, index_part, &ctx, self.cancel.clone())
2849 0 : .await
2850 0 : .context("import")?;
2851 0 : info!("import done");
2852 :
2853 : //
2854 : // Reload timeline from remote.
2855 : // This proves that the remote state is attachable, and it reuses the code.
2856 : //
2857 : // TODO: think about whether this is safe to do with concurrent Tenant::shutdown.
2858 : // timeline_create_guard hols the tenant gate open, so, shutdown cannot _complete_ until we exit.
2859 : // But our activate() call might launch new background tasks after Tenant::shutdown
2860 : // already went past shutting down the Tenant::timelines, which this timeline here is no part of.
2861 : // I think the same problem exists with the bootstrap & branch mgmt API tasks (tenant shutting
2862 : // down while bootstrapping/branching + activating), but, the race condition is much more likely
2863 : // to manifest because of the long runtime of this import task.
2864 :
2865 : // in theory this shouldn't even .await anything except for coop yield
2866 0 : info!("shutting down timeline");
2867 0 : timeline.shutdown(ShutdownMode::Hard).await;
2868 0 : info!("timeline shut down, reloading from remote");
2869 : // TODO: we can't do the following check because create_timeline_import_pgdata must return an Arc<Timeline>
2870 : // let Some(timeline) = Arc::into_inner(timeline) else {
2871 : // anyhow::bail!("implementation error: timeline that we shut down was still referenced from somewhere");
2872 : // };
2873 0 : let timeline_id = timeline.timeline_id;
2874 0 :
2875 0 : // load from object storage like Tenant::attach does
2876 0 : let resources = self.build_timeline_resources(timeline_id);
2877 0 : let index_part = resources
2878 0 : .remote_client
2879 0 : .download_index_file(&self.cancel)
2880 0 : .await?;
2881 0 : let index_part = match index_part {
2882 : MaybeDeletedIndexPart::Deleted(_) => {
2883 : // likely concurrent delete call, cplane should prevent this
2884 0 : anyhow::bail!("index part says deleted but we are not done creating yet, this should not happen but")
2885 : }
2886 0 : MaybeDeletedIndexPart::IndexPart(p) => p,
2887 0 : };
2888 0 : let metadata = index_part.metadata.clone();
2889 0 : self
2890 0 : .load_remote_timeline(timeline_id, index_part, metadata, None, resources, LoadTimelineCause::ImportPgdata{
2891 0 : create_guard: timeline_create_guard, activate, }, &ctx)
2892 0 : .await?
2893 0 : .ready_to_activate()
2894 0 : .context("implementation error: reloaded timeline still needs import after import reported success")?;
2895 :
2896 0 : anyhow::Ok(())
2897 0 : }
2898 :
2899 0 : pub(crate) async fn delete_timeline(
2900 0 : self: Arc<Self>,
2901 0 : timeline_id: TimelineId,
2902 0 : ) -> Result<(), DeleteTimelineError> {
2903 0 : DeleteTimelineFlow::run(&self, timeline_id).await?;
2904 :
2905 0 : Ok(())
2906 0 : }
2907 :
2908 : /// perform one garbage collection iteration, removing old data files from disk.
2909 : /// this function is periodically called by gc task.
2910 : /// also it can be explicitly requested through page server api 'do_gc' command.
2911 : ///
2912 : /// `target_timeline_id` specifies the timeline to GC, or None for all.
2913 : ///
2914 : /// The `horizon` an `pitr` parameters determine how much WAL history needs to be retained.
2915 : /// Also known as the retention period, or the GC cutoff point. `horizon` specifies
2916 : /// the amount of history, as LSN difference from current latest LSN on each timeline.
2917 : /// `pitr` specifies the same as a time difference from the current time. The effective
2918 : /// GC cutoff point is determined conservatively by either `horizon` and `pitr`, whichever
2919 : /// requires more history to be retained.
2920 : //
2921 1508 : pub(crate) async fn gc_iteration(
2922 1508 : &self,
2923 1508 : target_timeline_id: Option<TimelineId>,
2924 1508 : horizon: u64,
2925 1508 : pitr: Duration,
2926 1508 : cancel: &CancellationToken,
2927 1508 : ctx: &RequestContext,
2928 1508 : ) -> Result<GcResult, GcError> {
2929 1508 : // Don't start doing work during shutdown
2930 1508 : if let TenantState::Stopping { .. } = self.current_state() {
2931 0 : return Ok(GcResult::default());
2932 1508 : }
2933 1508 :
2934 1508 : // there is a global allowed_error for this
2935 1508 : if !self.is_active() {
2936 0 : return Err(GcError::NotActive);
2937 1508 : }
2938 1508 :
2939 1508 : {
2940 1508 : let conf = self.tenant_conf.load();
2941 1508 :
2942 1508 : // If we may not delete layers, then simply skip GC. Even though a tenant
2943 1508 : // in AttachedMulti state could do GC and just enqueue the blocked deletions,
2944 1508 : // the only advantage to doing it is to perhaps shrink the LayerMap metadata
2945 1508 : // a bit sooner than we would achieve by waiting for AttachedSingle status.
2946 1508 : if !conf.location.may_delete_layers_hint() {
2947 0 : info!("Skipping GC in location state {:?}", conf.location);
2948 0 : return Ok(GcResult::default());
2949 1508 : }
2950 1508 :
2951 1508 : if conf.is_gc_blocked_by_lsn_lease_deadline() {
2952 1500 : info!("Skipping GC because lsn lease deadline is not reached");
2953 1500 : return Ok(GcResult::default());
2954 8 : }
2955 : }
2956 :
2957 8 : let _guard = match self.gc_block.start().await {
2958 8 : Ok(guard) => guard,
2959 0 : Err(reasons) => {
2960 0 : info!("Skipping GC: {reasons}");
2961 0 : return Ok(GcResult::default());
2962 : }
2963 : };
2964 :
2965 8 : self.gc_iteration_internal(target_timeline_id, horizon, pitr, cancel, ctx)
2966 8 : .await
2967 1508 : }
2968 :
2969 : /// Performs one compaction iteration. Called periodically from the compaction loop. Returns
2970 : /// whether another compaction is needed, if we still have pending work or if we yield for
2971 : /// immediate L0 compaction.
2972 : ///
2973 : /// Compaction can also be explicitly requested for a timeline via the HTTP API.
2974 0 : async fn compaction_iteration(
2975 0 : self: &Arc<Self>,
2976 0 : cancel: &CancellationToken,
2977 0 : ctx: &RequestContext,
2978 0 : ) -> Result<CompactionOutcome, CompactionError> {
2979 0 : // Don't compact inactive tenants.
2980 0 : if !self.is_active() {
2981 0 : return Ok(CompactionOutcome::Skipped);
2982 0 : }
2983 0 :
2984 0 : // Don't compact tenants that can't upload layers. We don't check `may_delete_layers_hint`,
2985 0 : // since we need to compact L0 even in AttachedMulti to bound read amplification.
2986 0 : let location = self.tenant_conf.load().location;
2987 0 : if !location.may_upload_layers_hint() {
2988 0 : info!("skipping compaction in location state {location:?}");
2989 0 : return Ok(CompactionOutcome::Skipped);
2990 0 : }
2991 0 :
2992 0 : // Don't compact if the circuit breaker is tripped.
2993 0 : if self.compaction_circuit_breaker.lock().unwrap().is_broken() {
2994 0 : info!("skipping compaction due to previous failures");
2995 0 : return Ok(CompactionOutcome::Skipped);
2996 0 : }
2997 0 :
2998 0 : // Collect all timelines to compact, along with offload instructions and L0 counts.
2999 0 : let mut compact: Vec<Arc<Timeline>> = Vec::new();
3000 0 : let mut offload: HashSet<TimelineId> = HashSet::new();
3001 0 : let mut l0_counts: HashMap<TimelineId, usize> = HashMap::new();
3002 0 :
3003 0 : {
3004 0 : let offload_enabled = self.get_timeline_offloading_enabled();
3005 0 : let timelines = self.timelines.lock().unwrap();
3006 0 : for (&timeline_id, timeline) in timelines.iter() {
3007 : // Skip inactive timelines.
3008 0 : if !timeline.is_active() {
3009 0 : continue;
3010 0 : }
3011 0 :
3012 0 : // Schedule the timeline for compaction.
3013 0 : compact.push(timeline.clone());
3014 :
3015 : // Schedule the timeline for offloading if eligible.
3016 0 : let can_offload = offload_enabled
3017 0 : && timeline.can_offload().0
3018 0 : && !timelines
3019 0 : .iter()
3020 0 : .any(|(_, tli)| tli.get_ancestor_timeline_id() == Some(timeline_id));
3021 0 : if can_offload {
3022 0 : offload.insert(timeline_id);
3023 0 : }
3024 : }
3025 : } // release timelines lock
3026 :
3027 0 : for timeline in &compact {
3028 : // Collect L0 counts. Can't await while holding lock above.
3029 0 : if let Ok(lm) = timeline.layers.read().await.layer_map() {
3030 0 : l0_counts.insert(timeline.timeline_id, lm.level0_deltas().len());
3031 0 : }
3032 : }
3033 :
3034 : // Pass 1: L0 compaction across all timelines, in order of L0 count. We prioritize this to
3035 : // bound read amplification.
3036 : //
3037 : // TODO: this may spin on one or more ingest-heavy timelines, starving out image/GC
3038 : // compaction and offloading. We leave that as a potential problem to solve later. Consider
3039 : // splitting L0 and image/GC compaction to separate background jobs.
3040 0 : if self.get_compaction_l0_first() {
3041 0 : let compaction_threshold = self.get_compaction_threshold();
3042 0 : let compact_l0 = compact
3043 0 : .iter()
3044 0 : .map(|tli| (tli, l0_counts.get(&tli.timeline_id).copied().unwrap_or(0)))
3045 0 : .filter(|&(_, l0)| l0 >= compaction_threshold)
3046 0 : .sorted_by_key(|&(_, l0)| l0)
3047 0 : .rev()
3048 0 : .map(|(tli, _)| tli.clone())
3049 0 : .collect_vec();
3050 0 :
3051 0 : let mut has_pending_l0 = false;
3052 0 : for timeline in compact_l0 {
3053 0 : let outcome = timeline
3054 0 : .compact(cancel, CompactFlags::OnlyL0Compaction.into(), ctx)
3055 0 : .instrument(info_span!("compact_timeline", timeline_id = %timeline.timeline_id))
3056 0 : .await
3057 0 : .inspect_err(|err| self.maybe_trip_compaction_breaker(err))?;
3058 0 : match outcome {
3059 0 : CompactionOutcome::Done => {}
3060 0 : CompactionOutcome::Skipped => {}
3061 0 : CompactionOutcome::Pending => has_pending_l0 = true,
3062 0 : CompactionOutcome::YieldForL0 => has_pending_l0 = true,
3063 : }
3064 : }
3065 0 : if has_pending_l0 {
3066 0 : return Ok(CompactionOutcome::YieldForL0); // do another pass
3067 0 : }
3068 0 : }
3069 :
3070 : // Pass 2: image compaction and timeline offloading. If any timelines have accumulated
3071 : // more L0 layers, they may also be compacted here.
3072 : //
3073 : // NB: image compaction may yield if there is pending L0 compaction.
3074 : //
3075 : // TODO: it will only yield if there is pending L0 compaction on the same timeline. If a
3076 : // different timeline needs compaction, it won't. It should check `l0_compaction_trigger`.
3077 : // We leave this for a later PR.
3078 : //
3079 : // TODO: consider ordering timelines by some priority, e.g. time since last full compaction,
3080 : // amount of L1 delta debt or garbage, offload-eligible timelines first, etc.
3081 0 : let mut has_pending = false;
3082 0 : for timeline in compact {
3083 0 : if !timeline.is_active() {
3084 0 : continue;
3085 0 : }
3086 :
3087 0 : let mut outcome = timeline
3088 0 : .compact(cancel, EnumSet::default(), ctx)
3089 0 : .instrument(info_span!("compact_timeline", timeline_id = %timeline.timeline_id))
3090 0 : .await
3091 0 : .inspect_err(|err| self.maybe_trip_compaction_breaker(err))?;
3092 :
3093 : // If we're done compacting, check the scheduled GC compaction queue for more work.
3094 0 : if outcome == CompactionOutcome::Done {
3095 0 : let queue = self
3096 0 : .scheduled_compaction_tasks
3097 0 : .lock()
3098 0 : .unwrap()
3099 0 : .get(&timeline.timeline_id)
3100 0 : .cloned();
3101 0 : if let Some(queue) = queue {
3102 0 : outcome = queue
3103 0 : .iteration(cancel, ctx, &self.gc_block, &timeline)
3104 0 : .instrument(
3105 0 : info_span!("gc_compact_timeline", timeline_id = %timeline.timeline_id),
3106 : )
3107 0 : .await?;
3108 0 : }
3109 0 : }
3110 :
3111 : // If we're done compacting, offload the timeline if requested.
3112 0 : if outcome == CompactionOutcome::Done && offload.contains(&timeline.timeline_id) {
3113 0 : pausable_failpoint!("before-timeline-auto-offload");
3114 0 : offload_timeline(self, &timeline)
3115 0 : .instrument(info_span!("offload_timeline", timeline_id = %timeline.timeline_id))
3116 0 : .await
3117 0 : .or_else(|err| match err {
3118 : // Ignore this, we likely raced with unarchival.
3119 0 : OffloadError::NotArchived => Ok(()),
3120 0 : err => Err(err),
3121 0 : })?;
3122 0 : }
3123 :
3124 0 : match outcome {
3125 0 : CompactionOutcome::Done => {}
3126 0 : CompactionOutcome::Skipped => {}
3127 0 : CompactionOutcome::Pending => has_pending = true,
3128 : // This mostly makes sense when the L0-only pass above is enabled, since there's
3129 : // otherwise no guarantee that we'll start with the timeline that has high L0.
3130 0 : CompactionOutcome::YieldForL0 => return Ok(CompactionOutcome::YieldForL0),
3131 : }
3132 : }
3133 :
3134 : // Success! Untrip the breaker if necessary.
3135 0 : self.compaction_circuit_breaker
3136 0 : .lock()
3137 0 : .unwrap()
3138 0 : .success(&CIRCUIT_BREAKERS_UNBROKEN);
3139 0 :
3140 0 : match has_pending {
3141 0 : true => Ok(CompactionOutcome::Pending),
3142 0 : false => Ok(CompactionOutcome::Done),
3143 : }
3144 0 : }
3145 :
3146 : /// Trips the compaction circuit breaker if appropriate.
3147 0 : pub(crate) fn maybe_trip_compaction_breaker(&self, err: &CompactionError) {
3148 0 : match err {
3149 0 : CompactionError::ShuttingDown => (),
3150 : // Offload failures don't trip the circuit breaker, since they're cheap to retry and
3151 : // shouldn't block compaction.
3152 0 : CompactionError::Offload(_) => {}
3153 0 : CompactionError::Other(err) => {
3154 0 : self.compaction_circuit_breaker
3155 0 : .lock()
3156 0 : .unwrap()
3157 0 : .fail(&CIRCUIT_BREAKERS_BROKEN, err);
3158 0 : }
3159 : }
3160 0 : }
3161 :
3162 : /// Cancel scheduled compaction tasks
3163 0 : pub(crate) fn cancel_scheduled_compaction(&self, timeline_id: TimelineId) {
3164 0 : let mut guard = self.scheduled_compaction_tasks.lock().unwrap();
3165 0 : if let Some(q) = guard.get_mut(&timeline_id) {
3166 0 : q.cancel_scheduled();
3167 0 : }
3168 0 : }
3169 :
3170 0 : pub(crate) fn get_scheduled_compaction_tasks(
3171 0 : &self,
3172 0 : timeline_id: TimelineId,
3173 0 : ) -> Vec<CompactInfoResponse> {
3174 0 : let res = {
3175 0 : let guard = self.scheduled_compaction_tasks.lock().unwrap();
3176 0 : guard.get(&timeline_id).map(|q| q.remaining_jobs())
3177 : };
3178 0 : let Some((running, remaining)) = res else {
3179 0 : return Vec::new();
3180 : };
3181 0 : let mut result = Vec::new();
3182 0 : if let Some((id, running)) = running {
3183 0 : result.extend(running.into_compact_info_resp(id, true));
3184 0 : }
3185 0 : for (id, job) in remaining {
3186 0 : result.extend(job.into_compact_info_resp(id, false));
3187 0 : }
3188 0 : result
3189 0 : }
3190 :
3191 : /// Schedule a compaction task for a timeline.
3192 0 : pub(crate) async fn schedule_compaction(
3193 0 : &self,
3194 0 : timeline_id: TimelineId,
3195 0 : options: CompactOptions,
3196 0 : ) -> anyhow::Result<tokio::sync::oneshot::Receiver<()>> {
3197 0 : let (tx, rx) = tokio::sync::oneshot::channel();
3198 0 : let mut guard = self.scheduled_compaction_tasks.lock().unwrap();
3199 0 : let q = guard
3200 0 : .entry(timeline_id)
3201 0 : .or_insert_with(|| Arc::new(GcCompactionQueue::new()));
3202 0 : q.schedule_manual_compaction(options, Some(tx));
3203 0 : Ok(rx)
3204 0 : }
3205 :
3206 : /// Performs periodic housekeeping, via the tenant housekeeping background task.
3207 0 : async fn housekeeping(&self) {
3208 0 : // Call through to all timelines to freeze ephemeral layers as needed. This usually happens
3209 0 : // during ingest, but we don't want idle timelines to hold open layers for too long.
3210 0 : let timelines = self
3211 0 : .timelines
3212 0 : .lock()
3213 0 : .unwrap()
3214 0 : .values()
3215 0 : .filter(|tli| tli.is_active())
3216 0 : .cloned()
3217 0 : .collect_vec();
3218 :
3219 0 : for timeline in timelines {
3220 0 : timeline.maybe_freeze_ephemeral_layer().await;
3221 : }
3222 :
3223 : // Shut down walredo if idle.
3224 : const WALREDO_IDLE_TIMEOUT: Duration = Duration::from_secs(180);
3225 0 : if let Some(ref walredo_mgr) = self.walredo_mgr {
3226 0 : walredo_mgr.maybe_quiesce(WALREDO_IDLE_TIMEOUT);
3227 0 : }
3228 0 : }
3229 :
3230 0 : pub fn timeline_has_no_attached_children(&self, timeline_id: TimelineId) -> bool {
3231 0 : let timelines = self.timelines.lock().unwrap();
3232 0 : !timelines
3233 0 : .iter()
3234 0 : .any(|(_id, tl)| tl.get_ancestor_timeline_id() == Some(timeline_id))
3235 0 : }
3236 :
3237 3468 : pub fn current_state(&self) -> TenantState {
3238 3468 : self.state.borrow().clone()
3239 3468 : }
3240 :
3241 1944 : pub fn is_active(&self) -> bool {
3242 1944 : self.current_state() == TenantState::Active
3243 1944 : }
3244 :
3245 0 : pub fn generation(&self) -> Generation {
3246 0 : self.generation
3247 0 : }
3248 :
3249 0 : pub(crate) fn wal_redo_manager_status(&self) -> Option<WalRedoManagerStatus> {
3250 0 : self.walredo_mgr.as_ref().and_then(|mgr| mgr.status())
3251 0 : }
3252 :
3253 : /// Changes tenant status to active, unless shutdown was already requested.
3254 : ///
3255 : /// `background_jobs_can_start` is an optional barrier set to a value during pageserver startup
3256 : /// to delay background jobs. Background jobs can be started right away when None is given.
3257 0 : fn activate(
3258 0 : self: &Arc<Self>,
3259 0 : broker_client: BrokerClientChannel,
3260 0 : background_jobs_can_start: Option<&completion::Barrier>,
3261 0 : ctx: &RequestContext,
3262 0 : ) {
3263 0 : span::debug_assert_current_span_has_tenant_id();
3264 0 :
3265 0 : let mut activating = false;
3266 0 : self.state.send_modify(|current_state| {
3267 : use pageserver_api::models::ActivatingFrom;
3268 0 : match &*current_state {
3269 : TenantState::Activating(_) | TenantState::Active | TenantState::Broken { .. } | TenantState::Stopping { .. } => {
3270 0 : panic!("caller is responsible for calling activate() only on Loading / Attaching tenants, got {state:?}", state = current_state);
3271 : }
3272 0 : TenantState::Attaching => {
3273 0 : *current_state = TenantState::Activating(ActivatingFrom::Attaching);
3274 0 : }
3275 0 : }
3276 0 : debug!(tenant_id = %self.tenant_shard_id.tenant_id, shard_id = %self.tenant_shard_id.shard_slug(), "Activating tenant");
3277 0 : activating = true;
3278 0 : // Continue outside the closure. We need to grab timelines.lock()
3279 0 : // and we plan to turn it into a tokio::sync::Mutex in a future patch.
3280 0 : });
3281 0 :
3282 0 : if activating {
3283 0 : let timelines_accessor = self.timelines.lock().unwrap();
3284 0 : let timelines_offloaded_accessor = self.timelines_offloaded.lock().unwrap();
3285 0 : let timelines_to_activate = timelines_accessor
3286 0 : .values()
3287 0 : .filter(|timeline| !(timeline.is_broken() || timeline.is_stopping()));
3288 0 :
3289 0 : // Before activation, populate each Timeline's GcInfo with information about its children
3290 0 : self.initialize_gc_info(&timelines_accessor, &timelines_offloaded_accessor, None);
3291 0 :
3292 0 : // Spawn gc and compaction loops. The loops will shut themselves
3293 0 : // down when they notice that the tenant is inactive.
3294 0 : tasks::start_background_loops(self, background_jobs_can_start);
3295 0 :
3296 0 : let mut activated_timelines = 0;
3297 :
3298 0 : for timeline in timelines_to_activate {
3299 0 : timeline.activate(
3300 0 : self.clone(),
3301 0 : broker_client.clone(),
3302 0 : background_jobs_can_start,
3303 0 : ctx,
3304 0 : );
3305 0 : activated_timelines += 1;
3306 0 : }
3307 :
3308 0 : self.state.send_modify(move |current_state| {
3309 0 : assert!(
3310 0 : matches!(current_state, TenantState::Activating(_)),
3311 0 : "set_stopping and set_broken wait for us to leave Activating state",
3312 : );
3313 0 : *current_state = TenantState::Active;
3314 0 :
3315 0 : let elapsed = self.constructed_at.elapsed();
3316 0 : let total_timelines = timelines_accessor.len();
3317 0 :
3318 0 : // log a lot of stuff, because some tenants sometimes suffer from user-visible
3319 0 : // times to activate. see https://github.com/neondatabase/neon/issues/4025
3320 0 : info!(
3321 0 : since_creation_millis = elapsed.as_millis(),
3322 0 : tenant_id = %self.tenant_shard_id.tenant_id,
3323 0 : shard_id = %self.tenant_shard_id.shard_slug(),
3324 0 : activated_timelines,
3325 0 : total_timelines,
3326 0 : post_state = <&'static str>::from(&*current_state),
3327 0 : "activation attempt finished"
3328 : );
3329 :
3330 0 : TENANT.activation.observe(elapsed.as_secs_f64());
3331 0 : });
3332 0 : }
3333 0 : }
3334 :
3335 : /// Shutdown the tenant and join all of the spawned tasks.
3336 : ///
3337 : /// The method caters for all use-cases:
3338 : /// - pageserver shutdown (freeze_and_flush == true)
3339 : /// - detach + ignore (freeze_and_flush == false)
3340 : ///
3341 : /// This will attempt to shutdown even if tenant is broken.
3342 : ///
3343 : /// `shutdown_progress` is a [`completion::Barrier`] for the shutdown initiated by this call.
3344 : /// If the tenant is already shutting down, we return a clone of the first shutdown call's
3345 : /// `Barrier` as an `Err`. This not-first caller can use the returned barrier to join with
3346 : /// the ongoing shutdown.
3347 12 : async fn shutdown(
3348 12 : &self,
3349 12 : shutdown_progress: completion::Barrier,
3350 12 : shutdown_mode: timeline::ShutdownMode,
3351 12 : ) -> Result<(), completion::Barrier> {
3352 12 : span::debug_assert_current_span_has_tenant_id();
3353 :
3354 : // Set tenant (and its timlines) to Stoppping state.
3355 : //
3356 : // Since we can only transition into Stopping state after activation is complete,
3357 : // run it in a JoinSet so all tenants have a chance to stop before we get SIGKILLed.
3358 : //
3359 : // Transitioning tenants to Stopping state has a couple of non-obvious side effects:
3360 : // 1. Lock out any new requests to the tenants.
3361 : // 2. Signal cancellation to WAL receivers (we wait on it below).
3362 : // 3. Signal cancellation for other tenant background loops.
3363 : // 4. ???
3364 : //
3365 : // The waiting for the cancellation is not done uniformly.
3366 : // We certainly wait for WAL receivers to shut down.
3367 : // That is necessary so that no new data comes in before the freeze_and_flush.
3368 : // But the tenant background loops are joined-on in our caller.
3369 : // It's mesed up.
3370 : // we just ignore the failure to stop
3371 :
3372 : // If we're still attaching, fire the cancellation token early to drop out: this
3373 : // will prevent us flushing, but ensures timely shutdown if some I/O during attach
3374 : // is very slow.
3375 12 : let shutdown_mode = if matches!(self.current_state(), TenantState::Attaching) {
3376 0 : self.cancel.cancel();
3377 0 :
3378 0 : // Having fired our cancellation token, do not try and flush timelines: their cancellation tokens
3379 0 : // are children of ours, so their flush loops will have shut down already
3380 0 : timeline::ShutdownMode::Hard
3381 : } else {
3382 12 : shutdown_mode
3383 : };
3384 :
3385 12 : match self.set_stopping(shutdown_progress, false, false).await {
3386 12 : Ok(()) => {}
3387 0 : Err(SetStoppingError::Broken) => {
3388 0 : // assume that this is acceptable
3389 0 : }
3390 0 : Err(SetStoppingError::AlreadyStopping(other)) => {
3391 0 : // give caller the option to wait for this this shutdown
3392 0 : info!("Tenant::shutdown: AlreadyStopping");
3393 0 : return Err(other);
3394 : }
3395 : };
3396 :
3397 12 : let mut js = tokio::task::JoinSet::new();
3398 12 : {
3399 12 : let timelines = self.timelines.lock().unwrap();
3400 12 : timelines.values().for_each(|timeline| {
3401 12 : let timeline = Arc::clone(timeline);
3402 12 : let timeline_id = timeline.timeline_id;
3403 12 : let span = tracing::info_span!("timeline_shutdown", %timeline_id, ?shutdown_mode);
3404 12 : js.spawn(async move { timeline.shutdown(shutdown_mode).instrument(span).await });
3405 12 : });
3406 12 : }
3407 12 : {
3408 12 : let timelines_offloaded = self.timelines_offloaded.lock().unwrap();
3409 12 : timelines_offloaded.values().for_each(|timeline| {
3410 0 : timeline.defuse_for_tenant_drop();
3411 12 : });
3412 12 : }
3413 12 : // test_long_timeline_create_then_tenant_delete is leaning on this message
3414 12 : tracing::info!("Waiting for timelines...");
3415 24 : while let Some(res) = js.join_next().await {
3416 0 : match res {
3417 12 : Ok(()) => {}
3418 0 : Err(je) if je.is_cancelled() => unreachable!("no cancelling used"),
3419 0 : Err(je) if je.is_panic() => { /* logged already */ }
3420 0 : Err(je) => warn!("unexpected JoinError: {je:?}"),
3421 : }
3422 : }
3423 :
3424 12 : if let ShutdownMode::Reload = shutdown_mode {
3425 0 : tracing::info!("Flushing deletion queue");
3426 0 : if let Err(e) = self.deletion_queue_client.flush().await {
3427 0 : match e {
3428 0 : DeletionQueueError::ShuttingDown => {
3429 0 : // This is the only error we expect for now. In the future, if more error
3430 0 : // variants are added, we should handle them here.
3431 0 : }
3432 : }
3433 0 : }
3434 12 : }
3435 :
3436 : // We cancel the Tenant's cancellation token _after_ the timelines have all shut down. This permits
3437 : // them to continue to do work during their shutdown methods, e.g. flushing data.
3438 12 : tracing::debug!("Cancelling CancellationToken");
3439 12 : self.cancel.cancel();
3440 12 :
3441 12 : // shutdown all tenant and timeline tasks: gc, compaction, page service
3442 12 : // No new tasks will be started for this tenant because it's in `Stopping` state.
3443 12 : //
3444 12 : // this will additionally shutdown and await all timeline tasks.
3445 12 : tracing::debug!("Waiting for tasks...");
3446 12 : task_mgr::shutdown_tasks(None, Some(self.tenant_shard_id), None).await;
3447 :
3448 12 : if let Some(walredo_mgr) = self.walredo_mgr.as_ref() {
3449 12 : walredo_mgr.shutdown().await;
3450 0 : }
3451 :
3452 : // Wait for any in-flight operations to complete
3453 12 : self.gate.close().await;
3454 :
3455 12 : remove_tenant_metrics(&self.tenant_shard_id);
3456 12 :
3457 12 : Ok(())
3458 12 : }
3459 :
3460 : /// Change tenant status to Stopping, to mark that it is being shut down.
3461 : ///
3462 : /// This function waits for the tenant to become active if it isn't already, before transitioning it into Stopping state.
3463 : ///
3464 : /// This function is not cancel-safe!
3465 : ///
3466 : /// `allow_transition_from_loading` is needed for the special case of loading task deleting the tenant.
3467 : /// `allow_transition_from_attaching` is needed for the special case of attaching deleted tenant.
3468 12 : async fn set_stopping(
3469 12 : &self,
3470 12 : progress: completion::Barrier,
3471 12 : _allow_transition_from_loading: bool,
3472 12 : allow_transition_from_attaching: bool,
3473 12 : ) -> Result<(), SetStoppingError> {
3474 12 : let mut rx = self.state.subscribe();
3475 12 :
3476 12 : // cannot stop before we're done activating, so wait out until we're done activating
3477 12 : rx.wait_for(|state| match state {
3478 0 : TenantState::Attaching if allow_transition_from_attaching => true,
3479 : TenantState::Activating(_) | TenantState::Attaching => {
3480 0 : info!(
3481 0 : "waiting for {} to turn Active|Broken|Stopping",
3482 0 : <&'static str>::from(state)
3483 : );
3484 0 : false
3485 : }
3486 12 : TenantState::Active | TenantState::Broken { .. } | TenantState::Stopping { .. } => true,
3487 12 : })
3488 12 : .await
3489 12 : .expect("cannot drop self.state while on a &self method");
3490 12 :
3491 12 : // we now know we're done activating, let's see whether this task is the winner to transition into Stopping
3492 12 : let mut err = None;
3493 12 : let stopping = self.state.send_if_modified(|current_state| match current_state {
3494 : TenantState::Activating(_) => {
3495 0 : unreachable!("1we ensured above that we're done with activation, and, there is no re-activation")
3496 : }
3497 : TenantState::Attaching => {
3498 0 : if !allow_transition_from_attaching {
3499 0 : unreachable!("2we ensured above that we're done with activation, and, there is no re-activation")
3500 0 : };
3501 0 : *current_state = TenantState::Stopping { progress };
3502 0 : true
3503 : }
3504 : TenantState::Active => {
3505 : // FIXME: due to time-of-check vs time-of-use issues, it can happen that new timelines
3506 : // are created after the transition to Stopping. That's harmless, as the Timelines
3507 : // won't be accessible to anyone afterwards, because the Tenant is in Stopping state.
3508 12 : *current_state = TenantState::Stopping { progress };
3509 12 : // Continue stopping outside the closure. We need to grab timelines.lock()
3510 12 : // and we plan to turn it into a tokio::sync::Mutex in a future patch.
3511 12 : true
3512 : }
3513 0 : TenantState::Broken { reason, .. } => {
3514 0 : info!(
3515 0 : "Cannot set tenant to Stopping state, it is in Broken state due to: {reason}"
3516 : );
3517 0 : err = Some(SetStoppingError::Broken);
3518 0 : false
3519 : }
3520 0 : TenantState::Stopping { progress } => {
3521 0 : info!("Tenant is already in Stopping state");
3522 0 : err = Some(SetStoppingError::AlreadyStopping(progress.clone()));
3523 0 : false
3524 : }
3525 12 : });
3526 12 : match (stopping, err) {
3527 12 : (true, None) => {} // continue
3528 0 : (false, Some(err)) => return Err(err),
3529 0 : (true, Some(_)) => unreachable!(
3530 0 : "send_if_modified closure must error out if not transitioning to Stopping"
3531 0 : ),
3532 0 : (false, None) => unreachable!(
3533 0 : "send_if_modified closure must return true if transitioning to Stopping"
3534 0 : ),
3535 : }
3536 :
3537 12 : let timelines_accessor = self.timelines.lock().unwrap();
3538 12 : let not_broken_timelines = timelines_accessor
3539 12 : .values()
3540 12 : .filter(|timeline| !timeline.is_broken());
3541 24 : for timeline in not_broken_timelines {
3542 12 : timeline.set_state(TimelineState::Stopping);
3543 12 : }
3544 12 : Ok(())
3545 12 : }
3546 :
3547 : /// Method for tenant::mgr to transition us into Broken state in case of a late failure in
3548 : /// `remove_tenant_from_memory`
3549 : ///
3550 : /// This function waits for the tenant to become active if it isn't already, before transitioning it into Stopping state.
3551 : ///
3552 : /// In tests, we also use this to set tenants to Broken state on purpose.
3553 0 : pub(crate) async fn set_broken(&self, reason: String) {
3554 0 : let mut rx = self.state.subscribe();
3555 0 :
3556 0 : // The load & attach routines own the tenant state until it has reached `Active`.
3557 0 : // So, wait until it's done.
3558 0 : rx.wait_for(|state| match state {
3559 : TenantState::Activating(_) | TenantState::Attaching => {
3560 0 : info!(
3561 0 : "waiting for {} to turn Active|Broken|Stopping",
3562 0 : <&'static str>::from(state)
3563 : );
3564 0 : false
3565 : }
3566 0 : TenantState::Active | TenantState::Broken { .. } | TenantState::Stopping { .. } => true,
3567 0 : })
3568 0 : .await
3569 0 : .expect("cannot drop self.state while on a &self method");
3570 0 :
3571 0 : // we now know we're done activating, let's see whether this task is the winner to transition into Broken
3572 0 : self.set_broken_no_wait(reason)
3573 0 : }
3574 :
3575 0 : pub(crate) fn set_broken_no_wait(&self, reason: impl Display) {
3576 0 : let reason = reason.to_string();
3577 0 : self.state.send_modify(|current_state| {
3578 0 : match *current_state {
3579 : TenantState::Activating(_) | TenantState::Attaching => {
3580 0 : unreachable!("we ensured above that we're done with activation, and, there is no re-activation")
3581 : }
3582 : TenantState::Active => {
3583 0 : if cfg!(feature = "testing") {
3584 0 : warn!("Changing Active tenant to Broken state, reason: {}", reason);
3585 0 : *current_state = TenantState::broken_from_reason(reason);
3586 : } else {
3587 0 : unreachable!("not allowed to call set_broken on Active tenants in non-testing builds")
3588 : }
3589 : }
3590 : TenantState::Broken { .. } => {
3591 0 : warn!("Tenant is already in Broken state");
3592 : }
3593 : // This is the only "expected" path, any other path is a bug.
3594 : TenantState::Stopping { .. } => {
3595 0 : warn!(
3596 0 : "Marking Stopping tenant as Broken state, reason: {}",
3597 : reason
3598 : );
3599 0 : *current_state = TenantState::broken_from_reason(reason);
3600 : }
3601 : }
3602 0 : });
3603 0 : }
3604 :
3605 0 : pub fn subscribe_for_state_updates(&self) -> watch::Receiver<TenantState> {
3606 0 : self.state.subscribe()
3607 0 : }
3608 :
3609 : /// The activate_now semaphore is initialized with zero units. As soon as
3610 : /// we add a unit, waiters will be able to acquire a unit and proceed.
3611 0 : pub(crate) fn activate_now(&self) {
3612 0 : self.activate_now_sem.add_permits(1);
3613 0 : }
3614 :
3615 0 : pub(crate) async fn wait_to_become_active(
3616 0 : &self,
3617 0 : timeout: Duration,
3618 0 : ) -> Result<(), GetActiveTenantError> {
3619 0 : let mut receiver = self.state.subscribe();
3620 : loop {
3621 0 : let current_state = receiver.borrow_and_update().clone();
3622 0 : match current_state {
3623 : TenantState::Attaching | TenantState::Activating(_) => {
3624 : // in these states, there's a chance that we can reach ::Active
3625 0 : self.activate_now();
3626 0 : match timeout_cancellable(timeout, &self.cancel, receiver.changed()).await {
3627 0 : Ok(r) => {
3628 0 : r.map_err(
3629 0 : |_e: tokio::sync::watch::error::RecvError|
3630 : // Tenant existed but was dropped: report it as non-existent
3631 0 : GetActiveTenantError::NotFound(GetTenantError::ShardNotFound(self.tenant_shard_id))
3632 0 : )?
3633 : }
3634 : Err(TimeoutCancellableError::Cancelled) => {
3635 0 : return Err(GetActiveTenantError::Cancelled);
3636 : }
3637 : Err(TimeoutCancellableError::Timeout) => {
3638 0 : return Err(GetActiveTenantError::WaitForActiveTimeout {
3639 0 : latest_state: Some(self.current_state()),
3640 0 : wait_time: timeout,
3641 0 : });
3642 : }
3643 : }
3644 : }
3645 : TenantState::Active { .. } => {
3646 0 : return Ok(());
3647 : }
3648 0 : TenantState::Broken { reason, .. } => {
3649 0 : // This is fatal, and reported distinctly from the general case of "will never be active" because
3650 0 : // it's logically a 500 to external API users (broken is always a bug).
3651 0 : return Err(GetActiveTenantError::Broken(reason));
3652 : }
3653 : TenantState::Stopping { .. } => {
3654 : // There's no chance the tenant can transition back into ::Active
3655 0 : return Err(GetActiveTenantError::WillNotBecomeActive(current_state));
3656 : }
3657 : }
3658 : }
3659 0 : }
3660 :
3661 0 : pub(crate) fn get_attach_mode(&self) -> AttachmentMode {
3662 0 : self.tenant_conf.load().location.attach_mode
3663 0 : }
3664 :
3665 : /// For API access: generate a LocationConfig equivalent to the one that would be used to
3666 : /// create a Tenant in the same state. Do not use this in hot paths: it's for relatively
3667 : /// rare external API calls, like a reconciliation at startup.
3668 0 : pub(crate) fn get_location_conf(&self) -> models::LocationConfig {
3669 0 : let conf = self.tenant_conf.load();
3670 :
3671 0 : let location_config_mode = match conf.location.attach_mode {
3672 0 : AttachmentMode::Single => models::LocationConfigMode::AttachedSingle,
3673 0 : AttachmentMode::Multi => models::LocationConfigMode::AttachedMulti,
3674 0 : AttachmentMode::Stale => models::LocationConfigMode::AttachedStale,
3675 : };
3676 :
3677 : // We have a pageserver TenantConf, we need the API-facing TenantConfig.
3678 0 : let tenant_config: models::TenantConfig = conf.tenant_conf.clone().into();
3679 0 :
3680 0 : models::LocationConfig {
3681 0 : mode: location_config_mode,
3682 0 : generation: self.generation.into(),
3683 0 : secondary_conf: None,
3684 0 : shard_number: self.shard_identity.number.0,
3685 0 : shard_count: self.shard_identity.count.literal(),
3686 0 : shard_stripe_size: self.shard_identity.stripe_size.0,
3687 0 : tenant_conf: tenant_config,
3688 0 : }
3689 0 : }
3690 :
3691 0 : pub(crate) fn get_tenant_shard_id(&self) -> &TenantShardId {
3692 0 : &self.tenant_shard_id
3693 0 : }
3694 :
3695 0 : pub(crate) fn get_shard_stripe_size(&self) -> ShardStripeSize {
3696 0 : self.shard_identity.stripe_size
3697 0 : }
3698 :
3699 0 : pub(crate) fn get_generation(&self) -> Generation {
3700 0 : self.generation
3701 0 : }
3702 :
3703 : /// This function partially shuts down the tenant (it shuts down the Timelines) and is fallible,
3704 : /// and can leave the tenant in a bad state if it fails. The caller is responsible for
3705 : /// resetting this tenant to a valid state if we fail.
3706 0 : pub(crate) async fn split_prepare(
3707 0 : &self,
3708 0 : child_shards: &Vec<TenantShardId>,
3709 0 : ) -> anyhow::Result<()> {
3710 0 : let (timelines, offloaded) = {
3711 0 : let timelines = self.timelines.lock().unwrap();
3712 0 : let offloaded = self.timelines_offloaded.lock().unwrap();
3713 0 : (timelines.clone(), offloaded.clone())
3714 0 : };
3715 0 : let timelines_iter = timelines
3716 0 : .values()
3717 0 : .map(TimelineOrOffloadedArcRef::<'_>::from)
3718 0 : .chain(
3719 0 : offloaded
3720 0 : .values()
3721 0 : .map(TimelineOrOffloadedArcRef::<'_>::from),
3722 0 : );
3723 0 : for timeline in timelines_iter {
3724 : // We do not block timeline creation/deletion during splits inside the pageserver: it is up to higher levels
3725 : // to ensure that they do not start a split if currently in the process of doing these.
3726 :
3727 0 : let timeline_id = timeline.timeline_id();
3728 :
3729 0 : if let TimelineOrOffloadedArcRef::Timeline(timeline) = timeline {
3730 : // Upload an index from the parent: this is partly to provide freshness for the
3731 : // child tenants that will copy it, and partly for general ease-of-debugging: there will
3732 : // always be a parent shard index in the same generation as we wrote the child shard index.
3733 0 : tracing::info!(%timeline_id, "Uploading index");
3734 0 : timeline
3735 0 : .remote_client
3736 0 : .schedule_index_upload_for_file_changes()?;
3737 0 : timeline.remote_client.wait_completion().await?;
3738 0 : }
3739 :
3740 0 : let remote_client = match timeline {
3741 0 : TimelineOrOffloadedArcRef::Timeline(timeline) => timeline.remote_client.clone(),
3742 0 : TimelineOrOffloadedArcRef::Offloaded(offloaded) => {
3743 0 : let remote_client = self
3744 0 : .build_timeline_client(offloaded.timeline_id, self.remote_storage.clone());
3745 0 : Arc::new(remote_client)
3746 : }
3747 : };
3748 :
3749 : // Shut down the timeline's remote client: this means that the indices we write
3750 : // for child shards will not be invalidated by the parent shard deleting layers.
3751 0 : tracing::info!(%timeline_id, "Shutting down remote storage client");
3752 0 : remote_client.shutdown().await;
3753 :
3754 : // Download methods can still be used after shutdown, as they don't flow through the remote client's
3755 : // queue. In principal the RemoteTimelineClient could provide this without downloading it, but this
3756 : // operation is rare, so it's simpler to just download it (and robustly guarantees that the index
3757 : // we use here really is the remotely persistent one).
3758 0 : tracing::info!(%timeline_id, "Downloading index_part from parent");
3759 0 : let result = remote_client
3760 0 : .download_index_file(&self.cancel)
3761 0 : .instrument(info_span!("download_index_file", tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), %timeline_id))
3762 0 : .await?;
3763 0 : let index_part = match result {
3764 : MaybeDeletedIndexPart::Deleted(_) => {
3765 0 : anyhow::bail!("Timeline deletion happened concurrently with split")
3766 : }
3767 0 : MaybeDeletedIndexPart::IndexPart(p) => p,
3768 : };
3769 :
3770 0 : for child_shard in child_shards {
3771 0 : tracing::info!(%timeline_id, "Uploading index_part for child {}", child_shard.to_index());
3772 0 : upload_index_part(
3773 0 : &self.remote_storage,
3774 0 : child_shard,
3775 0 : &timeline_id,
3776 0 : self.generation,
3777 0 : &index_part,
3778 0 : &self.cancel,
3779 0 : )
3780 0 : .await?;
3781 : }
3782 : }
3783 :
3784 0 : let tenant_manifest = self.build_tenant_manifest();
3785 0 : for child_shard in child_shards {
3786 0 : tracing::info!(
3787 0 : "Uploading tenant manifest for child {}",
3788 0 : child_shard.to_index()
3789 : );
3790 0 : upload_tenant_manifest(
3791 0 : &self.remote_storage,
3792 0 : child_shard,
3793 0 : self.generation,
3794 0 : &tenant_manifest,
3795 0 : &self.cancel,
3796 0 : )
3797 0 : .await?;
3798 : }
3799 :
3800 0 : Ok(())
3801 0 : }
3802 :
3803 0 : pub(crate) fn get_sizes(&self) -> TopTenantShardItem {
3804 0 : let mut result = TopTenantShardItem {
3805 0 : id: self.tenant_shard_id,
3806 0 : resident_size: 0,
3807 0 : physical_size: 0,
3808 0 : max_logical_size: 0,
3809 0 : };
3810 :
3811 0 : for timeline in self.timelines.lock().unwrap().values() {
3812 0 : result.resident_size += timeline.metrics.resident_physical_size_gauge.get();
3813 0 :
3814 0 : result.physical_size += timeline
3815 0 : .remote_client
3816 0 : .metrics
3817 0 : .remote_physical_size_gauge
3818 0 : .get();
3819 0 : result.max_logical_size = std::cmp::max(
3820 0 : result.max_logical_size,
3821 0 : timeline.metrics.current_logical_size_gauge.get(),
3822 0 : );
3823 0 : }
3824 :
3825 0 : result
3826 0 : }
3827 : }
3828 :
3829 : /// Given a Vec of timelines and their ancestors (timeline_id, ancestor_id),
3830 : /// perform a topological sort, so that the parent of each timeline comes
3831 : /// before the children.
3832 : /// E extracts the ancestor from T
3833 : /// This allows for T to be different. It can be TimelineMetadata, can be Timeline itself, etc.
3834 444 : fn tree_sort_timelines<T, E>(
3835 444 : timelines: HashMap<TimelineId, T>,
3836 444 : extractor: E,
3837 444 : ) -> anyhow::Result<Vec<(TimelineId, T)>>
3838 444 : where
3839 444 : E: Fn(&T) -> Option<TimelineId>,
3840 444 : {
3841 444 : let mut result = Vec::with_capacity(timelines.len());
3842 444 :
3843 444 : let mut now = Vec::with_capacity(timelines.len());
3844 444 : // (ancestor, children)
3845 444 : let mut later: HashMap<TimelineId, Vec<(TimelineId, T)>> =
3846 444 : HashMap::with_capacity(timelines.len());
3847 :
3848 456 : for (timeline_id, value) in timelines {
3849 12 : if let Some(ancestor_id) = extractor(&value) {
3850 4 : let children = later.entry(ancestor_id).or_default();
3851 4 : children.push((timeline_id, value));
3852 8 : } else {
3853 8 : now.push((timeline_id, value));
3854 8 : }
3855 : }
3856 :
3857 456 : while let Some((timeline_id, metadata)) = now.pop() {
3858 12 : result.push((timeline_id, metadata));
3859 : // All children of this can be loaded now
3860 12 : if let Some(mut children) = later.remove(&timeline_id) {
3861 4 : now.append(&mut children);
3862 8 : }
3863 : }
3864 :
3865 : // All timelines should be visited now. Unless there were timelines with missing ancestors.
3866 444 : if !later.is_empty() {
3867 0 : for (missing_id, orphan_ids) in later {
3868 0 : for (orphan_id, _) in orphan_ids {
3869 0 : error!("could not load timeline {orphan_id} because its ancestor timeline {missing_id} could not be loaded");
3870 : }
3871 : }
3872 0 : bail!("could not load tenant because some timelines are missing ancestors");
3873 444 : }
3874 444 :
3875 444 : Ok(result)
3876 444 : }
3877 :
3878 : enum ActivateTimelineArgs {
3879 : Yes {
3880 : broker_client: storage_broker::BrokerClientChannel,
3881 : },
3882 : No,
3883 : }
3884 :
3885 : impl Tenant {
3886 0 : pub fn tenant_specific_overrides(&self) -> TenantConfOpt {
3887 0 : self.tenant_conf.load().tenant_conf.clone()
3888 0 : }
3889 :
3890 0 : pub fn effective_config(&self) -> TenantConf {
3891 0 : self.tenant_specific_overrides()
3892 0 : .merge(self.conf.default_tenant_conf.clone())
3893 0 : }
3894 :
3895 0 : pub fn get_checkpoint_distance(&self) -> u64 {
3896 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3897 0 : tenant_conf
3898 0 : .checkpoint_distance
3899 0 : .unwrap_or(self.conf.default_tenant_conf.checkpoint_distance)
3900 0 : }
3901 :
3902 0 : pub fn get_checkpoint_timeout(&self) -> Duration {
3903 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3904 0 : tenant_conf
3905 0 : .checkpoint_timeout
3906 0 : .unwrap_or(self.conf.default_tenant_conf.checkpoint_timeout)
3907 0 : }
3908 :
3909 0 : pub fn get_compaction_target_size(&self) -> u64 {
3910 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3911 0 : tenant_conf
3912 0 : .compaction_target_size
3913 0 : .unwrap_or(self.conf.default_tenant_conf.compaction_target_size)
3914 0 : }
3915 :
3916 0 : pub fn get_compaction_period(&self) -> Duration {
3917 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3918 0 : tenant_conf
3919 0 : .compaction_period
3920 0 : .unwrap_or(self.conf.default_tenant_conf.compaction_period)
3921 0 : }
3922 :
3923 0 : pub fn get_compaction_threshold(&self) -> usize {
3924 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3925 0 : tenant_conf
3926 0 : .compaction_threshold
3927 0 : .unwrap_or(self.conf.default_tenant_conf.compaction_threshold)
3928 0 : }
3929 :
3930 0 : pub fn get_rel_size_v2_enabled(&self) -> bool {
3931 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3932 0 : tenant_conf
3933 0 : .rel_size_v2_enabled
3934 0 : .unwrap_or(self.conf.default_tenant_conf.rel_size_v2_enabled)
3935 0 : }
3936 :
3937 0 : pub fn get_compaction_upper_limit(&self) -> usize {
3938 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3939 0 : tenant_conf
3940 0 : .compaction_upper_limit
3941 0 : .unwrap_or(self.conf.default_tenant_conf.compaction_upper_limit)
3942 0 : }
3943 :
3944 0 : pub fn get_compaction_l0_first(&self) -> bool {
3945 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3946 0 : tenant_conf
3947 0 : .compaction_l0_first
3948 0 : .unwrap_or(self.conf.default_tenant_conf.compaction_l0_first)
3949 0 : }
3950 :
3951 0 : pub fn get_gc_horizon(&self) -> u64 {
3952 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3953 0 : tenant_conf
3954 0 : .gc_horizon
3955 0 : .unwrap_or(self.conf.default_tenant_conf.gc_horizon)
3956 0 : }
3957 :
3958 0 : pub fn get_gc_period(&self) -> Duration {
3959 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3960 0 : tenant_conf
3961 0 : .gc_period
3962 0 : .unwrap_or(self.conf.default_tenant_conf.gc_period)
3963 0 : }
3964 :
3965 0 : pub fn get_image_creation_threshold(&self) -> usize {
3966 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3967 0 : tenant_conf
3968 0 : .image_creation_threshold
3969 0 : .unwrap_or(self.conf.default_tenant_conf.image_creation_threshold)
3970 0 : }
3971 :
3972 0 : pub fn get_pitr_interval(&self) -> Duration {
3973 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3974 0 : tenant_conf
3975 0 : .pitr_interval
3976 0 : .unwrap_or(self.conf.default_tenant_conf.pitr_interval)
3977 0 : }
3978 :
3979 0 : pub fn get_min_resident_size_override(&self) -> Option<u64> {
3980 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3981 0 : tenant_conf
3982 0 : .min_resident_size_override
3983 0 : .or(self.conf.default_tenant_conf.min_resident_size_override)
3984 0 : }
3985 :
3986 0 : pub fn get_heatmap_period(&self) -> Option<Duration> {
3987 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
3988 0 : let heatmap_period = tenant_conf
3989 0 : .heatmap_period
3990 0 : .unwrap_or(self.conf.default_tenant_conf.heatmap_period);
3991 0 : if heatmap_period.is_zero() {
3992 0 : None
3993 : } else {
3994 0 : Some(heatmap_period)
3995 : }
3996 0 : }
3997 :
3998 8 : pub fn get_lsn_lease_length(&self) -> Duration {
3999 8 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
4000 8 : tenant_conf
4001 8 : .lsn_lease_length
4002 8 : .unwrap_or(self.conf.default_tenant_conf.lsn_lease_length)
4003 8 : }
4004 :
4005 0 : pub fn get_timeline_offloading_enabled(&self) -> bool {
4006 0 : if self.conf.timeline_offloading {
4007 0 : return true;
4008 0 : }
4009 0 : let tenant_conf = self.tenant_conf.load().tenant_conf.clone();
4010 0 : tenant_conf
4011 0 : .timeline_offloading
4012 0 : .unwrap_or(self.conf.default_tenant_conf.timeline_offloading)
4013 0 : }
4014 :
4015 : /// Generate an up-to-date TenantManifest based on the state of this Tenant.
4016 4 : fn build_tenant_manifest(&self) -> TenantManifest {
4017 4 : let timelines_offloaded = self.timelines_offloaded.lock().unwrap();
4018 4 :
4019 4 : let mut timeline_manifests = timelines_offloaded
4020 4 : .iter()
4021 4 : .map(|(_timeline_id, offloaded)| offloaded.manifest())
4022 4 : .collect::<Vec<_>>();
4023 4 : // Sort the manifests so that our output is deterministic
4024 4 : timeline_manifests.sort_by_key(|timeline_manifest| timeline_manifest.timeline_id);
4025 4 :
4026 4 : TenantManifest {
4027 4 : version: LATEST_TENANT_MANIFEST_VERSION,
4028 4 : offloaded_timelines: timeline_manifests,
4029 4 : }
4030 4 : }
4031 :
4032 0 : pub fn update_tenant_config<F: Fn(TenantConfOpt) -> anyhow::Result<TenantConfOpt>>(
4033 0 : &self,
4034 0 : update: F,
4035 0 : ) -> anyhow::Result<TenantConfOpt> {
4036 0 : // Use read-copy-update in order to avoid overwriting the location config
4037 0 : // state if this races with [`Tenant::set_new_location_config`]. Note that
4038 0 : // this race is not possible if both request types come from the storage
4039 0 : // controller (as they should!) because an exclusive op lock is required
4040 0 : // on the storage controller side.
4041 0 :
4042 0 : self.tenant_conf
4043 0 : .try_rcu(|attached_conf| -> Result<_, anyhow::Error> {
4044 0 : Ok(Arc::new(AttachedTenantConf {
4045 0 : tenant_conf: update(attached_conf.tenant_conf.clone())?,
4046 0 : location: attached_conf.location,
4047 0 : lsn_lease_deadline: attached_conf.lsn_lease_deadline,
4048 : }))
4049 0 : })?;
4050 :
4051 0 : let updated = self.tenant_conf.load();
4052 0 :
4053 0 : self.tenant_conf_updated(&updated.tenant_conf);
4054 0 : // Don't hold self.timelines.lock() during the notifies.
4055 0 : // There's no risk of deadlock right now, but there could be if we consolidate
4056 0 : // mutexes in struct Timeline in the future.
4057 0 : let timelines = self.list_timelines();
4058 0 : for timeline in timelines {
4059 0 : timeline.tenant_conf_updated(&updated);
4060 0 : }
4061 :
4062 0 : Ok(updated.tenant_conf.clone())
4063 0 : }
4064 :
4065 0 : pub(crate) fn set_new_location_config(&self, new_conf: AttachedTenantConf) {
4066 0 : let new_tenant_conf = new_conf.tenant_conf.clone();
4067 0 :
4068 0 : self.tenant_conf.store(Arc::new(new_conf.clone()));
4069 0 :
4070 0 : self.tenant_conf_updated(&new_tenant_conf);
4071 0 : // Don't hold self.timelines.lock() during the notifies.
4072 0 : // There's no risk of deadlock right now, but there could be if we consolidate
4073 0 : // mutexes in struct Timeline in the future.
4074 0 : let timelines = self.list_timelines();
4075 0 : for timeline in timelines {
4076 0 : timeline.tenant_conf_updated(&new_conf);
4077 0 : }
4078 0 : }
4079 :
4080 444 : fn get_pagestream_throttle_config(
4081 444 : psconf: &'static PageServerConf,
4082 444 : overrides: &TenantConfOpt,
4083 444 : ) -> throttle::Config {
4084 444 : overrides
4085 444 : .timeline_get_throttle
4086 444 : .clone()
4087 444 : .unwrap_or(psconf.default_tenant_conf.timeline_get_throttle.clone())
4088 444 : }
4089 :
4090 0 : pub(crate) fn tenant_conf_updated(&self, new_conf: &TenantConfOpt) {
4091 0 : let conf = Self::get_pagestream_throttle_config(self.conf, new_conf);
4092 0 : self.pagestream_throttle.reconfigure(conf)
4093 0 : }
4094 :
4095 : /// Helper function to create a new Timeline struct.
4096 : ///
4097 : /// The returned Timeline is in Loading state. The caller is responsible for
4098 : /// initializing any on-disk state, and for inserting the Timeline to the 'timelines'
4099 : /// map.
4100 : ///
4101 : /// `validate_ancestor == false` is used when a timeline is created for deletion
4102 : /// and we might not have the ancestor present anymore which is fine for to be
4103 : /// deleted timelines.
4104 : #[allow(clippy::too_many_arguments)]
4105 896 : fn create_timeline_struct(
4106 896 : &self,
4107 896 : new_timeline_id: TimelineId,
4108 896 : new_metadata: &TimelineMetadata,
4109 896 : previous_heatmap: Option<PreviousHeatmap>,
4110 896 : ancestor: Option<Arc<Timeline>>,
4111 896 : resources: TimelineResources,
4112 896 : cause: CreateTimelineCause,
4113 896 : create_idempotency: CreateTimelineIdempotency,
4114 896 : ) -> anyhow::Result<Arc<Timeline>> {
4115 896 : let state = match cause {
4116 : CreateTimelineCause::Load => {
4117 896 : let ancestor_id = new_metadata.ancestor_timeline();
4118 896 : anyhow::ensure!(
4119 896 : ancestor_id == ancestor.as_ref().map(|t| t.timeline_id),
4120 0 : "Timeline's {new_timeline_id} ancestor {ancestor_id:?} was not found"
4121 : );
4122 896 : TimelineState::Loading
4123 : }
4124 0 : CreateTimelineCause::Delete => TimelineState::Stopping,
4125 : };
4126 :
4127 896 : let pg_version = new_metadata.pg_version();
4128 896 :
4129 896 : let timeline = Timeline::new(
4130 896 : self.conf,
4131 896 : Arc::clone(&self.tenant_conf),
4132 896 : new_metadata,
4133 896 : previous_heatmap,
4134 896 : ancestor,
4135 896 : new_timeline_id,
4136 896 : self.tenant_shard_id,
4137 896 : self.generation,
4138 896 : self.shard_identity,
4139 896 : self.walredo_mgr.clone(),
4140 896 : resources,
4141 896 : pg_version,
4142 896 : state,
4143 896 : self.attach_wal_lag_cooldown.clone(),
4144 896 : create_idempotency,
4145 896 : self.cancel.child_token(),
4146 896 : );
4147 896 :
4148 896 : Ok(timeline)
4149 896 : }
4150 :
4151 : /// [`Tenant::shutdown`] must be called before dropping the returned [`Tenant`] object
4152 : /// to ensure proper cleanup of background tasks and metrics.
4153 : //
4154 : // Allow too_many_arguments because a constructor's argument list naturally grows with the
4155 : // number of attributes in the struct: breaking these out into a builder wouldn't be helpful.
4156 : #[allow(clippy::too_many_arguments)]
4157 444 : fn new(
4158 444 : state: TenantState,
4159 444 : conf: &'static PageServerConf,
4160 444 : attached_conf: AttachedTenantConf,
4161 444 : shard_identity: ShardIdentity,
4162 444 : walredo_mgr: Option<Arc<WalRedoManager>>,
4163 444 : tenant_shard_id: TenantShardId,
4164 444 : remote_storage: GenericRemoteStorage,
4165 444 : deletion_queue_client: DeletionQueueClient,
4166 444 : l0_flush_global_state: L0FlushGlobalState,
4167 444 : ) -> Tenant {
4168 444 : debug_assert!(
4169 444 : !attached_conf.location.generation.is_none() || conf.control_plane_api.is_none()
4170 : );
4171 :
4172 444 : let (state, mut rx) = watch::channel(state);
4173 444 :
4174 444 : tokio::spawn(async move {
4175 443 : // reflect tenant state in metrics:
4176 443 : // - global per tenant state: TENANT_STATE_METRIC
4177 443 : // - "set" of broken tenants: BROKEN_TENANTS_SET
4178 443 : //
4179 443 : // set of broken tenants should not have zero counts so that it remains accessible for
4180 443 : // alerting.
4181 443 :
4182 443 : let tid = tenant_shard_id.to_string();
4183 443 : let shard_id = tenant_shard_id.shard_slug().to_string();
4184 443 : let set_key = &[tid.as_str(), shard_id.as_str()][..];
4185 :
4186 886 : fn inspect_state(state: &TenantState) -> ([&'static str; 1], bool) {
4187 886 : ([state.into()], matches!(state, TenantState::Broken { .. }))
4188 886 : }
4189 :
4190 443 : let mut tuple = inspect_state(&rx.borrow_and_update());
4191 443 :
4192 443 : let is_broken = tuple.1;
4193 443 : let mut counted_broken = if is_broken {
4194 : // add the id to the set right away, there should not be any updates on the channel
4195 : // after before tenant is removed, if ever
4196 0 : BROKEN_TENANTS_SET.with_label_values(set_key).set(1);
4197 0 : true
4198 : } else {
4199 443 : false
4200 : };
4201 :
4202 : loop {
4203 886 : let labels = &tuple.0;
4204 886 : let current = TENANT_STATE_METRIC.with_label_values(labels);
4205 886 : current.inc();
4206 886 :
4207 886 : if rx.changed().await.is_err() {
4208 : // tenant has been dropped
4209 28 : current.dec();
4210 28 : drop(BROKEN_TENANTS_SET.remove_label_values(set_key));
4211 28 : break;
4212 443 : }
4213 443 :
4214 443 : current.dec();
4215 443 : tuple = inspect_state(&rx.borrow_and_update());
4216 443 :
4217 443 : let is_broken = tuple.1;
4218 443 : if is_broken && !counted_broken {
4219 0 : counted_broken = true;
4220 0 : // insert the tenant_id (back) into the set while avoiding needless counter
4221 0 : // access
4222 0 : BROKEN_TENANTS_SET.with_label_values(set_key).set(1);
4223 443 : }
4224 : }
4225 444 : });
4226 444 :
4227 444 : Tenant {
4228 444 : tenant_shard_id,
4229 444 : shard_identity,
4230 444 : generation: attached_conf.location.generation,
4231 444 : conf,
4232 444 : // using now here is good enough approximation to catch tenants with really long
4233 444 : // activation times.
4234 444 : constructed_at: Instant::now(),
4235 444 : timelines: Mutex::new(HashMap::new()),
4236 444 : timelines_creating: Mutex::new(HashSet::new()),
4237 444 : timelines_offloaded: Mutex::new(HashMap::new()),
4238 444 : tenant_manifest_upload: Default::default(),
4239 444 : gc_cs: tokio::sync::Mutex::new(()),
4240 444 : walredo_mgr,
4241 444 : remote_storage,
4242 444 : deletion_queue_client,
4243 444 : state,
4244 444 : cached_logical_sizes: tokio::sync::Mutex::new(HashMap::new()),
4245 444 : cached_synthetic_tenant_size: Arc::new(AtomicU64::new(0)),
4246 444 : eviction_task_tenant_state: tokio::sync::Mutex::new(EvictionTaskTenantState::default()),
4247 444 : compaction_circuit_breaker: std::sync::Mutex::new(CircuitBreaker::new(
4248 444 : format!("compaction-{tenant_shard_id}"),
4249 444 : 5,
4250 444 : // Compaction can be a very expensive operation, and might leak disk space. It also ought
4251 444 : // to be infallible, as long as remote storage is available. So if it repeatedly fails,
4252 444 : // use an extremely long backoff.
4253 444 : Some(Duration::from_secs(3600 * 24)),
4254 444 : )),
4255 444 : l0_compaction_trigger: Arc::new(Notify::new()),
4256 444 : scheduled_compaction_tasks: Mutex::new(Default::default()),
4257 444 : activate_now_sem: tokio::sync::Semaphore::new(0),
4258 444 : attach_wal_lag_cooldown: Arc::new(std::sync::OnceLock::new()),
4259 444 : cancel: CancellationToken::default(),
4260 444 : gate: Gate::default(),
4261 444 : pagestream_throttle: Arc::new(throttle::Throttle::new(
4262 444 : Tenant::get_pagestream_throttle_config(conf, &attached_conf.tenant_conf),
4263 444 : )),
4264 444 : pagestream_throttle_metrics: Arc::new(
4265 444 : crate::metrics::tenant_throttling::Pagestream::new(&tenant_shard_id),
4266 444 : ),
4267 444 : tenant_conf: Arc::new(ArcSwap::from_pointee(attached_conf)),
4268 444 : ongoing_timeline_detach: std::sync::Mutex::default(),
4269 444 : gc_block: Default::default(),
4270 444 : l0_flush_global_state,
4271 444 : }
4272 444 : }
4273 :
4274 : /// Locate and load config
4275 0 : pub(super) fn load_tenant_config(
4276 0 : conf: &'static PageServerConf,
4277 0 : tenant_shard_id: &TenantShardId,
4278 0 : ) -> Result<LocationConf, LoadConfigError> {
4279 0 : let config_path = conf.tenant_location_config_path(tenant_shard_id);
4280 0 :
4281 0 : info!("loading tenant configuration from {config_path}");
4282 :
4283 : // load and parse file
4284 0 : let config = fs::read_to_string(&config_path).map_err(|e| {
4285 0 : match e.kind() {
4286 : std::io::ErrorKind::NotFound => {
4287 : // The config should almost always exist for a tenant directory:
4288 : // - When attaching a tenant, the config is the first thing we write
4289 : // - When detaching a tenant, we atomically move the directory to a tmp location
4290 : // before deleting contents.
4291 : //
4292 : // The very rare edge case that can result in a missing config is if we crash during attach
4293 : // between creating directory and writing config. Callers should handle that as if the
4294 : // directory didn't exist.
4295 :
4296 0 : LoadConfigError::NotFound(config_path)
4297 : }
4298 : _ => {
4299 : // No IO errors except NotFound are acceptable here: other kinds of error indicate local storage or permissions issues
4300 : // that we cannot cleanly recover
4301 0 : crate::virtual_file::on_fatal_io_error(&e, "Reading tenant config file")
4302 : }
4303 : }
4304 0 : })?;
4305 :
4306 0 : Ok(toml_edit::de::from_str::<LocationConf>(&config)?)
4307 0 : }
4308 :
4309 : #[tracing::instrument(skip_all, fields(tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug()))]
4310 : pub(super) async fn persist_tenant_config(
4311 : conf: &'static PageServerConf,
4312 : tenant_shard_id: &TenantShardId,
4313 : location_conf: &LocationConf,
4314 : ) -> std::io::Result<()> {
4315 : let config_path = conf.tenant_location_config_path(tenant_shard_id);
4316 :
4317 : Self::persist_tenant_config_at(tenant_shard_id, &config_path, location_conf).await
4318 : }
4319 :
4320 : #[tracing::instrument(skip_all, fields(tenant_id=%tenant_shard_id.tenant_id, shard_id=%tenant_shard_id.shard_slug()))]
4321 : pub(super) async fn persist_tenant_config_at(
4322 : tenant_shard_id: &TenantShardId,
4323 : config_path: &Utf8Path,
4324 : location_conf: &LocationConf,
4325 : ) -> std::io::Result<()> {
4326 : debug!("persisting tenantconf to {config_path}");
4327 :
4328 : let mut conf_content = r#"# This file contains a specific per-tenant's config.
4329 : # It is read in case of pageserver restart.
4330 : "#
4331 : .to_string();
4332 :
4333 0 : fail::fail_point!("tenant-config-before-write", |_| {
4334 0 : Err(std::io::Error::new(
4335 0 : std::io::ErrorKind::Other,
4336 0 : "tenant-config-before-write",
4337 0 : ))
4338 0 : });
4339 :
4340 : // Convert the config to a toml file.
4341 : conf_content +=
4342 : &toml_edit::ser::to_string_pretty(&location_conf).expect("Config serialization failed");
4343 :
4344 : let temp_path = path_with_suffix_extension(config_path, TEMP_FILE_SUFFIX);
4345 :
4346 : let conf_content = conf_content.into_bytes();
4347 : VirtualFile::crashsafe_overwrite(config_path.to_owned(), temp_path, conf_content).await
4348 : }
4349 :
4350 : //
4351 : // How garbage collection works:
4352 : //
4353 : // +--bar------------->
4354 : // /
4355 : // +----+-----foo---------------->
4356 : // /
4357 : // ----main--+-------------------------->
4358 : // \
4359 : // +-----baz-------->
4360 : //
4361 : //
4362 : // 1. Grab 'gc_cs' mutex to prevent new timelines from being created while Timeline's
4363 : // `gc_infos` are being refreshed
4364 : // 2. Scan collected timelines, and on each timeline, make note of the
4365 : // all the points where other timelines have been branched off.
4366 : // We will refrain from removing page versions at those LSNs.
4367 : // 3. For each timeline, scan all layer files on the timeline.
4368 : // Remove all files for which a newer file exists and which
4369 : // don't cover any branch point LSNs.
4370 : //
4371 : // TODO:
4372 : // - if a relation has a non-incremental persistent layer on a child branch, then we
4373 : // don't need to keep that in the parent anymore. But currently
4374 : // we do.
4375 8 : async fn gc_iteration_internal(
4376 8 : &self,
4377 8 : target_timeline_id: Option<TimelineId>,
4378 8 : horizon: u64,
4379 8 : pitr: Duration,
4380 8 : cancel: &CancellationToken,
4381 8 : ctx: &RequestContext,
4382 8 : ) -> Result<GcResult, GcError> {
4383 8 : let mut totals: GcResult = Default::default();
4384 8 : let now = Instant::now();
4385 :
4386 8 : let gc_timelines = self
4387 8 : .refresh_gc_info_internal(target_timeline_id, horizon, pitr, cancel, ctx)
4388 8 : .await?;
4389 :
4390 8 : failpoint_support::sleep_millis_async!("gc_iteration_internal_after_getting_gc_timelines");
4391 :
4392 : // If there is nothing to GC, we don't want any messages in the INFO log.
4393 8 : if !gc_timelines.is_empty() {
4394 8 : info!("{} timelines need GC", gc_timelines.len());
4395 : } else {
4396 0 : debug!("{} timelines need GC", gc_timelines.len());
4397 : }
4398 :
4399 : // Perform GC for each timeline.
4400 : //
4401 : // Note that we don't hold the `Tenant::gc_cs` lock here because we don't want to delay the
4402 : // branch creation task, which requires the GC lock. A GC iteration can run concurrently
4403 : // with branch creation.
4404 : //
4405 : // See comments in [`Tenant::branch_timeline`] for more information about why branch
4406 : // creation task can run concurrently with timeline's GC iteration.
4407 16 : for timeline in gc_timelines {
4408 8 : if cancel.is_cancelled() {
4409 : // We were requested to shut down. Stop and return with the progress we
4410 : // made.
4411 0 : break;
4412 8 : }
4413 8 : let result = match timeline.gc().await {
4414 : Err(GcError::TimelineCancelled) => {
4415 0 : if target_timeline_id.is_some() {
4416 : // If we were targetting this specific timeline, surface cancellation to caller
4417 0 : return Err(GcError::TimelineCancelled);
4418 : } else {
4419 : // A timeline may be shutting down independently of the tenant's lifecycle: we should
4420 : // skip past this and proceed to try GC on other timelines.
4421 0 : continue;
4422 : }
4423 : }
4424 8 : r => r?,
4425 : };
4426 8 : totals += result;
4427 : }
4428 :
4429 8 : totals.elapsed = now.elapsed();
4430 8 : Ok(totals)
4431 8 : }
4432 :
4433 : /// Refreshes the Timeline::gc_info for all timelines, returning the
4434 : /// vector of timelines which have [`Timeline::get_last_record_lsn`] past
4435 : /// [`Tenant::get_gc_horizon`].
4436 : ///
4437 : /// This is usually executed as part of periodic gc, but can now be triggered more often.
4438 0 : pub(crate) async fn refresh_gc_info(
4439 0 : &self,
4440 0 : cancel: &CancellationToken,
4441 0 : ctx: &RequestContext,
4442 0 : ) -> Result<Vec<Arc<Timeline>>, GcError> {
4443 0 : // since this method can now be called at different rates than the configured gc loop, it
4444 0 : // might be that these configuration values get applied faster than what it was previously,
4445 0 : // since these were only read from the gc task.
4446 0 : let horizon = self.get_gc_horizon();
4447 0 : let pitr = self.get_pitr_interval();
4448 0 :
4449 0 : // refresh all timelines
4450 0 : let target_timeline_id = None;
4451 0 :
4452 0 : self.refresh_gc_info_internal(target_timeline_id, horizon, pitr, cancel, ctx)
4453 0 : .await
4454 0 : }
4455 :
4456 : /// Populate all Timelines' `GcInfo` with information about their children. We do not set the
4457 : /// PITR cutoffs here, because that requires I/O: this is done later, before GC, by [`Self::refresh_gc_info_internal`]
4458 : ///
4459 : /// Subsequently, parent-child relationships are updated incrementally inside [`Timeline::new`] and [`Timeline::drop`].
4460 0 : fn initialize_gc_info(
4461 0 : &self,
4462 0 : timelines: &std::sync::MutexGuard<HashMap<TimelineId, Arc<Timeline>>>,
4463 0 : timelines_offloaded: &std::sync::MutexGuard<HashMap<TimelineId, Arc<OffloadedTimeline>>>,
4464 0 : restrict_to_timeline: Option<TimelineId>,
4465 0 : ) {
4466 0 : if restrict_to_timeline.is_none() {
4467 : // This function must be called before activation: after activation timeline create/delete operations
4468 : // might happen, and this function is not safe to run concurrently with those.
4469 0 : assert!(!self.is_active());
4470 0 : }
4471 :
4472 : // Scan all timelines. For each timeline, remember the timeline ID and
4473 : // the branch point where it was created.
4474 0 : let mut all_branchpoints: BTreeMap<TimelineId, Vec<(Lsn, TimelineId, MaybeOffloaded)>> =
4475 0 : BTreeMap::new();
4476 0 : timelines.iter().for_each(|(timeline_id, timeline_entry)| {
4477 0 : if let Some(ancestor_timeline_id) = &timeline_entry.get_ancestor_timeline_id() {
4478 0 : let ancestor_children = all_branchpoints.entry(*ancestor_timeline_id).or_default();
4479 0 : ancestor_children.push((
4480 0 : timeline_entry.get_ancestor_lsn(),
4481 0 : *timeline_id,
4482 0 : MaybeOffloaded::No,
4483 0 : ));
4484 0 : }
4485 0 : });
4486 0 : timelines_offloaded
4487 0 : .iter()
4488 0 : .for_each(|(timeline_id, timeline_entry)| {
4489 0 : let Some(ancestor_timeline_id) = &timeline_entry.ancestor_timeline_id else {
4490 0 : return;
4491 : };
4492 0 : let Some(retain_lsn) = timeline_entry.ancestor_retain_lsn else {
4493 0 : return;
4494 : };
4495 0 : let ancestor_children = all_branchpoints.entry(*ancestor_timeline_id).or_default();
4496 0 : ancestor_children.push((retain_lsn, *timeline_id, MaybeOffloaded::Yes));
4497 0 : });
4498 0 :
4499 0 : // The number of bytes we always keep, irrespective of PITR: this is a constant across timelines
4500 0 : let horizon = self.get_gc_horizon();
4501 :
4502 : // Populate each timeline's GcInfo with information about its child branches
4503 0 : let timelines_to_write = if let Some(timeline_id) = restrict_to_timeline {
4504 0 : itertools::Either::Left(timelines.get(&timeline_id).into_iter())
4505 : } else {
4506 0 : itertools::Either::Right(timelines.values())
4507 : };
4508 0 : for timeline in timelines_to_write {
4509 0 : let mut branchpoints: Vec<(Lsn, TimelineId, MaybeOffloaded)> = all_branchpoints
4510 0 : .remove(&timeline.timeline_id)
4511 0 : .unwrap_or_default();
4512 0 :
4513 0 : branchpoints.sort_by_key(|b| b.0);
4514 0 :
4515 0 : let mut target = timeline.gc_info.write().unwrap();
4516 0 :
4517 0 : target.retain_lsns = branchpoints;
4518 0 :
4519 0 : let space_cutoff = timeline
4520 0 : .get_last_record_lsn()
4521 0 : .checked_sub(horizon)
4522 0 : .unwrap_or(Lsn(0));
4523 0 :
4524 0 : target.cutoffs = GcCutoffs {
4525 0 : space: space_cutoff,
4526 0 : time: Lsn::INVALID,
4527 0 : };
4528 0 : }
4529 0 : }
4530 :
4531 8 : async fn refresh_gc_info_internal(
4532 8 : &self,
4533 8 : target_timeline_id: Option<TimelineId>,
4534 8 : horizon: u64,
4535 8 : pitr: Duration,
4536 8 : cancel: &CancellationToken,
4537 8 : ctx: &RequestContext,
4538 8 : ) -> Result<Vec<Arc<Timeline>>, GcError> {
4539 8 : // before taking the gc_cs lock, do the heavier weight finding of gc_cutoff points for
4540 8 : // currently visible timelines.
4541 8 : let timelines = self
4542 8 : .timelines
4543 8 : .lock()
4544 8 : .unwrap()
4545 8 : .values()
4546 8 : .filter(|tl| match target_timeline_id.as_ref() {
4547 8 : Some(target) => &tl.timeline_id == target,
4548 0 : None => true,
4549 8 : })
4550 8 : .cloned()
4551 8 : .collect::<Vec<_>>();
4552 8 :
4553 8 : if target_timeline_id.is_some() && timelines.is_empty() {
4554 : // We were to act on a particular timeline and it wasn't found
4555 0 : return Err(GcError::TimelineNotFound);
4556 8 : }
4557 8 :
4558 8 : let mut gc_cutoffs: HashMap<TimelineId, GcCutoffs> =
4559 8 : HashMap::with_capacity(timelines.len());
4560 8 :
4561 8 : // Ensures all timelines use the same start time when computing the time cutoff.
4562 8 : let now_ts_for_pitr_calc = SystemTime::now();
4563 8 : for timeline in timelines.iter() {
4564 8 : let cutoff = timeline
4565 8 : .get_last_record_lsn()
4566 8 : .checked_sub(horizon)
4567 8 : .unwrap_or(Lsn(0));
4568 :
4569 8 : let cutoffs = timeline
4570 8 : .find_gc_cutoffs(now_ts_for_pitr_calc, cutoff, pitr, cancel, ctx)
4571 8 : .await?;
4572 8 : let old = gc_cutoffs.insert(timeline.timeline_id, cutoffs);
4573 8 : assert!(old.is_none());
4574 : }
4575 :
4576 8 : if !self.is_active() || self.cancel.is_cancelled() {
4577 0 : return Err(GcError::TenantCancelled);
4578 8 : }
4579 :
4580 : // grab mutex to prevent new timelines from being created here; avoid doing long operations
4581 : // because that will stall branch creation.
4582 8 : let gc_cs = self.gc_cs.lock().await;
4583 :
4584 : // Ok, we now know all the branch points.
4585 : // Update the GC information for each timeline.
4586 8 : let mut gc_timelines = Vec::with_capacity(timelines.len());
4587 16 : for timeline in timelines {
4588 : // We filtered the timeline list above
4589 8 : if let Some(target_timeline_id) = target_timeline_id {
4590 8 : assert_eq!(target_timeline_id, timeline.timeline_id);
4591 0 : }
4592 :
4593 : {
4594 8 : let mut target = timeline.gc_info.write().unwrap();
4595 8 :
4596 8 : // Cull any expired leases
4597 8 : let now = SystemTime::now();
4598 12 : target.leases.retain(|_, lease| !lease.is_expired(&now));
4599 8 :
4600 8 : timeline
4601 8 : .metrics
4602 8 : .valid_lsn_lease_count_gauge
4603 8 : .set(target.leases.len() as u64);
4604 :
4605 : // Look up parent's PITR cutoff to update the child's knowledge of whether it is within parent's PITR
4606 8 : if let Some(ancestor_id) = timeline.get_ancestor_timeline_id() {
4607 0 : if let Some(ancestor_gc_cutoffs) = gc_cutoffs.get(&ancestor_id) {
4608 0 : target.within_ancestor_pitr =
4609 0 : timeline.get_ancestor_lsn() >= ancestor_gc_cutoffs.time;
4610 0 : }
4611 8 : }
4612 :
4613 : // Update metrics that depend on GC state
4614 8 : timeline
4615 8 : .metrics
4616 8 : .archival_size
4617 8 : .set(if target.within_ancestor_pitr {
4618 0 : timeline.metrics.current_logical_size_gauge.get()
4619 : } else {
4620 8 : 0
4621 : });
4622 8 : timeline.metrics.pitr_history_size.set(
4623 8 : timeline
4624 8 : .get_last_record_lsn()
4625 8 : .checked_sub(target.cutoffs.time)
4626 8 : .unwrap_or(Lsn(0))
4627 8 : .0,
4628 8 : );
4629 :
4630 : // Apply the cutoffs we found to the Timeline's GcInfo. Why might we _not_ have cutoffs for a timeline?
4631 : // - this timeline was created while we were finding cutoffs
4632 : // - lsn for timestamp search fails for this timeline repeatedly
4633 8 : if let Some(cutoffs) = gc_cutoffs.get(&timeline.timeline_id) {
4634 8 : let original_cutoffs = target.cutoffs.clone();
4635 8 : // GC cutoffs should never go back
4636 8 : target.cutoffs = GcCutoffs {
4637 8 : space: Lsn(cutoffs.space.0.max(original_cutoffs.space.0)),
4638 8 : time: Lsn(cutoffs.time.0.max(original_cutoffs.time.0)),
4639 8 : }
4640 0 : }
4641 : }
4642 :
4643 8 : gc_timelines.push(timeline);
4644 : }
4645 8 : drop(gc_cs);
4646 8 : Ok(gc_timelines)
4647 8 : }
4648 :
4649 : /// A substitute for `branch_timeline` for use in unit tests.
4650 : /// The returned timeline will have state value `Active` to make various `anyhow::ensure!()`
4651 : /// calls pass, but, we do not actually call `.activate()` under the hood. So, none of the
4652 : /// timeline background tasks are launched, except the flush loop.
4653 : #[cfg(test)]
4654 464 : async fn branch_timeline_test(
4655 464 : self: &Arc<Self>,
4656 464 : src_timeline: &Arc<Timeline>,
4657 464 : dst_id: TimelineId,
4658 464 : ancestor_lsn: Option<Lsn>,
4659 464 : ctx: &RequestContext,
4660 464 : ) -> Result<Arc<Timeline>, CreateTimelineError> {
4661 464 : let tl = self
4662 464 : .branch_timeline_impl(src_timeline, dst_id, ancestor_lsn, ctx)
4663 464 : .await?
4664 456 : .into_timeline_for_test();
4665 456 : tl.set_state(TimelineState::Active);
4666 456 : Ok(tl)
4667 464 : }
4668 :
4669 : /// Helper for unit tests to branch a timeline with some pre-loaded states.
4670 : #[cfg(test)]
4671 : #[allow(clippy::too_many_arguments)]
4672 12 : pub async fn branch_timeline_test_with_layers(
4673 12 : self: &Arc<Self>,
4674 12 : src_timeline: &Arc<Timeline>,
4675 12 : dst_id: TimelineId,
4676 12 : ancestor_lsn: Option<Lsn>,
4677 12 : ctx: &RequestContext,
4678 12 : delta_layer_desc: Vec<timeline::DeltaLayerTestDesc>,
4679 12 : image_layer_desc: Vec<(Lsn, Vec<(pageserver_api::key::Key, bytes::Bytes)>)>,
4680 12 : end_lsn: Lsn,
4681 12 : ) -> anyhow::Result<Arc<Timeline>> {
4682 : use checks::check_valid_layermap;
4683 : use itertools::Itertools;
4684 :
4685 12 : let tline = self
4686 12 : .branch_timeline_test(src_timeline, dst_id, ancestor_lsn, ctx)
4687 12 : .await?;
4688 12 : let ancestor_lsn = if let Some(ancestor_lsn) = ancestor_lsn {
4689 12 : ancestor_lsn
4690 : } else {
4691 0 : tline.get_last_record_lsn()
4692 : };
4693 12 : assert!(end_lsn >= ancestor_lsn);
4694 12 : tline.force_advance_lsn(end_lsn);
4695 24 : for deltas in delta_layer_desc {
4696 12 : tline
4697 12 : .force_create_delta_layer(deltas, Some(ancestor_lsn), ctx)
4698 12 : .await?;
4699 : }
4700 20 : for (lsn, images) in image_layer_desc {
4701 8 : tline
4702 8 : .force_create_image_layer(lsn, images, Some(ancestor_lsn), ctx)
4703 8 : .await?;
4704 : }
4705 12 : let layer_names = tline
4706 12 : .layers
4707 12 : .read()
4708 12 : .await
4709 12 : .layer_map()
4710 12 : .unwrap()
4711 12 : .iter_historic_layers()
4712 20 : .map(|layer| layer.layer_name())
4713 12 : .collect_vec();
4714 12 : if let Some(err) = check_valid_layermap(&layer_names) {
4715 0 : bail!("invalid layermap: {err}");
4716 12 : }
4717 12 : Ok(tline)
4718 12 : }
4719 :
4720 : /// Branch an existing timeline.
4721 0 : async fn branch_timeline(
4722 0 : self: &Arc<Self>,
4723 0 : src_timeline: &Arc<Timeline>,
4724 0 : dst_id: TimelineId,
4725 0 : start_lsn: Option<Lsn>,
4726 0 : ctx: &RequestContext,
4727 0 : ) -> Result<CreateTimelineResult, CreateTimelineError> {
4728 0 : self.branch_timeline_impl(src_timeline, dst_id, start_lsn, ctx)
4729 0 : .await
4730 0 : }
4731 :
4732 464 : async fn branch_timeline_impl(
4733 464 : self: &Arc<Self>,
4734 464 : src_timeline: &Arc<Timeline>,
4735 464 : dst_id: TimelineId,
4736 464 : start_lsn: Option<Lsn>,
4737 464 : _ctx: &RequestContext,
4738 464 : ) -> Result<CreateTimelineResult, CreateTimelineError> {
4739 464 : let src_id = src_timeline.timeline_id;
4740 :
4741 : // We will validate our ancestor LSN in this function. Acquire the GC lock so that
4742 : // this check cannot race with GC, and the ancestor LSN is guaranteed to remain
4743 : // valid while we are creating the branch.
4744 464 : let _gc_cs = self.gc_cs.lock().await;
4745 :
4746 : // If no start LSN is specified, we branch the new timeline from the source timeline's last record LSN
4747 464 : let start_lsn = start_lsn.unwrap_or_else(|| {
4748 4 : let lsn = src_timeline.get_last_record_lsn();
4749 4 : info!("branching timeline {dst_id} from timeline {src_id} at last record LSN: {lsn}");
4750 4 : lsn
4751 464 : });
4752 :
4753 : // we finally have determined the ancestor_start_lsn, so we can get claim exclusivity now
4754 464 : let timeline_create_guard = match self
4755 464 : .start_creating_timeline(
4756 464 : dst_id,
4757 464 : CreateTimelineIdempotency::Branch {
4758 464 : ancestor_timeline_id: src_timeline.timeline_id,
4759 464 : ancestor_start_lsn: start_lsn,
4760 464 : },
4761 464 : )
4762 464 : .await?
4763 : {
4764 464 : StartCreatingTimelineResult::CreateGuard(guard) => guard,
4765 0 : StartCreatingTimelineResult::Idempotent(timeline) => {
4766 0 : return Ok(CreateTimelineResult::Idempotent(timeline));
4767 : }
4768 : };
4769 :
4770 : // Ensure that `start_lsn` is valid, i.e. the LSN is within the PITR
4771 : // horizon on the source timeline
4772 : //
4773 : // We check it against both the planned GC cutoff stored in 'gc_info',
4774 : // and the 'latest_gc_cutoff' of the last GC that was performed. The
4775 : // planned GC cutoff in 'gc_info' is normally larger than
4776 : // 'applied_gc_cutoff_lsn', but beware of corner cases like if you just
4777 : // changed the GC settings for the tenant to make the PITR window
4778 : // larger, but some of the data was already removed by an earlier GC
4779 : // iteration.
4780 :
4781 : // check against last actual 'latest_gc_cutoff' first
4782 464 : let applied_gc_cutoff_lsn = src_timeline.get_applied_gc_cutoff_lsn();
4783 464 : {
4784 464 : let gc_info = src_timeline.gc_info.read().unwrap();
4785 464 : let planned_cutoff = gc_info.min_cutoff();
4786 464 : if gc_info.lsn_covered_by_lease(start_lsn) {
4787 0 : tracing::info!("skipping comparison of {start_lsn} with gc cutoff {} and planned gc cutoff {planned_cutoff} due to lsn lease", *applied_gc_cutoff_lsn);
4788 : } else {
4789 464 : src_timeline
4790 464 : .check_lsn_is_in_scope(start_lsn, &applied_gc_cutoff_lsn)
4791 464 : .context(format!(
4792 464 : "invalid branch start lsn: less than latest GC cutoff {}",
4793 464 : *applied_gc_cutoff_lsn,
4794 464 : ))
4795 464 : .map_err(CreateTimelineError::AncestorLsn)?;
4796 :
4797 : // and then the planned GC cutoff
4798 456 : if start_lsn < planned_cutoff {
4799 0 : return Err(CreateTimelineError::AncestorLsn(anyhow::anyhow!(
4800 0 : "invalid branch start lsn: less than planned GC cutoff {planned_cutoff}"
4801 0 : )));
4802 456 : }
4803 : }
4804 : }
4805 :
4806 : //
4807 : // The branch point is valid, and we are still holding the 'gc_cs' lock
4808 : // so that GC cannot advance the GC cutoff until we are finished.
4809 : // Proceed with the branch creation.
4810 : //
4811 :
4812 : // Determine prev-LSN for the new timeline. We can only determine it if
4813 : // the timeline was branched at the current end of the source timeline.
4814 : let RecordLsn {
4815 456 : last: src_last,
4816 456 : prev: src_prev,
4817 456 : } = src_timeline.get_last_record_rlsn();
4818 456 : let dst_prev = if src_last == start_lsn {
4819 432 : Some(src_prev)
4820 : } else {
4821 24 : None
4822 : };
4823 :
4824 : // Create the metadata file, noting the ancestor of the new timeline.
4825 : // There is initially no data in it, but all the read-calls know to look
4826 : // into the ancestor.
4827 456 : let metadata = TimelineMetadata::new(
4828 456 : start_lsn,
4829 456 : dst_prev,
4830 456 : Some(src_id),
4831 456 : start_lsn,
4832 456 : *src_timeline.applied_gc_cutoff_lsn.read(), // FIXME: should we hold onto this guard longer?
4833 456 : src_timeline.initdb_lsn,
4834 456 : src_timeline.pg_version,
4835 456 : );
4836 :
4837 456 : let uninitialized_timeline = self
4838 456 : .prepare_new_timeline(
4839 456 : dst_id,
4840 456 : &metadata,
4841 456 : timeline_create_guard,
4842 456 : start_lsn + 1,
4843 456 : Some(Arc::clone(src_timeline)),
4844 456 : )
4845 456 : .await?;
4846 :
4847 456 : let new_timeline = uninitialized_timeline.finish_creation().await?;
4848 :
4849 : // Root timeline gets its layers during creation and uploads them along with the metadata.
4850 : // A branch timeline though, when created, can get no writes for some time, hence won't get any layers created.
4851 : // We still need to upload its metadata eagerly: if other nodes `attach` the tenant and miss this timeline, their GC
4852 : // could get incorrect information and remove more layers, than needed.
4853 : // See also https://github.com/neondatabase/neon/issues/3865
4854 456 : new_timeline
4855 456 : .remote_client
4856 456 : .schedule_index_upload_for_full_metadata_update(&metadata)
4857 456 : .context("branch initial metadata upload")?;
4858 :
4859 : // Callers are responsible to wait for uploads to complete and for activating the timeline.
4860 :
4861 456 : Ok(CreateTimelineResult::Created(new_timeline))
4862 464 : }
4863 :
4864 : /// For unit tests, make this visible so that other modules can directly create timelines
4865 : #[cfg(test)]
4866 : #[tracing::instrument(skip_all, fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug(), %timeline_id))]
4867 : pub(crate) async fn bootstrap_timeline_test(
4868 : self: &Arc<Self>,
4869 : timeline_id: TimelineId,
4870 : pg_version: u32,
4871 : load_existing_initdb: Option<TimelineId>,
4872 : ctx: &RequestContext,
4873 : ) -> anyhow::Result<Arc<Timeline>> {
4874 : self.bootstrap_timeline(timeline_id, pg_version, load_existing_initdb, ctx)
4875 : .await
4876 : .map_err(anyhow::Error::new)
4877 4 : .map(|r| r.into_timeline_for_test())
4878 : }
4879 :
4880 : /// Get exclusive access to the timeline ID for creation.
4881 : ///
4882 : /// Timeline-creating code paths must use this function before making changes
4883 : /// to in-memory or persistent state.
4884 : ///
4885 : /// The `state` parameter is a description of the timeline creation operation
4886 : /// we intend to perform.
4887 : /// If the timeline was already created in the meantime, we check whether this
4888 : /// request conflicts or is idempotent , based on `state`.
4889 896 : async fn start_creating_timeline(
4890 896 : self: &Arc<Self>,
4891 896 : new_timeline_id: TimelineId,
4892 896 : idempotency: CreateTimelineIdempotency,
4893 896 : ) -> Result<StartCreatingTimelineResult, CreateTimelineError> {
4894 896 : let allow_offloaded = false;
4895 896 : match self.create_timeline_create_guard(new_timeline_id, idempotency, allow_offloaded) {
4896 892 : Ok(create_guard) => {
4897 892 : pausable_failpoint!("timeline-creation-after-uninit");
4898 892 : Ok(StartCreatingTimelineResult::CreateGuard(create_guard))
4899 : }
4900 0 : Err(TimelineExclusionError::ShuttingDown) => Err(CreateTimelineError::ShuttingDown),
4901 : Err(TimelineExclusionError::AlreadyCreating) => {
4902 : // Creation is in progress, we cannot create it again, and we cannot
4903 : // check if this request matches the existing one, so caller must try
4904 : // again later.
4905 0 : Err(CreateTimelineError::AlreadyCreating)
4906 : }
4907 0 : Err(TimelineExclusionError::Other(e)) => Err(CreateTimelineError::Other(e)),
4908 : Err(TimelineExclusionError::AlreadyExists {
4909 0 : existing: TimelineOrOffloaded::Offloaded(_existing),
4910 0 : ..
4911 0 : }) => {
4912 0 : info!("timeline already exists but is offloaded");
4913 0 : Err(CreateTimelineError::Conflict)
4914 : }
4915 : Err(TimelineExclusionError::AlreadyExists {
4916 4 : existing: TimelineOrOffloaded::Timeline(existing),
4917 4 : arg,
4918 4 : }) => {
4919 4 : {
4920 4 : let existing = &existing.create_idempotency;
4921 4 : let _span = info_span!("idempotency_check", ?existing, ?arg).entered();
4922 4 : debug!("timeline already exists");
4923 :
4924 4 : match (existing, &arg) {
4925 : // FailWithConflict => no idempotency check
4926 : (CreateTimelineIdempotency::FailWithConflict, _)
4927 : | (_, CreateTimelineIdempotency::FailWithConflict) => {
4928 4 : warn!("timeline already exists, failing request");
4929 4 : return Err(CreateTimelineError::Conflict);
4930 : }
4931 : // Idempotent <=> CreateTimelineIdempotency is identical
4932 0 : (x, y) if x == y => {
4933 0 : info!("timeline already exists and idempotency matches, succeeding request");
4934 : // fallthrough
4935 : }
4936 : (_, _) => {
4937 0 : warn!("idempotency conflict, failing request");
4938 0 : return Err(CreateTimelineError::Conflict);
4939 : }
4940 : }
4941 : }
4942 :
4943 0 : Ok(StartCreatingTimelineResult::Idempotent(existing))
4944 : }
4945 : }
4946 896 : }
4947 :
4948 0 : async fn upload_initdb(
4949 0 : &self,
4950 0 : timelines_path: &Utf8PathBuf,
4951 0 : pgdata_path: &Utf8PathBuf,
4952 0 : timeline_id: &TimelineId,
4953 0 : ) -> anyhow::Result<()> {
4954 0 : let temp_path = timelines_path.join(format!(
4955 0 : "{INITDB_PATH}.upload-{timeline_id}.{TEMP_FILE_SUFFIX}"
4956 0 : ));
4957 0 :
4958 0 : scopeguard::defer! {
4959 0 : if let Err(e) = fs::remove_file(&temp_path) {
4960 0 : error!("Failed to remove temporary initdb archive '{temp_path}': {e}");
4961 0 : }
4962 0 : }
4963 :
4964 0 : let (pgdata_zstd, tar_zst_size) = create_zst_tarball(pgdata_path, &temp_path).await?;
4965 : const INITDB_TAR_ZST_WARN_LIMIT: u64 = 2 * 1024 * 1024;
4966 0 : if tar_zst_size > INITDB_TAR_ZST_WARN_LIMIT {
4967 0 : warn!(
4968 0 : "compressed {temp_path} size of {tar_zst_size} is above limit {INITDB_TAR_ZST_WARN_LIMIT}."
4969 : );
4970 0 : }
4971 :
4972 0 : pausable_failpoint!("before-initdb-upload");
4973 :
4974 0 : backoff::retry(
4975 0 : || async {
4976 0 : self::remote_timeline_client::upload_initdb_dir(
4977 0 : &self.remote_storage,
4978 0 : &self.tenant_shard_id.tenant_id,
4979 0 : timeline_id,
4980 0 : pgdata_zstd.try_clone().await?,
4981 0 : tar_zst_size,
4982 0 : &self.cancel,
4983 0 : )
4984 0 : .await
4985 0 : },
4986 0 : |_| false,
4987 0 : 3,
4988 0 : u32::MAX,
4989 0 : "persist_initdb_tar_zst",
4990 0 : &self.cancel,
4991 0 : )
4992 0 : .await
4993 0 : .ok_or_else(|| anyhow::Error::new(TimeoutOrCancel::Cancel))
4994 0 : .and_then(|x| x)
4995 0 : }
4996 :
4997 : /// - run initdb to init temporary instance and get bootstrap data
4998 : /// - after initialization completes, tar up the temp dir and upload it to S3.
4999 4 : async fn bootstrap_timeline(
5000 4 : self: &Arc<Self>,
5001 4 : timeline_id: TimelineId,
5002 4 : pg_version: u32,
5003 4 : load_existing_initdb: Option<TimelineId>,
5004 4 : ctx: &RequestContext,
5005 4 : ) -> Result<CreateTimelineResult, CreateTimelineError> {
5006 4 : let timeline_create_guard = match self
5007 4 : .start_creating_timeline(
5008 4 : timeline_id,
5009 4 : CreateTimelineIdempotency::Bootstrap { pg_version },
5010 4 : )
5011 4 : .await?
5012 : {
5013 4 : StartCreatingTimelineResult::CreateGuard(guard) => guard,
5014 0 : StartCreatingTimelineResult::Idempotent(timeline) => {
5015 0 : return Ok(CreateTimelineResult::Idempotent(timeline))
5016 : }
5017 : };
5018 :
5019 : // create a `tenant/{tenant_id}/timelines/basebackup-{timeline_id}.{TEMP_FILE_SUFFIX}/`
5020 : // temporary directory for basebackup files for the given timeline.
5021 :
5022 4 : let timelines_path = self.conf.timelines_path(&self.tenant_shard_id);
5023 4 : let pgdata_path = path_with_suffix_extension(
5024 4 : timelines_path.join(format!("basebackup-{timeline_id}")),
5025 4 : TEMP_FILE_SUFFIX,
5026 4 : );
5027 4 :
5028 4 : // Remove whatever was left from the previous runs: safe because TimelineCreateGuard guarantees
5029 4 : // we won't race with other creations or existent timelines with the same path.
5030 4 : if pgdata_path.exists() {
5031 0 : fs::remove_dir_all(&pgdata_path).with_context(|| {
5032 0 : format!("Failed to remove already existing initdb directory: {pgdata_path}")
5033 0 : })?;
5034 4 : }
5035 :
5036 : // this new directory is very temporary, set to remove it immediately after bootstrap, we don't need it
5037 4 : let pgdata_path_deferred = pgdata_path.clone();
5038 4 : scopeguard::defer! {
5039 4 : if let Err(e) = fs::remove_dir_all(&pgdata_path_deferred) {
5040 4 : // this is unlikely, but we will remove the directory on pageserver restart or another bootstrap call
5041 4 : error!("Failed to remove temporary initdb directory '{pgdata_path_deferred}': {e}");
5042 4 : }
5043 4 : }
5044 4 : if let Some(existing_initdb_timeline_id) = load_existing_initdb {
5045 4 : if existing_initdb_timeline_id != timeline_id {
5046 0 : let source_path = &remote_initdb_archive_path(
5047 0 : &self.tenant_shard_id.tenant_id,
5048 0 : &existing_initdb_timeline_id,
5049 0 : );
5050 0 : let dest_path =
5051 0 : &remote_initdb_archive_path(&self.tenant_shard_id.tenant_id, &timeline_id);
5052 0 :
5053 0 : // if this fails, it will get retried by retried control plane requests
5054 0 : self.remote_storage
5055 0 : .copy_object(source_path, dest_path, &self.cancel)
5056 0 : .await
5057 0 : .context("copy initdb tar")?;
5058 4 : }
5059 4 : let (initdb_tar_zst_path, initdb_tar_zst) =
5060 4 : self::remote_timeline_client::download_initdb_tar_zst(
5061 4 : self.conf,
5062 4 : &self.remote_storage,
5063 4 : &self.tenant_shard_id,
5064 4 : &existing_initdb_timeline_id,
5065 4 : &self.cancel,
5066 4 : )
5067 4 : .await
5068 4 : .context("download initdb tar")?;
5069 :
5070 4 : scopeguard::defer! {
5071 4 : if let Err(e) = fs::remove_file(&initdb_tar_zst_path) {
5072 4 : error!("Failed to remove temporary initdb archive '{initdb_tar_zst_path}': {e}");
5073 4 : }
5074 4 : }
5075 4 :
5076 4 : let buf_read =
5077 4 : BufReader::with_capacity(remote_timeline_client::BUFFER_SIZE, initdb_tar_zst);
5078 4 : extract_zst_tarball(&pgdata_path, buf_read)
5079 4 : .await
5080 4 : .context("extract initdb tar")?;
5081 : } else {
5082 : // Init temporarily repo to get bootstrap data, this creates a directory in the `pgdata_path` path
5083 0 : run_initdb(self.conf, &pgdata_path, pg_version, &self.cancel)
5084 0 : .await
5085 0 : .context("run initdb")?;
5086 :
5087 : // Upload the created data dir to S3
5088 0 : if self.tenant_shard_id().is_shard_zero() {
5089 0 : self.upload_initdb(&timelines_path, &pgdata_path, &timeline_id)
5090 0 : .await?;
5091 0 : }
5092 : }
5093 4 : let pgdata_lsn = import_datadir::get_lsn_from_controlfile(&pgdata_path)?.align();
5094 4 :
5095 4 : // Import the contents of the data directory at the initial checkpoint
5096 4 : // LSN, and any WAL after that.
5097 4 : // Initdb lsn will be equal to last_record_lsn which will be set after import.
5098 4 : // Because we know it upfront avoid having an option or dummy zero value by passing it to the metadata.
5099 4 : let new_metadata = TimelineMetadata::new(
5100 4 : Lsn(0),
5101 4 : None,
5102 4 : None,
5103 4 : Lsn(0),
5104 4 : pgdata_lsn,
5105 4 : pgdata_lsn,
5106 4 : pg_version,
5107 4 : );
5108 4 : let mut raw_timeline = self
5109 4 : .prepare_new_timeline(
5110 4 : timeline_id,
5111 4 : &new_metadata,
5112 4 : timeline_create_guard,
5113 4 : pgdata_lsn,
5114 4 : None,
5115 4 : )
5116 4 : .await?;
5117 :
5118 4 : let tenant_shard_id = raw_timeline.owning_tenant.tenant_shard_id;
5119 4 : raw_timeline
5120 4 : .write(|unfinished_timeline| async move {
5121 4 : import_datadir::import_timeline_from_postgres_datadir(
5122 4 : &unfinished_timeline,
5123 4 : &pgdata_path,
5124 4 : pgdata_lsn,
5125 4 : ctx,
5126 4 : )
5127 4 : .await
5128 4 : .with_context(|| {
5129 0 : format!(
5130 0 : "Failed to import pgdatadir for timeline {tenant_shard_id}/{timeline_id}"
5131 0 : )
5132 4 : })?;
5133 :
5134 4 : fail::fail_point!("before-checkpoint-new-timeline", |_| {
5135 0 : Err(CreateTimelineError::Other(anyhow::anyhow!(
5136 0 : "failpoint before-checkpoint-new-timeline"
5137 0 : )))
5138 4 : });
5139 :
5140 4 : Ok(())
5141 8 : })
5142 4 : .await?;
5143 :
5144 : // All done!
5145 4 : let timeline = raw_timeline.finish_creation().await?;
5146 :
5147 : // Callers are responsible to wait for uploads to complete and for activating the timeline.
5148 :
5149 4 : Ok(CreateTimelineResult::Created(timeline))
5150 4 : }
5151 :
5152 884 : fn build_timeline_remote_client(&self, timeline_id: TimelineId) -> RemoteTimelineClient {
5153 884 : RemoteTimelineClient::new(
5154 884 : self.remote_storage.clone(),
5155 884 : self.deletion_queue_client.clone(),
5156 884 : self.conf,
5157 884 : self.tenant_shard_id,
5158 884 : timeline_id,
5159 884 : self.generation,
5160 884 : &self.tenant_conf.load().location,
5161 884 : )
5162 884 : }
5163 :
5164 : /// Builds required resources for a new timeline.
5165 884 : fn build_timeline_resources(&self, timeline_id: TimelineId) -> TimelineResources {
5166 884 : let remote_client = self.build_timeline_remote_client(timeline_id);
5167 884 : self.get_timeline_resources_for(remote_client)
5168 884 : }
5169 :
5170 : /// Builds timeline resources for the given remote client.
5171 896 : fn get_timeline_resources_for(&self, remote_client: RemoteTimelineClient) -> TimelineResources {
5172 896 : TimelineResources {
5173 896 : remote_client,
5174 896 : pagestream_throttle: self.pagestream_throttle.clone(),
5175 896 : pagestream_throttle_metrics: self.pagestream_throttle_metrics.clone(),
5176 896 : l0_compaction_trigger: self.l0_compaction_trigger.clone(),
5177 896 : l0_flush_global_state: self.l0_flush_global_state.clone(),
5178 896 : }
5179 896 : }
5180 :
5181 : /// Creates intermediate timeline structure and its files.
5182 : ///
5183 : /// An empty layer map is initialized, and new data and WAL can be imported starting
5184 : /// at 'disk_consistent_lsn'. After any initial data has been imported, call
5185 : /// `finish_creation` to insert the Timeline into the timelines map.
5186 884 : async fn prepare_new_timeline<'a>(
5187 884 : &'a self,
5188 884 : new_timeline_id: TimelineId,
5189 884 : new_metadata: &TimelineMetadata,
5190 884 : create_guard: TimelineCreateGuard,
5191 884 : start_lsn: Lsn,
5192 884 : ancestor: Option<Arc<Timeline>>,
5193 884 : ) -> anyhow::Result<UninitializedTimeline<'a>> {
5194 884 : let tenant_shard_id = self.tenant_shard_id;
5195 884 :
5196 884 : let resources = self.build_timeline_resources(new_timeline_id);
5197 884 : resources
5198 884 : .remote_client
5199 884 : .init_upload_queue_for_empty_remote(new_metadata)?;
5200 :
5201 884 : let timeline_struct = self
5202 884 : .create_timeline_struct(
5203 884 : new_timeline_id,
5204 884 : new_metadata,
5205 884 : None,
5206 884 : ancestor,
5207 884 : resources,
5208 884 : CreateTimelineCause::Load,
5209 884 : create_guard.idempotency.clone(),
5210 884 : )
5211 884 : .context("Failed to create timeline data structure")?;
5212 :
5213 884 : timeline_struct.init_empty_layer_map(start_lsn);
5214 :
5215 884 : if let Err(e) = self
5216 884 : .create_timeline_files(&create_guard.timeline_path)
5217 884 : .await
5218 : {
5219 0 : error!("Failed to create initial files for timeline {tenant_shard_id}/{new_timeline_id}, cleaning up: {e:?}");
5220 0 : cleanup_timeline_directory(create_guard);
5221 0 : return Err(e);
5222 884 : }
5223 884 :
5224 884 : debug!(
5225 0 : "Successfully created initial files for timeline {tenant_shard_id}/{new_timeline_id}"
5226 : );
5227 :
5228 884 : Ok(UninitializedTimeline::new(
5229 884 : self,
5230 884 : new_timeline_id,
5231 884 : Some((timeline_struct, create_guard)),
5232 884 : ))
5233 884 : }
5234 :
5235 884 : async fn create_timeline_files(&self, timeline_path: &Utf8Path) -> anyhow::Result<()> {
5236 884 : crashsafe::create_dir(timeline_path).context("Failed to create timeline directory")?;
5237 :
5238 884 : fail::fail_point!("after-timeline-dir-creation", |_| {
5239 0 : anyhow::bail!("failpoint after-timeline-dir-creation");
5240 884 : });
5241 :
5242 884 : Ok(())
5243 884 : }
5244 :
5245 : /// Get a guard that provides exclusive access to the timeline directory, preventing
5246 : /// concurrent attempts to create the same timeline.
5247 : ///
5248 : /// The `allow_offloaded` parameter controls whether to tolerate the existence of
5249 : /// offloaded timelines or not.
5250 896 : fn create_timeline_create_guard(
5251 896 : self: &Arc<Self>,
5252 896 : timeline_id: TimelineId,
5253 896 : idempotency: CreateTimelineIdempotency,
5254 896 : allow_offloaded: bool,
5255 896 : ) -> Result<TimelineCreateGuard, TimelineExclusionError> {
5256 896 : let tenant_shard_id = self.tenant_shard_id;
5257 896 :
5258 896 : let timeline_path = self.conf.timeline_path(&tenant_shard_id, &timeline_id);
5259 :
5260 896 : let create_guard = TimelineCreateGuard::new(
5261 896 : self,
5262 896 : timeline_id,
5263 896 : timeline_path.clone(),
5264 896 : idempotency,
5265 896 : allow_offloaded,
5266 896 : )?;
5267 :
5268 : // At this stage, we have got exclusive access to in-memory state for this timeline ID
5269 : // for creation.
5270 : // A timeline directory should never exist on disk already:
5271 : // - a previous failed creation would have cleaned up after itself
5272 : // - a pageserver restart would clean up timeline directories that don't have valid remote state
5273 : //
5274 : // Therefore it is an unexpected internal error to encounter a timeline directory already existing here,
5275 : // this error may indicate a bug in cleanup on failed creations.
5276 892 : if timeline_path.exists() {
5277 0 : return Err(TimelineExclusionError::Other(anyhow::anyhow!(
5278 0 : "Timeline directory already exists! This is a bug."
5279 0 : )));
5280 892 : }
5281 892 :
5282 892 : Ok(create_guard)
5283 896 : }
5284 :
5285 : /// Gathers inputs from all of the timelines to produce a sizing model input.
5286 : ///
5287 : /// Future is cancellation safe. Only one calculation can be running at once per tenant.
5288 : #[instrument(skip_all, fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug()))]
5289 : pub async fn gather_size_inputs(
5290 : &self,
5291 : // `max_retention_period` overrides the cutoff that is used to calculate the size
5292 : // (only if it is shorter than the real cutoff).
5293 : max_retention_period: Option<u64>,
5294 : cause: LogicalSizeCalculationCause,
5295 : cancel: &CancellationToken,
5296 : ctx: &RequestContext,
5297 : ) -> Result<size::ModelInputs, size::CalculateSyntheticSizeError> {
5298 : let logical_sizes_at_once = self
5299 : .conf
5300 : .concurrent_tenant_size_logical_size_queries
5301 : .inner();
5302 :
5303 : // TODO: Having a single mutex block concurrent reads is not great for performance.
5304 : //
5305 : // But the only case where we need to run multiple of these at once is when we
5306 : // request a size for a tenant manually via API, while another background calculation
5307 : // is in progress (which is not a common case).
5308 : //
5309 : // See more for on the issue #2748 condenced out of the initial PR review.
5310 : let mut shared_cache = tokio::select! {
5311 : locked = self.cached_logical_sizes.lock() => locked,
5312 : _ = cancel.cancelled() => return Err(size::CalculateSyntheticSizeError::Cancelled),
5313 : _ = self.cancel.cancelled() => return Err(size::CalculateSyntheticSizeError::Cancelled),
5314 : };
5315 :
5316 : size::gather_inputs(
5317 : self,
5318 : logical_sizes_at_once,
5319 : max_retention_period,
5320 : &mut shared_cache,
5321 : cause,
5322 : cancel,
5323 : ctx,
5324 : )
5325 : .await
5326 : }
5327 :
5328 : /// Calculate synthetic tenant size and cache the result.
5329 : /// This is periodically called by background worker.
5330 : /// result is cached in tenant struct
5331 : #[instrument(skip_all, fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug()))]
5332 : pub async fn calculate_synthetic_size(
5333 : &self,
5334 : cause: LogicalSizeCalculationCause,
5335 : cancel: &CancellationToken,
5336 : ctx: &RequestContext,
5337 : ) -> Result<u64, size::CalculateSyntheticSizeError> {
5338 : let inputs = self.gather_size_inputs(None, cause, cancel, ctx).await?;
5339 :
5340 : let size = inputs.calculate();
5341 :
5342 : self.set_cached_synthetic_size(size);
5343 :
5344 : Ok(size)
5345 : }
5346 :
5347 : /// Cache given synthetic size and update the metric value
5348 0 : pub fn set_cached_synthetic_size(&self, size: u64) {
5349 0 : self.cached_synthetic_tenant_size
5350 0 : .store(size, Ordering::Relaxed);
5351 0 :
5352 0 : // Only shard zero should be calculating synthetic sizes
5353 0 : debug_assert!(self.shard_identity.is_shard_zero());
5354 :
5355 0 : TENANT_SYNTHETIC_SIZE_METRIC
5356 0 : .get_metric_with_label_values(&[&self.tenant_shard_id.tenant_id.to_string()])
5357 0 : .unwrap()
5358 0 : .set(size);
5359 0 : }
5360 :
5361 0 : pub fn cached_synthetic_size(&self) -> u64 {
5362 0 : self.cached_synthetic_tenant_size.load(Ordering::Relaxed)
5363 0 : }
5364 :
5365 : /// Flush any in-progress layers, schedule uploads, and wait for uploads to complete.
5366 : ///
5367 : /// This function can take a long time: callers should wrap it in a timeout if calling
5368 : /// from an external API handler.
5369 : ///
5370 : /// Cancel-safety: cancelling this function may leave I/O running, but such I/O is
5371 : /// still bounded by tenant/timeline shutdown.
5372 : #[tracing::instrument(skip_all)]
5373 : pub(crate) async fn flush_remote(&self) -> anyhow::Result<()> {
5374 : let timelines = self.timelines.lock().unwrap().clone();
5375 :
5376 0 : async fn flush_timeline(_gate: GateGuard, timeline: Arc<Timeline>) -> anyhow::Result<()> {
5377 0 : tracing::info!(timeline_id=%timeline.timeline_id, "Flushing...");
5378 0 : timeline.freeze_and_flush().await?;
5379 0 : tracing::info!(timeline_id=%timeline.timeline_id, "Waiting for uploads...");
5380 0 : timeline.remote_client.wait_completion().await?;
5381 :
5382 0 : Ok(())
5383 0 : }
5384 :
5385 : // We do not use a JoinSet for these tasks, because we don't want them to be
5386 : // aborted when this function's future is cancelled: they should stay alive
5387 : // holding their GateGuard until they complete, to ensure their I/Os complete
5388 : // before Timeline shutdown completes.
5389 : let mut results = FuturesUnordered::new();
5390 :
5391 : for (_timeline_id, timeline) in timelines {
5392 : // Run each timeline's flush in a task holding the timeline's gate: this
5393 : // means that if this function's future is cancelled, the Timeline shutdown
5394 : // will still wait for any I/O in here to complete.
5395 : let Ok(gate) = timeline.gate.enter() else {
5396 : continue;
5397 : };
5398 0 : let jh = tokio::task::spawn(async move { flush_timeline(gate, timeline).await });
5399 : results.push(jh);
5400 : }
5401 :
5402 : while let Some(r) = results.next().await {
5403 : if let Err(e) = r {
5404 : if !e.is_cancelled() && !e.is_panic() {
5405 : tracing::error!("unexpected join error: {e:?}");
5406 : }
5407 : }
5408 : }
5409 :
5410 : // The flushes we did above were just writes, but the Tenant might have had
5411 : // pending deletions as well from recent compaction/gc: we want to flush those
5412 : // as well. This requires flushing the global delete queue. This is cheap
5413 : // because it's typically a no-op.
5414 : match self.deletion_queue_client.flush_execute().await {
5415 : Ok(_) => {}
5416 : Err(DeletionQueueError::ShuttingDown) => {}
5417 : }
5418 :
5419 : Ok(())
5420 : }
5421 :
5422 0 : pub(crate) fn get_tenant_conf(&self) -> TenantConfOpt {
5423 0 : self.tenant_conf.load().tenant_conf.clone()
5424 0 : }
5425 :
5426 : /// How much local storage would this tenant like to have? It can cope with
5427 : /// less than this (via eviction and on-demand downloads), but this function enables
5428 : /// the Tenant to advertise how much storage it would prefer to have to provide fast I/O
5429 : /// by keeping important things on local disk.
5430 : ///
5431 : /// This is a heuristic, not a guarantee: tenants that are long-idle will actually use less
5432 : /// than they report here, due to layer eviction. Tenants with many active branches may
5433 : /// actually use more than they report here.
5434 0 : pub(crate) fn local_storage_wanted(&self) -> u64 {
5435 0 : let timelines = self.timelines.lock().unwrap();
5436 0 :
5437 0 : // Heuristic: we use the max() of the timelines' visible sizes, rather than the sum. This
5438 0 : // reflects the observation that on tenants with multiple large branches, typically only one
5439 0 : // of them is used actively enough to occupy space on disk.
5440 0 : timelines
5441 0 : .values()
5442 0 : .map(|t| t.metrics.visible_physical_size_gauge.get())
5443 0 : .max()
5444 0 : .unwrap_or(0)
5445 0 : }
5446 :
5447 : /// Serialize and write the latest TenantManifest to remote storage.
5448 4 : pub(crate) async fn store_tenant_manifest(&self) -> Result<(), TenantManifestError> {
5449 : // Only one manifest write may be done at at time, and the contents of the manifest
5450 : // must be loaded while holding this lock. This makes it safe to call this function
5451 : // from anywhere without worrying about colliding updates.
5452 4 : let mut guard = tokio::select! {
5453 4 : g = self.tenant_manifest_upload.lock() => {
5454 4 : g
5455 : },
5456 4 : _ = self.cancel.cancelled() => {
5457 0 : return Err(TenantManifestError::Cancelled);
5458 : }
5459 : };
5460 :
5461 4 : let manifest = self.build_tenant_manifest();
5462 4 : if Some(&manifest) == (*guard).as_ref() {
5463 : // Optimisation: skip uploads that don't change anything.
5464 0 : return Ok(());
5465 4 : }
5466 4 :
5467 4 : // Remote storage does no retries internally, so wrap it
5468 4 : match backoff::retry(
5469 4 : || async {
5470 4 : upload_tenant_manifest(
5471 4 : &self.remote_storage,
5472 4 : &self.tenant_shard_id,
5473 4 : self.generation,
5474 4 : &manifest,
5475 4 : &self.cancel,
5476 4 : )
5477 4 : .await
5478 8 : },
5479 4 : |_e| self.cancel.is_cancelled(),
5480 4 : FAILED_UPLOAD_WARN_THRESHOLD,
5481 4 : FAILED_REMOTE_OP_RETRIES,
5482 4 : "uploading tenant manifest",
5483 4 : &self.cancel,
5484 4 : )
5485 4 : .await
5486 : {
5487 0 : None => Err(TenantManifestError::Cancelled),
5488 0 : Some(Err(_)) if self.cancel.is_cancelled() => Err(TenantManifestError::Cancelled),
5489 0 : Some(Err(e)) => Err(TenantManifestError::RemoteStorage(e)),
5490 : Some(Ok(_)) => {
5491 : // Store the successfully uploaded manifest, so that future callers can avoid
5492 : // re-uploading the same thing.
5493 4 : *guard = Some(manifest);
5494 4 :
5495 4 : Ok(())
5496 : }
5497 : }
5498 4 : }
5499 : }
5500 :
5501 : /// Create the cluster temporarily in 'initdbpath' directory inside the repository
5502 : /// to get bootstrap data for timeline initialization.
5503 0 : async fn run_initdb(
5504 0 : conf: &'static PageServerConf,
5505 0 : initdb_target_dir: &Utf8Path,
5506 0 : pg_version: u32,
5507 0 : cancel: &CancellationToken,
5508 0 : ) -> Result<(), InitdbError> {
5509 0 : let initdb_bin_path = conf
5510 0 : .pg_bin_dir(pg_version)
5511 0 : .map_err(InitdbError::Other)?
5512 0 : .join("initdb");
5513 0 : let initdb_lib_dir = conf.pg_lib_dir(pg_version).map_err(InitdbError::Other)?;
5514 0 : info!(
5515 0 : "running {} in {}, libdir: {}",
5516 : initdb_bin_path, initdb_target_dir, initdb_lib_dir,
5517 : );
5518 :
5519 0 : let _permit = {
5520 0 : let _timer = INITDB_SEMAPHORE_ACQUISITION_TIME.start_timer();
5521 0 : INIT_DB_SEMAPHORE.acquire().await
5522 : };
5523 :
5524 0 : CONCURRENT_INITDBS.inc();
5525 0 : scopeguard::defer! {
5526 0 : CONCURRENT_INITDBS.dec();
5527 0 : }
5528 0 :
5529 0 : let _timer = INITDB_RUN_TIME.start_timer();
5530 0 : let res = postgres_initdb::do_run_initdb(postgres_initdb::RunInitdbArgs {
5531 0 : superuser: &conf.superuser,
5532 0 : locale: &conf.locale,
5533 0 : initdb_bin: &initdb_bin_path,
5534 0 : pg_version,
5535 0 : library_search_path: &initdb_lib_dir,
5536 0 : pgdata: initdb_target_dir,
5537 0 : })
5538 0 : .await
5539 0 : .map_err(InitdbError::Inner);
5540 0 :
5541 0 : // This isn't true cancellation support, see above. Still return an error to
5542 0 : // excercise the cancellation code path.
5543 0 : if cancel.is_cancelled() {
5544 0 : return Err(InitdbError::Cancelled);
5545 0 : }
5546 0 :
5547 0 : res
5548 0 : }
5549 :
5550 : /// Dump contents of a layer file to stdout.
5551 0 : pub async fn dump_layerfile_from_path(
5552 0 : path: &Utf8Path,
5553 0 : verbose: bool,
5554 0 : ctx: &RequestContext,
5555 0 : ) -> anyhow::Result<()> {
5556 : use std::os::unix::fs::FileExt;
5557 :
5558 : // All layer files start with a two-byte "magic" value, to identify the kind of
5559 : // file.
5560 0 : let file = File::open(path)?;
5561 0 : let mut header_buf = [0u8; 2];
5562 0 : file.read_exact_at(&mut header_buf, 0)?;
5563 :
5564 0 : match u16::from_be_bytes(header_buf) {
5565 : crate::IMAGE_FILE_MAGIC => {
5566 0 : ImageLayer::new_for_path(path, file)?
5567 0 : .dump(verbose, ctx)
5568 0 : .await?
5569 : }
5570 : crate::DELTA_FILE_MAGIC => {
5571 0 : DeltaLayer::new_for_path(path, file)?
5572 0 : .dump(verbose, ctx)
5573 0 : .await?
5574 : }
5575 0 : magic => bail!("unrecognized magic identifier: {:?}", magic),
5576 : }
5577 :
5578 0 : Ok(())
5579 0 : }
5580 :
5581 : #[cfg(test)]
5582 : pub(crate) mod harness {
5583 : use bytes::{Bytes, BytesMut};
5584 : use once_cell::sync::OnceCell;
5585 : use pageserver_api::models::ShardParameters;
5586 : use pageserver_api::shard::ShardIndex;
5587 : use utils::logging;
5588 :
5589 : use crate::deletion_queue::mock::MockDeletionQueue;
5590 : use crate::l0_flush::L0FlushConfig;
5591 : use crate::walredo::apply_neon;
5592 : use pageserver_api::key::Key;
5593 : use pageserver_api::record::NeonWalRecord;
5594 :
5595 : use super::*;
5596 : use hex_literal::hex;
5597 : use utils::id::TenantId;
5598 :
5599 : pub const TIMELINE_ID: TimelineId =
5600 : TimelineId::from_array(hex!("11223344556677881122334455667788"));
5601 : pub const NEW_TIMELINE_ID: TimelineId =
5602 : TimelineId::from_array(hex!("AA223344556677881122334455667788"));
5603 :
5604 : /// Convenience function to create a page image with given string as the only content
5605 10057545 : pub fn test_img(s: &str) -> Bytes {
5606 10057545 : let mut buf = BytesMut::new();
5607 10057545 : buf.extend_from_slice(s.as_bytes());
5608 10057545 : buf.resize(64, 0);
5609 10057545 :
5610 10057545 : buf.freeze()
5611 10057545 : }
5612 :
5613 : impl From<TenantConf> for TenantConfOpt {
5614 444 : fn from(tenant_conf: TenantConf) -> Self {
5615 444 : Self {
5616 444 : checkpoint_distance: Some(tenant_conf.checkpoint_distance),
5617 444 : checkpoint_timeout: Some(tenant_conf.checkpoint_timeout),
5618 444 : compaction_target_size: Some(tenant_conf.compaction_target_size),
5619 444 : compaction_period: Some(tenant_conf.compaction_period),
5620 444 : compaction_threshold: Some(tenant_conf.compaction_threshold),
5621 444 : compaction_upper_limit: Some(tenant_conf.compaction_upper_limit),
5622 444 : compaction_algorithm: Some(tenant_conf.compaction_algorithm),
5623 444 : compaction_l0_first: Some(tenant_conf.compaction_l0_first),
5624 444 : compaction_l0_semaphore: Some(tenant_conf.compaction_l0_semaphore),
5625 444 : l0_flush_delay_threshold: tenant_conf.l0_flush_delay_threshold,
5626 444 : l0_flush_stall_threshold: tenant_conf.l0_flush_stall_threshold,
5627 444 : l0_flush_wait_upload: Some(tenant_conf.l0_flush_wait_upload),
5628 444 : gc_horizon: Some(tenant_conf.gc_horizon),
5629 444 : gc_period: Some(tenant_conf.gc_period),
5630 444 : image_creation_threshold: Some(tenant_conf.image_creation_threshold),
5631 444 : pitr_interval: Some(tenant_conf.pitr_interval),
5632 444 : walreceiver_connect_timeout: Some(tenant_conf.walreceiver_connect_timeout),
5633 444 : lagging_wal_timeout: Some(tenant_conf.lagging_wal_timeout),
5634 444 : max_lsn_wal_lag: Some(tenant_conf.max_lsn_wal_lag),
5635 444 : eviction_policy: Some(tenant_conf.eviction_policy),
5636 444 : min_resident_size_override: tenant_conf.min_resident_size_override,
5637 444 : evictions_low_residence_duration_metric_threshold: Some(
5638 444 : tenant_conf.evictions_low_residence_duration_metric_threshold,
5639 444 : ),
5640 444 : heatmap_period: Some(tenant_conf.heatmap_period),
5641 444 : lazy_slru_download: Some(tenant_conf.lazy_slru_download),
5642 444 : timeline_get_throttle: Some(tenant_conf.timeline_get_throttle),
5643 444 : image_layer_creation_check_threshold: Some(
5644 444 : tenant_conf.image_layer_creation_check_threshold,
5645 444 : ),
5646 444 : image_creation_preempt_threshold: Some(
5647 444 : tenant_conf.image_creation_preempt_threshold,
5648 444 : ),
5649 444 : lsn_lease_length: Some(tenant_conf.lsn_lease_length),
5650 444 : lsn_lease_length_for_ts: Some(tenant_conf.lsn_lease_length_for_ts),
5651 444 : timeline_offloading: Some(tenant_conf.timeline_offloading),
5652 444 : wal_receiver_protocol_override: tenant_conf.wal_receiver_protocol_override,
5653 444 : rel_size_v2_enabled: Some(tenant_conf.rel_size_v2_enabled),
5654 444 : gc_compaction_enabled: Some(tenant_conf.gc_compaction_enabled),
5655 444 : gc_compaction_initial_threshold_kb: Some(
5656 444 : tenant_conf.gc_compaction_initial_threshold_kb,
5657 444 : ),
5658 444 : gc_compaction_ratio_percent: Some(tenant_conf.gc_compaction_ratio_percent),
5659 444 : }
5660 444 : }
5661 : }
5662 :
5663 : pub struct TenantHarness {
5664 : pub conf: &'static PageServerConf,
5665 : pub tenant_conf: TenantConf,
5666 : pub tenant_shard_id: TenantShardId,
5667 : pub generation: Generation,
5668 : pub shard: ShardIndex,
5669 : pub remote_storage: GenericRemoteStorage,
5670 : pub remote_fs_dir: Utf8PathBuf,
5671 : pub deletion_queue: MockDeletionQueue,
5672 : }
5673 :
5674 : static LOG_HANDLE: OnceCell<()> = OnceCell::new();
5675 :
5676 492 : pub(crate) fn setup_logging() {
5677 492 : LOG_HANDLE.get_or_init(|| {
5678 468 : logging::init(
5679 468 : logging::LogFormat::Test,
5680 468 : // enable it in case the tests exercise code paths that use
5681 468 : // debug_assert_current_span_has_tenant_and_timeline_id
5682 468 : logging::TracingErrorLayerEnablement::EnableWithRustLogFilter,
5683 468 : logging::Output::Stdout,
5684 468 : )
5685 468 : .expect("Failed to init test logging")
5686 492 : });
5687 492 : }
5688 :
5689 : impl TenantHarness {
5690 444 : pub async fn create_custom(
5691 444 : test_name: &'static str,
5692 444 : tenant_conf: TenantConf,
5693 444 : tenant_id: TenantId,
5694 444 : shard_identity: ShardIdentity,
5695 444 : generation: Generation,
5696 444 : ) -> anyhow::Result<Self> {
5697 444 : setup_logging();
5698 444 :
5699 444 : let repo_dir = PageServerConf::test_repo_dir(test_name);
5700 444 : let _ = fs::remove_dir_all(&repo_dir);
5701 444 : fs::create_dir_all(&repo_dir)?;
5702 :
5703 444 : let conf = PageServerConf::dummy_conf(repo_dir);
5704 444 : // Make a static copy of the config. This can never be free'd, but that's
5705 444 : // OK in a test.
5706 444 : let conf: &'static PageServerConf = Box::leak(Box::new(conf));
5707 444 :
5708 444 : let shard = shard_identity.shard_index();
5709 444 : let tenant_shard_id = TenantShardId {
5710 444 : tenant_id,
5711 444 : shard_number: shard.shard_number,
5712 444 : shard_count: shard.shard_count,
5713 444 : };
5714 444 : fs::create_dir_all(conf.tenant_path(&tenant_shard_id))?;
5715 444 : fs::create_dir_all(conf.timelines_path(&tenant_shard_id))?;
5716 :
5717 : use remote_storage::{RemoteStorageConfig, RemoteStorageKind};
5718 444 : let remote_fs_dir = conf.workdir.join("localfs");
5719 444 : std::fs::create_dir_all(&remote_fs_dir).unwrap();
5720 444 : let config = RemoteStorageConfig {
5721 444 : storage: RemoteStorageKind::LocalFs {
5722 444 : local_path: remote_fs_dir.clone(),
5723 444 : },
5724 444 : timeout: RemoteStorageConfig::DEFAULT_TIMEOUT,
5725 444 : small_timeout: RemoteStorageConfig::DEFAULT_SMALL_TIMEOUT,
5726 444 : };
5727 444 : let remote_storage = GenericRemoteStorage::from_config(&config).await.unwrap();
5728 444 : let deletion_queue = MockDeletionQueue::new(Some(remote_storage.clone()));
5729 444 :
5730 444 : Ok(Self {
5731 444 : conf,
5732 444 : tenant_conf,
5733 444 : tenant_shard_id,
5734 444 : generation,
5735 444 : shard,
5736 444 : remote_storage,
5737 444 : remote_fs_dir,
5738 444 : deletion_queue,
5739 444 : })
5740 444 : }
5741 :
5742 420 : pub async fn create(test_name: &'static str) -> anyhow::Result<Self> {
5743 420 : // Disable automatic GC and compaction to make the unit tests more deterministic.
5744 420 : // The tests perform them manually if needed.
5745 420 : let tenant_conf = TenantConf {
5746 420 : gc_period: Duration::ZERO,
5747 420 : compaction_period: Duration::ZERO,
5748 420 : ..TenantConf::default()
5749 420 : };
5750 420 : let tenant_id = TenantId::generate();
5751 420 : let shard = ShardIdentity::unsharded();
5752 420 : Self::create_custom(
5753 420 : test_name,
5754 420 : tenant_conf,
5755 420 : tenant_id,
5756 420 : shard,
5757 420 : Generation::new(0xdeadbeef),
5758 420 : )
5759 420 : .await
5760 420 : }
5761 :
5762 40 : pub fn span(&self) -> tracing::Span {
5763 40 : info_span!("TenantHarness", tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug())
5764 40 : }
5765 :
5766 444 : pub(crate) async fn load(&self) -> (Arc<Tenant>, RequestContext) {
5767 444 : let ctx = RequestContext::new(TaskKind::UnitTest, DownloadBehavior::Error);
5768 444 : (
5769 444 : self.do_try_load(&ctx)
5770 444 : .await
5771 444 : .expect("failed to load test tenant"),
5772 444 : ctx,
5773 444 : )
5774 444 : }
5775 :
5776 : #[instrument(skip_all, fields(tenant_id=%self.tenant_shard_id.tenant_id, shard_id=%self.tenant_shard_id.shard_slug()))]
5777 : pub(crate) async fn do_try_load(
5778 : &self,
5779 : ctx: &RequestContext,
5780 : ) -> anyhow::Result<Arc<Tenant>> {
5781 : let walredo_mgr = Arc::new(WalRedoManager::from(TestRedoManager));
5782 :
5783 : let tenant = Arc::new(Tenant::new(
5784 : TenantState::Attaching,
5785 : self.conf,
5786 : AttachedTenantConf::try_from(LocationConf::attached_single(
5787 : TenantConfOpt::from(self.tenant_conf.clone()),
5788 : self.generation,
5789 : &ShardParameters::default(),
5790 : ))
5791 : .unwrap(),
5792 : // This is a legacy/test code path: sharding isn't supported here.
5793 : ShardIdentity::unsharded(),
5794 : Some(walredo_mgr),
5795 : self.tenant_shard_id,
5796 : self.remote_storage.clone(),
5797 : self.deletion_queue.new_client(),
5798 : // TODO: ideally we should run all unit tests with both configs
5799 : L0FlushGlobalState::new(L0FlushConfig::default()),
5800 : ));
5801 :
5802 : let preload = tenant
5803 : .preload(&self.remote_storage, CancellationToken::new())
5804 : .await?;
5805 : tenant.attach(Some(preload), ctx).await?;
5806 :
5807 : tenant.state.send_replace(TenantState::Active);
5808 : for timeline in tenant.timelines.lock().unwrap().values() {
5809 : timeline.set_state(TimelineState::Active);
5810 : }
5811 : Ok(tenant)
5812 : }
5813 :
5814 4 : pub fn timeline_path(&self, timeline_id: &TimelineId) -> Utf8PathBuf {
5815 4 : self.conf.timeline_path(&self.tenant_shard_id, timeline_id)
5816 4 : }
5817 : }
5818 :
5819 : // Mock WAL redo manager that doesn't do much
5820 : pub(crate) struct TestRedoManager;
5821 :
5822 : impl TestRedoManager {
5823 : /// # Cancel-Safety
5824 : ///
5825 : /// This method is cancellation-safe.
5826 1636 : pub async fn request_redo(
5827 1636 : &self,
5828 1636 : key: Key,
5829 1636 : lsn: Lsn,
5830 1636 : base_img: Option<(Lsn, Bytes)>,
5831 1636 : records: Vec<(Lsn, NeonWalRecord)>,
5832 1636 : _pg_version: u32,
5833 1636 : ) -> Result<Bytes, walredo::Error> {
5834 2392 : let records_neon = records.iter().all(|r| apply_neon::can_apply_in_neon(&r.1));
5835 1636 : if records_neon {
5836 : // For Neon wal records, we can decode without spawning postgres, so do so.
5837 1636 : let mut page = match (base_img, records.first()) {
5838 1504 : (Some((_lsn, img)), _) => {
5839 1504 : let mut page = BytesMut::new();
5840 1504 : page.extend_from_slice(&img);
5841 1504 : page
5842 : }
5843 132 : (_, Some((_lsn, rec))) if rec.will_init() => BytesMut::new(),
5844 : _ => {
5845 0 : panic!("Neon WAL redo requires base image or will init record");
5846 : }
5847 : };
5848 :
5849 4028 : for (record_lsn, record) in records {
5850 2392 : apply_neon::apply_in_neon(&record, record_lsn, key, &mut page)?;
5851 : }
5852 1636 : Ok(page.freeze())
5853 : } else {
5854 : // We never spawn a postgres walredo process in unit tests: just log what we might have done.
5855 0 : let s = format!(
5856 0 : "redo for {} to get to {}, with {} and {} records",
5857 0 : key,
5858 0 : lsn,
5859 0 : if base_img.is_some() {
5860 0 : "base image"
5861 : } else {
5862 0 : "no base image"
5863 : },
5864 0 : records.len()
5865 0 : );
5866 0 : println!("{s}");
5867 0 :
5868 0 : Ok(test_img(&s))
5869 : }
5870 1636 : }
5871 : }
5872 : }
5873 :
5874 : #[cfg(test)]
5875 : mod tests {
5876 : use std::collections::{BTreeMap, BTreeSet};
5877 :
5878 : use super::*;
5879 : use crate::keyspace::KeySpaceAccum;
5880 : use crate::tenant::harness::*;
5881 : use crate::tenant::timeline::CompactFlags;
5882 : use crate::DEFAULT_PG_VERSION;
5883 : use bytes::{Bytes, BytesMut};
5884 : use hex_literal::hex;
5885 : use itertools::Itertools;
5886 : use pageserver_api::key::{Key, AUX_KEY_PREFIX, NON_INHERITED_RANGE, RELATION_SIZE_PREFIX};
5887 : use pageserver_api::keyspace::KeySpace;
5888 : use pageserver_api::models::{CompactionAlgorithm, CompactionAlgorithmSettings};
5889 : use pageserver_api::value::Value;
5890 : use pageserver_compaction::helpers::overlaps_with;
5891 : use rand::{thread_rng, Rng};
5892 : use storage_layer::{IoConcurrency, PersistentLayerKey};
5893 : use tests::storage_layer::ValuesReconstructState;
5894 : use tests::timeline::{GetVectoredError, ShutdownMode};
5895 : use timeline::{CompactOptions, DeltaLayerTestDesc};
5896 : use utils::id::TenantId;
5897 :
5898 : #[cfg(feature = "testing")]
5899 : use models::CompactLsnRange;
5900 : #[cfg(feature = "testing")]
5901 : use pageserver_api::record::NeonWalRecord;
5902 : #[cfg(feature = "testing")]
5903 : use timeline::compaction::{KeyHistoryRetention, KeyLogAtLsn};
5904 : #[cfg(feature = "testing")]
5905 : use timeline::GcInfo;
5906 :
5907 : static TEST_KEY: Lazy<Key> =
5908 36 : Lazy::new(|| Key::from_slice(&hex!("010000000033333333444444445500000001")));
5909 :
5910 : #[tokio::test]
5911 4 : async fn test_basic() -> anyhow::Result<()> {
5912 4 : let (tenant, ctx) = TenantHarness::create("test_basic").await?.load().await;
5913 4 : let tline = tenant
5914 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)
5915 4 : .await?;
5916 4 :
5917 4 : let mut writer = tline.writer().await;
5918 4 : writer
5919 4 : .put(
5920 4 : *TEST_KEY,
5921 4 : Lsn(0x10),
5922 4 : &Value::Image(test_img("foo at 0x10")),
5923 4 : &ctx,
5924 4 : )
5925 4 : .await?;
5926 4 : writer.finish_write(Lsn(0x10));
5927 4 : drop(writer);
5928 4 :
5929 4 : let mut writer = tline.writer().await;
5930 4 : writer
5931 4 : .put(
5932 4 : *TEST_KEY,
5933 4 : Lsn(0x20),
5934 4 : &Value::Image(test_img("foo at 0x20")),
5935 4 : &ctx,
5936 4 : )
5937 4 : .await?;
5938 4 : writer.finish_write(Lsn(0x20));
5939 4 : drop(writer);
5940 4 :
5941 4 : assert_eq!(
5942 4 : tline.get(*TEST_KEY, Lsn(0x10), &ctx).await?,
5943 4 : test_img("foo at 0x10")
5944 4 : );
5945 4 : assert_eq!(
5946 4 : tline.get(*TEST_KEY, Lsn(0x1f), &ctx).await?,
5947 4 : test_img("foo at 0x10")
5948 4 : );
5949 4 : assert_eq!(
5950 4 : tline.get(*TEST_KEY, Lsn(0x20), &ctx).await?,
5951 4 : test_img("foo at 0x20")
5952 4 : );
5953 4 :
5954 4 : Ok(())
5955 4 : }
5956 :
5957 : #[tokio::test]
5958 4 : async fn no_duplicate_timelines() -> anyhow::Result<()> {
5959 4 : let (tenant, ctx) = TenantHarness::create("no_duplicate_timelines")
5960 4 : .await?
5961 4 : .load()
5962 4 : .await;
5963 4 : let _ = tenant
5964 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
5965 4 : .await?;
5966 4 :
5967 4 : match tenant
5968 4 : .create_empty_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
5969 4 : .await
5970 4 : {
5971 4 : Ok(_) => panic!("duplicate timeline creation should fail"),
5972 4 : Err(e) => assert_eq!(
5973 4 : e.to_string(),
5974 4 : "timeline already exists with different parameters".to_string()
5975 4 : ),
5976 4 : }
5977 4 :
5978 4 : Ok(())
5979 4 : }
5980 :
5981 : /// Convenience function to create a page image with given string as the only content
5982 20 : pub fn test_value(s: &str) -> Value {
5983 20 : let mut buf = BytesMut::new();
5984 20 : buf.extend_from_slice(s.as_bytes());
5985 20 : Value::Image(buf.freeze())
5986 20 : }
5987 :
5988 : ///
5989 : /// Test branch creation
5990 : ///
5991 : #[tokio::test]
5992 4 : async fn test_branch() -> anyhow::Result<()> {
5993 4 : use std::str::from_utf8;
5994 4 :
5995 4 : let (tenant, ctx) = TenantHarness::create("test_branch").await?.load().await;
5996 4 : let tline = tenant
5997 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
5998 4 : .await?;
5999 4 : let mut writer = tline.writer().await;
6000 4 :
6001 4 : #[allow(non_snake_case)]
6002 4 : let TEST_KEY_A: Key = Key::from_hex("110000000033333333444444445500000001").unwrap();
6003 4 : #[allow(non_snake_case)]
6004 4 : let TEST_KEY_B: Key = Key::from_hex("110000000033333333444444445500000002").unwrap();
6005 4 :
6006 4 : // Insert a value on the timeline
6007 4 : writer
6008 4 : .put(TEST_KEY_A, Lsn(0x20), &test_value("foo at 0x20"), &ctx)
6009 4 : .await?;
6010 4 : writer
6011 4 : .put(TEST_KEY_B, Lsn(0x20), &test_value("foobar at 0x20"), &ctx)
6012 4 : .await?;
6013 4 : writer.finish_write(Lsn(0x20));
6014 4 :
6015 4 : writer
6016 4 : .put(TEST_KEY_A, Lsn(0x30), &test_value("foo at 0x30"), &ctx)
6017 4 : .await?;
6018 4 : writer.finish_write(Lsn(0x30));
6019 4 : writer
6020 4 : .put(TEST_KEY_A, Lsn(0x40), &test_value("foo at 0x40"), &ctx)
6021 4 : .await?;
6022 4 : writer.finish_write(Lsn(0x40));
6023 4 :
6024 4 : //assert_current_logical_size(&tline, Lsn(0x40));
6025 4 :
6026 4 : // Branch the history, modify relation differently on the new timeline
6027 4 : tenant
6028 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x30)), &ctx)
6029 4 : .await?;
6030 4 : let newtline = tenant
6031 4 : .get_timeline(NEW_TIMELINE_ID, true)
6032 4 : .expect("Should have a local timeline");
6033 4 : let mut new_writer = newtline.writer().await;
6034 4 : new_writer
6035 4 : .put(TEST_KEY_A, Lsn(0x40), &test_value("bar at 0x40"), &ctx)
6036 4 : .await?;
6037 4 : new_writer.finish_write(Lsn(0x40));
6038 4 :
6039 4 : // Check page contents on both branches
6040 4 : assert_eq!(
6041 4 : from_utf8(&tline.get(TEST_KEY_A, Lsn(0x40), &ctx).await?)?,
6042 4 : "foo at 0x40"
6043 4 : );
6044 4 : assert_eq!(
6045 4 : from_utf8(&newtline.get(TEST_KEY_A, Lsn(0x40), &ctx).await?)?,
6046 4 : "bar at 0x40"
6047 4 : );
6048 4 : assert_eq!(
6049 4 : from_utf8(&newtline.get(TEST_KEY_B, Lsn(0x40), &ctx).await?)?,
6050 4 : "foobar at 0x20"
6051 4 : );
6052 4 :
6053 4 : //assert_current_logical_size(&tline, Lsn(0x40));
6054 4 :
6055 4 : Ok(())
6056 4 : }
6057 :
6058 40 : async fn make_some_layers(
6059 40 : tline: &Timeline,
6060 40 : start_lsn: Lsn,
6061 40 : ctx: &RequestContext,
6062 40 : ) -> anyhow::Result<()> {
6063 40 : let mut lsn = start_lsn;
6064 : {
6065 40 : let mut writer = tline.writer().await;
6066 : // Create a relation on the timeline
6067 40 : writer
6068 40 : .put(
6069 40 : *TEST_KEY,
6070 40 : lsn,
6071 40 : &Value::Image(test_img(&format!("foo at {}", lsn))),
6072 40 : ctx,
6073 40 : )
6074 40 : .await?;
6075 40 : writer.finish_write(lsn);
6076 40 : lsn += 0x10;
6077 40 : writer
6078 40 : .put(
6079 40 : *TEST_KEY,
6080 40 : lsn,
6081 40 : &Value::Image(test_img(&format!("foo at {}", lsn))),
6082 40 : ctx,
6083 40 : )
6084 40 : .await?;
6085 40 : writer.finish_write(lsn);
6086 40 : lsn += 0x10;
6087 40 : }
6088 40 : tline.freeze_and_flush().await?;
6089 : {
6090 40 : let mut writer = tline.writer().await;
6091 40 : writer
6092 40 : .put(
6093 40 : *TEST_KEY,
6094 40 : lsn,
6095 40 : &Value::Image(test_img(&format!("foo at {}", lsn))),
6096 40 : ctx,
6097 40 : )
6098 40 : .await?;
6099 40 : writer.finish_write(lsn);
6100 40 : lsn += 0x10;
6101 40 : writer
6102 40 : .put(
6103 40 : *TEST_KEY,
6104 40 : lsn,
6105 40 : &Value::Image(test_img(&format!("foo at {}", lsn))),
6106 40 : ctx,
6107 40 : )
6108 40 : .await?;
6109 40 : writer.finish_write(lsn);
6110 40 : }
6111 40 : tline.freeze_and_flush().await.map_err(|e| e.into())
6112 40 : }
6113 :
6114 : #[tokio::test(start_paused = true)]
6115 4 : async fn test_prohibit_branch_creation_on_garbage_collected_data() -> anyhow::Result<()> {
6116 4 : let (tenant, ctx) =
6117 4 : TenantHarness::create("test_prohibit_branch_creation_on_garbage_collected_data")
6118 4 : .await?
6119 4 : .load()
6120 4 : .await;
6121 4 : // Advance to the lsn lease deadline so that GC is not blocked by
6122 4 : // initial transition into AttachedSingle.
6123 4 : tokio::time::advance(tenant.get_lsn_lease_length()).await;
6124 4 : tokio::time::resume();
6125 4 : let tline = tenant
6126 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
6127 4 : .await?;
6128 4 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6129 4 :
6130 4 : // this removes layers before lsn 40 (50 minus 10), so there are two remaining layers, image and delta for 31-50
6131 4 : // FIXME: this doesn't actually remove any layer currently, given how the flushing
6132 4 : // and compaction works. But it does set the 'cutoff' point so that the cross check
6133 4 : // below should fail.
6134 4 : tenant
6135 4 : .gc_iteration(
6136 4 : Some(TIMELINE_ID),
6137 4 : 0x10,
6138 4 : Duration::ZERO,
6139 4 : &CancellationToken::new(),
6140 4 : &ctx,
6141 4 : )
6142 4 : .await?;
6143 4 :
6144 4 : // try to branch at lsn 25, should fail because we already garbage collected the data
6145 4 : match tenant
6146 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x25)), &ctx)
6147 4 : .await
6148 4 : {
6149 4 : Ok(_) => panic!("branching should have failed"),
6150 4 : Err(err) => {
6151 4 : let CreateTimelineError::AncestorLsn(err) = err else {
6152 4 : panic!("wrong error type")
6153 4 : };
6154 4 : assert!(err.to_string().contains("invalid branch start lsn"));
6155 4 : assert!(err
6156 4 : .source()
6157 4 : .unwrap()
6158 4 : .to_string()
6159 4 : .contains("we might've already garbage collected needed data"))
6160 4 : }
6161 4 : }
6162 4 :
6163 4 : Ok(())
6164 4 : }
6165 :
6166 : #[tokio::test]
6167 4 : async fn test_prohibit_branch_creation_on_pre_initdb_lsn() -> anyhow::Result<()> {
6168 4 : let (tenant, ctx) =
6169 4 : TenantHarness::create("test_prohibit_branch_creation_on_pre_initdb_lsn")
6170 4 : .await?
6171 4 : .load()
6172 4 : .await;
6173 4 :
6174 4 : let tline = tenant
6175 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x50), DEFAULT_PG_VERSION, &ctx)
6176 4 : .await?;
6177 4 : // try to branch at lsn 0x25, should fail because initdb lsn is 0x50
6178 4 : match tenant
6179 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x25)), &ctx)
6180 4 : .await
6181 4 : {
6182 4 : Ok(_) => panic!("branching should have failed"),
6183 4 : Err(err) => {
6184 4 : let CreateTimelineError::AncestorLsn(err) = err else {
6185 4 : panic!("wrong error type");
6186 4 : };
6187 4 : assert!(&err.to_string().contains("invalid branch start lsn"));
6188 4 : assert!(&err
6189 4 : .source()
6190 4 : .unwrap()
6191 4 : .to_string()
6192 4 : .contains("is earlier than latest GC cutoff"));
6193 4 : }
6194 4 : }
6195 4 :
6196 4 : Ok(())
6197 4 : }
6198 :
6199 : /*
6200 : // FIXME: This currently fails to error out. Calling GC doesn't currently
6201 : // remove the old value, we'd need to work a little harder
6202 : #[tokio::test]
6203 : async fn test_prohibit_get_for_garbage_collected_data() -> anyhow::Result<()> {
6204 : let repo =
6205 : RepoHarness::create("test_prohibit_get_for_garbage_collected_data")?
6206 : .load();
6207 :
6208 : let tline = repo.create_empty_timeline(TIMELINE_ID, Lsn(0), DEFAULT_PG_VERSION)?;
6209 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6210 :
6211 : repo.gc_iteration(Some(TIMELINE_ID), 0x10, Duration::ZERO)?;
6212 : let applied_gc_cutoff_lsn = tline.get_applied_gc_cutoff_lsn();
6213 : assert!(*applied_gc_cutoff_lsn > Lsn(0x25));
6214 : match tline.get(*TEST_KEY, Lsn(0x25)) {
6215 : Ok(_) => panic!("request for page should have failed"),
6216 : Err(err) => assert!(err.to_string().contains("not found at")),
6217 : }
6218 : Ok(())
6219 : }
6220 : */
6221 :
6222 : #[tokio::test]
6223 4 : async fn test_get_branchpoints_from_an_inactive_timeline() -> anyhow::Result<()> {
6224 4 : let (tenant, ctx) =
6225 4 : TenantHarness::create("test_get_branchpoints_from_an_inactive_timeline")
6226 4 : .await?
6227 4 : .load()
6228 4 : .await;
6229 4 : let tline = tenant
6230 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
6231 4 : .await?;
6232 4 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6233 4 :
6234 4 : tenant
6235 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
6236 4 : .await?;
6237 4 : let newtline = tenant
6238 4 : .get_timeline(NEW_TIMELINE_ID, true)
6239 4 : .expect("Should have a local timeline");
6240 4 :
6241 4 : make_some_layers(newtline.as_ref(), Lsn(0x60), &ctx).await?;
6242 4 :
6243 4 : tline.set_broken("test".to_owned());
6244 4 :
6245 4 : tenant
6246 4 : .gc_iteration(
6247 4 : Some(TIMELINE_ID),
6248 4 : 0x10,
6249 4 : Duration::ZERO,
6250 4 : &CancellationToken::new(),
6251 4 : &ctx,
6252 4 : )
6253 4 : .await?;
6254 4 :
6255 4 : // The branchpoints should contain all timelines, even ones marked
6256 4 : // as Broken.
6257 4 : {
6258 4 : let branchpoints = &tline.gc_info.read().unwrap().retain_lsns;
6259 4 : assert_eq!(branchpoints.len(), 1);
6260 4 : assert_eq!(
6261 4 : branchpoints[0],
6262 4 : (Lsn(0x40), NEW_TIMELINE_ID, MaybeOffloaded::No)
6263 4 : );
6264 4 : }
6265 4 :
6266 4 : // You can read the key from the child branch even though the parent is
6267 4 : // Broken, as long as you don't need to access data from the parent.
6268 4 : assert_eq!(
6269 4 : newtline.get(*TEST_KEY, Lsn(0x70), &ctx).await?,
6270 4 : test_img(&format!("foo at {}", Lsn(0x70)))
6271 4 : );
6272 4 :
6273 4 : // This needs to traverse to the parent, and fails.
6274 4 : let err = newtline.get(*TEST_KEY, Lsn(0x50), &ctx).await.unwrap_err();
6275 4 : assert!(
6276 4 : err.to_string().starts_with(&format!(
6277 4 : "bad state on timeline {}: Broken",
6278 4 : tline.timeline_id
6279 4 : )),
6280 4 : "{err}"
6281 4 : );
6282 4 :
6283 4 : Ok(())
6284 4 : }
6285 :
6286 : #[tokio::test]
6287 4 : async fn test_retain_data_in_parent_which_is_needed_for_child() -> anyhow::Result<()> {
6288 4 : let (tenant, ctx) =
6289 4 : TenantHarness::create("test_retain_data_in_parent_which_is_needed_for_child")
6290 4 : .await?
6291 4 : .load()
6292 4 : .await;
6293 4 : let tline = tenant
6294 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
6295 4 : .await?;
6296 4 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6297 4 :
6298 4 : tenant
6299 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
6300 4 : .await?;
6301 4 : let newtline = tenant
6302 4 : .get_timeline(NEW_TIMELINE_ID, true)
6303 4 : .expect("Should have a local timeline");
6304 4 : // this removes layers before lsn 40 (50 minus 10), so there are two remaining layers, image and delta for 31-50
6305 4 : tenant
6306 4 : .gc_iteration(
6307 4 : Some(TIMELINE_ID),
6308 4 : 0x10,
6309 4 : Duration::ZERO,
6310 4 : &CancellationToken::new(),
6311 4 : &ctx,
6312 4 : )
6313 4 : .await?;
6314 4 : assert!(newtline.get(*TEST_KEY, Lsn(0x25), &ctx).await.is_ok());
6315 4 :
6316 4 : Ok(())
6317 4 : }
6318 : #[tokio::test]
6319 4 : async fn test_parent_keeps_data_forever_after_branching() -> anyhow::Result<()> {
6320 4 : let (tenant, ctx) = TenantHarness::create("test_parent_keeps_data_forever_after_branching")
6321 4 : .await?
6322 4 : .load()
6323 4 : .await;
6324 4 : let tline = tenant
6325 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
6326 4 : .await?;
6327 4 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6328 4 :
6329 4 : tenant
6330 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
6331 4 : .await?;
6332 4 : let newtline = tenant
6333 4 : .get_timeline(NEW_TIMELINE_ID, true)
6334 4 : .expect("Should have a local timeline");
6335 4 :
6336 4 : make_some_layers(newtline.as_ref(), Lsn(0x60), &ctx).await?;
6337 4 :
6338 4 : // run gc on parent
6339 4 : tenant
6340 4 : .gc_iteration(
6341 4 : Some(TIMELINE_ID),
6342 4 : 0x10,
6343 4 : Duration::ZERO,
6344 4 : &CancellationToken::new(),
6345 4 : &ctx,
6346 4 : )
6347 4 : .await?;
6348 4 :
6349 4 : // Check that the data is still accessible on the branch.
6350 4 : assert_eq!(
6351 4 : newtline.get(*TEST_KEY, Lsn(0x50), &ctx).await?,
6352 4 : test_img(&format!("foo at {}", Lsn(0x40)))
6353 4 : );
6354 4 :
6355 4 : Ok(())
6356 4 : }
6357 :
6358 : #[tokio::test]
6359 4 : async fn timeline_load() -> anyhow::Result<()> {
6360 4 : const TEST_NAME: &str = "timeline_load";
6361 4 : let harness = TenantHarness::create(TEST_NAME).await?;
6362 4 : {
6363 4 : let (tenant, ctx) = harness.load().await;
6364 4 : let tline = tenant
6365 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x7000), DEFAULT_PG_VERSION, &ctx)
6366 4 : .await?;
6367 4 : make_some_layers(tline.as_ref(), Lsn(0x8000), &ctx).await?;
6368 4 : // so that all uploads finish & we can call harness.load() below again
6369 4 : tenant
6370 4 : .shutdown(Default::default(), ShutdownMode::FreezeAndFlush)
6371 4 : .instrument(harness.span())
6372 4 : .await
6373 4 : .ok()
6374 4 : .unwrap();
6375 4 : }
6376 4 :
6377 4 : let (tenant, _ctx) = harness.load().await;
6378 4 : tenant
6379 4 : .get_timeline(TIMELINE_ID, true)
6380 4 : .expect("cannot load timeline");
6381 4 :
6382 4 : Ok(())
6383 4 : }
6384 :
6385 : #[tokio::test]
6386 4 : async fn timeline_load_with_ancestor() -> anyhow::Result<()> {
6387 4 : const TEST_NAME: &str = "timeline_load_with_ancestor";
6388 4 : let harness = TenantHarness::create(TEST_NAME).await?;
6389 4 : // create two timelines
6390 4 : {
6391 4 : let (tenant, ctx) = harness.load().await;
6392 4 : let tline = tenant
6393 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
6394 4 : .await?;
6395 4 :
6396 4 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6397 4 :
6398 4 : let child_tline = tenant
6399 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(Lsn(0x40)), &ctx)
6400 4 : .await?;
6401 4 : child_tline.set_state(TimelineState::Active);
6402 4 :
6403 4 : let newtline = tenant
6404 4 : .get_timeline(NEW_TIMELINE_ID, true)
6405 4 : .expect("Should have a local timeline");
6406 4 :
6407 4 : make_some_layers(newtline.as_ref(), Lsn(0x60), &ctx).await?;
6408 4 :
6409 4 : // so that all uploads finish & we can call harness.load() below again
6410 4 : tenant
6411 4 : .shutdown(Default::default(), ShutdownMode::FreezeAndFlush)
6412 4 : .instrument(harness.span())
6413 4 : .await
6414 4 : .ok()
6415 4 : .unwrap();
6416 4 : }
6417 4 :
6418 4 : // check that both of them are initially unloaded
6419 4 : let (tenant, _ctx) = harness.load().await;
6420 4 :
6421 4 : // check that both, child and ancestor are loaded
6422 4 : let _child_tline = tenant
6423 4 : .get_timeline(NEW_TIMELINE_ID, true)
6424 4 : .expect("cannot get child timeline loaded");
6425 4 :
6426 4 : let _ancestor_tline = tenant
6427 4 : .get_timeline(TIMELINE_ID, true)
6428 4 : .expect("cannot get ancestor timeline loaded");
6429 4 :
6430 4 : Ok(())
6431 4 : }
6432 :
6433 : #[tokio::test]
6434 4 : async fn delta_layer_dumping() -> anyhow::Result<()> {
6435 4 : use storage_layer::AsLayerDesc;
6436 4 : let (tenant, ctx) = TenantHarness::create("test_layer_dumping")
6437 4 : .await?
6438 4 : .load()
6439 4 : .await;
6440 4 : let tline = tenant
6441 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
6442 4 : .await?;
6443 4 : make_some_layers(tline.as_ref(), Lsn(0x20), &ctx).await?;
6444 4 :
6445 4 : let layer_map = tline.layers.read().await;
6446 4 : let level0_deltas = layer_map
6447 4 : .layer_map()?
6448 4 : .level0_deltas()
6449 4 : .iter()
6450 8 : .map(|desc| layer_map.get_from_desc(desc))
6451 4 : .collect::<Vec<_>>();
6452 4 :
6453 4 : assert!(!level0_deltas.is_empty());
6454 4 :
6455 12 : for delta in level0_deltas {
6456 4 : // Ensure we are dumping a delta layer here
6457 8 : assert!(delta.layer_desc().is_delta);
6458 8 : delta.dump(true, &ctx).await.unwrap();
6459 4 : }
6460 4 :
6461 4 : Ok(())
6462 4 : }
6463 :
6464 : #[tokio::test]
6465 4 : async fn test_images() -> anyhow::Result<()> {
6466 4 : let (tenant, ctx) = TenantHarness::create("test_images").await?.load().await;
6467 4 : let tline = tenant
6468 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)
6469 4 : .await?;
6470 4 :
6471 4 : let mut writer = tline.writer().await;
6472 4 : writer
6473 4 : .put(
6474 4 : *TEST_KEY,
6475 4 : Lsn(0x10),
6476 4 : &Value::Image(test_img("foo at 0x10")),
6477 4 : &ctx,
6478 4 : )
6479 4 : .await?;
6480 4 : writer.finish_write(Lsn(0x10));
6481 4 : drop(writer);
6482 4 :
6483 4 : tline.freeze_and_flush().await?;
6484 4 : tline
6485 4 : .compact(&CancellationToken::new(), EnumSet::empty(), &ctx)
6486 4 : .await?;
6487 4 :
6488 4 : let mut writer = tline.writer().await;
6489 4 : writer
6490 4 : .put(
6491 4 : *TEST_KEY,
6492 4 : Lsn(0x20),
6493 4 : &Value::Image(test_img("foo at 0x20")),
6494 4 : &ctx,
6495 4 : )
6496 4 : .await?;
6497 4 : writer.finish_write(Lsn(0x20));
6498 4 : drop(writer);
6499 4 :
6500 4 : tline.freeze_and_flush().await?;
6501 4 : tline
6502 4 : .compact(&CancellationToken::new(), EnumSet::empty(), &ctx)
6503 4 : .await?;
6504 4 :
6505 4 : let mut writer = tline.writer().await;
6506 4 : writer
6507 4 : .put(
6508 4 : *TEST_KEY,
6509 4 : Lsn(0x30),
6510 4 : &Value::Image(test_img("foo at 0x30")),
6511 4 : &ctx,
6512 4 : )
6513 4 : .await?;
6514 4 : writer.finish_write(Lsn(0x30));
6515 4 : drop(writer);
6516 4 :
6517 4 : tline.freeze_and_flush().await?;
6518 4 : tline
6519 4 : .compact(&CancellationToken::new(), EnumSet::empty(), &ctx)
6520 4 : .await?;
6521 4 :
6522 4 : let mut writer = tline.writer().await;
6523 4 : writer
6524 4 : .put(
6525 4 : *TEST_KEY,
6526 4 : Lsn(0x40),
6527 4 : &Value::Image(test_img("foo at 0x40")),
6528 4 : &ctx,
6529 4 : )
6530 4 : .await?;
6531 4 : writer.finish_write(Lsn(0x40));
6532 4 : drop(writer);
6533 4 :
6534 4 : tline.freeze_and_flush().await?;
6535 4 : tline
6536 4 : .compact(&CancellationToken::new(), EnumSet::empty(), &ctx)
6537 4 : .await?;
6538 4 :
6539 4 : assert_eq!(
6540 4 : tline.get(*TEST_KEY, Lsn(0x10), &ctx).await?,
6541 4 : test_img("foo at 0x10")
6542 4 : );
6543 4 : assert_eq!(
6544 4 : tline.get(*TEST_KEY, Lsn(0x1f), &ctx).await?,
6545 4 : test_img("foo at 0x10")
6546 4 : );
6547 4 : assert_eq!(
6548 4 : tline.get(*TEST_KEY, Lsn(0x20), &ctx).await?,
6549 4 : test_img("foo at 0x20")
6550 4 : );
6551 4 : assert_eq!(
6552 4 : tline.get(*TEST_KEY, Lsn(0x30), &ctx).await?,
6553 4 : test_img("foo at 0x30")
6554 4 : );
6555 4 : assert_eq!(
6556 4 : tline.get(*TEST_KEY, Lsn(0x40), &ctx).await?,
6557 4 : test_img("foo at 0x40")
6558 4 : );
6559 4 :
6560 4 : Ok(())
6561 4 : }
6562 :
6563 8 : async fn bulk_insert_compact_gc(
6564 8 : tenant: &Tenant,
6565 8 : timeline: &Arc<Timeline>,
6566 8 : ctx: &RequestContext,
6567 8 : lsn: Lsn,
6568 8 : repeat: usize,
6569 8 : key_count: usize,
6570 8 : ) -> anyhow::Result<HashMap<Key, BTreeSet<Lsn>>> {
6571 8 : let compact = true;
6572 8 : bulk_insert_maybe_compact_gc(tenant, timeline, ctx, lsn, repeat, key_count, compact).await
6573 8 : }
6574 :
6575 16 : async fn bulk_insert_maybe_compact_gc(
6576 16 : tenant: &Tenant,
6577 16 : timeline: &Arc<Timeline>,
6578 16 : ctx: &RequestContext,
6579 16 : mut lsn: Lsn,
6580 16 : repeat: usize,
6581 16 : key_count: usize,
6582 16 : compact: bool,
6583 16 : ) -> anyhow::Result<HashMap<Key, BTreeSet<Lsn>>> {
6584 16 : let mut inserted: HashMap<Key, BTreeSet<Lsn>> = Default::default();
6585 16 :
6586 16 : let mut test_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
6587 16 : let mut blknum = 0;
6588 16 :
6589 16 : // Enforce that key range is monotonously increasing
6590 16 : let mut keyspace = KeySpaceAccum::new();
6591 16 :
6592 16 : let cancel = CancellationToken::new();
6593 16 :
6594 16 : for _ in 0..repeat {
6595 800 : for _ in 0..key_count {
6596 8000000 : test_key.field6 = blknum;
6597 8000000 : let mut writer = timeline.writer().await;
6598 8000000 : writer
6599 8000000 : .put(
6600 8000000 : test_key,
6601 8000000 : lsn,
6602 8000000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
6603 8000000 : ctx,
6604 8000000 : )
6605 8000000 : .await?;
6606 8000000 : inserted.entry(test_key).or_default().insert(lsn);
6607 8000000 : writer.finish_write(lsn);
6608 8000000 : drop(writer);
6609 8000000 :
6610 8000000 : keyspace.add_key(test_key);
6611 8000000 :
6612 8000000 : lsn = Lsn(lsn.0 + 0x10);
6613 8000000 : blknum += 1;
6614 : }
6615 :
6616 800 : timeline.freeze_and_flush().await?;
6617 800 : if compact {
6618 : // this requires timeline to be &Arc<Timeline>
6619 400 : timeline.compact(&cancel, EnumSet::empty(), ctx).await?;
6620 400 : }
6621 :
6622 : // this doesn't really need to use the timeline_id target, but it is closer to what it
6623 : // originally was.
6624 800 : let res = tenant
6625 800 : .gc_iteration(Some(timeline.timeline_id), 0, Duration::ZERO, &cancel, ctx)
6626 800 : .await?;
6627 :
6628 800 : assert_eq!(res.layers_removed, 0, "this never removes anything");
6629 : }
6630 :
6631 16 : Ok(inserted)
6632 16 : }
6633 :
6634 : //
6635 : // Insert 1000 key-value pairs with increasing keys, flush, compact, GC.
6636 : // Repeat 50 times.
6637 : //
6638 : #[tokio::test]
6639 4 : async fn test_bulk_insert() -> anyhow::Result<()> {
6640 4 : let harness = TenantHarness::create("test_bulk_insert").await?;
6641 4 : let (tenant, ctx) = harness.load().await;
6642 4 : let tline = tenant
6643 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)
6644 4 : .await?;
6645 4 :
6646 4 : let lsn = Lsn(0x10);
6647 4 : bulk_insert_compact_gc(&tenant, &tline, &ctx, lsn, 50, 10000).await?;
6648 4 :
6649 4 : Ok(())
6650 4 : }
6651 :
6652 : // Test the vectored get real implementation against a simple sequential implementation.
6653 : //
6654 : // The test generates a keyspace by repeatedly flushing the in-memory layer and compacting.
6655 : // Projected to 2D the key space looks like below. Lsn grows upwards on the Y axis and keys
6656 : // grow to the right on the X axis.
6657 : // [Delta]
6658 : // [Delta]
6659 : // [Delta]
6660 : // [Delta]
6661 : // ------------ Image ---------------
6662 : //
6663 : // After layer generation we pick the ranges to query as follows:
6664 : // 1. The beginning of each delta layer
6665 : // 2. At the seam between two adjacent delta layers
6666 : //
6667 : // There's one major downside to this test: delta layers only contains images,
6668 : // so the search can stop at the first delta layer and doesn't traverse any deeper.
6669 : #[tokio::test]
6670 4 : async fn test_get_vectored() -> anyhow::Result<()> {
6671 4 : let harness = TenantHarness::create("test_get_vectored").await?;
6672 4 : let (tenant, ctx) = harness.load().await;
6673 4 : let io_concurrency = IoConcurrency::spawn_for_test();
6674 4 : let tline = tenant
6675 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)
6676 4 : .await?;
6677 4 :
6678 4 : let lsn = Lsn(0x10);
6679 4 : let inserted = bulk_insert_compact_gc(&tenant, &tline, &ctx, lsn, 50, 10000).await?;
6680 4 :
6681 4 : let guard = tline.layers.read().await;
6682 4 : let lm = guard.layer_map()?;
6683 4 :
6684 4 : lm.dump(true, &ctx).await?;
6685 4 :
6686 4 : let mut reads = Vec::new();
6687 4 : let mut prev = None;
6688 24 : lm.iter_historic_layers().for_each(|desc| {
6689 24 : if !desc.is_delta() {
6690 4 : prev = Some(desc.clone());
6691 4 : return;
6692 20 : }
6693 20 :
6694 20 : let start = desc.key_range.start;
6695 20 : let end = desc
6696 20 : .key_range
6697 20 : .start
6698 20 : .add(Timeline::MAX_GET_VECTORED_KEYS.try_into().unwrap());
6699 20 : reads.push(KeySpace {
6700 20 : ranges: vec![start..end],
6701 20 : });
6702 4 :
6703 20 : if let Some(prev) = &prev {
6704 20 : if !prev.is_delta() {
6705 20 : return;
6706 4 : }
6707 0 :
6708 0 : let first_range = Key {
6709 0 : field6: prev.key_range.end.field6 - 4,
6710 0 : ..prev.key_range.end
6711 0 : }..prev.key_range.end;
6712 0 :
6713 0 : let second_range = desc.key_range.start..Key {
6714 0 : field6: desc.key_range.start.field6 + 4,
6715 0 : ..desc.key_range.start
6716 0 : };
6717 0 :
6718 0 : reads.push(KeySpace {
6719 0 : ranges: vec![first_range, second_range],
6720 0 : });
6721 4 : };
6722 4 :
6723 4 : prev = Some(desc.clone());
6724 24 : });
6725 4 :
6726 4 : drop(guard);
6727 4 :
6728 4 : // Pick a big LSN such that we query over all the changes.
6729 4 : let reads_lsn = Lsn(u64::MAX - 1);
6730 4 :
6731 24 : for read in reads {
6732 20 : info!("Doing vectored read on {:?}", read);
6733 4 :
6734 20 : let vectored_res = tline
6735 20 : .get_vectored_impl(
6736 20 : read.clone(),
6737 20 : reads_lsn,
6738 20 : &mut ValuesReconstructState::new(io_concurrency.clone()),
6739 20 : &ctx,
6740 20 : )
6741 20 : .await;
6742 4 :
6743 20 : let mut expected_lsns: HashMap<Key, Lsn> = Default::default();
6744 20 : let mut expect_missing = false;
6745 20 : let mut key = read.start().unwrap();
6746 660 : while key != read.end().unwrap() {
6747 640 : if let Some(lsns) = inserted.get(&key) {
6748 640 : let expected_lsn = lsns.iter().rfind(|lsn| **lsn <= reads_lsn);
6749 640 : match expected_lsn {
6750 640 : Some(lsn) => {
6751 640 : expected_lsns.insert(key, *lsn);
6752 640 : }
6753 4 : None => {
6754 4 : expect_missing = true;
6755 0 : break;
6756 4 : }
6757 4 : }
6758 4 : } else {
6759 4 : expect_missing = true;
6760 0 : break;
6761 4 : }
6762 4 :
6763 640 : key = key.next();
6764 4 : }
6765 4 :
6766 20 : if expect_missing {
6767 4 : assert!(matches!(vectored_res, Err(GetVectoredError::MissingKey(_))));
6768 4 : } else {
6769 640 : for (key, image) in vectored_res? {
6770 640 : let expected_lsn = expected_lsns.get(&key).expect("determined above");
6771 640 : let expected_image = test_img(&format!("{} at {}", key.field6, expected_lsn));
6772 640 : assert_eq!(image?, expected_image);
6773 4 : }
6774 4 : }
6775 4 : }
6776 4 :
6777 4 : Ok(())
6778 4 : }
6779 :
6780 : #[tokio::test]
6781 4 : async fn test_get_vectored_aux_files() -> anyhow::Result<()> {
6782 4 : let harness = TenantHarness::create("test_get_vectored_aux_files").await?;
6783 4 :
6784 4 : let (tenant, ctx) = harness.load().await;
6785 4 : let io_concurrency = IoConcurrency::spawn_for_test();
6786 4 : let tline = tenant
6787 4 : .create_empty_timeline(TIMELINE_ID, Lsn(0), DEFAULT_PG_VERSION, &ctx)
6788 4 : .await?;
6789 4 : let tline = tline.raw_timeline().unwrap();
6790 4 :
6791 4 : let mut modification = tline.begin_modification(Lsn(0x1000));
6792 4 : modification.put_file("foo/bar1", b"content1", &ctx).await?;
6793 4 : modification.set_lsn(Lsn(0x1008))?;
6794 4 : modification.put_file("foo/bar2", b"content2", &ctx).await?;
6795 4 : modification.commit(&ctx).await?;
6796 4 :
6797 4 : let child_timeline_id = TimelineId::generate();
6798 4 : tenant
6799 4 : .branch_timeline_test(
6800 4 : tline,
6801 4 : child_timeline_id,
6802 4 : Some(tline.get_last_record_lsn()),
6803 4 : &ctx,
6804 4 : )
6805 4 : .await?;
6806 4 :
6807 4 : let child_timeline = tenant
6808 4 : .get_timeline(child_timeline_id, true)
6809 4 : .expect("Should have the branched timeline");
6810 4 :
6811 4 : let aux_keyspace = KeySpace {
6812 4 : ranges: vec![NON_INHERITED_RANGE],
6813 4 : };
6814 4 : let read_lsn = child_timeline.get_last_record_lsn();
6815 4 :
6816 4 : let vectored_res = child_timeline
6817 4 : .get_vectored_impl(
6818 4 : aux_keyspace.clone(),
6819 4 : read_lsn,
6820 4 : &mut ValuesReconstructState::new(io_concurrency.clone()),
6821 4 : &ctx,
6822 4 : )
6823 4 : .await;
6824 4 :
6825 4 : let images = vectored_res?;
6826 4 : assert!(images.is_empty());
6827 4 : Ok(())
6828 4 : }
6829 :
6830 : // Test that vectored get handles layer gaps correctly
6831 : // by advancing into the next ancestor timeline if required.
6832 : //
6833 : // The test generates timelines that look like the diagram below.
6834 : // We leave a gap in one of the L1 layers at `gap_at_key` (`/` in the diagram).
6835 : // The reconstruct data for that key lies in the ancestor timeline (`X` in the diagram).
6836 : //
6837 : // ```
6838 : //-------------------------------+
6839 : // ... |
6840 : // [ L1 ] |
6841 : // [ / L1 ] | Child Timeline
6842 : // ... |
6843 : // ------------------------------+
6844 : // [ X L1 ] | Parent Timeline
6845 : // ------------------------------+
6846 : // ```
6847 : #[tokio::test]
6848 4 : async fn test_get_vectored_key_gap() -> anyhow::Result<()> {
6849 4 : let tenant_conf = TenantConf {
6850 4 : // Make compaction deterministic
6851 4 : gc_period: Duration::ZERO,
6852 4 : compaction_period: Duration::ZERO,
6853 4 : // Encourage creation of L1 layers
6854 4 : checkpoint_distance: 16 * 1024,
6855 4 : compaction_target_size: 8 * 1024,
6856 4 : ..TenantConf::default()
6857 4 : };
6858 4 :
6859 4 : let harness = TenantHarness::create_custom(
6860 4 : "test_get_vectored_key_gap",
6861 4 : tenant_conf,
6862 4 : TenantId::generate(),
6863 4 : ShardIdentity::unsharded(),
6864 4 : Generation::new(0xdeadbeef),
6865 4 : )
6866 4 : .await?;
6867 4 : let (tenant, ctx) = harness.load().await;
6868 4 : let io_concurrency = IoConcurrency::spawn_for_test();
6869 4 :
6870 4 : let mut current_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
6871 4 : let gap_at_key = current_key.add(100);
6872 4 : let mut current_lsn = Lsn(0x10);
6873 4 :
6874 4 : const KEY_COUNT: usize = 10_000;
6875 4 :
6876 4 : let timeline_id = TimelineId::generate();
6877 4 : let current_timeline = tenant
6878 4 : .create_test_timeline(timeline_id, current_lsn, DEFAULT_PG_VERSION, &ctx)
6879 4 : .await?;
6880 4 :
6881 4 : current_lsn += 0x100;
6882 4 :
6883 4 : let mut writer = current_timeline.writer().await;
6884 4 : writer
6885 4 : .put(
6886 4 : gap_at_key,
6887 4 : current_lsn,
6888 4 : &Value::Image(test_img(&format!("{} at {}", gap_at_key, current_lsn))),
6889 4 : &ctx,
6890 4 : )
6891 4 : .await?;
6892 4 : writer.finish_write(current_lsn);
6893 4 : drop(writer);
6894 4 :
6895 4 : let mut latest_lsns = HashMap::new();
6896 4 : latest_lsns.insert(gap_at_key, current_lsn);
6897 4 :
6898 4 : current_timeline.freeze_and_flush().await?;
6899 4 :
6900 4 : let child_timeline_id = TimelineId::generate();
6901 4 :
6902 4 : tenant
6903 4 : .branch_timeline_test(
6904 4 : ¤t_timeline,
6905 4 : child_timeline_id,
6906 4 : Some(current_lsn),
6907 4 : &ctx,
6908 4 : )
6909 4 : .await?;
6910 4 : let child_timeline = tenant
6911 4 : .get_timeline(child_timeline_id, true)
6912 4 : .expect("Should have the branched timeline");
6913 4 :
6914 40004 : for i in 0..KEY_COUNT {
6915 40000 : if current_key == gap_at_key {
6916 4 : current_key = current_key.next();
6917 4 : continue;
6918 39996 : }
6919 39996 :
6920 39996 : current_lsn += 0x10;
6921 4 :
6922 39996 : let mut writer = child_timeline.writer().await;
6923 39996 : writer
6924 39996 : .put(
6925 39996 : current_key,
6926 39996 : current_lsn,
6927 39996 : &Value::Image(test_img(&format!("{} at {}", current_key, current_lsn))),
6928 39996 : &ctx,
6929 39996 : )
6930 39996 : .await?;
6931 39996 : writer.finish_write(current_lsn);
6932 39996 : drop(writer);
6933 39996 :
6934 39996 : latest_lsns.insert(current_key, current_lsn);
6935 39996 : current_key = current_key.next();
6936 39996 :
6937 39996 : // Flush every now and then to encourage layer file creation.
6938 39996 : if i % 500 == 0 {
6939 80 : child_timeline.freeze_and_flush().await?;
6940 39916 : }
6941 4 : }
6942 4 :
6943 4 : child_timeline.freeze_and_flush().await?;
6944 4 : let mut flags = EnumSet::new();
6945 4 : flags.insert(CompactFlags::ForceRepartition);
6946 4 : child_timeline
6947 4 : .compact(&CancellationToken::new(), flags, &ctx)
6948 4 : .await?;
6949 4 :
6950 4 : let key_near_end = {
6951 4 : let mut tmp = current_key;
6952 4 : tmp.field6 -= 10;
6953 4 : tmp
6954 4 : };
6955 4 :
6956 4 : let key_near_gap = {
6957 4 : let mut tmp = gap_at_key;
6958 4 : tmp.field6 -= 10;
6959 4 : tmp
6960 4 : };
6961 4 :
6962 4 : let read = KeySpace {
6963 4 : ranges: vec![key_near_gap..gap_at_key.next(), key_near_end..current_key],
6964 4 : };
6965 4 : let results = child_timeline
6966 4 : .get_vectored_impl(
6967 4 : read.clone(),
6968 4 : current_lsn,
6969 4 : &mut ValuesReconstructState::new(io_concurrency.clone()),
6970 4 : &ctx,
6971 4 : )
6972 4 : .await?;
6973 4 :
6974 88 : for (key, img_res) in results {
6975 84 : let expected = test_img(&format!("{} at {}", key, latest_lsns[&key]));
6976 84 : assert_eq!(img_res?, expected);
6977 4 : }
6978 4 :
6979 4 : Ok(())
6980 4 : }
6981 :
6982 : // Test that vectored get descends into ancestor timelines correctly and
6983 : // does not return an image that's newer than requested.
6984 : //
6985 : // The diagram below ilustrates an interesting case. We have a parent timeline
6986 : // (top of the Lsn range) and a child timeline. The request key cannot be reconstructed
6987 : // from the child timeline, so the parent timeline must be visited. When advacing into
6988 : // the child timeline, the read path needs to remember what the requested Lsn was in
6989 : // order to avoid returning an image that's too new. The test below constructs such
6990 : // a timeline setup and does a few queries around the Lsn of each page image.
6991 : // ```
6992 : // LSN
6993 : // ^
6994 : // |
6995 : // |
6996 : // 500 | --------------------------------------> branch point
6997 : // 400 | X
6998 : // 300 | X
6999 : // 200 | --------------------------------------> requested lsn
7000 : // 100 | X
7001 : // |---------------------------------------> Key
7002 : // |
7003 : // ------> requested key
7004 : //
7005 : // Legend:
7006 : // * X - page images
7007 : // ```
7008 : #[tokio::test]
7009 4 : async fn test_get_vectored_ancestor_descent() -> anyhow::Result<()> {
7010 4 : let harness = TenantHarness::create("test_get_vectored_on_lsn_axis").await?;
7011 4 : let (tenant, ctx) = harness.load().await;
7012 4 : let io_concurrency = IoConcurrency::spawn_for_test();
7013 4 :
7014 4 : let start_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
7015 4 : let end_key = start_key.add(1000);
7016 4 : let child_gap_at_key = start_key.add(500);
7017 4 : let mut parent_gap_lsns: BTreeMap<Lsn, String> = BTreeMap::new();
7018 4 :
7019 4 : let mut current_lsn = Lsn(0x10);
7020 4 :
7021 4 : let timeline_id = TimelineId::generate();
7022 4 : let parent_timeline = tenant
7023 4 : .create_test_timeline(timeline_id, current_lsn, DEFAULT_PG_VERSION, &ctx)
7024 4 : .await?;
7025 4 :
7026 4 : current_lsn += 0x100;
7027 4 :
7028 16 : for _ in 0..3 {
7029 12 : let mut key = start_key;
7030 12012 : while key < end_key {
7031 12000 : current_lsn += 0x10;
7032 12000 :
7033 12000 : let image_value = format!("{} at {}", child_gap_at_key, current_lsn);
7034 4 :
7035 12000 : let mut writer = parent_timeline.writer().await;
7036 12000 : writer
7037 12000 : .put(
7038 12000 : key,
7039 12000 : current_lsn,
7040 12000 : &Value::Image(test_img(&image_value)),
7041 12000 : &ctx,
7042 12000 : )
7043 12000 : .await?;
7044 12000 : writer.finish_write(current_lsn);
7045 12000 :
7046 12000 : if key == child_gap_at_key {
7047 12 : parent_gap_lsns.insert(current_lsn, image_value);
7048 11988 : }
7049 4 :
7050 12000 : key = key.next();
7051 4 : }
7052 4 :
7053 12 : parent_timeline.freeze_and_flush().await?;
7054 4 : }
7055 4 :
7056 4 : let child_timeline_id = TimelineId::generate();
7057 4 :
7058 4 : let child_timeline = tenant
7059 4 : .branch_timeline_test(&parent_timeline, child_timeline_id, Some(current_lsn), &ctx)
7060 4 : .await?;
7061 4 :
7062 4 : let mut key = start_key;
7063 4004 : while key < end_key {
7064 4000 : if key == child_gap_at_key {
7065 4 : key = key.next();
7066 4 : continue;
7067 3996 : }
7068 3996 :
7069 3996 : current_lsn += 0x10;
7070 4 :
7071 3996 : let mut writer = child_timeline.writer().await;
7072 3996 : writer
7073 3996 : .put(
7074 3996 : key,
7075 3996 : current_lsn,
7076 3996 : &Value::Image(test_img(&format!("{} at {}", key, current_lsn))),
7077 3996 : &ctx,
7078 3996 : )
7079 3996 : .await?;
7080 3996 : writer.finish_write(current_lsn);
7081 3996 :
7082 3996 : key = key.next();
7083 4 : }
7084 4 :
7085 4 : child_timeline.freeze_and_flush().await?;
7086 4 :
7087 4 : let lsn_offsets: [i64; 5] = [-10, -1, 0, 1, 10];
7088 4 : let mut query_lsns = Vec::new();
7089 12 : for image_lsn in parent_gap_lsns.keys().rev() {
7090 72 : for offset in lsn_offsets {
7091 60 : query_lsns.push(Lsn(image_lsn
7092 60 : .0
7093 60 : .checked_add_signed(offset)
7094 60 : .expect("Shouldn't overflow")));
7095 60 : }
7096 4 : }
7097 4 :
7098 64 : for query_lsn in query_lsns {
7099 60 : let results = child_timeline
7100 60 : .get_vectored_impl(
7101 60 : KeySpace {
7102 60 : ranges: vec![child_gap_at_key..child_gap_at_key.next()],
7103 60 : },
7104 60 : query_lsn,
7105 60 : &mut ValuesReconstructState::new(io_concurrency.clone()),
7106 60 : &ctx,
7107 60 : )
7108 60 : .await;
7109 4 :
7110 60 : let expected_item = parent_gap_lsns
7111 60 : .iter()
7112 60 : .rev()
7113 136 : .find(|(lsn, _)| **lsn <= query_lsn);
7114 60 :
7115 60 : info!(
7116 4 : "Doing vectored read at LSN {}. Expecting image to be: {:?}",
7117 4 : query_lsn, expected_item
7118 4 : );
7119 4 :
7120 60 : match expected_item {
7121 52 : Some((_, img_value)) => {
7122 52 : let key_results = results.expect("No vectored get error expected");
7123 52 : let key_result = &key_results[&child_gap_at_key];
7124 52 : let returned_img = key_result
7125 52 : .as_ref()
7126 52 : .expect("No page reconstruct error expected");
7127 52 :
7128 52 : info!(
7129 4 : "Vectored read at LSN {} returned image {}",
7130 0 : query_lsn,
7131 0 : std::str::from_utf8(returned_img)?
7132 4 : );
7133 52 : assert_eq!(*returned_img, test_img(img_value));
7134 4 : }
7135 4 : None => {
7136 8 : assert!(matches!(results, Err(GetVectoredError::MissingKey(_))));
7137 4 : }
7138 4 : }
7139 4 : }
7140 4 :
7141 4 : Ok(())
7142 4 : }
7143 :
7144 : #[tokio::test]
7145 4 : async fn test_random_updates() -> anyhow::Result<()> {
7146 4 : let names_algorithms = [
7147 4 : ("test_random_updates_legacy", CompactionAlgorithm::Legacy),
7148 4 : ("test_random_updates_tiered", CompactionAlgorithm::Tiered),
7149 4 : ];
7150 12 : for (name, algorithm) in names_algorithms {
7151 8 : test_random_updates_algorithm(name, algorithm).await?;
7152 4 : }
7153 4 : Ok(())
7154 4 : }
7155 :
7156 8 : async fn test_random_updates_algorithm(
7157 8 : name: &'static str,
7158 8 : compaction_algorithm: CompactionAlgorithm,
7159 8 : ) -> anyhow::Result<()> {
7160 8 : let mut harness = TenantHarness::create(name).await?;
7161 8 : harness.tenant_conf.compaction_algorithm = CompactionAlgorithmSettings {
7162 8 : kind: compaction_algorithm,
7163 8 : };
7164 8 : let (tenant, ctx) = harness.load().await;
7165 8 : let tline = tenant
7166 8 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
7167 8 : .await?;
7168 :
7169 : const NUM_KEYS: usize = 1000;
7170 8 : let cancel = CancellationToken::new();
7171 8 :
7172 8 : let mut test_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
7173 8 : let mut test_key_end = test_key;
7174 8 : test_key_end.field6 = NUM_KEYS as u32;
7175 8 : tline.add_extra_test_dense_keyspace(KeySpace::single(test_key..test_key_end));
7176 8 :
7177 8 : let mut keyspace = KeySpaceAccum::new();
7178 8 :
7179 8 : // Track when each page was last modified. Used to assert that
7180 8 : // a read sees the latest page version.
7181 8 : let mut updated = [Lsn(0); NUM_KEYS];
7182 8 :
7183 8 : let mut lsn = Lsn(0x10);
7184 : #[allow(clippy::needless_range_loop)]
7185 8008 : for blknum in 0..NUM_KEYS {
7186 8000 : lsn = Lsn(lsn.0 + 0x10);
7187 8000 : test_key.field6 = blknum as u32;
7188 8000 : let mut writer = tline.writer().await;
7189 8000 : writer
7190 8000 : .put(
7191 8000 : test_key,
7192 8000 : lsn,
7193 8000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7194 8000 : &ctx,
7195 8000 : )
7196 8000 : .await?;
7197 8000 : writer.finish_write(lsn);
7198 8000 : updated[blknum] = lsn;
7199 8000 : drop(writer);
7200 8000 :
7201 8000 : keyspace.add_key(test_key);
7202 : }
7203 :
7204 408 : for _ in 0..50 {
7205 400400 : for _ in 0..NUM_KEYS {
7206 400000 : lsn = Lsn(lsn.0 + 0x10);
7207 400000 : let blknum = thread_rng().gen_range(0..NUM_KEYS);
7208 400000 : test_key.field6 = blknum as u32;
7209 400000 : let mut writer = tline.writer().await;
7210 400000 : writer
7211 400000 : .put(
7212 400000 : test_key,
7213 400000 : lsn,
7214 400000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7215 400000 : &ctx,
7216 400000 : )
7217 400000 : .await?;
7218 400000 : writer.finish_write(lsn);
7219 400000 : drop(writer);
7220 400000 : updated[blknum] = lsn;
7221 : }
7222 :
7223 : // Read all the blocks
7224 400000 : for (blknum, last_lsn) in updated.iter().enumerate() {
7225 400000 : test_key.field6 = blknum as u32;
7226 400000 : assert_eq!(
7227 400000 : tline.get(test_key, lsn, &ctx).await?,
7228 400000 : test_img(&format!("{} at {}", blknum, last_lsn))
7229 : );
7230 : }
7231 :
7232 : // Perform a cycle of flush, and GC
7233 400 : tline.freeze_and_flush().await?;
7234 400 : tenant
7235 400 : .gc_iteration(Some(tline.timeline_id), 0, Duration::ZERO, &cancel, &ctx)
7236 400 : .await?;
7237 : }
7238 :
7239 8 : Ok(())
7240 8 : }
7241 :
7242 : #[tokio::test]
7243 4 : async fn test_traverse_branches() -> anyhow::Result<()> {
7244 4 : let (tenant, ctx) = TenantHarness::create("test_traverse_branches")
7245 4 : .await?
7246 4 : .load()
7247 4 : .await;
7248 4 : let mut tline = tenant
7249 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
7250 4 : .await?;
7251 4 :
7252 4 : const NUM_KEYS: usize = 1000;
7253 4 :
7254 4 : let mut test_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
7255 4 :
7256 4 : let mut keyspace = KeySpaceAccum::new();
7257 4 :
7258 4 : let cancel = CancellationToken::new();
7259 4 :
7260 4 : // Track when each page was last modified. Used to assert that
7261 4 : // a read sees the latest page version.
7262 4 : let mut updated = [Lsn(0); NUM_KEYS];
7263 4 :
7264 4 : let mut lsn = Lsn(0x10);
7265 4 : #[allow(clippy::needless_range_loop)]
7266 4004 : for blknum in 0..NUM_KEYS {
7267 4000 : lsn = Lsn(lsn.0 + 0x10);
7268 4000 : test_key.field6 = blknum as u32;
7269 4000 : let mut writer = tline.writer().await;
7270 4000 : writer
7271 4000 : .put(
7272 4000 : test_key,
7273 4000 : lsn,
7274 4000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7275 4000 : &ctx,
7276 4000 : )
7277 4000 : .await?;
7278 4000 : writer.finish_write(lsn);
7279 4000 : updated[blknum] = lsn;
7280 4000 : drop(writer);
7281 4000 :
7282 4000 : keyspace.add_key(test_key);
7283 4 : }
7284 4 :
7285 204 : for _ in 0..50 {
7286 200 : let new_tline_id = TimelineId::generate();
7287 200 : tenant
7288 200 : .branch_timeline_test(&tline, new_tline_id, Some(lsn), &ctx)
7289 200 : .await?;
7290 200 : tline = tenant
7291 200 : .get_timeline(new_tline_id, true)
7292 200 : .expect("Should have the branched timeline");
7293 4 :
7294 200200 : for _ in 0..NUM_KEYS {
7295 200000 : lsn = Lsn(lsn.0 + 0x10);
7296 200000 : let blknum = thread_rng().gen_range(0..NUM_KEYS);
7297 200000 : test_key.field6 = blknum as u32;
7298 200000 : let mut writer = tline.writer().await;
7299 200000 : writer
7300 200000 : .put(
7301 200000 : test_key,
7302 200000 : lsn,
7303 200000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7304 200000 : &ctx,
7305 200000 : )
7306 200000 : .await?;
7307 200000 : println!("updating {} at {}", blknum, lsn);
7308 200000 : writer.finish_write(lsn);
7309 200000 : drop(writer);
7310 200000 : updated[blknum] = lsn;
7311 4 : }
7312 4 :
7313 4 : // Read all the blocks
7314 200000 : for (blknum, last_lsn) in updated.iter().enumerate() {
7315 200000 : test_key.field6 = blknum as u32;
7316 200000 : assert_eq!(
7317 200000 : tline.get(test_key, lsn, &ctx).await?,
7318 200000 : test_img(&format!("{} at {}", blknum, last_lsn))
7319 4 : );
7320 4 : }
7321 4 :
7322 4 : // Perform a cycle of flush, compact, and GC
7323 200 : tline.freeze_and_flush().await?;
7324 200 : tline.compact(&cancel, EnumSet::empty(), &ctx).await?;
7325 200 : tenant
7326 200 : .gc_iteration(Some(tline.timeline_id), 0, Duration::ZERO, &cancel, &ctx)
7327 200 : .await?;
7328 4 : }
7329 4 :
7330 4 : Ok(())
7331 4 : }
7332 :
7333 : #[tokio::test]
7334 4 : async fn test_traverse_ancestors() -> anyhow::Result<()> {
7335 4 : let (tenant, ctx) = TenantHarness::create("test_traverse_ancestors")
7336 4 : .await?
7337 4 : .load()
7338 4 : .await;
7339 4 : let mut tline = tenant
7340 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
7341 4 : .await?;
7342 4 :
7343 4 : const NUM_KEYS: usize = 100;
7344 4 : const NUM_TLINES: usize = 50;
7345 4 :
7346 4 : let mut test_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
7347 4 : // Track page mutation lsns across different timelines.
7348 4 : let mut updated = [[Lsn(0); NUM_KEYS]; NUM_TLINES];
7349 4 :
7350 4 : let mut lsn = Lsn(0x10);
7351 4 :
7352 4 : #[allow(clippy::needless_range_loop)]
7353 204 : for idx in 0..NUM_TLINES {
7354 200 : let new_tline_id = TimelineId::generate();
7355 200 : tenant
7356 200 : .branch_timeline_test(&tline, new_tline_id, Some(lsn), &ctx)
7357 200 : .await?;
7358 200 : tline = tenant
7359 200 : .get_timeline(new_tline_id, true)
7360 200 : .expect("Should have the branched timeline");
7361 4 :
7362 20200 : for _ in 0..NUM_KEYS {
7363 20000 : lsn = Lsn(lsn.0 + 0x10);
7364 20000 : let blknum = thread_rng().gen_range(0..NUM_KEYS);
7365 20000 : test_key.field6 = blknum as u32;
7366 20000 : let mut writer = tline.writer().await;
7367 20000 : writer
7368 20000 : .put(
7369 20000 : test_key,
7370 20000 : lsn,
7371 20000 : &Value::Image(test_img(&format!("{} {} at {}", idx, blknum, lsn))),
7372 20000 : &ctx,
7373 20000 : )
7374 20000 : .await?;
7375 20000 : println!("updating [{}][{}] at {}", idx, blknum, lsn);
7376 20000 : writer.finish_write(lsn);
7377 20000 : drop(writer);
7378 20000 : updated[idx][blknum] = lsn;
7379 4 : }
7380 4 : }
7381 4 :
7382 4 : // Read pages from leaf timeline across all ancestors.
7383 200 : for (idx, lsns) in updated.iter().enumerate() {
7384 20000 : for (blknum, lsn) in lsns.iter().enumerate() {
7385 4 : // Skip empty mutations.
7386 20000 : if lsn.0 == 0 {
7387 7343 : continue;
7388 12657 : }
7389 12657 : println!("checking [{idx}][{blknum}] at {lsn}");
7390 12657 : test_key.field6 = blknum as u32;
7391 12657 : assert_eq!(
7392 12657 : tline.get(test_key, *lsn, &ctx).await?,
7393 12657 : test_img(&format!("{idx} {blknum} at {lsn}"))
7394 4 : );
7395 4 : }
7396 4 : }
7397 4 : Ok(())
7398 4 : }
7399 :
7400 : #[tokio::test]
7401 4 : async fn test_write_at_initdb_lsn_takes_optimization_code_path() -> anyhow::Result<()> {
7402 4 : let (tenant, ctx) = TenantHarness::create("test_empty_test_timeline_is_usable")
7403 4 : .await?
7404 4 : .load()
7405 4 : .await;
7406 4 :
7407 4 : let initdb_lsn = Lsn(0x20);
7408 4 : let utline = tenant
7409 4 : .create_empty_timeline(TIMELINE_ID, initdb_lsn, DEFAULT_PG_VERSION, &ctx)
7410 4 : .await?;
7411 4 : let tline = utline.raw_timeline().unwrap();
7412 4 :
7413 4 : // Spawn flush loop now so that we can set the `expect_initdb_optimization`
7414 4 : tline.maybe_spawn_flush_loop();
7415 4 :
7416 4 : // Make sure the timeline has the minimum set of required keys for operation.
7417 4 : // The only operation you can always do on an empty timeline is to `put` new data.
7418 4 : // Except if you `put` at `initdb_lsn`.
7419 4 : // In that case, there's an optimization to directly create image layers instead of delta layers.
7420 4 : // It uses `repartition()`, which assumes some keys to be present.
7421 4 : // Let's make sure the test timeline can handle that case.
7422 4 : {
7423 4 : let mut state = tline.flush_loop_state.lock().unwrap();
7424 4 : assert_eq!(
7425 4 : timeline::FlushLoopState::Running {
7426 4 : expect_initdb_optimization: false,
7427 4 : initdb_optimization_count: 0,
7428 4 : },
7429 4 : *state
7430 4 : );
7431 4 : *state = timeline::FlushLoopState::Running {
7432 4 : expect_initdb_optimization: true,
7433 4 : initdb_optimization_count: 0,
7434 4 : };
7435 4 : }
7436 4 :
7437 4 : // Make writes at the initdb_lsn. When we flush it below, it should be handled by the optimization.
7438 4 : // As explained above, the optimization requires some keys to be present.
7439 4 : // As per `create_empty_timeline` documentation, use init_empty to set them.
7440 4 : // This is what `create_test_timeline` does, by the way.
7441 4 : let mut modification = tline.begin_modification(initdb_lsn);
7442 4 : modification
7443 4 : .init_empty_test_timeline()
7444 4 : .context("init_empty_test_timeline")?;
7445 4 : modification
7446 4 : .commit(&ctx)
7447 4 : .await
7448 4 : .context("commit init_empty_test_timeline modification")?;
7449 4 :
7450 4 : // Do the flush. The flush code will check the expectations that we set above.
7451 4 : tline.freeze_and_flush().await?;
7452 4 :
7453 4 : // assert freeze_and_flush exercised the initdb optimization
7454 4 : {
7455 4 : let state = tline.flush_loop_state.lock().unwrap();
7456 4 : let timeline::FlushLoopState::Running {
7457 4 : expect_initdb_optimization,
7458 4 : initdb_optimization_count,
7459 4 : } = *state
7460 4 : else {
7461 4 : panic!("unexpected state: {:?}", *state);
7462 4 : };
7463 4 : assert!(expect_initdb_optimization);
7464 4 : assert!(initdb_optimization_count > 0);
7465 4 : }
7466 4 : Ok(())
7467 4 : }
7468 :
7469 : #[tokio::test]
7470 4 : async fn test_create_guard_crash() -> anyhow::Result<()> {
7471 4 : let name = "test_create_guard_crash";
7472 4 : let harness = TenantHarness::create(name).await?;
7473 4 : {
7474 4 : let (tenant, ctx) = harness.load().await;
7475 4 : let tline = tenant
7476 4 : .create_empty_timeline(TIMELINE_ID, Lsn(0), DEFAULT_PG_VERSION, &ctx)
7477 4 : .await?;
7478 4 : // Leave the timeline ID in [`Tenant::timelines_creating`] to exclude attempting to create it again
7479 4 : let raw_tline = tline.raw_timeline().unwrap();
7480 4 : raw_tline
7481 4 : .shutdown(super::timeline::ShutdownMode::Hard)
7482 4 : .instrument(info_span!("test_shutdown", tenant_id=%raw_tline.tenant_shard_id, shard_id=%raw_tline.tenant_shard_id.shard_slug(), timeline_id=%TIMELINE_ID))
7483 4 : .await;
7484 4 : std::mem::forget(tline);
7485 4 : }
7486 4 :
7487 4 : let (tenant, _) = harness.load().await;
7488 4 : match tenant.get_timeline(TIMELINE_ID, false) {
7489 4 : Ok(_) => panic!("timeline should've been removed during load"),
7490 4 : Err(e) => {
7491 4 : assert_eq!(
7492 4 : e,
7493 4 : GetTimelineError::NotFound {
7494 4 : tenant_id: tenant.tenant_shard_id,
7495 4 : timeline_id: TIMELINE_ID,
7496 4 : }
7497 4 : )
7498 4 : }
7499 4 : }
7500 4 :
7501 4 : assert!(!harness
7502 4 : .conf
7503 4 : .timeline_path(&tenant.tenant_shard_id, &TIMELINE_ID)
7504 4 : .exists());
7505 4 :
7506 4 : Ok(())
7507 4 : }
7508 :
7509 : #[tokio::test]
7510 4 : async fn test_read_at_max_lsn() -> anyhow::Result<()> {
7511 4 : let names_algorithms = [
7512 4 : ("test_read_at_max_lsn_legacy", CompactionAlgorithm::Legacy),
7513 4 : ("test_read_at_max_lsn_tiered", CompactionAlgorithm::Tiered),
7514 4 : ];
7515 12 : for (name, algorithm) in names_algorithms {
7516 8 : test_read_at_max_lsn_algorithm(name, algorithm).await?;
7517 4 : }
7518 4 : Ok(())
7519 4 : }
7520 :
7521 8 : async fn test_read_at_max_lsn_algorithm(
7522 8 : name: &'static str,
7523 8 : compaction_algorithm: CompactionAlgorithm,
7524 8 : ) -> anyhow::Result<()> {
7525 8 : let mut harness = TenantHarness::create(name).await?;
7526 8 : harness.tenant_conf.compaction_algorithm = CompactionAlgorithmSettings {
7527 8 : kind: compaction_algorithm,
7528 8 : };
7529 8 : let (tenant, ctx) = harness.load().await;
7530 8 : let tline = tenant
7531 8 : .create_test_timeline(TIMELINE_ID, Lsn(0x08), DEFAULT_PG_VERSION, &ctx)
7532 8 : .await?;
7533 :
7534 8 : let lsn = Lsn(0x10);
7535 8 : let compact = false;
7536 8 : bulk_insert_maybe_compact_gc(&tenant, &tline, &ctx, lsn, 50, 10000, compact).await?;
7537 :
7538 8 : let test_key = Key::from_hex("010000000033333333444444445500000000").unwrap();
7539 8 : let read_lsn = Lsn(u64::MAX - 1);
7540 :
7541 8 : let result = tline.get(test_key, read_lsn, &ctx).await;
7542 8 : assert!(result.is_ok(), "result is not Ok: {}", result.unwrap_err());
7543 :
7544 8 : Ok(())
7545 8 : }
7546 :
7547 : #[tokio::test]
7548 4 : async fn test_metadata_scan() -> anyhow::Result<()> {
7549 4 : let harness = TenantHarness::create("test_metadata_scan").await?;
7550 4 : let (tenant, ctx) = harness.load().await;
7551 4 : let io_concurrency = IoConcurrency::spawn_for_test();
7552 4 : let tline = tenant
7553 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
7554 4 : .await?;
7555 4 :
7556 4 : const NUM_KEYS: usize = 1000;
7557 4 : const STEP: usize = 10000; // random update + scan base_key + idx * STEP
7558 4 :
7559 4 : let cancel = CancellationToken::new();
7560 4 :
7561 4 : let mut base_key = Key::from_hex("000000000033333333444444445500000000").unwrap();
7562 4 : base_key.field1 = AUX_KEY_PREFIX;
7563 4 : let mut test_key = base_key;
7564 4 :
7565 4 : // Track when each page was last modified. Used to assert that
7566 4 : // a read sees the latest page version.
7567 4 : let mut updated = [Lsn(0); NUM_KEYS];
7568 4 :
7569 4 : let mut lsn = Lsn(0x10);
7570 4 : #[allow(clippy::needless_range_loop)]
7571 4004 : for blknum in 0..NUM_KEYS {
7572 4000 : lsn = Lsn(lsn.0 + 0x10);
7573 4000 : test_key.field6 = (blknum * STEP) as u32;
7574 4000 : let mut writer = tline.writer().await;
7575 4000 : writer
7576 4000 : .put(
7577 4000 : test_key,
7578 4000 : lsn,
7579 4000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7580 4000 : &ctx,
7581 4000 : )
7582 4000 : .await?;
7583 4000 : writer.finish_write(lsn);
7584 4000 : updated[blknum] = lsn;
7585 4000 : drop(writer);
7586 4 : }
7587 4 :
7588 4 : let keyspace = KeySpace::single(base_key..base_key.add((NUM_KEYS * STEP) as u32));
7589 4 :
7590 48 : for iter in 0..=10 {
7591 4 : // Read all the blocks
7592 44000 : for (blknum, last_lsn) in updated.iter().enumerate() {
7593 44000 : test_key.field6 = (blknum * STEP) as u32;
7594 44000 : assert_eq!(
7595 44000 : tline.get(test_key, lsn, &ctx).await?,
7596 44000 : test_img(&format!("{} at {}", blknum, last_lsn))
7597 4 : );
7598 4 : }
7599 4 :
7600 44 : let mut cnt = 0;
7601 44000 : for (key, value) in tline
7602 44 : .get_vectored_impl(
7603 44 : keyspace.clone(),
7604 44 : lsn,
7605 44 : &mut ValuesReconstructState::new(io_concurrency.clone()),
7606 44 : &ctx,
7607 44 : )
7608 44 : .await?
7609 4 : {
7610 44000 : let blknum = key.field6 as usize;
7611 44000 : let value = value?;
7612 44000 : assert!(blknum % STEP == 0);
7613 44000 : let blknum = blknum / STEP;
7614 44000 : assert_eq!(
7615 44000 : value,
7616 44000 : test_img(&format!("{} at {}", blknum, updated[blknum]))
7617 44000 : );
7618 44000 : cnt += 1;
7619 4 : }
7620 4 :
7621 44 : assert_eq!(cnt, NUM_KEYS);
7622 4 :
7623 44044 : for _ in 0..NUM_KEYS {
7624 44000 : lsn = Lsn(lsn.0 + 0x10);
7625 44000 : let blknum = thread_rng().gen_range(0..NUM_KEYS);
7626 44000 : test_key.field6 = (blknum * STEP) as u32;
7627 44000 : let mut writer = tline.writer().await;
7628 44000 : writer
7629 44000 : .put(
7630 44000 : test_key,
7631 44000 : lsn,
7632 44000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7633 44000 : &ctx,
7634 44000 : )
7635 44000 : .await?;
7636 44000 : writer.finish_write(lsn);
7637 44000 : drop(writer);
7638 44000 : updated[blknum] = lsn;
7639 4 : }
7640 4 :
7641 4 : // Perform two cycles of flush, compact, and GC
7642 132 : for round in 0..2 {
7643 88 : tline.freeze_and_flush().await?;
7644 88 : tline
7645 88 : .compact(
7646 88 : &cancel,
7647 88 : if iter % 5 == 0 && round == 0 {
7648 12 : let mut flags = EnumSet::new();
7649 12 : flags.insert(CompactFlags::ForceImageLayerCreation);
7650 12 : flags.insert(CompactFlags::ForceRepartition);
7651 12 : flags
7652 4 : } else {
7653 76 : EnumSet::empty()
7654 4 : },
7655 88 : &ctx,
7656 88 : )
7657 88 : .await?;
7658 88 : tenant
7659 88 : .gc_iteration(Some(tline.timeline_id), 0, Duration::ZERO, &cancel, &ctx)
7660 88 : .await?;
7661 4 : }
7662 4 : }
7663 4 :
7664 4 : Ok(())
7665 4 : }
7666 :
7667 : #[tokio::test]
7668 4 : async fn test_metadata_compaction_trigger() -> anyhow::Result<()> {
7669 4 : let harness = TenantHarness::create("test_metadata_compaction_trigger").await?;
7670 4 : let (tenant, ctx) = harness.load().await;
7671 4 : let tline = tenant
7672 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
7673 4 : .await?;
7674 4 :
7675 4 : let cancel = CancellationToken::new();
7676 4 :
7677 4 : let mut base_key = Key::from_hex("000000000033333333444444445500000000").unwrap();
7678 4 : base_key.field1 = AUX_KEY_PREFIX;
7679 4 : let test_key = base_key;
7680 4 : let mut lsn = Lsn(0x10);
7681 4 :
7682 84 : for _ in 0..20 {
7683 80 : lsn = Lsn(lsn.0 + 0x10);
7684 80 : let mut writer = tline.writer().await;
7685 80 : writer
7686 80 : .put(
7687 80 : test_key,
7688 80 : lsn,
7689 80 : &Value::Image(test_img(&format!("{} at {}", 0, lsn))),
7690 80 : &ctx,
7691 80 : )
7692 80 : .await?;
7693 80 : writer.finish_write(lsn);
7694 80 : drop(writer);
7695 80 : tline.freeze_and_flush().await?; // force create a delta layer
7696 4 : }
7697 4 :
7698 4 : let before_num_l0_delta_files =
7699 4 : tline.layers.read().await.layer_map()?.level0_deltas().len();
7700 4 :
7701 4 : tline.compact(&cancel, EnumSet::empty(), &ctx).await?;
7702 4 :
7703 4 : let after_num_l0_delta_files = tline.layers.read().await.layer_map()?.level0_deltas().len();
7704 4 :
7705 4 : assert!(after_num_l0_delta_files < before_num_l0_delta_files, "after_num_l0_delta_files={after_num_l0_delta_files}, before_num_l0_delta_files={before_num_l0_delta_files}");
7706 4 :
7707 4 : assert_eq!(
7708 4 : tline.get(test_key, lsn, &ctx).await?,
7709 4 : test_img(&format!("{} at {}", 0, lsn))
7710 4 : );
7711 4 :
7712 4 : Ok(())
7713 4 : }
7714 :
7715 : #[tokio::test]
7716 4 : async fn test_aux_file_e2e() {
7717 4 : let harness = TenantHarness::create("test_aux_file_e2e").await.unwrap();
7718 4 :
7719 4 : let (tenant, ctx) = harness.load().await;
7720 4 : let io_concurrency = IoConcurrency::spawn_for_test();
7721 4 :
7722 4 : let mut lsn = Lsn(0x08);
7723 4 :
7724 4 : let tline: Arc<Timeline> = tenant
7725 4 : .create_test_timeline(TIMELINE_ID, lsn, DEFAULT_PG_VERSION, &ctx)
7726 4 : .await
7727 4 : .unwrap();
7728 4 :
7729 4 : {
7730 4 : lsn += 8;
7731 4 : let mut modification = tline.begin_modification(lsn);
7732 4 : modification
7733 4 : .put_file("pg_logical/mappings/test1", b"first", &ctx)
7734 4 : .await
7735 4 : .unwrap();
7736 4 : modification.commit(&ctx).await.unwrap();
7737 4 : }
7738 4 :
7739 4 : // we can read everything from the storage
7740 4 : let files = tline
7741 4 : .list_aux_files(lsn, &ctx, io_concurrency.clone())
7742 4 : .await
7743 4 : .unwrap();
7744 4 : assert_eq!(
7745 4 : files.get("pg_logical/mappings/test1"),
7746 4 : Some(&bytes::Bytes::from_static(b"first"))
7747 4 : );
7748 4 :
7749 4 : {
7750 4 : lsn += 8;
7751 4 : let mut modification = tline.begin_modification(lsn);
7752 4 : modification
7753 4 : .put_file("pg_logical/mappings/test2", b"second", &ctx)
7754 4 : .await
7755 4 : .unwrap();
7756 4 : modification.commit(&ctx).await.unwrap();
7757 4 : }
7758 4 :
7759 4 : let files = tline
7760 4 : .list_aux_files(lsn, &ctx, io_concurrency.clone())
7761 4 : .await
7762 4 : .unwrap();
7763 4 : assert_eq!(
7764 4 : files.get("pg_logical/mappings/test2"),
7765 4 : Some(&bytes::Bytes::from_static(b"second"))
7766 4 : );
7767 4 :
7768 4 : let child = tenant
7769 4 : .branch_timeline_test(&tline, NEW_TIMELINE_ID, Some(lsn), &ctx)
7770 4 : .await
7771 4 : .unwrap();
7772 4 :
7773 4 : let files = child
7774 4 : .list_aux_files(lsn, &ctx, io_concurrency.clone())
7775 4 : .await
7776 4 : .unwrap();
7777 4 : assert_eq!(files.get("pg_logical/mappings/test1"), None);
7778 4 : assert_eq!(files.get("pg_logical/mappings/test2"), None);
7779 4 : }
7780 :
7781 : #[tokio::test]
7782 4 : async fn test_metadata_image_creation() -> anyhow::Result<()> {
7783 4 : let harness = TenantHarness::create("test_metadata_image_creation").await?;
7784 4 : let (tenant, ctx) = harness.load().await;
7785 4 : let io_concurrency = IoConcurrency::spawn_for_test();
7786 4 : let tline = tenant
7787 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
7788 4 : .await?;
7789 4 :
7790 4 : const NUM_KEYS: usize = 1000;
7791 4 : const STEP: usize = 10000; // random update + scan base_key + idx * STEP
7792 4 :
7793 4 : let cancel = CancellationToken::new();
7794 4 :
7795 4 : let base_key = Key::from_hex("620000000033333333444444445500000000").unwrap();
7796 4 : assert_eq!(base_key.field1, AUX_KEY_PREFIX); // in case someone accidentally changed the prefix...
7797 4 : let mut test_key = base_key;
7798 4 : let mut lsn = Lsn(0x10);
7799 4 :
7800 16 : async fn scan_with_statistics(
7801 16 : tline: &Timeline,
7802 16 : keyspace: &KeySpace,
7803 16 : lsn: Lsn,
7804 16 : ctx: &RequestContext,
7805 16 : io_concurrency: IoConcurrency,
7806 16 : ) -> anyhow::Result<(BTreeMap<Key, Result<Bytes, PageReconstructError>>, usize)> {
7807 16 : let mut reconstruct_state = ValuesReconstructState::new(io_concurrency);
7808 16 : let res = tline
7809 16 : .get_vectored_impl(keyspace.clone(), lsn, &mut reconstruct_state, ctx)
7810 16 : .await?;
7811 16 : Ok((res, reconstruct_state.get_delta_layers_visited() as usize))
7812 16 : }
7813 4 :
7814 4 : #[allow(clippy::needless_range_loop)]
7815 4004 : for blknum in 0..NUM_KEYS {
7816 4000 : lsn = Lsn(lsn.0 + 0x10);
7817 4000 : test_key.field6 = (blknum * STEP) as u32;
7818 4000 : let mut writer = tline.writer().await;
7819 4000 : writer
7820 4000 : .put(
7821 4000 : test_key,
7822 4000 : lsn,
7823 4000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7824 4000 : &ctx,
7825 4000 : )
7826 4000 : .await?;
7827 4000 : writer.finish_write(lsn);
7828 4000 : drop(writer);
7829 4 : }
7830 4 :
7831 4 : let keyspace = KeySpace::single(base_key..base_key.add((NUM_KEYS * STEP) as u32));
7832 4 :
7833 44 : for iter in 1..=10 {
7834 40040 : for _ in 0..NUM_KEYS {
7835 40000 : lsn = Lsn(lsn.0 + 0x10);
7836 40000 : let blknum = thread_rng().gen_range(0..NUM_KEYS);
7837 40000 : test_key.field6 = (blknum * STEP) as u32;
7838 40000 : let mut writer = tline.writer().await;
7839 40000 : writer
7840 40000 : .put(
7841 40000 : test_key,
7842 40000 : lsn,
7843 40000 : &Value::Image(test_img(&format!("{} at {}", blknum, lsn))),
7844 40000 : &ctx,
7845 40000 : )
7846 40000 : .await?;
7847 40000 : writer.finish_write(lsn);
7848 40000 : drop(writer);
7849 4 : }
7850 4 :
7851 40 : tline.freeze_and_flush().await?;
7852 4 :
7853 40 : if iter % 5 == 0 {
7854 8 : let (_, before_delta_file_accessed) =
7855 8 : scan_with_statistics(&tline, &keyspace, lsn, &ctx, io_concurrency.clone())
7856 8 : .await?;
7857 8 : tline
7858 8 : .compact(
7859 8 : &cancel,
7860 8 : {
7861 8 : let mut flags = EnumSet::new();
7862 8 : flags.insert(CompactFlags::ForceImageLayerCreation);
7863 8 : flags.insert(CompactFlags::ForceRepartition);
7864 8 : flags
7865 8 : },
7866 8 : &ctx,
7867 8 : )
7868 8 : .await?;
7869 8 : let (_, after_delta_file_accessed) =
7870 8 : scan_with_statistics(&tline, &keyspace, lsn, &ctx, io_concurrency.clone())
7871 8 : .await?;
7872 8 : assert!(after_delta_file_accessed < before_delta_file_accessed, "after_delta_file_accessed={after_delta_file_accessed}, before_delta_file_accessed={before_delta_file_accessed}");
7873 4 : // Given that we already produced an image layer, there should be no delta layer needed for the scan, but still setting a low threshold there for unforeseen circumstances.
7874 8 : assert!(
7875 8 : after_delta_file_accessed <= 2,
7876 4 : "after_delta_file_accessed={after_delta_file_accessed}"
7877 4 : );
7878 32 : }
7879 4 : }
7880 4 :
7881 4 : Ok(())
7882 4 : }
7883 :
7884 : #[tokio::test]
7885 4 : async fn test_vectored_missing_data_key_reads() -> anyhow::Result<()> {
7886 4 : let harness = TenantHarness::create("test_vectored_missing_data_key_reads").await?;
7887 4 : let (tenant, ctx) = harness.load().await;
7888 4 :
7889 4 : let base_key = Key::from_hex("000000000033333333444444445500000000").unwrap();
7890 4 : let base_key_child = Key::from_hex("000000000033333333444444445500000001").unwrap();
7891 4 : let base_key_nonexist = Key::from_hex("000000000033333333444444445500000002").unwrap();
7892 4 :
7893 4 : let tline = tenant
7894 4 : .create_test_timeline_with_layers(
7895 4 : TIMELINE_ID,
7896 4 : Lsn(0x10),
7897 4 : DEFAULT_PG_VERSION,
7898 4 : &ctx,
7899 4 : Vec::new(), // delta layers
7900 4 : vec![(Lsn(0x20), vec![(base_key, test_img("data key 1"))])], // image layers
7901 4 : Lsn(0x20), // it's fine to not advance LSN to 0x30 while using 0x30 to get below because `get_vectored_impl` does not wait for LSN
7902 4 : )
7903 4 : .await?;
7904 4 : tline.add_extra_test_dense_keyspace(KeySpace::single(base_key..(base_key_nonexist.next())));
7905 4 :
7906 4 : let child = tenant
7907 4 : .branch_timeline_test_with_layers(
7908 4 : &tline,
7909 4 : NEW_TIMELINE_ID,
7910 4 : Some(Lsn(0x20)),
7911 4 : &ctx,
7912 4 : Vec::new(), // delta layers
7913 4 : vec![(Lsn(0x30), vec![(base_key_child, test_img("data key 2"))])], // image layers
7914 4 : Lsn(0x30),
7915 4 : )
7916 4 : .await
7917 4 : .unwrap();
7918 4 :
7919 4 : let lsn = Lsn(0x30);
7920 4 :
7921 4 : // test vectored get on parent timeline
7922 4 : assert_eq!(
7923 4 : get_vectored_impl_wrapper(&tline, base_key, lsn, &ctx).await?,
7924 4 : Some(test_img("data key 1"))
7925 4 : );
7926 4 : assert!(get_vectored_impl_wrapper(&tline, base_key_child, lsn, &ctx)
7927 4 : .await
7928 4 : .unwrap_err()
7929 4 : .is_missing_key_error());
7930 4 : assert!(
7931 4 : get_vectored_impl_wrapper(&tline, base_key_nonexist, lsn, &ctx)
7932 4 : .await
7933 4 : .unwrap_err()
7934 4 : .is_missing_key_error()
7935 4 : );
7936 4 :
7937 4 : // test vectored get on child timeline
7938 4 : assert_eq!(
7939 4 : get_vectored_impl_wrapper(&child, base_key, lsn, &ctx).await?,
7940 4 : Some(test_img("data key 1"))
7941 4 : );
7942 4 : assert_eq!(
7943 4 : get_vectored_impl_wrapper(&child, base_key_child, lsn, &ctx).await?,
7944 4 : Some(test_img("data key 2"))
7945 4 : );
7946 4 : assert!(
7947 4 : get_vectored_impl_wrapper(&child, base_key_nonexist, lsn, &ctx)
7948 4 : .await
7949 4 : .unwrap_err()
7950 4 : .is_missing_key_error()
7951 4 : );
7952 4 :
7953 4 : Ok(())
7954 4 : }
7955 :
7956 : #[tokio::test]
7957 4 : async fn test_vectored_missing_metadata_key_reads() -> anyhow::Result<()> {
7958 4 : let harness = TenantHarness::create("test_vectored_missing_metadata_key_reads").await?;
7959 4 : let (tenant, ctx) = harness.load().await;
7960 4 : let io_concurrency = IoConcurrency::spawn_for_test();
7961 4 :
7962 4 : let base_key = Key::from_hex("620000000033333333444444445500000000").unwrap();
7963 4 : let base_key_child = Key::from_hex("620000000033333333444444445500000001").unwrap();
7964 4 : let base_key_nonexist = Key::from_hex("620000000033333333444444445500000002").unwrap();
7965 4 : let base_key_overwrite = Key::from_hex("620000000033333333444444445500000003").unwrap();
7966 4 :
7967 4 : let base_inherited_key = Key::from_hex("610000000033333333444444445500000000").unwrap();
7968 4 : let base_inherited_key_child =
7969 4 : Key::from_hex("610000000033333333444444445500000001").unwrap();
7970 4 : let base_inherited_key_nonexist =
7971 4 : Key::from_hex("610000000033333333444444445500000002").unwrap();
7972 4 : let base_inherited_key_overwrite =
7973 4 : Key::from_hex("610000000033333333444444445500000003").unwrap();
7974 4 :
7975 4 : assert_eq!(base_key.field1, AUX_KEY_PREFIX); // in case someone accidentally changed the prefix...
7976 4 : assert_eq!(base_inherited_key.field1, RELATION_SIZE_PREFIX);
7977 4 :
7978 4 : let tline = tenant
7979 4 : .create_test_timeline_with_layers(
7980 4 : TIMELINE_ID,
7981 4 : Lsn(0x10),
7982 4 : DEFAULT_PG_VERSION,
7983 4 : &ctx,
7984 4 : Vec::new(), // delta layers
7985 4 : vec![(
7986 4 : Lsn(0x20),
7987 4 : vec![
7988 4 : (base_inherited_key, test_img("metadata inherited key 1")),
7989 4 : (
7990 4 : base_inherited_key_overwrite,
7991 4 : test_img("metadata key overwrite 1a"),
7992 4 : ),
7993 4 : (base_key, test_img("metadata key 1")),
7994 4 : (base_key_overwrite, test_img("metadata key overwrite 1b")),
7995 4 : ],
7996 4 : )], // image layers
7997 4 : Lsn(0x20), // it's fine to not advance LSN to 0x30 while using 0x30 to get below because `get_vectored_impl` does not wait for LSN
7998 4 : )
7999 4 : .await?;
8000 4 :
8001 4 : let child = tenant
8002 4 : .branch_timeline_test_with_layers(
8003 4 : &tline,
8004 4 : NEW_TIMELINE_ID,
8005 4 : Some(Lsn(0x20)),
8006 4 : &ctx,
8007 4 : Vec::new(), // delta layers
8008 4 : vec![(
8009 4 : Lsn(0x30),
8010 4 : vec![
8011 4 : (
8012 4 : base_inherited_key_child,
8013 4 : test_img("metadata inherited key 2"),
8014 4 : ),
8015 4 : (
8016 4 : base_inherited_key_overwrite,
8017 4 : test_img("metadata key overwrite 2a"),
8018 4 : ),
8019 4 : (base_key_child, test_img("metadata key 2")),
8020 4 : (base_key_overwrite, test_img("metadata key overwrite 2b")),
8021 4 : ],
8022 4 : )], // image layers
8023 4 : Lsn(0x30),
8024 4 : )
8025 4 : .await
8026 4 : .unwrap();
8027 4 :
8028 4 : let lsn = Lsn(0x30);
8029 4 :
8030 4 : // test vectored get on parent timeline
8031 4 : assert_eq!(
8032 4 : get_vectored_impl_wrapper(&tline, base_key, lsn, &ctx).await?,
8033 4 : Some(test_img("metadata key 1"))
8034 4 : );
8035 4 : assert_eq!(
8036 4 : get_vectored_impl_wrapper(&tline, base_key_child, lsn, &ctx).await?,
8037 4 : None
8038 4 : );
8039 4 : assert_eq!(
8040 4 : get_vectored_impl_wrapper(&tline, base_key_nonexist, lsn, &ctx).await?,
8041 4 : None
8042 4 : );
8043 4 : assert_eq!(
8044 4 : get_vectored_impl_wrapper(&tline, base_key_overwrite, lsn, &ctx).await?,
8045 4 : Some(test_img("metadata key overwrite 1b"))
8046 4 : );
8047 4 : assert_eq!(
8048 4 : get_vectored_impl_wrapper(&tline, base_inherited_key, lsn, &ctx).await?,
8049 4 : Some(test_img("metadata inherited key 1"))
8050 4 : );
8051 4 : assert_eq!(
8052 4 : get_vectored_impl_wrapper(&tline, base_inherited_key_child, lsn, &ctx).await?,
8053 4 : None
8054 4 : );
8055 4 : assert_eq!(
8056 4 : get_vectored_impl_wrapper(&tline, base_inherited_key_nonexist, lsn, &ctx).await?,
8057 4 : None
8058 4 : );
8059 4 : assert_eq!(
8060 4 : get_vectored_impl_wrapper(&tline, base_inherited_key_overwrite, lsn, &ctx).await?,
8061 4 : Some(test_img("metadata key overwrite 1a"))
8062 4 : );
8063 4 :
8064 4 : // test vectored get on child timeline
8065 4 : assert_eq!(
8066 4 : get_vectored_impl_wrapper(&child, base_key, lsn, &ctx).await?,
8067 4 : None
8068 4 : );
8069 4 : assert_eq!(
8070 4 : get_vectored_impl_wrapper(&child, base_key_child, lsn, &ctx).await?,
8071 4 : Some(test_img("metadata key 2"))
8072 4 : );
8073 4 : assert_eq!(
8074 4 : get_vectored_impl_wrapper(&child, base_key_nonexist, lsn, &ctx).await?,
8075 4 : None
8076 4 : );
8077 4 : assert_eq!(
8078 4 : get_vectored_impl_wrapper(&child, base_inherited_key, lsn, &ctx).await?,
8079 4 : Some(test_img("metadata inherited key 1"))
8080 4 : );
8081 4 : assert_eq!(
8082 4 : get_vectored_impl_wrapper(&child, base_inherited_key_child, lsn, &ctx).await?,
8083 4 : Some(test_img("metadata inherited key 2"))
8084 4 : );
8085 4 : assert_eq!(
8086 4 : get_vectored_impl_wrapper(&child, base_inherited_key_nonexist, lsn, &ctx).await?,
8087 4 : None
8088 4 : );
8089 4 : assert_eq!(
8090 4 : get_vectored_impl_wrapper(&child, base_key_overwrite, lsn, &ctx).await?,
8091 4 : Some(test_img("metadata key overwrite 2b"))
8092 4 : );
8093 4 : assert_eq!(
8094 4 : get_vectored_impl_wrapper(&child, base_inherited_key_overwrite, lsn, &ctx).await?,
8095 4 : Some(test_img("metadata key overwrite 2a"))
8096 4 : );
8097 4 :
8098 4 : // test vectored scan on parent timeline
8099 4 : let mut reconstruct_state = ValuesReconstructState::new(io_concurrency.clone());
8100 4 : let res = tline
8101 4 : .get_vectored_impl(
8102 4 : KeySpace::single(Key::metadata_key_range()),
8103 4 : lsn,
8104 4 : &mut reconstruct_state,
8105 4 : &ctx,
8106 4 : )
8107 4 : .await?;
8108 4 :
8109 4 : assert_eq!(
8110 4 : res.into_iter()
8111 16 : .map(|(k, v)| (k, v.unwrap()))
8112 4 : .collect::<Vec<_>>(),
8113 4 : vec![
8114 4 : (base_inherited_key, test_img("metadata inherited key 1")),
8115 4 : (
8116 4 : base_inherited_key_overwrite,
8117 4 : test_img("metadata key overwrite 1a")
8118 4 : ),
8119 4 : (base_key, test_img("metadata key 1")),
8120 4 : (base_key_overwrite, test_img("metadata key overwrite 1b")),
8121 4 : ]
8122 4 : );
8123 4 :
8124 4 : // test vectored scan on child timeline
8125 4 : let mut reconstruct_state = ValuesReconstructState::new(io_concurrency.clone());
8126 4 : let res = child
8127 4 : .get_vectored_impl(
8128 4 : KeySpace::single(Key::metadata_key_range()),
8129 4 : lsn,
8130 4 : &mut reconstruct_state,
8131 4 : &ctx,
8132 4 : )
8133 4 : .await?;
8134 4 :
8135 4 : assert_eq!(
8136 4 : res.into_iter()
8137 20 : .map(|(k, v)| (k, v.unwrap()))
8138 4 : .collect::<Vec<_>>(),
8139 4 : vec![
8140 4 : (base_inherited_key, test_img("metadata inherited key 1")),
8141 4 : (
8142 4 : base_inherited_key_child,
8143 4 : test_img("metadata inherited key 2")
8144 4 : ),
8145 4 : (
8146 4 : base_inherited_key_overwrite,
8147 4 : test_img("metadata key overwrite 2a")
8148 4 : ),
8149 4 : (base_key_child, test_img("metadata key 2")),
8150 4 : (base_key_overwrite, test_img("metadata key overwrite 2b")),
8151 4 : ]
8152 4 : );
8153 4 :
8154 4 : Ok(())
8155 4 : }
8156 :
8157 112 : async fn get_vectored_impl_wrapper(
8158 112 : tline: &Arc<Timeline>,
8159 112 : key: Key,
8160 112 : lsn: Lsn,
8161 112 : ctx: &RequestContext,
8162 112 : ) -> Result<Option<Bytes>, GetVectoredError> {
8163 112 : let io_concurrency =
8164 112 : IoConcurrency::spawn_from_conf(tline.conf, tline.gate.enter().unwrap());
8165 112 : let mut reconstruct_state = ValuesReconstructState::new(io_concurrency);
8166 112 : let mut res = tline
8167 112 : .get_vectored_impl(
8168 112 : KeySpace::single(key..key.next()),
8169 112 : lsn,
8170 112 : &mut reconstruct_state,
8171 112 : ctx,
8172 112 : )
8173 112 : .await?;
8174 100 : Ok(res.pop_last().map(|(k, v)| {
8175 64 : assert_eq!(k, key);
8176 64 : v.unwrap()
8177 100 : }))
8178 112 : }
8179 :
8180 : #[tokio::test]
8181 4 : async fn test_metadata_tombstone_reads() -> anyhow::Result<()> {
8182 4 : let harness = TenantHarness::create("test_metadata_tombstone_reads").await?;
8183 4 : let (tenant, ctx) = harness.load().await;
8184 4 : let key0 = Key::from_hex("620000000033333333444444445500000000").unwrap();
8185 4 : let key1 = Key::from_hex("620000000033333333444444445500000001").unwrap();
8186 4 : let key2 = Key::from_hex("620000000033333333444444445500000002").unwrap();
8187 4 : let key3 = Key::from_hex("620000000033333333444444445500000003").unwrap();
8188 4 :
8189 4 : // We emulate the situation that the compaction algorithm creates an image layer that removes the tombstones
8190 4 : // Lsn 0x30 key0, key3, no key1+key2
8191 4 : // Lsn 0x20 key1+key2 tomestones
8192 4 : // Lsn 0x10 key1 in image, key2 in delta
8193 4 : let tline = tenant
8194 4 : .create_test_timeline_with_layers(
8195 4 : TIMELINE_ID,
8196 4 : Lsn(0x10),
8197 4 : DEFAULT_PG_VERSION,
8198 4 : &ctx,
8199 4 : // delta layers
8200 4 : vec![
8201 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8202 4 : Lsn(0x10)..Lsn(0x20),
8203 4 : vec![(key2, Lsn(0x10), Value::Image(test_img("metadata key 2")))],
8204 4 : ),
8205 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8206 4 : Lsn(0x20)..Lsn(0x30),
8207 4 : vec![(key1, Lsn(0x20), Value::Image(Bytes::new()))],
8208 4 : ),
8209 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8210 4 : Lsn(0x20)..Lsn(0x30),
8211 4 : vec![(key2, Lsn(0x20), Value::Image(Bytes::new()))],
8212 4 : ),
8213 4 : ],
8214 4 : // image layers
8215 4 : vec![
8216 4 : (Lsn(0x10), vec![(key1, test_img("metadata key 1"))]),
8217 4 : (
8218 4 : Lsn(0x30),
8219 4 : vec![
8220 4 : (key0, test_img("metadata key 0")),
8221 4 : (key3, test_img("metadata key 3")),
8222 4 : ],
8223 4 : ),
8224 4 : ],
8225 4 : Lsn(0x30),
8226 4 : )
8227 4 : .await?;
8228 4 :
8229 4 : let lsn = Lsn(0x30);
8230 4 : let old_lsn = Lsn(0x20);
8231 4 :
8232 4 : assert_eq!(
8233 4 : get_vectored_impl_wrapper(&tline, key0, lsn, &ctx).await?,
8234 4 : Some(test_img("metadata key 0"))
8235 4 : );
8236 4 : assert_eq!(
8237 4 : get_vectored_impl_wrapper(&tline, key1, lsn, &ctx).await?,
8238 4 : None,
8239 4 : );
8240 4 : assert_eq!(
8241 4 : get_vectored_impl_wrapper(&tline, key2, lsn, &ctx).await?,
8242 4 : None,
8243 4 : );
8244 4 : assert_eq!(
8245 4 : get_vectored_impl_wrapper(&tline, key1, old_lsn, &ctx).await?,
8246 4 : Some(Bytes::new()),
8247 4 : );
8248 4 : assert_eq!(
8249 4 : get_vectored_impl_wrapper(&tline, key2, old_lsn, &ctx).await?,
8250 4 : Some(Bytes::new()),
8251 4 : );
8252 4 : assert_eq!(
8253 4 : get_vectored_impl_wrapper(&tline, key3, lsn, &ctx).await?,
8254 4 : Some(test_img("metadata key 3"))
8255 4 : );
8256 4 :
8257 4 : Ok(())
8258 4 : }
8259 :
8260 : #[tokio::test]
8261 4 : async fn test_metadata_tombstone_image_creation() {
8262 4 : let harness = TenantHarness::create("test_metadata_tombstone_image_creation")
8263 4 : .await
8264 4 : .unwrap();
8265 4 : let (tenant, ctx) = harness.load().await;
8266 4 : let io_concurrency = IoConcurrency::spawn_for_test();
8267 4 :
8268 4 : let key0 = Key::from_hex("620000000033333333444444445500000000").unwrap();
8269 4 : let key1 = Key::from_hex("620000000033333333444444445500000001").unwrap();
8270 4 : let key2 = Key::from_hex("620000000033333333444444445500000002").unwrap();
8271 4 : let key3 = Key::from_hex("620000000033333333444444445500000003").unwrap();
8272 4 :
8273 4 : let tline = tenant
8274 4 : .create_test_timeline_with_layers(
8275 4 : TIMELINE_ID,
8276 4 : Lsn(0x10),
8277 4 : DEFAULT_PG_VERSION,
8278 4 : &ctx,
8279 4 : // delta layers
8280 4 : vec![
8281 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8282 4 : Lsn(0x10)..Lsn(0x20),
8283 4 : vec![(key2, Lsn(0x10), Value::Image(test_img("metadata key 2")))],
8284 4 : ),
8285 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8286 4 : Lsn(0x20)..Lsn(0x30),
8287 4 : vec![(key1, Lsn(0x20), Value::Image(Bytes::new()))],
8288 4 : ),
8289 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8290 4 : Lsn(0x20)..Lsn(0x30),
8291 4 : vec![(key2, Lsn(0x20), Value::Image(Bytes::new()))],
8292 4 : ),
8293 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8294 4 : Lsn(0x30)..Lsn(0x40),
8295 4 : vec![
8296 4 : (key0, Lsn(0x30), Value::Image(test_img("metadata key 0"))),
8297 4 : (key3, Lsn(0x30), Value::Image(test_img("metadata key 3"))),
8298 4 : ],
8299 4 : ),
8300 4 : ],
8301 4 : // image layers
8302 4 : vec![(Lsn(0x10), vec![(key1, test_img("metadata key 1"))])],
8303 4 : Lsn(0x40),
8304 4 : )
8305 4 : .await
8306 4 : .unwrap();
8307 4 :
8308 4 : let cancel = CancellationToken::new();
8309 4 :
8310 4 : tline
8311 4 : .compact(
8312 4 : &cancel,
8313 4 : {
8314 4 : let mut flags = EnumSet::new();
8315 4 : flags.insert(CompactFlags::ForceImageLayerCreation);
8316 4 : flags.insert(CompactFlags::ForceRepartition);
8317 4 : flags
8318 4 : },
8319 4 : &ctx,
8320 4 : )
8321 4 : .await
8322 4 : .unwrap();
8323 4 :
8324 4 : // Image layers are created at last_record_lsn
8325 4 : let images = tline
8326 4 : .inspect_image_layers(Lsn(0x40), &ctx, io_concurrency.clone())
8327 4 : .await
8328 4 : .unwrap()
8329 4 : .into_iter()
8330 36 : .filter(|(k, _)| k.is_metadata_key())
8331 4 : .collect::<Vec<_>>();
8332 4 : assert_eq!(images.len(), 2); // the image layer should only contain two existing keys, tombstones should be removed.
8333 4 : }
8334 :
8335 : #[tokio::test]
8336 4 : async fn test_metadata_tombstone_empty_image_creation() {
8337 4 : let harness = TenantHarness::create("test_metadata_tombstone_empty_image_creation")
8338 4 : .await
8339 4 : .unwrap();
8340 4 : let (tenant, ctx) = harness.load().await;
8341 4 : let io_concurrency = IoConcurrency::spawn_for_test();
8342 4 :
8343 4 : let key1 = Key::from_hex("620000000033333333444444445500000001").unwrap();
8344 4 : let key2 = Key::from_hex("620000000033333333444444445500000002").unwrap();
8345 4 :
8346 4 : let tline = tenant
8347 4 : .create_test_timeline_with_layers(
8348 4 : TIMELINE_ID,
8349 4 : Lsn(0x10),
8350 4 : DEFAULT_PG_VERSION,
8351 4 : &ctx,
8352 4 : // delta layers
8353 4 : vec![
8354 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8355 4 : Lsn(0x10)..Lsn(0x20),
8356 4 : vec![(key2, Lsn(0x10), Value::Image(test_img("metadata key 2")))],
8357 4 : ),
8358 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8359 4 : Lsn(0x20)..Lsn(0x30),
8360 4 : vec![(key1, Lsn(0x20), Value::Image(Bytes::new()))],
8361 4 : ),
8362 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8363 4 : Lsn(0x20)..Lsn(0x30),
8364 4 : vec![(key2, Lsn(0x20), Value::Image(Bytes::new()))],
8365 4 : ),
8366 4 : ],
8367 4 : // image layers
8368 4 : vec![(Lsn(0x10), vec![(key1, test_img("metadata key 1"))])],
8369 4 : Lsn(0x30),
8370 4 : )
8371 4 : .await
8372 4 : .unwrap();
8373 4 :
8374 4 : let cancel = CancellationToken::new();
8375 4 :
8376 4 : tline
8377 4 : .compact(
8378 4 : &cancel,
8379 4 : {
8380 4 : let mut flags = EnumSet::new();
8381 4 : flags.insert(CompactFlags::ForceImageLayerCreation);
8382 4 : flags.insert(CompactFlags::ForceRepartition);
8383 4 : flags
8384 4 : },
8385 4 : &ctx,
8386 4 : )
8387 4 : .await
8388 4 : .unwrap();
8389 4 :
8390 4 : // Image layers are created at last_record_lsn
8391 4 : let images = tline
8392 4 : .inspect_image_layers(Lsn(0x30), &ctx, io_concurrency.clone())
8393 4 : .await
8394 4 : .unwrap()
8395 4 : .into_iter()
8396 28 : .filter(|(k, _)| k.is_metadata_key())
8397 4 : .collect::<Vec<_>>();
8398 4 : assert_eq!(images.len(), 0); // the image layer should not contain tombstones, or it is not created
8399 4 : }
8400 :
8401 : #[tokio::test]
8402 4 : async fn test_simple_bottom_most_compaction_images() -> anyhow::Result<()> {
8403 4 : let harness = TenantHarness::create("test_simple_bottom_most_compaction_images").await?;
8404 4 : let (tenant, ctx) = harness.load().await;
8405 4 : let io_concurrency = IoConcurrency::spawn_for_test();
8406 4 :
8407 204 : fn get_key(id: u32) -> Key {
8408 204 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
8409 204 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
8410 204 : key.field6 = id;
8411 204 : key
8412 204 : }
8413 4 :
8414 4 : // We create
8415 4 : // - one bottom-most image layer,
8416 4 : // - a delta layer D1 crossing the GC horizon with data below and above the horizon,
8417 4 : // - a delta layer D2 crossing the GC horizon with data only below the horizon,
8418 4 : // - a delta layer D3 above the horizon.
8419 4 : //
8420 4 : // | D3 |
8421 4 : // | D1 |
8422 4 : // -| |-- gc horizon -----------------
8423 4 : // | | | D2 |
8424 4 : // --------- img layer ------------------
8425 4 : //
8426 4 : // What we should expact from this compaction is:
8427 4 : // | D3 |
8428 4 : // | Part of D1 |
8429 4 : // --------- img layer with D1+D2 at GC horizon------------------
8430 4 :
8431 4 : // img layer at 0x10
8432 4 : let img_layer = (0..10)
8433 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
8434 4 : .collect_vec();
8435 4 :
8436 4 : let delta1 = vec![
8437 4 : (
8438 4 : get_key(1),
8439 4 : Lsn(0x20),
8440 4 : Value::Image(Bytes::from("value 1@0x20")),
8441 4 : ),
8442 4 : (
8443 4 : get_key(2),
8444 4 : Lsn(0x30),
8445 4 : Value::Image(Bytes::from("value 2@0x30")),
8446 4 : ),
8447 4 : (
8448 4 : get_key(3),
8449 4 : Lsn(0x40),
8450 4 : Value::Image(Bytes::from("value 3@0x40")),
8451 4 : ),
8452 4 : ];
8453 4 : let delta2 = vec![
8454 4 : (
8455 4 : get_key(5),
8456 4 : Lsn(0x20),
8457 4 : Value::Image(Bytes::from("value 5@0x20")),
8458 4 : ),
8459 4 : (
8460 4 : get_key(6),
8461 4 : Lsn(0x20),
8462 4 : Value::Image(Bytes::from("value 6@0x20")),
8463 4 : ),
8464 4 : ];
8465 4 : let delta3 = vec![
8466 4 : (
8467 4 : get_key(8),
8468 4 : Lsn(0x48),
8469 4 : Value::Image(Bytes::from("value 8@0x48")),
8470 4 : ),
8471 4 : (
8472 4 : get_key(9),
8473 4 : Lsn(0x48),
8474 4 : Value::Image(Bytes::from("value 9@0x48")),
8475 4 : ),
8476 4 : ];
8477 4 :
8478 4 : let tline = tenant
8479 4 : .create_test_timeline_with_layers(
8480 4 : TIMELINE_ID,
8481 4 : Lsn(0x10),
8482 4 : DEFAULT_PG_VERSION,
8483 4 : &ctx,
8484 4 : vec![
8485 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x48), delta1),
8486 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x48), delta2),
8487 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x48)..Lsn(0x50), delta3),
8488 4 : ], // delta layers
8489 4 : vec![(Lsn(0x10), img_layer)], // image layers
8490 4 : Lsn(0x50),
8491 4 : )
8492 4 : .await?;
8493 4 : {
8494 4 : tline
8495 4 : .applied_gc_cutoff_lsn
8496 4 : .lock_for_write()
8497 4 : .store_and_unlock(Lsn(0x30))
8498 4 : .wait()
8499 4 : .await;
8500 4 : // Update GC info
8501 4 : let mut guard = tline.gc_info.write().unwrap();
8502 4 : guard.cutoffs.time = Lsn(0x30);
8503 4 : guard.cutoffs.space = Lsn(0x30);
8504 4 : }
8505 4 :
8506 4 : let expected_result = [
8507 4 : Bytes::from_static(b"value 0@0x10"),
8508 4 : Bytes::from_static(b"value 1@0x20"),
8509 4 : Bytes::from_static(b"value 2@0x30"),
8510 4 : Bytes::from_static(b"value 3@0x40"),
8511 4 : Bytes::from_static(b"value 4@0x10"),
8512 4 : Bytes::from_static(b"value 5@0x20"),
8513 4 : Bytes::from_static(b"value 6@0x20"),
8514 4 : Bytes::from_static(b"value 7@0x10"),
8515 4 : Bytes::from_static(b"value 8@0x48"),
8516 4 : Bytes::from_static(b"value 9@0x48"),
8517 4 : ];
8518 4 :
8519 40 : for (idx, expected) in expected_result.iter().enumerate() {
8520 40 : assert_eq!(
8521 40 : tline
8522 40 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
8523 40 : .await
8524 40 : .unwrap(),
8525 4 : expected
8526 4 : );
8527 4 : }
8528 4 :
8529 4 : let cancel = CancellationToken::new();
8530 4 : tline
8531 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
8532 4 : .await
8533 4 : .unwrap();
8534 4 :
8535 40 : for (idx, expected) in expected_result.iter().enumerate() {
8536 40 : assert_eq!(
8537 40 : tline
8538 40 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
8539 40 : .await
8540 40 : .unwrap(),
8541 4 : expected
8542 4 : );
8543 4 : }
8544 4 :
8545 4 : // Check if the image layer at the GC horizon contains exactly what we want
8546 4 : let image_at_gc_horizon = tline
8547 4 : .inspect_image_layers(Lsn(0x30), &ctx, io_concurrency.clone())
8548 4 : .await
8549 4 : .unwrap()
8550 4 : .into_iter()
8551 68 : .filter(|(k, _)| k.is_metadata_key())
8552 4 : .collect::<Vec<_>>();
8553 4 :
8554 4 : assert_eq!(image_at_gc_horizon.len(), 10);
8555 4 : let expected_result = [
8556 4 : Bytes::from_static(b"value 0@0x10"),
8557 4 : Bytes::from_static(b"value 1@0x20"),
8558 4 : Bytes::from_static(b"value 2@0x30"),
8559 4 : Bytes::from_static(b"value 3@0x10"),
8560 4 : Bytes::from_static(b"value 4@0x10"),
8561 4 : Bytes::from_static(b"value 5@0x20"),
8562 4 : Bytes::from_static(b"value 6@0x20"),
8563 4 : Bytes::from_static(b"value 7@0x10"),
8564 4 : Bytes::from_static(b"value 8@0x10"),
8565 4 : Bytes::from_static(b"value 9@0x10"),
8566 4 : ];
8567 44 : for idx in 0..10 {
8568 40 : assert_eq!(
8569 40 : image_at_gc_horizon[idx],
8570 40 : (get_key(idx as u32), expected_result[idx].clone())
8571 40 : );
8572 4 : }
8573 4 :
8574 4 : // Check if old layers are removed / new layers have the expected LSN
8575 4 : let all_layers = inspect_and_sort(&tline, None).await;
8576 4 : assert_eq!(
8577 4 : all_layers,
8578 4 : vec![
8579 4 : // Image layer at GC horizon
8580 4 : PersistentLayerKey {
8581 4 : key_range: Key::MIN..Key::MAX,
8582 4 : lsn_range: Lsn(0x30)..Lsn(0x31),
8583 4 : is_delta: false
8584 4 : },
8585 4 : // The delta layer below the horizon
8586 4 : PersistentLayerKey {
8587 4 : key_range: get_key(3)..get_key(4),
8588 4 : lsn_range: Lsn(0x30)..Lsn(0x48),
8589 4 : is_delta: true
8590 4 : },
8591 4 : // The delta3 layer that should not be picked for the compaction
8592 4 : PersistentLayerKey {
8593 4 : key_range: get_key(8)..get_key(10),
8594 4 : lsn_range: Lsn(0x48)..Lsn(0x50),
8595 4 : is_delta: true
8596 4 : }
8597 4 : ]
8598 4 : );
8599 4 :
8600 4 : // increase GC horizon and compact again
8601 4 : {
8602 4 : tline
8603 4 : .applied_gc_cutoff_lsn
8604 4 : .lock_for_write()
8605 4 : .store_and_unlock(Lsn(0x40))
8606 4 : .wait()
8607 4 : .await;
8608 4 : // Update GC info
8609 4 : let mut guard = tline.gc_info.write().unwrap();
8610 4 : guard.cutoffs.time = Lsn(0x40);
8611 4 : guard.cutoffs.space = Lsn(0x40);
8612 4 : }
8613 4 : tline
8614 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
8615 4 : .await
8616 4 : .unwrap();
8617 4 :
8618 4 : Ok(())
8619 4 : }
8620 :
8621 : #[cfg(feature = "testing")]
8622 : #[tokio::test]
8623 4 : async fn test_neon_test_record() -> anyhow::Result<()> {
8624 4 : let harness = TenantHarness::create("test_neon_test_record").await?;
8625 4 : let (tenant, ctx) = harness.load().await;
8626 4 :
8627 48 : fn get_key(id: u32) -> Key {
8628 48 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
8629 48 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
8630 48 : key.field6 = id;
8631 48 : key
8632 48 : }
8633 4 :
8634 4 : let delta1 = vec![
8635 4 : (
8636 4 : get_key(1),
8637 4 : Lsn(0x20),
8638 4 : Value::WalRecord(NeonWalRecord::wal_append(",0x20")),
8639 4 : ),
8640 4 : (
8641 4 : get_key(1),
8642 4 : Lsn(0x30),
8643 4 : Value::WalRecord(NeonWalRecord::wal_append(",0x30")),
8644 4 : ),
8645 4 : (get_key(2), Lsn(0x10), Value::Image("0x10".into())),
8646 4 : (
8647 4 : get_key(2),
8648 4 : Lsn(0x20),
8649 4 : Value::WalRecord(NeonWalRecord::wal_append(",0x20")),
8650 4 : ),
8651 4 : (
8652 4 : get_key(2),
8653 4 : Lsn(0x30),
8654 4 : Value::WalRecord(NeonWalRecord::wal_append(",0x30")),
8655 4 : ),
8656 4 : (get_key(3), Lsn(0x10), Value::Image("0x10".into())),
8657 4 : (
8658 4 : get_key(3),
8659 4 : Lsn(0x20),
8660 4 : Value::WalRecord(NeonWalRecord::wal_clear("c")),
8661 4 : ),
8662 4 : (get_key(4), Lsn(0x10), Value::Image("0x10".into())),
8663 4 : (
8664 4 : get_key(4),
8665 4 : Lsn(0x20),
8666 4 : Value::WalRecord(NeonWalRecord::wal_init("i")),
8667 4 : ),
8668 4 : ];
8669 4 : let image1 = vec![(get_key(1), "0x10".into())];
8670 4 :
8671 4 : let tline = tenant
8672 4 : .create_test_timeline_with_layers(
8673 4 : TIMELINE_ID,
8674 4 : Lsn(0x10),
8675 4 : DEFAULT_PG_VERSION,
8676 4 : &ctx,
8677 4 : vec![DeltaLayerTestDesc::new_with_inferred_key_range(
8678 4 : Lsn(0x10)..Lsn(0x40),
8679 4 : delta1,
8680 4 : )], // delta layers
8681 4 : vec![(Lsn(0x10), image1)], // image layers
8682 4 : Lsn(0x50),
8683 4 : )
8684 4 : .await?;
8685 4 :
8686 4 : assert_eq!(
8687 4 : tline.get(get_key(1), Lsn(0x50), &ctx).await?,
8688 4 : Bytes::from_static(b"0x10,0x20,0x30")
8689 4 : );
8690 4 : assert_eq!(
8691 4 : tline.get(get_key(2), Lsn(0x50), &ctx).await?,
8692 4 : Bytes::from_static(b"0x10,0x20,0x30")
8693 4 : );
8694 4 :
8695 4 : // Need to remove the limit of "Neon WAL redo requires base image".
8696 4 :
8697 4 : // assert_eq!(tline.get(get_key(3), Lsn(0x50), &ctx).await?, Bytes::new());
8698 4 : // assert_eq!(tline.get(get_key(4), Lsn(0x50), &ctx).await?, Bytes::new());
8699 4 :
8700 4 : Ok(())
8701 4 : }
8702 :
8703 : #[tokio::test(start_paused = true)]
8704 4 : async fn test_lsn_lease() -> anyhow::Result<()> {
8705 4 : let (tenant, ctx) = TenantHarness::create("test_lsn_lease")
8706 4 : .await
8707 4 : .unwrap()
8708 4 : .load()
8709 4 : .await;
8710 4 : // Advance to the lsn lease deadline so that GC is not blocked by
8711 4 : // initial transition into AttachedSingle.
8712 4 : tokio::time::advance(tenant.get_lsn_lease_length()).await;
8713 4 : tokio::time::resume();
8714 4 : let key = Key::from_hex("010000000033333333444444445500000000").unwrap();
8715 4 :
8716 4 : let end_lsn = Lsn(0x100);
8717 4 : let image_layers = (0x20..=0x90)
8718 4 : .step_by(0x10)
8719 32 : .map(|n| {
8720 32 : (
8721 32 : Lsn(n),
8722 32 : vec![(key, test_img(&format!("data key at {:x}", n)))],
8723 32 : )
8724 32 : })
8725 4 : .collect();
8726 4 :
8727 4 : let timeline = tenant
8728 4 : .create_test_timeline_with_layers(
8729 4 : TIMELINE_ID,
8730 4 : Lsn(0x10),
8731 4 : DEFAULT_PG_VERSION,
8732 4 : &ctx,
8733 4 : Vec::new(),
8734 4 : image_layers,
8735 4 : end_lsn,
8736 4 : )
8737 4 : .await?;
8738 4 :
8739 4 : let leased_lsns = [0x30, 0x50, 0x70];
8740 4 : let mut leases = Vec::new();
8741 12 : leased_lsns.iter().for_each(|n| {
8742 12 : leases.push(
8743 12 : timeline
8744 12 : .init_lsn_lease(Lsn(*n), timeline.get_lsn_lease_length(), &ctx)
8745 12 : .expect("lease request should succeed"),
8746 12 : );
8747 12 : });
8748 4 :
8749 4 : let updated_lease_0 = timeline
8750 4 : .renew_lsn_lease(Lsn(leased_lsns[0]), Duration::from_secs(0), &ctx)
8751 4 : .expect("lease renewal should succeed");
8752 4 : assert_eq!(
8753 4 : updated_lease_0.valid_until, leases[0].valid_until,
8754 4 : " Renewing with shorter lease should not change the lease."
8755 4 : );
8756 4 :
8757 4 : let updated_lease_1 = timeline
8758 4 : .renew_lsn_lease(
8759 4 : Lsn(leased_lsns[1]),
8760 4 : timeline.get_lsn_lease_length() * 2,
8761 4 : &ctx,
8762 4 : )
8763 4 : .expect("lease renewal should succeed");
8764 4 : assert!(
8765 4 : updated_lease_1.valid_until > leases[1].valid_until,
8766 4 : "Renewing with a long lease should renew lease with later expiration time."
8767 4 : );
8768 4 :
8769 4 : // Force set disk consistent lsn so we can get the cutoff at `end_lsn`.
8770 4 : info!(
8771 4 : "applied_gc_cutoff_lsn: {}",
8772 0 : *timeline.get_applied_gc_cutoff_lsn()
8773 4 : );
8774 4 : timeline.force_set_disk_consistent_lsn(end_lsn);
8775 4 :
8776 4 : let res = tenant
8777 4 : .gc_iteration(
8778 4 : Some(TIMELINE_ID),
8779 4 : 0,
8780 4 : Duration::ZERO,
8781 4 : &CancellationToken::new(),
8782 4 : &ctx,
8783 4 : )
8784 4 : .await
8785 4 : .unwrap();
8786 4 :
8787 4 : // Keeping everything <= Lsn(0x80) b/c leases:
8788 4 : // 0/10: initdb layer
8789 4 : // (0/20..=0/70).step_by(0x10): image layers added when creating the timeline.
8790 4 : assert_eq!(res.layers_needed_by_leases, 7);
8791 4 : // Keeping 0/90 b/c it is the latest layer.
8792 4 : assert_eq!(res.layers_not_updated, 1);
8793 4 : // Removed 0/80.
8794 4 : assert_eq!(res.layers_removed, 1);
8795 4 :
8796 4 : // Make lease on a already GC-ed LSN.
8797 4 : // 0/80 does not have a valid lease + is below latest_gc_cutoff
8798 4 : assert!(Lsn(0x80) < *timeline.get_applied_gc_cutoff_lsn());
8799 4 : timeline
8800 4 : .init_lsn_lease(Lsn(0x80), timeline.get_lsn_lease_length(), &ctx)
8801 4 : .expect_err("lease request on GC-ed LSN should fail");
8802 4 :
8803 4 : // Should still be able to renew a currently valid lease
8804 4 : // Assumption: original lease to is still valid for 0/50.
8805 4 : // (use `Timeline::init_lsn_lease` for testing so it always does validation)
8806 4 : timeline
8807 4 : .init_lsn_lease(Lsn(leased_lsns[1]), timeline.get_lsn_lease_length(), &ctx)
8808 4 : .expect("lease renewal with validation should succeed");
8809 4 :
8810 4 : Ok(())
8811 4 : }
8812 :
8813 : #[cfg(feature = "testing")]
8814 : #[tokio::test]
8815 4 : async fn test_simple_bottom_most_compaction_deltas_1() -> anyhow::Result<()> {
8816 4 : test_simple_bottom_most_compaction_deltas_helper(
8817 4 : "test_simple_bottom_most_compaction_deltas_1",
8818 4 : false,
8819 4 : )
8820 4 : .await
8821 4 : }
8822 :
8823 : #[cfg(feature = "testing")]
8824 : #[tokio::test]
8825 4 : async fn test_simple_bottom_most_compaction_deltas_2() -> anyhow::Result<()> {
8826 4 : test_simple_bottom_most_compaction_deltas_helper(
8827 4 : "test_simple_bottom_most_compaction_deltas_2",
8828 4 : true,
8829 4 : )
8830 4 : .await
8831 4 : }
8832 :
8833 : #[cfg(feature = "testing")]
8834 8 : async fn test_simple_bottom_most_compaction_deltas_helper(
8835 8 : test_name: &'static str,
8836 8 : use_delta_bottom_layer: bool,
8837 8 : ) -> anyhow::Result<()> {
8838 8 : let harness = TenantHarness::create(test_name).await?;
8839 8 : let (tenant, ctx) = harness.load().await;
8840 :
8841 552 : fn get_key(id: u32) -> Key {
8842 552 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
8843 552 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
8844 552 : key.field6 = id;
8845 552 : key
8846 552 : }
8847 :
8848 : // We create
8849 : // - one bottom-most image layer,
8850 : // - a delta layer D1 crossing the GC horizon with data below and above the horizon,
8851 : // - a delta layer D2 crossing the GC horizon with data only below the horizon,
8852 : // - a delta layer D3 above the horizon.
8853 : //
8854 : // | D3 |
8855 : // | D1 |
8856 : // -| |-- gc horizon -----------------
8857 : // | | | D2 |
8858 : // --------- img layer ------------------
8859 : //
8860 : // What we should expact from this compaction is:
8861 : // | D3 |
8862 : // | Part of D1 |
8863 : // --------- img layer with D1+D2 at GC horizon------------------
8864 :
8865 : // img layer at 0x10
8866 8 : let img_layer = (0..10)
8867 80 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
8868 8 : .collect_vec();
8869 8 : // or, delta layer at 0x10 if `use_delta_bottom_layer` is true
8870 8 : let delta4 = (0..10)
8871 80 : .map(|id| {
8872 80 : (
8873 80 : get_key(id),
8874 80 : Lsn(0x08),
8875 80 : Value::WalRecord(NeonWalRecord::wal_init(format!("value {id}@0x10"))),
8876 80 : )
8877 80 : })
8878 8 : .collect_vec();
8879 8 :
8880 8 : let delta1 = vec![
8881 8 : (
8882 8 : get_key(1),
8883 8 : Lsn(0x20),
8884 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
8885 8 : ),
8886 8 : (
8887 8 : get_key(2),
8888 8 : Lsn(0x30),
8889 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
8890 8 : ),
8891 8 : (
8892 8 : get_key(3),
8893 8 : Lsn(0x28),
8894 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x28")),
8895 8 : ),
8896 8 : (
8897 8 : get_key(3),
8898 8 : Lsn(0x30),
8899 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
8900 8 : ),
8901 8 : (
8902 8 : get_key(3),
8903 8 : Lsn(0x40),
8904 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x40")),
8905 8 : ),
8906 8 : ];
8907 8 : let delta2 = vec![
8908 8 : (
8909 8 : get_key(5),
8910 8 : Lsn(0x20),
8911 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
8912 8 : ),
8913 8 : (
8914 8 : get_key(6),
8915 8 : Lsn(0x20),
8916 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
8917 8 : ),
8918 8 : ];
8919 8 : let delta3 = vec![
8920 8 : (
8921 8 : get_key(8),
8922 8 : Lsn(0x48),
8923 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
8924 8 : ),
8925 8 : (
8926 8 : get_key(9),
8927 8 : Lsn(0x48),
8928 8 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
8929 8 : ),
8930 8 : ];
8931 :
8932 8 : let tline = if use_delta_bottom_layer {
8933 4 : tenant
8934 4 : .create_test_timeline_with_layers(
8935 4 : TIMELINE_ID,
8936 4 : Lsn(0x08),
8937 4 : DEFAULT_PG_VERSION,
8938 4 : &ctx,
8939 4 : vec![
8940 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8941 4 : Lsn(0x08)..Lsn(0x10),
8942 4 : delta4,
8943 4 : ),
8944 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8945 4 : Lsn(0x20)..Lsn(0x48),
8946 4 : delta1,
8947 4 : ),
8948 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8949 4 : Lsn(0x20)..Lsn(0x48),
8950 4 : delta2,
8951 4 : ),
8952 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8953 4 : Lsn(0x48)..Lsn(0x50),
8954 4 : delta3,
8955 4 : ),
8956 4 : ], // delta layers
8957 4 : vec![], // image layers
8958 4 : Lsn(0x50),
8959 4 : )
8960 4 : .await?
8961 : } else {
8962 4 : tenant
8963 4 : .create_test_timeline_with_layers(
8964 4 : TIMELINE_ID,
8965 4 : Lsn(0x10),
8966 4 : DEFAULT_PG_VERSION,
8967 4 : &ctx,
8968 4 : vec![
8969 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8970 4 : Lsn(0x10)..Lsn(0x48),
8971 4 : delta1,
8972 4 : ),
8973 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8974 4 : Lsn(0x10)..Lsn(0x48),
8975 4 : delta2,
8976 4 : ),
8977 4 : DeltaLayerTestDesc::new_with_inferred_key_range(
8978 4 : Lsn(0x48)..Lsn(0x50),
8979 4 : delta3,
8980 4 : ),
8981 4 : ], // delta layers
8982 4 : vec![(Lsn(0x10), img_layer)], // image layers
8983 4 : Lsn(0x50),
8984 4 : )
8985 4 : .await?
8986 : };
8987 : {
8988 8 : tline
8989 8 : .applied_gc_cutoff_lsn
8990 8 : .lock_for_write()
8991 8 : .store_and_unlock(Lsn(0x30))
8992 8 : .wait()
8993 8 : .await;
8994 : // Update GC info
8995 8 : let mut guard = tline.gc_info.write().unwrap();
8996 8 : *guard = GcInfo {
8997 8 : retain_lsns: vec![],
8998 8 : cutoffs: GcCutoffs {
8999 8 : time: Lsn(0x30),
9000 8 : space: Lsn(0x30),
9001 8 : },
9002 8 : leases: Default::default(),
9003 8 : within_ancestor_pitr: false,
9004 8 : };
9005 8 : }
9006 8 :
9007 8 : let expected_result = [
9008 8 : Bytes::from_static(b"value 0@0x10"),
9009 8 : Bytes::from_static(b"value 1@0x10@0x20"),
9010 8 : Bytes::from_static(b"value 2@0x10@0x30"),
9011 8 : Bytes::from_static(b"value 3@0x10@0x28@0x30@0x40"),
9012 8 : Bytes::from_static(b"value 4@0x10"),
9013 8 : Bytes::from_static(b"value 5@0x10@0x20"),
9014 8 : Bytes::from_static(b"value 6@0x10@0x20"),
9015 8 : Bytes::from_static(b"value 7@0x10"),
9016 8 : Bytes::from_static(b"value 8@0x10@0x48"),
9017 8 : Bytes::from_static(b"value 9@0x10@0x48"),
9018 8 : ];
9019 8 :
9020 8 : let expected_result_at_gc_horizon = [
9021 8 : Bytes::from_static(b"value 0@0x10"),
9022 8 : Bytes::from_static(b"value 1@0x10@0x20"),
9023 8 : Bytes::from_static(b"value 2@0x10@0x30"),
9024 8 : Bytes::from_static(b"value 3@0x10@0x28@0x30"),
9025 8 : Bytes::from_static(b"value 4@0x10"),
9026 8 : Bytes::from_static(b"value 5@0x10@0x20"),
9027 8 : Bytes::from_static(b"value 6@0x10@0x20"),
9028 8 : Bytes::from_static(b"value 7@0x10"),
9029 8 : Bytes::from_static(b"value 8@0x10"),
9030 8 : Bytes::from_static(b"value 9@0x10"),
9031 8 : ];
9032 :
9033 88 : for idx in 0..10 {
9034 80 : assert_eq!(
9035 80 : tline
9036 80 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
9037 80 : .await
9038 80 : .unwrap(),
9039 80 : &expected_result[idx]
9040 : );
9041 80 : assert_eq!(
9042 80 : tline
9043 80 : .get(get_key(idx as u32), Lsn(0x30), &ctx)
9044 80 : .await
9045 80 : .unwrap(),
9046 80 : &expected_result_at_gc_horizon[idx]
9047 : );
9048 : }
9049 :
9050 8 : let cancel = CancellationToken::new();
9051 8 : tline
9052 8 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9053 8 : .await
9054 8 : .unwrap();
9055 :
9056 88 : for idx in 0..10 {
9057 80 : assert_eq!(
9058 80 : tline
9059 80 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
9060 80 : .await
9061 80 : .unwrap(),
9062 80 : &expected_result[idx]
9063 : );
9064 80 : assert_eq!(
9065 80 : tline
9066 80 : .get(get_key(idx as u32), Lsn(0x30), &ctx)
9067 80 : .await
9068 80 : .unwrap(),
9069 80 : &expected_result_at_gc_horizon[idx]
9070 : );
9071 : }
9072 :
9073 : // increase GC horizon and compact again
9074 : {
9075 8 : tline
9076 8 : .applied_gc_cutoff_lsn
9077 8 : .lock_for_write()
9078 8 : .store_and_unlock(Lsn(0x40))
9079 8 : .wait()
9080 8 : .await;
9081 : // Update GC info
9082 8 : let mut guard = tline.gc_info.write().unwrap();
9083 8 : guard.cutoffs.time = Lsn(0x40);
9084 8 : guard.cutoffs.space = Lsn(0x40);
9085 8 : }
9086 8 : tline
9087 8 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9088 8 : .await
9089 8 : .unwrap();
9090 8 :
9091 8 : Ok(())
9092 8 : }
9093 :
9094 : #[cfg(feature = "testing")]
9095 : #[tokio::test]
9096 4 : async fn test_generate_key_retention() -> anyhow::Result<()> {
9097 4 : let harness = TenantHarness::create("test_generate_key_retention").await?;
9098 4 : let (tenant, ctx) = harness.load().await;
9099 4 : let tline = tenant
9100 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
9101 4 : .await?;
9102 4 : tline.force_advance_lsn(Lsn(0x70));
9103 4 : let key = Key::from_hex("010000000033333333444444445500000000").unwrap();
9104 4 : let history = vec![
9105 4 : (
9106 4 : key,
9107 4 : Lsn(0x10),
9108 4 : Value::WalRecord(NeonWalRecord::wal_init("0x10")),
9109 4 : ),
9110 4 : (
9111 4 : key,
9112 4 : Lsn(0x20),
9113 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x20")),
9114 4 : ),
9115 4 : (
9116 4 : key,
9117 4 : Lsn(0x30),
9118 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x30")),
9119 4 : ),
9120 4 : (
9121 4 : key,
9122 4 : Lsn(0x40),
9123 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x40")),
9124 4 : ),
9125 4 : (
9126 4 : key,
9127 4 : Lsn(0x50),
9128 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x50")),
9129 4 : ),
9130 4 : (
9131 4 : key,
9132 4 : Lsn(0x60),
9133 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x60")),
9134 4 : ),
9135 4 : (
9136 4 : key,
9137 4 : Lsn(0x70),
9138 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9139 4 : ),
9140 4 : (
9141 4 : key,
9142 4 : Lsn(0x80),
9143 4 : Value::Image(Bytes::copy_from_slice(
9144 4 : b"0x10;0x20;0x30;0x40;0x50;0x60;0x70;0x80",
9145 4 : )),
9146 4 : ),
9147 4 : (
9148 4 : key,
9149 4 : Lsn(0x90),
9150 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x90")),
9151 4 : ),
9152 4 : ];
9153 4 : let res = tline
9154 4 : .generate_key_retention(
9155 4 : key,
9156 4 : &history,
9157 4 : Lsn(0x60),
9158 4 : &[Lsn(0x20), Lsn(0x40), Lsn(0x50)],
9159 4 : 3,
9160 4 : None,
9161 4 : )
9162 4 : .await
9163 4 : .unwrap();
9164 4 : let expected_res = KeyHistoryRetention {
9165 4 : below_horizon: vec![
9166 4 : (
9167 4 : Lsn(0x20),
9168 4 : KeyLogAtLsn(vec![(
9169 4 : Lsn(0x20),
9170 4 : Value::Image(Bytes::from_static(b"0x10;0x20")),
9171 4 : )]),
9172 4 : ),
9173 4 : (
9174 4 : Lsn(0x40),
9175 4 : KeyLogAtLsn(vec![
9176 4 : (
9177 4 : Lsn(0x30),
9178 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x30")),
9179 4 : ),
9180 4 : (
9181 4 : Lsn(0x40),
9182 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x40")),
9183 4 : ),
9184 4 : ]),
9185 4 : ),
9186 4 : (
9187 4 : Lsn(0x50),
9188 4 : KeyLogAtLsn(vec![(
9189 4 : Lsn(0x50),
9190 4 : Value::Image(Bytes::copy_from_slice(b"0x10;0x20;0x30;0x40;0x50")),
9191 4 : )]),
9192 4 : ),
9193 4 : (
9194 4 : Lsn(0x60),
9195 4 : KeyLogAtLsn(vec![(
9196 4 : Lsn(0x60),
9197 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x60")),
9198 4 : )]),
9199 4 : ),
9200 4 : ],
9201 4 : above_horizon: KeyLogAtLsn(vec![
9202 4 : (
9203 4 : Lsn(0x70),
9204 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9205 4 : ),
9206 4 : (
9207 4 : Lsn(0x80),
9208 4 : Value::Image(Bytes::copy_from_slice(
9209 4 : b"0x10;0x20;0x30;0x40;0x50;0x60;0x70;0x80",
9210 4 : )),
9211 4 : ),
9212 4 : (
9213 4 : Lsn(0x90),
9214 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x90")),
9215 4 : ),
9216 4 : ]),
9217 4 : };
9218 4 : assert_eq!(res, expected_res);
9219 4 :
9220 4 : // We expect GC-compaction to run with the original GC. This would create a situation that
9221 4 : // the original GC algorithm removes some delta layers b/c there are full image coverage,
9222 4 : // therefore causing some keys to have an incomplete history below the lowest retain LSN.
9223 4 : // For example, we have
9224 4 : // ```plain
9225 4 : // init delta @ 0x10, image @ 0x20, delta @ 0x30 (gc_horizon), image @ 0x40.
9226 4 : // ```
9227 4 : // Now the GC horizon moves up, and we have
9228 4 : // ```plain
9229 4 : // init delta @ 0x10, image @ 0x20, delta @ 0x30, image @ 0x40 (gc_horizon)
9230 4 : // ```
9231 4 : // The original GC algorithm kicks in, and removes delta @ 0x10, image @ 0x20.
9232 4 : // We will end up with
9233 4 : // ```plain
9234 4 : // delta @ 0x30, image @ 0x40 (gc_horizon)
9235 4 : // ```
9236 4 : // Now we run the GC-compaction, and this key does not have a full history.
9237 4 : // We should be able to handle this partial history and drop everything before the
9238 4 : // gc_horizon image.
9239 4 :
9240 4 : let history = vec![
9241 4 : (
9242 4 : key,
9243 4 : Lsn(0x20),
9244 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x20")),
9245 4 : ),
9246 4 : (
9247 4 : key,
9248 4 : Lsn(0x30),
9249 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x30")),
9250 4 : ),
9251 4 : (
9252 4 : key,
9253 4 : Lsn(0x40),
9254 4 : Value::Image(Bytes::copy_from_slice(b"0x10;0x20;0x30;0x40")),
9255 4 : ),
9256 4 : (
9257 4 : key,
9258 4 : Lsn(0x50),
9259 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x50")),
9260 4 : ),
9261 4 : (
9262 4 : key,
9263 4 : Lsn(0x60),
9264 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x60")),
9265 4 : ),
9266 4 : (
9267 4 : key,
9268 4 : Lsn(0x70),
9269 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9270 4 : ),
9271 4 : (
9272 4 : key,
9273 4 : Lsn(0x80),
9274 4 : Value::Image(Bytes::copy_from_slice(
9275 4 : b"0x10;0x20;0x30;0x40;0x50;0x60;0x70;0x80",
9276 4 : )),
9277 4 : ),
9278 4 : (
9279 4 : key,
9280 4 : Lsn(0x90),
9281 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x90")),
9282 4 : ),
9283 4 : ];
9284 4 : let res = tline
9285 4 : .generate_key_retention(key, &history, Lsn(0x60), &[Lsn(0x40), Lsn(0x50)], 3, None)
9286 4 : .await
9287 4 : .unwrap();
9288 4 : let expected_res = KeyHistoryRetention {
9289 4 : below_horizon: vec![
9290 4 : (
9291 4 : Lsn(0x40),
9292 4 : KeyLogAtLsn(vec![(
9293 4 : Lsn(0x40),
9294 4 : Value::Image(Bytes::copy_from_slice(b"0x10;0x20;0x30;0x40")),
9295 4 : )]),
9296 4 : ),
9297 4 : (
9298 4 : Lsn(0x50),
9299 4 : KeyLogAtLsn(vec![(
9300 4 : Lsn(0x50),
9301 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x50")),
9302 4 : )]),
9303 4 : ),
9304 4 : (
9305 4 : Lsn(0x60),
9306 4 : KeyLogAtLsn(vec![(
9307 4 : Lsn(0x60),
9308 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x60")),
9309 4 : )]),
9310 4 : ),
9311 4 : ],
9312 4 : above_horizon: KeyLogAtLsn(vec![
9313 4 : (
9314 4 : Lsn(0x70),
9315 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9316 4 : ),
9317 4 : (
9318 4 : Lsn(0x80),
9319 4 : Value::Image(Bytes::copy_from_slice(
9320 4 : b"0x10;0x20;0x30;0x40;0x50;0x60;0x70;0x80",
9321 4 : )),
9322 4 : ),
9323 4 : (
9324 4 : Lsn(0x90),
9325 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x90")),
9326 4 : ),
9327 4 : ]),
9328 4 : };
9329 4 : assert_eq!(res, expected_res);
9330 4 :
9331 4 : // In case of branch compaction, the branch itself does not have the full history, and we need to provide
9332 4 : // the ancestor image in the test case.
9333 4 :
9334 4 : let history = vec![
9335 4 : (
9336 4 : key,
9337 4 : Lsn(0x20),
9338 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x20")),
9339 4 : ),
9340 4 : (
9341 4 : key,
9342 4 : Lsn(0x30),
9343 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x30")),
9344 4 : ),
9345 4 : (
9346 4 : key,
9347 4 : Lsn(0x40),
9348 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x40")),
9349 4 : ),
9350 4 : (
9351 4 : key,
9352 4 : Lsn(0x70),
9353 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9354 4 : ),
9355 4 : ];
9356 4 : let res = tline
9357 4 : .generate_key_retention(
9358 4 : key,
9359 4 : &history,
9360 4 : Lsn(0x60),
9361 4 : &[],
9362 4 : 3,
9363 4 : Some((key, Lsn(0x10), Bytes::copy_from_slice(b"0x10"))),
9364 4 : )
9365 4 : .await
9366 4 : .unwrap();
9367 4 : let expected_res = KeyHistoryRetention {
9368 4 : below_horizon: vec![(
9369 4 : Lsn(0x60),
9370 4 : KeyLogAtLsn(vec![(
9371 4 : Lsn(0x60),
9372 4 : Value::Image(Bytes::copy_from_slice(b"0x10;0x20;0x30;0x40")), // use the ancestor image to reconstruct the page
9373 4 : )]),
9374 4 : )],
9375 4 : above_horizon: KeyLogAtLsn(vec![(
9376 4 : Lsn(0x70),
9377 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9378 4 : )]),
9379 4 : };
9380 4 : assert_eq!(res, expected_res);
9381 4 :
9382 4 : let history = vec![
9383 4 : (
9384 4 : key,
9385 4 : Lsn(0x20),
9386 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x20")),
9387 4 : ),
9388 4 : (
9389 4 : key,
9390 4 : Lsn(0x40),
9391 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x40")),
9392 4 : ),
9393 4 : (
9394 4 : key,
9395 4 : Lsn(0x60),
9396 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x60")),
9397 4 : ),
9398 4 : (
9399 4 : key,
9400 4 : Lsn(0x70),
9401 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9402 4 : ),
9403 4 : ];
9404 4 : let res = tline
9405 4 : .generate_key_retention(
9406 4 : key,
9407 4 : &history,
9408 4 : Lsn(0x60),
9409 4 : &[Lsn(0x30)],
9410 4 : 3,
9411 4 : Some((key, Lsn(0x10), Bytes::copy_from_slice(b"0x10"))),
9412 4 : )
9413 4 : .await
9414 4 : .unwrap();
9415 4 : let expected_res = KeyHistoryRetention {
9416 4 : below_horizon: vec![
9417 4 : (
9418 4 : Lsn(0x30),
9419 4 : KeyLogAtLsn(vec![(
9420 4 : Lsn(0x20),
9421 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x20")),
9422 4 : )]),
9423 4 : ),
9424 4 : (
9425 4 : Lsn(0x60),
9426 4 : KeyLogAtLsn(vec![(
9427 4 : Lsn(0x60),
9428 4 : Value::Image(Bytes::copy_from_slice(b"0x10;0x20;0x40;0x60")),
9429 4 : )]),
9430 4 : ),
9431 4 : ],
9432 4 : above_horizon: KeyLogAtLsn(vec![(
9433 4 : Lsn(0x70),
9434 4 : Value::WalRecord(NeonWalRecord::wal_append(";0x70")),
9435 4 : )]),
9436 4 : };
9437 4 : assert_eq!(res, expected_res);
9438 4 :
9439 4 : Ok(())
9440 4 : }
9441 :
9442 : #[cfg(feature = "testing")]
9443 : #[tokio::test]
9444 4 : async fn test_simple_bottom_most_compaction_with_retain_lsns() -> anyhow::Result<()> {
9445 4 : let harness =
9446 4 : TenantHarness::create("test_simple_bottom_most_compaction_with_retain_lsns").await?;
9447 4 : let (tenant, ctx) = harness.load().await;
9448 4 :
9449 1036 : fn get_key(id: u32) -> Key {
9450 1036 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
9451 1036 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
9452 1036 : key.field6 = id;
9453 1036 : key
9454 1036 : }
9455 4 :
9456 4 : let img_layer = (0..10)
9457 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
9458 4 : .collect_vec();
9459 4 :
9460 4 : let delta1 = vec![
9461 4 : (
9462 4 : get_key(1),
9463 4 : Lsn(0x20),
9464 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9465 4 : ),
9466 4 : (
9467 4 : get_key(2),
9468 4 : Lsn(0x30),
9469 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
9470 4 : ),
9471 4 : (
9472 4 : get_key(3),
9473 4 : Lsn(0x28),
9474 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x28")),
9475 4 : ),
9476 4 : (
9477 4 : get_key(3),
9478 4 : Lsn(0x30),
9479 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
9480 4 : ),
9481 4 : (
9482 4 : get_key(3),
9483 4 : Lsn(0x40),
9484 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x40")),
9485 4 : ),
9486 4 : ];
9487 4 : let delta2 = vec![
9488 4 : (
9489 4 : get_key(5),
9490 4 : Lsn(0x20),
9491 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9492 4 : ),
9493 4 : (
9494 4 : get_key(6),
9495 4 : Lsn(0x20),
9496 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9497 4 : ),
9498 4 : ];
9499 4 : let delta3 = vec![
9500 4 : (
9501 4 : get_key(8),
9502 4 : Lsn(0x48),
9503 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
9504 4 : ),
9505 4 : (
9506 4 : get_key(9),
9507 4 : Lsn(0x48),
9508 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
9509 4 : ),
9510 4 : ];
9511 4 :
9512 4 : let tline = tenant
9513 4 : .create_test_timeline_with_layers(
9514 4 : TIMELINE_ID,
9515 4 : Lsn(0x10),
9516 4 : DEFAULT_PG_VERSION,
9517 4 : &ctx,
9518 4 : vec![
9519 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x10)..Lsn(0x48), delta1),
9520 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x10)..Lsn(0x48), delta2),
9521 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x48)..Lsn(0x50), delta3),
9522 4 : ], // delta layers
9523 4 : vec![(Lsn(0x10), img_layer)], // image layers
9524 4 : Lsn(0x50),
9525 4 : )
9526 4 : .await?;
9527 4 : {
9528 4 : tline
9529 4 : .applied_gc_cutoff_lsn
9530 4 : .lock_for_write()
9531 4 : .store_and_unlock(Lsn(0x30))
9532 4 : .wait()
9533 4 : .await;
9534 4 : // Update GC info
9535 4 : let mut guard = tline.gc_info.write().unwrap();
9536 4 : *guard = GcInfo {
9537 4 : retain_lsns: vec![
9538 4 : (Lsn(0x10), tline.timeline_id, MaybeOffloaded::No),
9539 4 : (Lsn(0x20), tline.timeline_id, MaybeOffloaded::No),
9540 4 : ],
9541 4 : cutoffs: GcCutoffs {
9542 4 : time: Lsn(0x30),
9543 4 : space: Lsn(0x30),
9544 4 : },
9545 4 : leases: Default::default(),
9546 4 : within_ancestor_pitr: false,
9547 4 : };
9548 4 : }
9549 4 :
9550 4 : let expected_result = [
9551 4 : Bytes::from_static(b"value 0@0x10"),
9552 4 : Bytes::from_static(b"value 1@0x10@0x20"),
9553 4 : Bytes::from_static(b"value 2@0x10@0x30"),
9554 4 : Bytes::from_static(b"value 3@0x10@0x28@0x30@0x40"),
9555 4 : Bytes::from_static(b"value 4@0x10"),
9556 4 : Bytes::from_static(b"value 5@0x10@0x20"),
9557 4 : Bytes::from_static(b"value 6@0x10@0x20"),
9558 4 : Bytes::from_static(b"value 7@0x10"),
9559 4 : Bytes::from_static(b"value 8@0x10@0x48"),
9560 4 : Bytes::from_static(b"value 9@0x10@0x48"),
9561 4 : ];
9562 4 :
9563 4 : let expected_result_at_gc_horizon = [
9564 4 : Bytes::from_static(b"value 0@0x10"),
9565 4 : Bytes::from_static(b"value 1@0x10@0x20"),
9566 4 : Bytes::from_static(b"value 2@0x10@0x30"),
9567 4 : Bytes::from_static(b"value 3@0x10@0x28@0x30"),
9568 4 : Bytes::from_static(b"value 4@0x10"),
9569 4 : Bytes::from_static(b"value 5@0x10@0x20"),
9570 4 : Bytes::from_static(b"value 6@0x10@0x20"),
9571 4 : Bytes::from_static(b"value 7@0x10"),
9572 4 : Bytes::from_static(b"value 8@0x10"),
9573 4 : Bytes::from_static(b"value 9@0x10"),
9574 4 : ];
9575 4 :
9576 4 : let expected_result_at_lsn_20 = [
9577 4 : Bytes::from_static(b"value 0@0x10"),
9578 4 : Bytes::from_static(b"value 1@0x10@0x20"),
9579 4 : Bytes::from_static(b"value 2@0x10"),
9580 4 : Bytes::from_static(b"value 3@0x10"),
9581 4 : Bytes::from_static(b"value 4@0x10"),
9582 4 : Bytes::from_static(b"value 5@0x10@0x20"),
9583 4 : Bytes::from_static(b"value 6@0x10@0x20"),
9584 4 : Bytes::from_static(b"value 7@0x10"),
9585 4 : Bytes::from_static(b"value 8@0x10"),
9586 4 : Bytes::from_static(b"value 9@0x10"),
9587 4 : ];
9588 4 :
9589 4 : let expected_result_at_lsn_10 = [
9590 4 : Bytes::from_static(b"value 0@0x10"),
9591 4 : Bytes::from_static(b"value 1@0x10"),
9592 4 : Bytes::from_static(b"value 2@0x10"),
9593 4 : Bytes::from_static(b"value 3@0x10"),
9594 4 : Bytes::from_static(b"value 4@0x10"),
9595 4 : Bytes::from_static(b"value 5@0x10"),
9596 4 : Bytes::from_static(b"value 6@0x10"),
9597 4 : Bytes::from_static(b"value 7@0x10"),
9598 4 : Bytes::from_static(b"value 8@0x10"),
9599 4 : Bytes::from_static(b"value 9@0x10"),
9600 4 : ];
9601 4 :
9602 24 : let verify_result = || async {
9603 24 : let gc_horizon = {
9604 24 : let gc_info = tline.gc_info.read().unwrap();
9605 24 : gc_info.cutoffs.time
9606 4 : };
9607 264 : for idx in 0..10 {
9608 240 : assert_eq!(
9609 240 : tline
9610 240 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
9611 240 : .await
9612 240 : .unwrap(),
9613 240 : &expected_result[idx]
9614 4 : );
9615 240 : assert_eq!(
9616 240 : tline
9617 240 : .get(get_key(idx as u32), gc_horizon, &ctx)
9618 240 : .await
9619 240 : .unwrap(),
9620 240 : &expected_result_at_gc_horizon[idx]
9621 4 : );
9622 240 : assert_eq!(
9623 240 : tline
9624 240 : .get(get_key(idx as u32), Lsn(0x20), &ctx)
9625 240 : .await
9626 240 : .unwrap(),
9627 240 : &expected_result_at_lsn_20[idx]
9628 4 : );
9629 240 : assert_eq!(
9630 240 : tline
9631 240 : .get(get_key(idx as u32), Lsn(0x10), &ctx)
9632 240 : .await
9633 240 : .unwrap(),
9634 240 : &expected_result_at_lsn_10[idx]
9635 4 : );
9636 4 : }
9637 48 : };
9638 4 :
9639 4 : verify_result().await;
9640 4 :
9641 4 : let cancel = CancellationToken::new();
9642 4 : let mut dryrun_flags = EnumSet::new();
9643 4 : dryrun_flags.insert(CompactFlags::DryRun);
9644 4 :
9645 4 : tline
9646 4 : .compact_with_gc(
9647 4 : &cancel,
9648 4 : CompactOptions {
9649 4 : flags: dryrun_flags,
9650 4 : ..Default::default()
9651 4 : },
9652 4 : &ctx,
9653 4 : )
9654 4 : .await
9655 4 : .unwrap();
9656 4 : // We expect layer map to be the same b/c the dry run flag, but we don't know whether there will be other background jobs
9657 4 : // cleaning things up, and therefore, we don't do sanity checks on the layer map during unit tests.
9658 4 : verify_result().await;
9659 4 :
9660 4 : tline
9661 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9662 4 : .await
9663 4 : .unwrap();
9664 4 : verify_result().await;
9665 4 :
9666 4 : // compact again
9667 4 : tline
9668 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9669 4 : .await
9670 4 : .unwrap();
9671 4 : verify_result().await;
9672 4 :
9673 4 : // increase GC horizon and compact again
9674 4 : {
9675 4 : tline
9676 4 : .applied_gc_cutoff_lsn
9677 4 : .lock_for_write()
9678 4 : .store_and_unlock(Lsn(0x38))
9679 4 : .wait()
9680 4 : .await;
9681 4 : // Update GC info
9682 4 : let mut guard = tline.gc_info.write().unwrap();
9683 4 : guard.cutoffs.time = Lsn(0x38);
9684 4 : guard.cutoffs.space = Lsn(0x38);
9685 4 : }
9686 4 : tline
9687 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9688 4 : .await
9689 4 : .unwrap();
9690 4 : verify_result().await; // no wals between 0x30 and 0x38, so we should obtain the same result
9691 4 :
9692 4 : // not increasing the GC horizon and compact again
9693 4 : tline
9694 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9695 4 : .await
9696 4 : .unwrap();
9697 4 : verify_result().await;
9698 4 :
9699 4 : Ok(())
9700 4 : }
9701 :
9702 : #[cfg(feature = "testing")]
9703 : #[tokio::test]
9704 4 : async fn test_simple_bottom_most_compaction_with_retain_lsns_single_key() -> anyhow::Result<()>
9705 4 : {
9706 4 : let harness =
9707 4 : TenantHarness::create("test_simple_bottom_most_compaction_with_retain_lsns_single_key")
9708 4 : .await?;
9709 4 : let (tenant, ctx) = harness.load().await;
9710 4 :
9711 704 : fn get_key(id: u32) -> Key {
9712 704 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
9713 704 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
9714 704 : key.field6 = id;
9715 704 : key
9716 704 : }
9717 4 :
9718 4 : let img_layer = (0..10)
9719 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
9720 4 : .collect_vec();
9721 4 :
9722 4 : let delta1 = vec![
9723 4 : (
9724 4 : get_key(1),
9725 4 : Lsn(0x20),
9726 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9727 4 : ),
9728 4 : (
9729 4 : get_key(1),
9730 4 : Lsn(0x28),
9731 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x28")),
9732 4 : ),
9733 4 : ];
9734 4 : let delta2 = vec![
9735 4 : (
9736 4 : get_key(1),
9737 4 : Lsn(0x30),
9738 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
9739 4 : ),
9740 4 : (
9741 4 : get_key(1),
9742 4 : Lsn(0x38),
9743 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x38")),
9744 4 : ),
9745 4 : ];
9746 4 : let delta3 = vec![
9747 4 : (
9748 4 : get_key(8),
9749 4 : Lsn(0x48),
9750 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
9751 4 : ),
9752 4 : (
9753 4 : get_key(9),
9754 4 : Lsn(0x48),
9755 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
9756 4 : ),
9757 4 : ];
9758 4 :
9759 4 : let tline = tenant
9760 4 : .create_test_timeline_with_layers(
9761 4 : TIMELINE_ID,
9762 4 : Lsn(0x10),
9763 4 : DEFAULT_PG_VERSION,
9764 4 : &ctx,
9765 4 : vec![
9766 4 : // delta1 and delta 2 only contain a single key but multiple updates
9767 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x10)..Lsn(0x30), delta1),
9768 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x30)..Lsn(0x50), delta2),
9769 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x10)..Lsn(0x50), delta3),
9770 4 : ], // delta layers
9771 4 : vec![(Lsn(0x10), img_layer)], // image layers
9772 4 : Lsn(0x50),
9773 4 : )
9774 4 : .await?;
9775 4 : {
9776 4 : tline
9777 4 : .applied_gc_cutoff_lsn
9778 4 : .lock_for_write()
9779 4 : .store_and_unlock(Lsn(0x30))
9780 4 : .wait()
9781 4 : .await;
9782 4 : // Update GC info
9783 4 : let mut guard = tline.gc_info.write().unwrap();
9784 4 : *guard = GcInfo {
9785 4 : retain_lsns: vec![
9786 4 : (Lsn(0x10), tline.timeline_id, MaybeOffloaded::No),
9787 4 : (Lsn(0x20), tline.timeline_id, MaybeOffloaded::No),
9788 4 : ],
9789 4 : cutoffs: GcCutoffs {
9790 4 : time: Lsn(0x30),
9791 4 : space: Lsn(0x30),
9792 4 : },
9793 4 : leases: Default::default(),
9794 4 : within_ancestor_pitr: false,
9795 4 : };
9796 4 : }
9797 4 :
9798 4 : let expected_result = [
9799 4 : Bytes::from_static(b"value 0@0x10"),
9800 4 : Bytes::from_static(b"value 1@0x10@0x20@0x28@0x30@0x38"),
9801 4 : Bytes::from_static(b"value 2@0x10"),
9802 4 : Bytes::from_static(b"value 3@0x10"),
9803 4 : Bytes::from_static(b"value 4@0x10"),
9804 4 : Bytes::from_static(b"value 5@0x10"),
9805 4 : Bytes::from_static(b"value 6@0x10"),
9806 4 : Bytes::from_static(b"value 7@0x10"),
9807 4 : Bytes::from_static(b"value 8@0x10@0x48"),
9808 4 : Bytes::from_static(b"value 9@0x10@0x48"),
9809 4 : ];
9810 4 :
9811 4 : let expected_result_at_gc_horizon = [
9812 4 : Bytes::from_static(b"value 0@0x10"),
9813 4 : Bytes::from_static(b"value 1@0x10@0x20@0x28@0x30"),
9814 4 : Bytes::from_static(b"value 2@0x10"),
9815 4 : Bytes::from_static(b"value 3@0x10"),
9816 4 : Bytes::from_static(b"value 4@0x10"),
9817 4 : Bytes::from_static(b"value 5@0x10"),
9818 4 : Bytes::from_static(b"value 6@0x10"),
9819 4 : Bytes::from_static(b"value 7@0x10"),
9820 4 : Bytes::from_static(b"value 8@0x10"),
9821 4 : Bytes::from_static(b"value 9@0x10"),
9822 4 : ];
9823 4 :
9824 4 : let expected_result_at_lsn_20 = [
9825 4 : Bytes::from_static(b"value 0@0x10"),
9826 4 : Bytes::from_static(b"value 1@0x10@0x20"),
9827 4 : Bytes::from_static(b"value 2@0x10"),
9828 4 : Bytes::from_static(b"value 3@0x10"),
9829 4 : Bytes::from_static(b"value 4@0x10"),
9830 4 : Bytes::from_static(b"value 5@0x10"),
9831 4 : Bytes::from_static(b"value 6@0x10"),
9832 4 : Bytes::from_static(b"value 7@0x10"),
9833 4 : Bytes::from_static(b"value 8@0x10"),
9834 4 : Bytes::from_static(b"value 9@0x10"),
9835 4 : ];
9836 4 :
9837 4 : let expected_result_at_lsn_10 = [
9838 4 : Bytes::from_static(b"value 0@0x10"),
9839 4 : Bytes::from_static(b"value 1@0x10"),
9840 4 : Bytes::from_static(b"value 2@0x10"),
9841 4 : Bytes::from_static(b"value 3@0x10"),
9842 4 : Bytes::from_static(b"value 4@0x10"),
9843 4 : Bytes::from_static(b"value 5@0x10"),
9844 4 : Bytes::from_static(b"value 6@0x10"),
9845 4 : Bytes::from_static(b"value 7@0x10"),
9846 4 : Bytes::from_static(b"value 8@0x10"),
9847 4 : Bytes::from_static(b"value 9@0x10"),
9848 4 : ];
9849 4 :
9850 16 : let verify_result = || async {
9851 16 : let gc_horizon = {
9852 16 : let gc_info = tline.gc_info.read().unwrap();
9853 16 : gc_info.cutoffs.time
9854 4 : };
9855 176 : for idx in 0..10 {
9856 160 : assert_eq!(
9857 160 : tline
9858 160 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
9859 160 : .await
9860 160 : .unwrap(),
9861 160 : &expected_result[idx]
9862 4 : );
9863 160 : assert_eq!(
9864 160 : tline
9865 160 : .get(get_key(idx as u32), gc_horizon, &ctx)
9866 160 : .await
9867 160 : .unwrap(),
9868 160 : &expected_result_at_gc_horizon[idx]
9869 4 : );
9870 160 : assert_eq!(
9871 160 : tline
9872 160 : .get(get_key(idx as u32), Lsn(0x20), &ctx)
9873 160 : .await
9874 160 : .unwrap(),
9875 160 : &expected_result_at_lsn_20[idx]
9876 4 : );
9877 160 : assert_eq!(
9878 160 : tline
9879 160 : .get(get_key(idx as u32), Lsn(0x10), &ctx)
9880 160 : .await
9881 160 : .unwrap(),
9882 160 : &expected_result_at_lsn_10[idx]
9883 4 : );
9884 4 : }
9885 32 : };
9886 4 :
9887 4 : verify_result().await;
9888 4 :
9889 4 : let cancel = CancellationToken::new();
9890 4 : let mut dryrun_flags = EnumSet::new();
9891 4 : dryrun_flags.insert(CompactFlags::DryRun);
9892 4 :
9893 4 : tline
9894 4 : .compact_with_gc(
9895 4 : &cancel,
9896 4 : CompactOptions {
9897 4 : flags: dryrun_flags,
9898 4 : ..Default::default()
9899 4 : },
9900 4 : &ctx,
9901 4 : )
9902 4 : .await
9903 4 : .unwrap();
9904 4 : // We expect layer map to be the same b/c the dry run flag, but we don't know whether there will be other background jobs
9905 4 : // cleaning things up, and therefore, we don't do sanity checks on the layer map during unit tests.
9906 4 : verify_result().await;
9907 4 :
9908 4 : tline
9909 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9910 4 : .await
9911 4 : .unwrap();
9912 4 : verify_result().await;
9913 4 :
9914 4 : // compact again
9915 4 : tline
9916 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
9917 4 : .await
9918 4 : .unwrap();
9919 4 : verify_result().await;
9920 4 :
9921 4 : Ok(())
9922 4 : }
9923 :
9924 : #[cfg(feature = "testing")]
9925 : #[tokio::test]
9926 4 : async fn test_simple_bottom_most_compaction_on_branch() -> anyhow::Result<()> {
9927 4 : use models::CompactLsnRange;
9928 4 :
9929 4 : let harness = TenantHarness::create("test_simple_bottom_most_compaction_on_branch").await?;
9930 4 : let (tenant, ctx) = harness.load().await;
9931 4 :
9932 332 : fn get_key(id: u32) -> Key {
9933 332 : let mut key = Key::from_hex("000000000033333333444444445500000000").unwrap();
9934 332 : key.field6 = id;
9935 332 : key
9936 332 : }
9937 4 :
9938 4 : let img_layer = (0..10)
9939 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
9940 4 : .collect_vec();
9941 4 :
9942 4 : let delta1 = vec![
9943 4 : (
9944 4 : get_key(1),
9945 4 : Lsn(0x20),
9946 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9947 4 : ),
9948 4 : (
9949 4 : get_key(2),
9950 4 : Lsn(0x30),
9951 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
9952 4 : ),
9953 4 : (
9954 4 : get_key(3),
9955 4 : Lsn(0x28),
9956 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x28")),
9957 4 : ),
9958 4 : (
9959 4 : get_key(3),
9960 4 : Lsn(0x30),
9961 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
9962 4 : ),
9963 4 : (
9964 4 : get_key(3),
9965 4 : Lsn(0x40),
9966 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x40")),
9967 4 : ),
9968 4 : ];
9969 4 : let delta2 = vec![
9970 4 : (
9971 4 : get_key(5),
9972 4 : Lsn(0x20),
9973 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9974 4 : ),
9975 4 : (
9976 4 : get_key(6),
9977 4 : Lsn(0x20),
9978 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
9979 4 : ),
9980 4 : ];
9981 4 : let delta3 = vec![
9982 4 : (
9983 4 : get_key(8),
9984 4 : Lsn(0x48),
9985 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
9986 4 : ),
9987 4 : (
9988 4 : get_key(9),
9989 4 : Lsn(0x48),
9990 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
9991 4 : ),
9992 4 : ];
9993 4 :
9994 4 : let parent_tline = tenant
9995 4 : .create_test_timeline_with_layers(
9996 4 : TIMELINE_ID,
9997 4 : Lsn(0x10),
9998 4 : DEFAULT_PG_VERSION,
9999 4 : &ctx,
10000 4 : vec![], // delta layers
10001 4 : vec![(Lsn(0x18), img_layer)], // image layers
10002 4 : Lsn(0x18),
10003 4 : )
10004 4 : .await?;
10005 4 :
10006 4 : parent_tline.add_extra_test_dense_keyspace(KeySpace::single(get_key(0)..get_key(10)));
10007 4 :
10008 4 : let branch_tline = tenant
10009 4 : .branch_timeline_test_with_layers(
10010 4 : &parent_tline,
10011 4 : NEW_TIMELINE_ID,
10012 4 : Some(Lsn(0x18)),
10013 4 : &ctx,
10014 4 : vec![
10015 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x48), delta1),
10016 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x48), delta2),
10017 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x48)..Lsn(0x50), delta3),
10018 4 : ], // delta layers
10019 4 : vec![], // image layers
10020 4 : Lsn(0x50),
10021 4 : )
10022 4 : .await?;
10023 4 :
10024 4 : branch_tline.add_extra_test_dense_keyspace(KeySpace::single(get_key(0)..get_key(10)));
10025 4 :
10026 4 : {
10027 4 : parent_tline
10028 4 : .applied_gc_cutoff_lsn
10029 4 : .lock_for_write()
10030 4 : .store_and_unlock(Lsn(0x10))
10031 4 : .wait()
10032 4 : .await;
10033 4 : // Update GC info
10034 4 : let mut guard = parent_tline.gc_info.write().unwrap();
10035 4 : *guard = GcInfo {
10036 4 : retain_lsns: vec![(Lsn(0x18), branch_tline.timeline_id, MaybeOffloaded::No)],
10037 4 : cutoffs: GcCutoffs {
10038 4 : time: Lsn(0x10),
10039 4 : space: Lsn(0x10),
10040 4 : },
10041 4 : leases: Default::default(),
10042 4 : within_ancestor_pitr: false,
10043 4 : };
10044 4 : }
10045 4 :
10046 4 : {
10047 4 : branch_tline
10048 4 : .applied_gc_cutoff_lsn
10049 4 : .lock_for_write()
10050 4 : .store_and_unlock(Lsn(0x50))
10051 4 : .wait()
10052 4 : .await;
10053 4 : // Update GC info
10054 4 : let mut guard = branch_tline.gc_info.write().unwrap();
10055 4 : *guard = GcInfo {
10056 4 : retain_lsns: vec![(Lsn(0x40), branch_tline.timeline_id, MaybeOffloaded::No)],
10057 4 : cutoffs: GcCutoffs {
10058 4 : time: Lsn(0x50),
10059 4 : space: Lsn(0x50),
10060 4 : },
10061 4 : leases: Default::default(),
10062 4 : within_ancestor_pitr: false,
10063 4 : };
10064 4 : }
10065 4 :
10066 4 : let expected_result_at_gc_horizon = [
10067 4 : Bytes::from_static(b"value 0@0x10"),
10068 4 : Bytes::from_static(b"value 1@0x10@0x20"),
10069 4 : Bytes::from_static(b"value 2@0x10@0x30"),
10070 4 : Bytes::from_static(b"value 3@0x10@0x28@0x30@0x40"),
10071 4 : Bytes::from_static(b"value 4@0x10"),
10072 4 : Bytes::from_static(b"value 5@0x10@0x20"),
10073 4 : Bytes::from_static(b"value 6@0x10@0x20"),
10074 4 : Bytes::from_static(b"value 7@0x10"),
10075 4 : Bytes::from_static(b"value 8@0x10@0x48"),
10076 4 : Bytes::from_static(b"value 9@0x10@0x48"),
10077 4 : ];
10078 4 :
10079 4 : let expected_result_at_lsn_40 = [
10080 4 : Bytes::from_static(b"value 0@0x10"),
10081 4 : Bytes::from_static(b"value 1@0x10@0x20"),
10082 4 : Bytes::from_static(b"value 2@0x10@0x30"),
10083 4 : Bytes::from_static(b"value 3@0x10@0x28@0x30@0x40"),
10084 4 : Bytes::from_static(b"value 4@0x10"),
10085 4 : Bytes::from_static(b"value 5@0x10@0x20"),
10086 4 : Bytes::from_static(b"value 6@0x10@0x20"),
10087 4 : Bytes::from_static(b"value 7@0x10"),
10088 4 : Bytes::from_static(b"value 8@0x10"),
10089 4 : Bytes::from_static(b"value 9@0x10"),
10090 4 : ];
10091 4 :
10092 12 : let verify_result = || async {
10093 132 : for idx in 0..10 {
10094 120 : assert_eq!(
10095 120 : branch_tline
10096 120 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
10097 120 : .await
10098 120 : .unwrap(),
10099 120 : &expected_result_at_gc_horizon[idx]
10100 4 : );
10101 120 : assert_eq!(
10102 120 : branch_tline
10103 120 : .get(get_key(idx as u32), Lsn(0x40), &ctx)
10104 120 : .await
10105 120 : .unwrap(),
10106 120 : &expected_result_at_lsn_40[idx]
10107 4 : );
10108 4 : }
10109 24 : };
10110 4 :
10111 4 : verify_result().await;
10112 4 :
10113 4 : let cancel = CancellationToken::new();
10114 4 : branch_tline
10115 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
10116 4 : .await
10117 4 : .unwrap();
10118 4 :
10119 4 : verify_result().await;
10120 4 :
10121 4 : // Piggyback a compaction with above_lsn. Ensure it works correctly when the specified LSN intersects with the layer files.
10122 4 : // Now we already have a single large delta layer, so the compaction min_layer_lsn should be the same as ancestor LSN (0x18).
10123 4 : branch_tline
10124 4 : .compact_with_gc(
10125 4 : &cancel,
10126 4 : CompactOptions {
10127 4 : compact_lsn_range: Some(CompactLsnRange::above(Lsn(0x40))),
10128 4 : ..Default::default()
10129 4 : },
10130 4 : &ctx,
10131 4 : )
10132 4 : .await
10133 4 : .unwrap();
10134 4 :
10135 4 : verify_result().await;
10136 4 :
10137 4 : Ok(())
10138 4 : }
10139 :
10140 : // Regression test for https://github.com/neondatabase/neon/issues/9012
10141 : // Create an image arrangement where we have to read at different LSN ranges
10142 : // from a delta layer. This is achieved by overlapping an image layer on top of
10143 : // a delta layer. Like so:
10144 : //
10145 : // A B
10146 : // +----------------+ -> delta_layer
10147 : // | | ^ lsn
10148 : // | =========|-> nested_image_layer |
10149 : // | C | |
10150 : // +----------------+ |
10151 : // ======== -> baseline_image_layer +-------> key
10152 : //
10153 : //
10154 : // When querying the key range [A, B) we need to read at different LSN ranges
10155 : // for [A, C) and [C, B). This test checks that the described edge case is handled correctly.
10156 : #[cfg(feature = "testing")]
10157 : #[tokio::test]
10158 4 : async fn test_vectored_read_with_nested_image_layer() -> anyhow::Result<()> {
10159 4 : let harness = TenantHarness::create("test_vectored_read_with_nested_image_layer").await?;
10160 4 : let (tenant, ctx) = harness.load().await;
10161 4 :
10162 4 : let will_init_keys = [2, 6];
10163 88 : fn get_key(id: u32) -> Key {
10164 88 : let mut key = Key::from_hex("110000000033333333444444445500000000").unwrap();
10165 88 : key.field6 = id;
10166 88 : key
10167 88 : }
10168 4 :
10169 4 : let mut expected_key_values = HashMap::new();
10170 4 :
10171 4 : let baseline_image_layer_lsn = Lsn(0x10);
10172 4 : let mut baseline_img_layer = Vec::new();
10173 24 : for i in 0..5 {
10174 20 : let key = get_key(i);
10175 20 : let value = format!("value {i}@{baseline_image_layer_lsn}");
10176 20 :
10177 20 : let removed = expected_key_values.insert(key, value.clone());
10178 20 : assert!(removed.is_none());
10179 4 :
10180 20 : baseline_img_layer.push((key, Bytes::from(value)));
10181 4 : }
10182 4 :
10183 4 : let nested_image_layer_lsn = Lsn(0x50);
10184 4 : let mut nested_img_layer = Vec::new();
10185 24 : for i in 5..10 {
10186 20 : let key = get_key(i);
10187 20 : let value = format!("value {i}@{nested_image_layer_lsn}");
10188 20 :
10189 20 : let removed = expected_key_values.insert(key, value.clone());
10190 20 : assert!(removed.is_none());
10191 4 :
10192 20 : nested_img_layer.push((key, Bytes::from(value)));
10193 4 : }
10194 4 :
10195 4 : let mut delta_layer_spec = Vec::default();
10196 4 : let delta_layer_start_lsn = Lsn(0x20);
10197 4 : let mut delta_layer_end_lsn = delta_layer_start_lsn;
10198 4 :
10199 44 : for i in 0..10 {
10200 40 : let key = get_key(i);
10201 40 : let key_in_nested = nested_img_layer
10202 40 : .iter()
10203 160 : .any(|(key_with_img, _)| *key_with_img == key);
10204 40 : let lsn = {
10205 40 : if key_in_nested {
10206 20 : Lsn(nested_image_layer_lsn.0 + 0x10)
10207 4 : } else {
10208 20 : delta_layer_start_lsn
10209 4 : }
10210 4 : };
10211 4 :
10212 40 : let will_init = will_init_keys.contains(&i);
10213 40 : if will_init {
10214 8 : delta_layer_spec.push((key, lsn, Value::WalRecord(NeonWalRecord::wal_init(""))));
10215 8 :
10216 8 : expected_key_values.insert(key, "".to_string());
10217 32 : } else {
10218 32 : let delta = format!("@{lsn}");
10219 32 : delta_layer_spec.push((
10220 32 : key,
10221 32 : lsn,
10222 32 : Value::WalRecord(NeonWalRecord::wal_append(&delta)),
10223 32 : ));
10224 32 :
10225 32 : expected_key_values
10226 32 : .get_mut(&key)
10227 32 : .expect("An image exists for each key")
10228 32 : .push_str(delta.as_str());
10229 32 : }
10230 40 : delta_layer_end_lsn = std::cmp::max(delta_layer_start_lsn, lsn);
10231 4 : }
10232 4 :
10233 4 : delta_layer_end_lsn = Lsn(delta_layer_end_lsn.0 + 1);
10234 4 :
10235 4 : assert!(
10236 4 : nested_image_layer_lsn > delta_layer_start_lsn
10237 4 : && nested_image_layer_lsn < delta_layer_end_lsn
10238 4 : );
10239 4 :
10240 4 : let tline = tenant
10241 4 : .create_test_timeline_with_layers(
10242 4 : TIMELINE_ID,
10243 4 : baseline_image_layer_lsn,
10244 4 : DEFAULT_PG_VERSION,
10245 4 : &ctx,
10246 4 : vec![DeltaLayerTestDesc::new_with_inferred_key_range(
10247 4 : delta_layer_start_lsn..delta_layer_end_lsn,
10248 4 : delta_layer_spec,
10249 4 : )], // delta layers
10250 4 : vec![
10251 4 : (baseline_image_layer_lsn, baseline_img_layer),
10252 4 : (nested_image_layer_lsn, nested_img_layer),
10253 4 : ], // image layers
10254 4 : delta_layer_end_lsn,
10255 4 : )
10256 4 : .await?;
10257 4 :
10258 4 : let keyspace = KeySpace::single(get_key(0)..get_key(10));
10259 4 : let results = tline
10260 4 : .get_vectored(
10261 4 : keyspace,
10262 4 : delta_layer_end_lsn,
10263 4 : IoConcurrency::sequential(),
10264 4 : &ctx,
10265 4 : )
10266 4 : .await
10267 4 : .expect("No vectored errors");
10268 44 : for (key, res) in results {
10269 40 : let value = res.expect("No key errors");
10270 40 : let expected_value = expected_key_values.remove(&key).expect("No unknown keys");
10271 40 : assert_eq!(value, Bytes::from(expected_value));
10272 4 : }
10273 4 :
10274 4 : Ok(())
10275 4 : }
10276 :
10277 428 : fn sort_layer_key(k1: &PersistentLayerKey, k2: &PersistentLayerKey) -> std::cmp::Ordering {
10278 428 : (
10279 428 : k1.is_delta,
10280 428 : k1.key_range.start,
10281 428 : k1.key_range.end,
10282 428 : k1.lsn_range.start,
10283 428 : k1.lsn_range.end,
10284 428 : )
10285 428 : .cmp(&(
10286 428 : k2.is_delta,
10287 428 : k2.key_range.start,
10288 428 : k2.key_range.end,
10289 428 : k2.lsn_range.start,
10290 428 : k2.lsn_range.end,
10291 428 : ))
10292 428 : }
10293 :
10294 48 : async fn inspect_and_sort(
10295 48 : tline: &Arc<Timeline>,
10296 48 : filter: Option<std::ops::Range<Key>>,
10297 48 : ) -> Vec<PersistentLayerKey> {
10298 48 : let mut all_layers = tline.inspect_historic_layers().await.unwrap();
10299 48 : if let Some(filter) = filter {
10300 216 : all_layers.retain(|layer| overlaps_with(&layer.key_range, &filter));
10301 44 : }
10302 48 : all_layers.sort_by(sort_layer_key);
10303 48 : all_layers
10304 48 : }
10305 :
10306 : #[cfg(feature = "testing")]
10307 44 : fn check_layer_map_key_eq(
10308 44 : mut left: Vec<PersistentLayerKey>,
10309 44 : mut right: Vec<PersistentLayerKey>,
10310 44 : ) {
10311 44 : left.sort_by(sort_layer_key);
10312 44 : right.sort_by(sort_layer_key);
10313 44 : if left != right {
10314 0 : eprintln!("---LEFT---");
10315 0 : for left in left.iter() {
10316 0 : eprintln!("{}", left);
10317 0 : }
10318 0 : eprintln!("---RIGHT---");
10319 0 : for right in right.iter() {
10320 0 : eprintln!("{}", right);
10321 0 : }
10322 0 : assert_eq!(left, right);
10323 44 : }
10324 44 : }
10325 :
10326 : #[cfg(feature = "testing")]
10327 : #[tokio::test]
10328 4 : async fn test_simple_partial_bottom_most_compaction() -> anyhow::Result<()> {
10329 4 : let harness = TenantHarness::create("test_simple_partial_bottom_most_compaction").await?;
10330 4 : let (tenant, ctx) = harness.load().await;
10331 4 :
10332 364 : fn get_key(id: u32) -> Key {
10333 364 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
10334 364 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
10335 364 : key.field6 = id;
10336 364 : key
10337 364 : }
10338 4 :
10339 4 : // img layer at 0x10
10340 4 : let img_layer = (0..10)
10341 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
10342 4 : .collect_vec();
10343 4 :
10344 4 : let delta1 = vec![
10345 4 : (
10346 4 : get_key(1),
10347 4 : Lsn(0x20),
10348 4 : Value::Image(Bytes::from("value 1@0x20")),
10349 4 : ),
10350 4 : (
10351 4 : get_key(2),
10352 4 : Lsn(0x30),
10353 4 : Value::Image(Bytes::from("value 2@0x30")),
10354 4 : ),
10355 4 : (
10356 4 : get_key(3),
10357 4 : Lsn(0x40),
10358 4 : Value::Image(Bytes::from("value 3@0x40")),
10359 4 : ),
10360 4 : ];
10361 4 : let delta2 = vec![
10362 4 : (
10363 4 : get_key(5),
10364 4 : Lsn(0x20),
10365 4 : Value::Image(Bytes::from("value 5@0x20")),
10366 4 : ),
10367 4 : (
10368 4 : get_key(6),
10369 4 : Lsn(0x20),
10370 4 : Value::Image(Bytes::from("value 6@0x20")),
10371 4 : ),
10372 4 : ];
10373 4 : let delta3 = vec![
10374 4 : (
10375 4 : get_key(8),
10376 4 : Lsn(0x48),
10377 4 : Value::Image(Bytes::from("value 8@0x48")),
10378 4 : ),
10379 4 : (
10380 4 : get_key(9),
10381 4 : Lsn(0x48),
10382 4 : Value::Image(Bytes::from("value 9@0x48")),
10383 4 : ),
10384 4 : ];
10385 4 :
10386 4 : let tline = tenant
10387 4 : .create_test_timeline_with_layers(
10388 4 : TIMELINE_ID,
10389 4 : Lsn(0x10),
10390 4 : DEFAULT_PG_VERSION,
10391 4 : &ctx,
10392 4 : vec![
10393 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x48), delta1),
10394 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x48), delta2),
10395 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x48)..Lsn(0x50), delta3),
10396 4 : ], // delta layers
10397 4 : vec![(Lsn(0x10), img_layer)], // image layers
10398 4 : Lsn(0x50),
10399 4 : )
10400 4 : .await?;
10401 4 :
10402 4 : {
10403 4 : tline
10404 4 : .applied_gc_cutoff_lsn
10405 4 : .lock_for_write()
10406 4 : .store_and_unlock(Lsn(0x30))
10407 4 : .wait()
10408 4 : .await;
10409 4 : // Update GC info
10410 4 : let mut guard = tline.gc_info.write().unwrap();
10411 4 : *guard = GcInfo {
10412 4 : retain_lsns: vec![(Lsn(0x20), tline.timeline_id, MaybeOffloaded::No)],
10413 4 : cutoffs: GcCutoffs {
10414 4 : time: Lsn(0x30),
10415 4 : space: Lsn(0x30),
10416 4 : },
10417 4 : leases: Default::default(),
10418 4 : within_ancestor_pitr: false,
10419 4 : };
10420 4 : }
10421 4 :
10422 4 : let cancel = CancellationToken::new();
10423 4 :
10424 4 : // Do a partial compaction on key range 0..2
10425 4 : tline
10426 4 : .compact_with_gc(
10427 4 : &cancel,
10428 4 : CompactOptions {
10429 4 : flags: EnumSet::new(),
10430 4 : compact_key_range: Some((get_key(0)..get_key(2)).into()),
10431 4 : ..Default::default()
10432 4 : },
10433 4 : &ctx,
10434 4 : )
10435 4 : .await
10436 4 : .unwrap();
10437 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10438 4 : check_layer_map_key_eq(
10439 4 : all_layers,
10440 4 : vec![
10441 4 : // newly-generated image layer for the partial compaction range 0-2
10442 4 : PersistentLayerKey {
10443 4 : key_range: get_key(0)..get_key(2),
10444 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10445 4 : is_delta: false,
10446 4 : },
10447 4 : PersistentLayerKey {
10448 4 : key_range: get_key(0)..get_key(10),
10449 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
10450 4 : is_delta: false,
10451 4 : },
10452 4 : // delta1 is split and the second part is rewritten
10453 4 : PersistentLayerKey {
10454 4 : key_range: get_key(2)..get_key(4),
10455 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10456 4 : is_delta: true,
10457 4 : },
10458 4 : PersistentLayerKey {
10459 4 : key_range: get_key(5)..get_key(7),
10460 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10461 4 : is_delta: true,
10462 4 : },
10463 4 : PersistentLayerKey {
10464 4 : key_range: get_key(8)..get_key(10),
10465 4 : lsn_range: Lsn(0x48)..Lsn(0x50),
10466 4 : is_delta: true,
10467 4 : },
10468 4 : ],
10469 4 : );
10470 4 :
10471 4 : // Do a partial compaction on key range 2..4
10472 4 : tline
10473 4 : .compact_with_gc(
10474 4 : &cancel,
10475 4 : CompactOptions {
10476 4 : flags: EnumSet::new(),
10477 4 : compact_key_range: Some((get_key(2)..get_key(4)).into()),
10478 4 : ..Default::default()
10479 4 : },
10480 4 : &ctx,
10481 4 : )
10482 4 : .await
10483 4 : .unwrap();
10484 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10485 4 : check_layer_map_key_eq(
10486 4 : all_layers,
10487 4 : vec![
10488 4 : PersistentLayerKey {
10489 4 : key_range: get_key(0)..get_key(2),
10490 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10491 4 : is_delta: false,
10492 4 : },
10493 4 : PersistentLayerKey {
10494 4 : key_range: get_key(0)..get_key(10),
10495 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
10496 4 : is_delta: false,
10497 4 : },
10498 4 : // image layer generated for the compaction range 2-4
10499 4 : PersistentLayerKey {
10500 4 : key_range: get_key(2)..get_key(4),
10501 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10502 4 : is_delta: false,
10503 4 : },
10504 4 : // we have key2/key3 above the retain_lsn, so we still need this delta layer
10505 4 : PersistentLayerKey {
10506 4 : key_range: get_key(2)..get_key(4),
10507 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10508 4 : is_delta: true,
10509 4 : },
10510 4 : PersistentLayerKey {
10511 4 : key_range: get_key(5)..get_key(7),
10512 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10513 4 : is_delta: true,
10514 4 : },
10515 4 : PersistentLayerKey {
10516 4 : key_range: get_key(8)..get_key(10),
10517 4 : lsn_range: Lsn(0x48)..Lsn(0x50),
10518 4 : is_delta: true,
10519 4 : },
10520 4 : ],
10521 4 : );
10522 4 :
10523 4 : // Do a partial compaction on key range 4..9
10524 4 : tline
10525 4 : .compact_with_gc(
10526 4 : &cancel,
10527 4 : CompactOptions {
10528 4 : flags: EnumSet::new(),
10529 4 : compact_key_range: Some((get_key(4)..get_key(9)).into()),
10530 4 : ..Default::default()
10531 4 : },
10532 4 : &ctx,
10533 4 : )
10534 4 : .await
10535 4 : .unwrap();
10536 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10537 4 : check_layer_map_key_eq(
10538 4 : all_layers,
10539 4 : vec![
10540 4 : PersistentLayerKey {
10541 4 : key_range: get_key(0)..get_key(2),
10542 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10543 4 : is_delta: false,
10544 4 : },
10545 4 : PersistentLayerKey {
10546 4 : key_range: get_key(0)..get_key(10),
10547 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
10548 4 : is_delta: false,
10549 4 : },
10550 4 : PersistentLayerKey {
10551 4 : key_range: get_key(2)..get_key(4),
10552 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10553 4 : is_delta: false,
10554 4 : },
10555 4 : PersistentLayerKey {
10556 4 : key_range: get_key(2)..get_key(4),
10557 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10558 4 : is_delta: true,
10559 4 : },
10560 4 : // image layer generated for this compaction range
10561 4 : PersistentLayerKey {
10562 4 : key_range: get_key(4)..get_key(9),
10563 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10564 4 : is_delta: false,
10565 4 : },
10566 4 : PersistentLayerKey {
10567 4 : key_range: get_key(8)..get_key(10),
10568 4 : lsn_range: Lsn(0x48)..Lsn(0x50),
10569 4 : is_delta: true,
10570 4 : },
10571 4 : ],
10572 4 : );
10573 4 :
10574 4 : // Do a partial compaction on key range 9..10
10575 4 : tline
10576 4 : .compact_with_gc(
10577 4 : &cancel,
10578 4 : CompactOptions {
10579 4 : flags: EnumSet::new(),
10580 4 : compact_key_range: Some((get_key(9)..get_key(10)).into()),
10581 4 : ..Default::default()
10582 4 : },
10583 4 : &ctx,
10584 4 : )
10585 4 : .await
10586 4 : .unwrap();
10587 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10588 4 : check_layer_map_key_eq(
10589 4 : all_layers,
10590 4 : vec![
10591 4 : PersistentLayerKey {
10592 4 : key_range: get_key(0)..get_key(2),
10593 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10594 4 : is_delta: false,
10595 4 : },
10596 4 : PersistentLayerKey {
10597 4 : key_range: get_key(0)..get_key(10),
10598 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
10599 4 : is_delta: false,
10600 4 : },
10601 4 : PersistentLayerKey {
10602 4 : key_range: get_key(2)..get_key(4),
10603 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10604 4 : is_delta: false,
10605 4 : },
10606 4 : PersistentLayerKey {
10607 4 : key_range: get_key(2)..get_key(4),
10608 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10609 4 : is_delta: true,
10610 4 : },
10611 4 : PersistentLayerKey {
10612 4 : key_range: get_key(4)..get_key(9),
10613 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10614 4 : is_delta: false,
10615 4 : },
10616 4 : // image layer generated for the compaction range
10617 4 : PersistentLayerKey {
10618 4 : key_range: get_key(9)..get_key(10),
10619 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10620 4 : is_delta: false,
10621 4 : },
10622 4 : PersistentLayerKey {
10623 4 : key_range: get_key(8)..get_key(10),
10624 4 : lsn_range: Lsn(0x48)..Lsn(0x50),
10625 4 : is_delta: true,
10626 4 : },
10627 4 : ],
10628 4 : );
10629 4 :
10630 4 : // Do a partial compaction on key range 0..10, all image layers below LSN 20 can be replaced with new ones.
10631 4 : tline
10632 4 : .compact_with_gc(
10633 4 : &cancel,
10634 4 : CompactOptions {
10635 4 : flags: EnumSet::new(),
10636 4 : compact_key_range: Some((get_key(0)..get_key(10)).into()),
10637 4 : ..Default::default()
10638 4 : },
10639 4 : &ctx,
10640 4 : )
10641 4 : .await
10642 4 : .unwrap();
10643 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10644 4 : check_layer_map_key_eq(
10645 4 : all_layers,
10646 4 : vec![
10647 4 : // aha, we removed all unnecessary image/delta layers and got a very clean layer map!
10648 4 : PersistentLayerKey {
10649 4 : key_range: get_key(0)..get_key(10),
10650 4 : lsn_range: Lsn(0x20)..Lsn(0x21),
10651 4 : is_delta: false,
10652 4 : },
10653 4 : PersistentLayerKey {
10654 4 : key_range: get_key(2)..get_key(4),
10655 4 : lsn_range: Lsn(0x20)..Lsn(0x48),
10656 4 : is_delta: true,
10657 4 : },
10658 4 : PersistentLayerKey {
10659 4 : key_range: get_key(8)..get_key(10),
10660 4 : lsn_range: Lsn(0x48)..Lsn(0x50),
10661 4 : is_delta: true,
10662 4 : },
10663 4 : ],
10664 4 : );
10665 4 : Ok(())
10666 4 : }
10667 :
10668 : #[cfg(feature = "testing")]
10669 : #[tokio::test]
10670 4 : async fn test_timeline_offload_retain_lsn() -> anyhow::Result<()> {
10671 4 : let harness = TenantHarness::create("test_timeline_offload_retain_lsn")
10672 4 : .await
10673 4 : .unwrap();
10674 4 : let (tenant, ctx) = harness.load().await;
10675 4 : let tline_parent = tenant
10676 4 : .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
10677 4 : .await
10678 4 : .unwrap();
10679 4 : let tline_child = tenant
10680 4 : .branch_timeline_test(&tline_parent, NEW_TIMELINE_ID, Some(Lsn(0x20)), &ctx)
10681 4 : .await
10682 4 : .unwrap();
10683 4 : {
10684 4 : let gc_info_parent = tline_parent.gc_info.read().unwrap();
10685 4 : assert_eq!(
10686 4 : gc_info_parent.retain_lsns,
10687 4 : vec![(Lsn(0x20), tline_child.timeline_id, MaybeOffloaded::No)]
10688 4 : );
10689 4 : }
10690 4 : // We have to directly call the remote_client instead of using the archive function to avoid constructing broker client...
10691 4 : tline_child
10692 4 : .remote_client
10693 4 : .schedule_index_upload_for_timeline_archival_state(TimelineArchivalState::Archived)
10694 4 : .unwrap();
10695 4 : tline_child.remote_client.wait_completion().await.unwrap();
10696 4 : offload_timeline(&tenant, &tline_child)
10697 4 : .instrument(tracing::info_span!(parent: None, "offload_test", tenant_id=%"test", shard_id=%"test", timeline_id=%"test"))
10698 4 : .await.unwrap();
10699 4 : let child_timeline_id = tline_child.timeline_id;
10700 4 : Arc::try_unwrap(tline_child).unwrap();
10701 4 :
10702 4 : {
10703 4 : let gc_info_parent = tline_parent.gc_info.read().unwrap();
10704 4 : assert_eq!(
10705 4 : gc_info_parent.retain_lsns,
10706 4 : vec![(Lsn(0x20), child_timeline_id, MaybeOffloaded::Yes)]
10707 4 : );
10708 4 : }
10709 4 :
10710 4 : tenant
10711 4 : .get_offloaded_timeline(child_timeline_id)
10712 4 : .unwrap()
10713 4 : .defuse_for_tenant_drop();
10714 4 :
10715 4 : Ok(())
10716 4 : }
10717 :
10718 : #[cfg(feature = "testing")]
10719 : #[tokio::test]
10720 4 : async fn test_simple_bottom_most_compaction_above_lsn() -> anyhow::Result<()> {
10721 4 : let harness = TenantHarness::create("test_simple_bottom_most_compaction_above_lsn").await?;
10722 4 : let (tenant, ctx) = harness.load().await;
10723 4 :
10724 592 : fn get_key(id: u32) -> Key {
10725 592 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
10726 592 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
10727 592 : key.field6 = id;
10728 592 : key
10729 592 : }
10730 4 :
10731 4 : let img_layer = (0..10)
10732 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
10733 4 : .collect_vec();
10734 4 :
10735 4 : let delta1 = vec![(
10736 4 : get_key(1),
10737 4 : Lsn(0x20),
10738 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
10739 4 : )];
10740 4 : let delta4 = vec![(
10741 4 : get_key(1),
10742 4 : Lsn(0x28),
10743 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x28")),
10744 4 : )];
10745 4 : let delta2 = vec![
10746 4 : (
10747 4 : get_key(1),
10748 4 : Lsn(0x30),
10749 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
10750 4 : ),
10751 4 : (
10752 4 : get_key(1),
10753 4 : Lsn(0x38),
10754 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x38")),
10755 4 : ),
10756 4 : ];
10757 4 : let delta3 = vec![
10758 4 : (
10759 4 : get_key(8),
10760 4 : Lsn(0x48),
10761 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
10762 4 : ),
10763 4 : (
10764 4 : get_key(9),
10765 4 : Lsn(0x48),
10766 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
10767 4 : ),
10768 4 : ];
10769 4 :
10770 4 : let tline = tenant
10771 4 : .create_test_timeline_with_layers(
10772 4 : TIMELINE_ID,
10773 4 : Lsn(0x10),
10774 4 : DEFAULT_PG_VERSION,
10775 4 : &ctx,
10776 4 : vec![
10777 4 : // delta1/2/4 only contain a single key but multiple updates
10778 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x28), delta1),
10779 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x30)..Lsn(0x50), delta2),
10780 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x28)..Lsn(0x30), delta4),
10781 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x30)..Lsn(0x50), delta3),
10782 4 : ], // delta layers
10783 4 : vec![(Lsn(0x10), img_layer)], // image layers
10784 4 : Lsn(0x50),
10785 4 : )
10786 4 : .await?;
10787 4 : {
10788 4 : tline
10789 4 : .applied_gc_cutoff_lsn
10790 4 : .lock_for_write()
10791 4 : .store_and_unlock(Lsn(0x30))
10792 4 : .wait()
10793 4 : .await;
10794 4 : // Update GC info
10795 4 : let mut guard = tline.gc_info.write().unwrap();
10796 4 : *guard = GcInfo {
10797 4 : retain_lsns: vec![
10798 4 : (Lsn(0x10), tline.timeline_id, MaybeOffloaded::No),
10799 4 : (Lsn(0x20), tline.timeline_id, MaybeOffloaded::No),
10800 4 : ],
10801 4 : cutoffs: GcCutoffs {
10802 4 : time: Lsn(0x30),
10803 4 : space: Lsn(0x30),
10804 4 : },
10805 4 : leases: Default::default(),
10806 4 : within_ancestor_pitr: false,
10807 4 : };
10808 4 : }
10809 4 :
10810 4 : let expected_result = [
10811 4 : Bytes::from_static(b"value 0@0x10"),
10812 4 : Bytes::from_static(b"value 1@0x10@0x20@0x28@0x30@0x38"),
10813 4 : Bytes::from_static(b"value 2@0x10"),
10814 4 : Bytes::from_static(b"value 3@0x10"),
10815 4 : Bytes::from_static(b"value 4@0x10"),
10816 4 : Bytes::from_static(b"value 5@0x10"),
10817 4 : Bytes::from_static(b"value 6@0x10"),
10818 4 : Bytes::from_static(b"value 7@0x10"),
10819 4 : Bytes::from_static(b"value 8@0x10@0x48"),
10820 4 : Bytes::from_static(b"value 9@0x10@0x48"),
10821 4 : ];
10822 4 :
10823 4 : let expected_result_at_gc_horizon = [
10824 4 : Bytes::from_static(b"value 0@0x10"),
10825 4 : Bytes::from_static(b"value 1@0x10@0x20@0x28@0x30"),
10826 4 : Bytes::from_static(b"value 2@0x10"),
10827 4 : Bytes::from_static(b"value 3@0x10"),
10828 4 : Bytes::from_static(b"value 4@0x10"),
10829 4 : Bytes::from_static(b"value 5@0x10"),
10830 4 : Bytes::from_static(b"value 6@0x10"),
10831 4 : Bytes::from_static(b"value 7@0x10"),
10832 4 : Bytes::from_static(b"value 8@0x10"),
10833 4 : Bytes::from_static(b"value 9@0x10"),
10834 4 : ];
10835 4 :
10836 4 : let expected_result_at_lsn_20 = [
10837 4 : Bytes::from_static(b"value 0@0x10"),
10838 4 : Bytes::from_static(b"value 1@0x10@0x20"),
10839 4 : Bytes::from_static(b"value 2@0x10"),
10840 4 : Bytes::from_static(b"value 3@0x10"),
10841 4 : Bytes::from_static(b"value 4@0x10"),
10842 4 : Bytes::from_static(b"value 5@0x10"),
10843 4 : Bytes::from_static(b"value 6@0x10"),
10844 4 : Bytes::from_static(b"value 7@0x10"),
10845 4 : Bytes::from_static(b"value 8@0x10"),
10846 4 : Bytes::from_static(b"value 9@0x10"),
10847 4 : ];
10848 4 :
10849 4 : let expected_result_at_lsn_10 = [
10850 4 : Bytes::from_static(b"value 0@0x10"),
10851 4 : Bytes::from_static(b"value 1@0x10"),
10852 4 : Bytes::from_static(b"value 2@0x10"),
10853 4 : Bytes::from_static(b"value 3@0x10"),
10854 4 : Bytes::from_static(b"value 4@0x10"),
10855 4 : Bytes::from_static(b"value 5@0x10"),
10856 4 : Bytes::from_static(b"value 6@0x10"),
10857 4 : Bytes::from_static(b"value 7@0x10"),
10858 4 : Bytes::from_static(b"value 8@0x10"),
10859 4 : Bytes::from_static(b"value 9@0x10"),
10860 4 : ];
10861 4 :
10862 12 : let verify_result = || async {
10863 12 : let gc_horizon = {
10864 12 : let gc_info = tline.gc_info.read().unwrap();
10865 12 : gc_info.cutoffs.time
10866 4 : };
10867 132 : for idx in 0..10 {
10868 120 : assert_eq!(
10869 120 : tline
10870 120 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
10871 120 : .await
10872 120 : .unwrap(),
10873 120 : &expected_result[idx]
10874 4 : );
10875 120 : assert_eq!(
10876 120 : tline
10877 120 : .get(get_key(idx as u32), gc_horizon, &ctx)
10878 120 : .await
10879 120 : .unwrap(),
10880 120 : &expected_result_at_gc_horizon[idx]
10881 4 : );
10882 120 : assert_eq!(
10883 120 : tline
10884 120 : .get(get_key(idx as u32), Lsn(0x20), &ctx)
10885 120 : .await
10886 120 : .unwrap(),
10887 120 : &expected_result_at_lsn_20[idx]
10888 4 : );
10889 120 : assert_eq!(
10890 120 : tline
10891 120 : .get(get_key(idx as u32), Lsn(0x10), &ctx)
10892 120 : .await
10893 120 : .unwrap(),
10894 120 : &expected_result_at_lsn_10[idx]
10895 4 : );
10896 4 : }
10897 24 : };
10898 4 :
10899 4 : verify_result().await;
10900 4 :
10901 4 : let cancel = CancellationToken::new();
10902 4 : tline
10903 4 : .compact_with_gc(
10904 4 : &cancel,
10905 4 : CompactOptions {
10906 4 : compact_lsn_range: Some(CompactLsnRange::above(Lsn(0x28))),
10907 4 : ..Default::default()
10908 4 : },
10909 4 : &ctx,
10910 4 : )
10911 4 : .await
10912 4 : .unwrap();
10913 4 : verify_result().await;
10914 4 :
10915 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10916 4 : check_layer_map_key_eq(
10917 4 : all_layers,
10918 4 : vec![
10919 4 : // The original image layer, not compacted
10920 4 : PersistentLayerKey {
10921 4 : key_range: get_key(0)..get_key(10),
10922 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
10923 4 : is_delta: false,
10924 4 : },
10925 4 : // Delta layer below the specified above_lsn not compacted
10926 4 : PersistentLayerKey {
10927 4 : key_range: get_key(1)..get_key(2),
10928 4 : lsn_range: Lsn(0x20)..Lsn(0x28),
10929 4 : is_delta: true,
10930 4 : },
10931 4 : // Delta layer compacted above the LSN
10932 4 : PersistentLayerKey {
10933 4 : key_range: get_key(1)..get_key(10),
10934 4 : lsn_range: Lsn(0x28)..Lsn(0x50),
10935 4 : is_delta: true,
10936 4 : },
10937 4 : ],
10938 4 : );
10939 4 :
10940 4 : // compact again
10941 4 : tline
10942 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
10943 4 : .await
10944 4 : .unwrap();
10945 4 : verify_result().await;
10946 4 :
10947 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
10948 4 : check_layer_map_key_eq(
10949 4 : all_layers,
10950 4 : vec![
10951 4 : // The compacted image layer (full key range)
10952 4 : PersistentLayerKey {
10953 4 : key_range: Key::MIN..Key::MAX,
10954 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
10955 4 : is_delta: false,
10956 4 : },
10957 4 : // All other data in the delta layer
10958 4 : PersistentLayerKey {
10959 4 : key_range: get_key(1)..get_key(10),
10960 4 : lsn_range: Lsn(0x10)..Lsn(0x50),
10961 4 : is_delta: true,
10962 4 : },
10963 4 : ],
10964 4 : );
10965 4 :
10966 4 : Ok(())
10967 4 : }
10968 :
10969 : #[cfg(feature = "testing")]
10970 : #[tokio::test]
10971 4 : async fn test_simple_bottom_most_compaction_rectangle() -> anyhow::Result<()> {
10972 4 : let harness = TenantHarness::create("test_simple_bottom_most_compaction_rectangle").await?;
10973 4 : let (tenant, ctx) = harness.load().await;
10974 4 :
10975 1016 : fn get_key(id: u32) -> Key {
10976 1016 : // using aux key here b/c they are guaranteed to be inside `collect_keyspace`.
10977 1016 : let mut key = Key::from_hex("620000000033333333444444445500000000").unwrap();
10978 1016 : key.field6 = id;
10979 1016 : key
10980 1016 : }
10981 4 :
10982 4 : let img_layer = (0..10)
10983 40 : .map(|id| (get_key(id), Bytes::from(format!("value {id}@0x10"))))
10984 4 : .collect_vec();
10985 4 :
10986 4 : let delta1 = vec![(
10987 4 : get_key(1),
10988 4 : Lsn(0x20),
10989 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x20")),
10990 4 : )];
10991 4 : let delta4 = vec![(
10992 4 : get_key(1),
10993 4 : Lsn(0x28),
10994 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x28")),
10995 4 : )];
10996 4 : let delta2 = vec![
10997 4 : (
10998 4 : get_key(1),
10999 4 : Lsn(0x30),
11000 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x30")),
11001 4 : ),
11002 4 : (
11003 4 : get_key(1),
11004 4 : Lsn(0x38),
11005 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x38")),
11006 4 : ),
11007 4 : ];
11008 4 : let delta3 = vec![
11009 4 : (
11010 4 : get_key(8),
11011 4 : Lsn(0x48),
11012 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
11013 4 : ),
11014 4 : (
11015 4 : get_key(9),
11016 4 : Lsn(0x48),
11017 4 : Value::WalRecord(NeonWalRecord::wal_append("@0x48")),
11018 4 : ),
11019 4 : ];
11020 4 :
11021 4 : let tline = tenant
11022 4 : .create_test_timeline_with_layers(
11023 4 : TIMELINE_ID,
11024 4 : Lsn(0x10),
11025 4 : DEFAULT_PG_VERSION,
11026 4 : &ctx,
11027 4 : vec![
11028 4 : // delta1/2/4 only contain a single key but multiple updates
11029 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x20)..Lsn(0x28), delta1),
11030 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x30)..Lsn(0x50), delta2),
11031 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x28)..Lsn(0x30), delta4),
11032 4 : DeltaLayerTestDesc::new_with_inferred_key_range(Lsn(0x30)..Lsn(0x50), delta3),
11033 4 : ], // delta layers
11034 4 : vec![(Lsn(0x10), img_layer)], // image layers
11035 4 : Lsn(0x50),
11036 4 : )
11037 4 : .await?;
11038 4 : {
11039 4 : tline
11040 4 : .applied_gc_cutoff_lsn
11041 4 : .lock_for_write()
11042 4 : .store_and_unlock(Lsn(0x30))
11043 4 : .wait()
11044 4 : .await;
11045 4 : // Update GC info
11046 4 : let mut guard = tline.gc_info.write().unwrap();
11047 4 : *guard = GcInfo {
11048 4 : retain_lsns: vec![
11049 4 : (Lsn(0x10), tline.timeline_id, MaybeOffloaded::No),
11050 4 : (Lsn(0x20), tline.timeline_id, MaybeOffloaded::No),
11051 4 : ],
11052 4 : cutoffs: GcCutoffs {
11053 4 : time: Lsn(0x30),
11054 4 : space: Lsn(0x30),
11055 4 : },
11056 4 : leases: Default::default(),
11057 4 : within_ancestor_pitr: false,
11058 4 : };
11059 4 : }
11060 4 :
11061 4 : let expected_result = [
11062 4 : Bytes::from_static(b"value 0@0x10"),
11063 4 : Bytes::from_static(b"value 1@0x10@0x20@0x28@0x30@0x38"),
11064 4 : Bytes::from_static(b"value 2@0x10"),
11065 4 : Bytes::from_static(b"value 3@0x10"),
11066 4 : Bytes::from_static(b"value 4@0x10"),
11067 4 : Bytes::from_static(b"value 5@0x10"),
11068 4 : Bytes::from_static(b"value 6@0x10"),
11069 4 : Bytes::from_static(b"value 7@0x10"),
11070 4 : Bytes::from_static(b"value 8@0x10@0x48"),
11071 4 : Bytes::from_static(b"value 9@0x10@0x48"),
11072 4 : ];
11073 4 :
11074 4 : let expected_result_at_gc_horizon = [
11075 4 : Bytes::from_static(b"value 0@0x10"),
11076 4 : Bytes::from_static(b"value 1@0x10@0x20@0x28@0x30"),
11077 4 : Bytes::from_static(b"value 2@0x10"),
11078 4 : Bytes::from_static(b"value 3@0x10"),
11079 4 : Bytes::from_static(b"value 4@0x10"),
11080 4 : Bytes::from_static(b"value 5@0x10"),
11081 4 : Bytes::from_static(b"value 6@0x10"),
11082 4 : Bytes::from_static(b"value 7@0x10"),
11083 4 : Bytes::from_static(b"value 8@0x10"),
11084 4 : Bytes::from_static(b"value 9@0x10"),
11085 4 : ];
11086 4 :
11087 4 : let expected_result_at_lsn_20 = [
11088 4 : Bytes::from_static(b"value 0@0x10"),
11089 4 : Bytes::from_static(b"value 1@0x10@0x20"),
11090 4 : Bytes::from_static(b"value 2@0x10"),
11091 4 : Bytes::from_static(b"value 3@0x10"),
11092 4 : Bytes::from_static(b"value 4@0x10"),
11093 4 : Bytes::from_static(b"value 5@0x10"),
11094 4 : Bytes::from_static(b"value 6@0x10"),
11095 4 : Bytes::from_static(b"value 7@0x10"),
11096 4 : Bytes::from_static(b"value 8@0x10"),
11097 4 : Bytes::from_static(b"value 9@0x10"),
11098 4 : ];
11099 4 :
11100 4 : let expected_result_at_lsn_10 = [
11101 4 : Bytes::from_static(b"value 0@0x10"),
11102 4 : Bytes::from_static(b"value 1@0x10"),
11103 4 : Bytes::from_static(b"value 2@0x10"),
11104 4 : Bytes::from_static(b"value 3@0x10"),
11105 4 : Bytes::from_static(b"value 4@0x10"),
11106 4 : Bytes::from_static(b"value 5@0x10"),
11107 4 : Bytes::from_static(b"value 6@0x10"),
11108 4 : Bytes::from_static(b"value 7@0x10"),
11109 4 : Bytes::from_static(b"value 8@0x10"),
11110 4 : Bytes::from_static(b"value 9@0x10"),
11111 4 : ];
11112 4 :
11113 20 : let verify_result = || async {
11114 20 : let gc_horizon = {
11115 20 : let gc_info = tline.gc_info.read().unwrap();
11116 20 : gc_info.cutoffs.time
11117 4 : };
11118 220 : for idx in 0..10 {
11119 200 : assert_eq!(
11120 200 : tline
11121 200 : .get(get_key(idx as u32), Lsn(0x50), &ctx)
11122 200 : .await
11123 200 : .unwrap(),
11124 200 : &expected_result[idx]
11125 4 : );
11126 200 : assert_eq!(
11127 200 : tline
11128 200 : .get(get_key(idx as u32), gc_horizon, &ctx)
11129 200 : .await
11130 200 : .unwrap(),
11131 200 : &expected_result_at_gc_horizon[idx]
11132 4 : );
11133 200 : assert_eq!(
11134 200 : tline
11135 200 : .get(get_key(idx as u32), Lsn(0x20), &ctx)
11136 200 : .await
11137 200 : .unwrap(),
11138 200 : &expected_result_at_lsn_20[idx]
11139 4 : );
11140 200 : assert_eq!(
11141 200 : tline
11142 200 : .get(get_key(idx as u32), Lsn(0x10), &ctx)
11143 200 : .await
11144 200 : .unwrap(),
11145 200 : &expected_result_at_lsn_10[idx]
11146 4 : );
11147 4 : }
11148 40 : };
11149 4 :
11150 4 : verify_result().await;
11151 4 :
11152 4 : let cancel = CancellationToken::new();
11153 4 :
11154 4 : tline
11155 4 : .compact_with_gc(
11156 4 : &cancel,
11157 4 : CompactOptions {
11158 4 : compact_key_range: Some((get_key(0)..get_key(2)).into()),
11159 4 : compact_lsn_range: Some((Lsn(0x20)..Lsn(0x28)).into()),
11160 4 : ..Default::default()
11161 4 : },
11162 4 : &ctx,
11163 4 : )
11164 4 : .await
11165 4 : .unwrap();
11166 4 : verify_result().await;
11167 4 :
11168 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
11169 4 : check_layer_map_key_eq(
11170 4 : all_layers,
11171 4 : vec![
11172 4 : // The original image layer, not compacted
11173 4 : PersistentLayerKey {
11174 4 : key_range: get_key(0)..get_key(10),
11175 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
11176 4 : is_delta: false,
11177 4 : },
11178 4 : // According the selection logic, we select all layers with start key <= 0x28, so we would merge the layer 0x20-0x28 and
11179 4 : // the layer 0x28-0x30 into one.
11180 4 : PersistentLayerKey {
11181 4 : key_range: get_key(1)..get_key(2),
11182 4 : lsn_range: Lsn(0x20)..Lsn(0x30),
11183 4 : is_delta: true,
11184 4 : },
11185 4 : // Above the upper bound and untouched
11186 4 : PersistentLayerKey {
11187 4 : key_range: get_key(1)..get_key(2),
11188 4 : lsn_range: Lsn(0x30)..Lsn(0x50),
11189 4 : is_delta: true,
11190 4 : },
11191 4 : // This layer is untouched
11192 4 : PersistentLayerKey {
11193 4 : key_range: get_key(8)..get_key(10),
11194 4 : lsn_range: Lsn(0x30)..Lsn(0x50),
11195 4 : is_delta: true,
11196 4 : },
11197 4 : ],
11198 4 : );
11199 4 :
11200 4 : tline
11201 4 : .compact_with_gc(
11202 4 : &cancel,
11203 4 : CompactOptions {
11204 4 : compact_key_range: Some((get_key(3)..get_key(8)).into()),
11205 4 : compact_lsn_range: Some((Lsn(0x28)..Lsn(0x40)).into()),
11206 4 : ..Default::default()
11207 4 : },
11208 4 : &ctx,
11209 4 : )
11210 4 : .await
11211 4 : .unwrap();
11212 4 : verify_result().await;
11213 4 :
11214 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
11215 4 : check_layer_map_key_eq(
11216 4 : all_layers,
11217 4 : vec![
11218 4 : // The original image layer, not compacted
11219 4 : PersistentLayerKey {
11220 4 : key_range: get_key(0)..get_key(10),
11221 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
11222 4 : is_delta: false,
11223 4 : },
11224 4 : // Not in the compaction key range, uncompacted
11225 4 : PersistentLayerKey {
11226 4 : key_range: get_key(1)..get_key(2),
11227 4 : lsn_range: Lsn(0x20)..Lsn(0x30),
11228 4 : is_delta: true,
11229 4 : },
11230 4 : // Not in the compaction key range, uncompacted but need rewrite because the delta layer overlaps with the range
11231 4 : PersistentLayerKey {
11232 4 : key_range: get_key(1)..get_key(2),
11233 4 : lsn_range: Lsn(0x30)..Lsn(0x50),
11234 4 : is_delta: true,
11235 4 : },
11236 4 : // Note that when we specify the LSN upper bound to be 0x40, the compaction algorithm will not try to cut the layer
11237 4 : // horizontally in half. Instead, it will include all LSNs that overlap with 0x40. So the real max_lsn of the compaction
11238 4 : // becomes 0x50.
11239 4 : PersistentLayerKey {
11240 4 : key_range: get_key(8)..get_key(10),
11241 4 : lsn_range: Lsn(0x30)..Lsn(0x50),
11242 4 : is_delta: true,
11243 4 : },
11244 4 : ],
11245 4 : );
11246 4 :
11247 4 : // compact again
11248 4 : tline
11249 4 : .compact_with_gc(
11250 4 : &cancel,
11251 4 : CompactOptions {
11252 4 : compact_key_range: Some((get_key(0)..get_key(5)).into()),
11253 4 : compact_lsn_range: Some((Lsn(0x20)..Lsn(0x50)).into()),
11254 4 : ..Default::default()
11255 4 : },
11256 4 : &ctx,
11257 4 : )
11258 4 : .await
11259 4 : .unwrap();
11260 4 : verify_result().await;
11261 4 :
11262 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
11263 4 : check_layer_map_key_eq(
11264 4 : all_layers,
11265 4 : vec![
11266 4 : // The original image layer, not compacted
11267 4 : PersistentLayerKey {
11268 4 : key_range: get_key(0)..get_key(10),
11269 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
11270 4 : is_delta: false,
11271 4 : },
11272 4 : // The range gets compacted
11273 4 : PersistentLayerKey {
11274 4 : key_range: get_key(1)..get_key(2),
11275 4 : lsn_range: Lsn(0x20)..Lsn(0x50),
11276 4 : is_delta: true,
11277 4 : },
11278 4 : // Not touched during this iteration of compaction
11279 4 : PersistentLayerKey {
11280 4 : key_range: get_key(8)..get_key(10),
11281 4 : lsn_range: Lsn(0x30)..Lsn(0x50),
11282 4 : is_delta: true,
11283 4 : },
11284 4 : ],
11285 4 : );
11286 4 :
11287 4 : // final full compaction
11288 4 : tline
11289 4 : .compact_with_gc(&cancel, CompactOptions::default(), &ctx)
11290 4 : .await
11291 4 : .unwrap();
11292 4 : verify_result().await;
11293 4 :
11294 4 : let all_layers = inspect_and_sort(&tline, Some(get_key(0)..get_key(10))).await;
11295 4 : check_layer_map_key_eq(
11296 4 : all_layers,
11297 4 : vec![
11298 4 : // The compacted image layer (full key range)
11299 4 : PersistentLayerKey {
11300 4 : key_range: Key::MIN..Key::MAX,
11301 4 : lsn_range: Lsn(0x10)..Lsn(0x11),
11302 4 : is_delta: false,
11303 4 : },
11304 4 : // All other data in the delta layer
11305 4 : PersistentLayerKey {
11306 4 : key_range: get_key(1)..get_key(10),
11307 4 : lsn_range: Lsn(0x10)..Lsn(0x50),
11308 4 : is_delta: true,
11309 4 : },
11310 4 : ],
11311 4 : );
11312 4 :
11313 4 : Ok(())
11314 4 : }
11315 : }
|