LCOV - code coverage report
Current view: top level - pageserver/src/tenant/storage_layer - image_layer.rs (source / functions) Coverage Total Hit
Test: 2a9d99866121f170b43760bd62e1e2431e597707.info Lines: 77.7 % 943 733
Test Date: 2024-09-02 14:10:37 Functions: 53.9 % 89 48

            Line data    Source code
       1              : //! An ImageLayer represents an image or a snapshot of a key-range at
       2              : //! one particular LSN. It contains an image of all key-value pairs
       3              : //! in its key-range. Any key that falls into the image layer's range
       4              : //! but does not exist in the layer, does not exist.
       5              : //!
       6              : //! An image layer is stored in a file on disk. The file is stored in
       7              : //! timelines/<timeline_id> directory.  Currently, there are no
       8              : //! subdirectories, and each image layer file is named like this:
       9              : //!
      10              : //! ```text
      11              : //!    <key start>-<key end>__<LSN>
      12              : //! ```
      13              : //!
      14              : //! For example:
      15              : //!
      16              : //! ```text
      17              : //!    000000067F000032BE0000400000000070B6-000000067F000032BE0000400000000080B6__00000000346BC568
      18              : //! ```
      19              : //!
      20              : //! Every image layer file consists of three parts: "summary",
      21              : //! "index", and "values".  The summary is a fixed size header at the
      22              : //! beginning of the file, and it contains basic information about the
      23              : //! layer, and offsets to the other parts. The "index" is a B-tree,
      24              : //! mapping from Key to an offset in the "values" part.  The
      25              : //! actual page images are stored in the "values" part.
      26              : use crate::config::PageServerConf;
      27              : use crate::context::{PageContentKind, RequestContext, RequestContextBuilder};
      28              : use crate::page_cache::{self, FileId, PAGE_SZ};
      29              : use crate::repository::{Key, Value, KEY_SIZE};
      30              : use crate::tenant::blob_io::BlobWriter;
      31              : use crate::tenant::block_io::{BlockBuf, BlockReader, FileBlockReader};
      32              : use crate::tenant::disk_btree::{
      33              :     DiskBtreeBuilder, DiskBtreeIterator, DiskBtreeReader, VisitDirection,
      34              : };
      35              : use crate::tenant::timeline::GetVectoredError;
      36              : use crate::tenant::vectored_blob_io::{
      37              :     BlobFlag, MaxVectoredReadBytes, StreamingVectoredReadPlanner, VectoredBlobReader, VectoredRead,
      38              :     VectoredReadPlanner,
      39              : };
      40              : use crate::tenant::{PageReconstructError, Timeline};
      41              : use crate::virtual_file::owned_buffers_io::io_buf_ext::IoBufExt;
      42              : use crate::virtual_file::{self, VirtualFile};
      43              : use crate::{IMAGE_FILE_MAGIC, STORAGE_FORMAT_VERSION, TEMP_FILE_SUFFIX};
      44              : use anyhow::{anyhow, bail, ensure, Context, Result};
      45              : use bytes::{Bytes, BytesMut};
      46              : use camino::{Utf8Path, Utf8PathBuf};
      47              : use hex;
      48              : use itertools::Itertools;
      49              : use pageserver_api::keyspace::KeySpace;
      50              : use pageserver_api::shard::{ShardIdentity, TenantShardId};
      51              : use rand::{distributions::Alphanumeric, Rng};
      52              : use serde::{Deserialize, Serialize};
      53              : use std::collections::VecDeque;
      54              : use std::fs::File;
      55              : use std::io::SeekFrom;
      56              : use std::ops::Range;
      57              : use std::os::unix::prelude::FileExt;
      58              : use std::str::FromStr;
      59              : use std::sync::Arc;
      60              : use tokio::sync::OnceCell;
      61              : use tokio_stream::StreamExt;
      62              : use tracing::*;
      63              : 
      64              : use utils::{
      65              :     bin_ser::BeSer,
      66              :     id::{TenantId, TimelineId},
      67              :     lsn::Lsn,
      68              : };
      69              : 
      70              : use super::layer_name::ImageLayerName;
      71              : use super::{
      72              :     AsLayerDesc, Layer, LayerName, PersistentLayerDesc, ResidentLayer, ValuesReconstructState,
      73              : };
      74              : 
      75              : ///
      76              : /// Header stored in the beginning of the file
      77              : ///
      78              : /// After this comes the 'values' part, starting on block 1. After that,
      79              : /// the 'index' starts at the block indicated by 'index_start_blk'
      80              : ///
      81          306 : #[derive(Debug, Serialize, Deserialize, PartialEq, Eq)]
      82              : pub struct Summary {
      83              :     /// Magic value to identify this as a neon image file. Always IMAGE_FILE_MAGIC.
      84              :     pub magic: u16,
      85              :     pub format_version: u16,
      86              : 
      87              :     pub tenant_id: TenantId,
      88              :     pub timeline_id: TimelineId,
      89              :     pub key_range: Range<Key>,
      90              :     pub lsn: Lsn,
      91              : 
      92              :     /// Block number where the 'index' part of the file begins.
      93              :     pub index_start_blk: u32,
      94              :     /// Block within the 'index', where the B-tree root page is stored
      95              :     pub index_root_blk: u32,
      96              :     // the 'values' part starts after the summary header, on block 1.
      97              : }
      98              : 
      99              : impl From<&ImageLayer> for Summary {
     100            0 :     fn from(layer: &ImageLayer) -> Self {
     101            0 :         Self::expected(
     102            0 :             layer.desc.tenant_shard_id.tenant_id,
     103            0 :             layer.desc.timeline_id,
     104            0 :             layer.desc.key_range.clone(),
     105            0 :             layer.lsn,
     106            0 :         )
     107            0 :     }
     108              : }
     109              : 
     110              : impl Summary {
     111          306 :     pub(super) fn expected(
     112          306 :         tenant_id: TenantId,
     113          306 :         timeline_id: TimelineId,
     114          306 :         key_range: Range<Key>,
     115          306 :         lsn: Lsn,
     116          306 :     ) -> Self {
     117          306 :         Self {
     118          306 :             magic: IMAGE_FILE_MAGIC,
     119          306 :             format_version: STORAGE_FORMAT_VERSION,
     120          306 :             tenant_id,
     121          306 :             timeline_id,
     122          306 :             key_range,
     123          306 :             lsn,
     124          306 : 
     125          306 :             index_start_blk: 0,
     126          306 :             index_root_blk: 0,
     127          306 :         }
     128          306 :     }
     129              : }
     130              : 
     131              : /// This is used only from `pagectl`. Within pageserver, all layers are
     132              : /// [`crate::tenant::storage_layer::Layer`], which can hold an [`ImageLayerInner`].
     133              : pub struct ImageLayer {
     134              :     path: Utf8PathBuf,
     135              :     pub desc: PersistentLayerDesc,
     136              :     // This entry contains an image of all pages as of this LSN, should be the same as desc.lsn
     137              :     pub lsn: Lsn,
     138              :     inner: OnceCell<ImageLayerInner>,
     139              : }
     140              : 
     141              : impl std::fmt::Debug for ImageLayer {
     142            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     143            0 :         use super::RangeDisplayDebug;
     144            0 : 
     145            0 :         f.debug_struct("ImageLayer")
     146            0 :             .field("key_range", &RangeDisplayDebug(&self.desc.key_range))
     147            0 :             .field("file_size", &self.desc.file_size)
     148            0 :             .field("lsn", &self.lsn)
     149            0 :             .field("inner", &self.inner)
     150            0 :             .finish()
     151            0 :     }
     152              : }
     153              : 
     154              : /// ImageLayer is the in-memory data structure associated with an on-disk image
     155              : /// file.
     156              : pub struct ImageLayerInner {
     157              :     // values copied from summary
     158              :     index_start_blk: u32,
     159              :     index_root_blk: u32,
     160              : 
     161              :     key_range: Range<Key>,
     162              :     lsn: Lsn,
     163              : 
     164              :     file: VirtualFile,
     165              :     file_id: FileId,
     166              : 
     167              :     max_vectored_read_bytes: Option<MaxVectoredReadBytes>,
     168              : }
     169              : 
     170              : impl ImageLayerInner {
     171            0 :     pub(crate) fn layer_dbg_info(&self) -> String {
     172            0 :         format!(
     173            0 :             "image {}..{} {}",
     174            0 :             self.key_range().start,
     175            0 :             self.key_range().end,
     176            0 :             self.lsn()
     177            0 :         )
     178            0 :     }
     179              : }
     180              : 
     181              : impl std::fmt::Debug for ImageLayerInner {
     182            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     183            0 :         f.debug_struct("ImageLayerInner")
     184            0 :             .field("index_start_blk", &self.index_start_blk)
     185            0 :             .field("index_root_blk", &self.index_root_blk)
     186            0 :             .finish()
     187            0 :     }
     188              : }
     189              : 
     190              : impl ImageLayerInner {
     191            0 :     pub(super) async fn dump(&self, ctx: &RequestContext) -> anyhow::Result<()> {
     192            0 :         let block_reader = FileBlockReader::new(&self.file, self.file_id);
     193            0 :         let tree_reader = DiskBtreeReader::<_, KEY_SIZE>::new(
     194            0 :             self.index_start_blk,
     195            0 :             self.index_root_blk,
     196            0 :             block_reader,
     197            0 :         );
     198            0 : 
     199            0 :         tree_reader.dump().await?;
     200              : 
     201            0 :         tree_reader
     202            0 :             .visit(
     203            0 :                 &[0u8; KEY_SIZE],
     204            0 :                 VisitDirection::Forwards,
     205            0 :                 |key, value| {
     206            0 :                     println!("key: {} offset {}", hex::encode(key), value);
     207            0 :                     true
     208            0 :                 },
     209            0 :                 ctx,
     210            0 :             )
     211            0 :             .await?;
     212              : 
     213            0 :         Ok(())
     214            0 :     }
     215              : }
     216              : 
     217              : /// Boilerplate to implement the Layer trait, always use layer_desc for persistent layers.
     218              : impl std::fmt::Display for ImageLayer {
     219            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     220            0 :         write!(f, "{}", self.layer_desc().short_id())
     221            0 :     }
     222              : }
     223              : 
     224              : impl AsLayerDesc for ImageLayer {
     225            0 :     fn layer_desc(&self) -> &PersistentLayerDesc {
     226            0 :         &self.desc
     227            0 :     }
     228              : }
     229              : 
     230              : impl ImageLayer {
     231            0 :     pub(crate) async fn dump(&self, verbose: bool, ctx: &RequestContext) -> Result<()> {
     232            0 :         self.desc.dump();
     233            0 : 
     234            0 :         if !verbose {
     235            0 :             return Ok(());
     236            0 :         }
     237              : 
     238            0 :         let inner = self.load(ctx).await?;
     239              : 
     240            0 :         inner.dump(ctx).await?;
     241              : 
     242            0 :         Ok(())
     243            0 :     }
     244              : 
     245         1470 :     fn temp_path_for(
     246         1470 :         conf: &PageServerConf,
     247         1470 :         timeline_id: TimelineId,
     248         1470 :         tenant_shard_id: TenantShardId,
     249         1470 :         fname: &ImageLayerName,
     250         1470 :     ) -> Utf8PathBuf {
     251         1470 :         let rand_string: String = rand::thread_rng()
     252         1470 :             .sample_iter(&Alphanumeric)
     253         1470 :             .take(8)
     254         1470 :             .map(char::from)
     255         1470 :             .collect();
     256         1470 : 
     257         1470 :         conf.timeline_path(&tenant_shard_id, &timeline_id)
     258         1470 :             .join(format!("{fname}.{rand_string}.{TEMP_FILE_SUFFIX}"))
     259         1470 :     }
     260              : 
     261              :     ///
     262              :     /// Open the underlying file and read the metadata into memory, if it's
     263              :     /// not loaded already.
     264              :     ///
     265            0 :     async fn load(&self, ctx: &RequestContext) -> Result<&ImageLayerInner> {
     266            0 :         self.inner
     267            0 :             .get_or_try_init(|| self.load_inner(ctx))
     268            0 :             .await
     269            0 :             .with_context(|| format!("Failed to load image layer {}", self.path()))
     270            0 :     }
     271              : 
     272            0 :     async fn load_inner(&self, ctx: &RequestContext) -> Result<ImageLayerInner> {
     273            0 :         let path = self.path();
     274              : 
     275            0 :         let loaded =
     276            0 :             ImageLayerInner::load(&path, self.desc.image_layer_lsn(), None, None, ctx).await?;
     277              : 
     278              :         // not production code
     279            0 :         let actual_layer_name = LayerName::from_str(path.file_name().unwrap()).unwrap();
     280            0 :         let expected_layer_name = self.layer_desc().layer_name();
     281            0 : 
     282            0 :         if actual_layer_name != expected_layer_name {
     283            0 :             println!("warning: filename does not match what is expected from in-file summary");
     284            0 :             println!("actual: {:?}", actual_layer_name.to_string());
     285            0 :             println!("expected: {:?}", expected_layer_name.to_string());
     286            0 :         }
     287              : 
     288            0 :         Ok(loaded)
     289            0 :     }
     290              : 
     291              :     /// Create an ImageLayer struct representing an existing file on disk.
     292              :     ///
     293              :     /// This variant is only used for debugging purposes, by the 'pagectl' binary.
     294            0 :     pub fn new_for_path(path: &Utf8Path, file: File) -> Result<ImageLayer> {
     295            0 :         let mut summary_buf = vec![0; PAGE_SZ];
     296            0 :         file.read_exact_at(&mut summary_buf, 0)?;
     297            0 :         let summary = Summary::des_prefix(&summary_buf)?;
     298            0 :         let metadata = file
     299            0 :             .metadata()
     300            0 :             .context("get file metadata to determine size")?;
     301              : 
     302              :         // This function is never used for constructing layers in a running pageserver,
     303              :         // so it does not need an accurate TenantShardId.
     304            0 :         let tenant_shard_id = TenantShardId::unsharded(summary.tenant_id);
     305            0 : 
     306            0 :         Ok(ImageLayer {
     307            0 :             path: path.to_path_buf(),
     308            0 :             desc: PersistentLayerDesc::new_img(
     309            0 :                 tenant_shard_id,
     310            0 :                 summary.timeline_id,
     311            0 :                 summary.key_range,
     312            0 :                 summary.lsn,
     313            0 :                 metadata.len(),
     314            0 :             ), // Now we assume image layer ALWAYS covers the full range. This may change in the future.
     315            0 :             lsn: summary.lsn,
     316            0 :             inner: OnceCell::new(),
     317            0 :         })
     318            0 :     }
     319              : 
     320            0 :     fn path(&self) -> Utf8PathBuf {
     321            0 :         self.path.clone()
     322            0 :     }
     323              : }
     324              : 
     325            0 : #[derive(thiserror::Error, Debug)]
     326              : pub enum RewriteSummaryError {
     327              :     #[error("magic mismatch")]
     328              :     MagicMismatch,
     329              :     #[error(transparent)]
     330              :     Other(#[from] anyhow::Error),
     331              : }
     332              : 
     333              : impl From<std::io::Error> for RewriteSummaryError {
     334            0 :     fn from(e: std::io::Error) -> Self {
     335            0 :         Self::Other(anyhow::anyhow!(e))
     336            0 :     }
     337              : }
     338              : 
     339              : impl ImageLayer {
     340            0 :     pub async fn rewrite_summary<F>(
     341            0 :         path: &Utf8Path,
     342            0 :         rewrite: F,
     343            0 :         ctx: &RequestContext,
     344            0 :     ) -> Result<(), RewriteSummaryError>
     345            0 :     where
     346            0 :         F: Fn(Summary) -> Summary,
     347            0 :     {
     348            0 :         let mut file = VirtualFile::open_with_options(
     349            0 :             path,
     350            0 :             virtual_file::OpenOptions::new().read(true).write(true),
     351            0 :             ctx,
     352            0 :         )
     353            0 :         .await
     354            0 :         .with_context(|| format!("Failed to open file '{}'", path))?;
     355            0 :         let file_id = page_cache::next_file_id();
     356            0 :         let block_reader = FileBlockReader::new(&file, file_id);
     357            0 :         let summary_blk = block_reader.read_blk(0, ctx).await?;
     358            0 :         let actual_summary = Summary::des_prefix(summary_blk.as_ref()).context("deserialize")?;
     359            0 :         if actual_summary.magic != IMAGE_FILE_MAGIC {
     360            0 :             return Err(RewriteSummaryError::MagicMismatch);
     361            0 :         }
     362            0 : 
     363            0 :         let new_summary = rewrite(actual_summary);
     364            0 : 
     365            0 :         let mut buf = Vec::with_capacity(PAGE_SZ);
     366            0 :         // TODO: could use smallvec here but it's a pain with Slice<T>
     367            0 :         Summary::ser_into(&new_summary, &mut buf).context("serialize")?;
     368            0 :         file.seek(SeekFrom::Start(0)).await?;
     369            0 :         let (_buf, res) = file.write_all(buf.slice_len(), ctx).await;
     370            0 :         res?;
     371            0 :         Ok(())
     372            0 :     }
     373              : }
     374              : 
     375              : impl ImageLayerInner {
     376          108 :     pub(crate) fn key_range(&self) -> &Range<Key> {
     377          108 :         &self.key_range
     378          108 :     }
     379              : 
     380          108 :     pub(crate) fn lsn(&self) -> Lsn {
     381          108 :         self.lsn
     382          108 :     }
     383              : 
     384          306 :     pub(super) async fn load(
     385          306 :         path: &Utf8Path,
     386          306 :         lsn: Lsn,
     387          306 :         summary: Option<Summary>,
     388          306 :         max_vectored_read_bytes: Option<MaxVectoredReadBytes>,
     389          306 :         ctx: &RequestContext,
     390          306 :     ) -> anyhow::Result<Self> {
     391          306 :         let file = VirtualFile::open(path, ctx)
     392          153 :             .await
     393          306 :             .context("open layer file")?;
     394          306 :         let file_id = page_cache::next_file_id();
     395          306 :         let block_reader = FileBlockReader::new(&file, file_id);
     396          306 :         let summary_blk = block_reader
     397          306 :             .read_blk(0, ctx)
     398          157 :             .await
     399          306 :             .context("read first block")?;
     400              : 
     401              :         // length is the only way how this could fail, so it's not actually likely at all unless
     402              :         // read_blk returns wrong sized block.
     403              :         //
     404              :         // TODO: confirm and make this into assertion
     405          306 :         let actual_summary =
     406          306 :             Summary::des_prefix(summary_blk.as_ref()).context("deserialize first block")?;
     407              : 
     408          306 :         if let Some(mut expected_summary) = summary {
     409              :             // production code path
     410          306 :             expected_summary.index_start_blk = actual_summary.index_start_blk;
     411          306 :             expected_summary.index_root_blk = actual_summary.index_root_blk;
     412          306 :             // mask out the timeline_id, but still require the layers to be from the same tenant
     413          306 :             expected_summary.timeline_id = actual_summary.timeline_id;
     414          306 : 
     415          306 :             if actual_summary != expected_summary {
     416            0 :                 bail!(
     417            0 :                     "in-file summary does not match expected summary. actual = {:?} expected = {:?}",
     418            0 :                     actual_summary,
     419            0 :                     expected_summary
     420            0 :                 );
     421          306 :             }
     422            0 :         }
     423              : 
     424          306 :         Ok(ImageLayerInner {
     425          306 :             index_start_blk: actual_summary.index_start_blk,
     426          306 :             index_root_blk: actual_summary.index_root_blk,
     427          306 :             lsn,
     428          306 :             file,
     429          306 :             file_id,
     430          306 :             max_vectored_read_bytes,
     431          306 :             key_range: actual_summary.key_range,
     432          306 :         })
     433          306 :     }
     434              : 
     435              :     // Look up the keys in the provided keyspace and update
     436              :     // the reconstruct state with whatever is found.
     437        24182 :     pub(super) async fn get_values_reconstruct_data(
     438        24182 :         &self,
     439        24182 :         keyspace: KeySpace,
     440        24182 :         reconstruct_state: &mut ValuesReconstructState,
     441        24182 :         ctx: &RequestContext,
     442        24182 :     ) -> Result<(), GetVectoredError> {
     443        24182 :         let reads = self
     444        24182 :             .plan_reads(keyspace, None, ctx)
     445         2146 :             .await
     446        24182 :             .map_err(GetVectoredError::Other)?;
     447              : 
     448        24182 :         self.do_reads_and_update_state(reads, reconstruct_state, ctx)
     449        14185 :             .await;
     450              : 
     451        24182 :         reconstruct_state.on_image_layer_visited(&self.key_range);
     452        24182 : 
     453        24182 :         Ok(())
     454        24182 :     }
     455              : 
     456              :     /// Load all key-values in the delta layer, should be replaced by an iterator-based interface in the future.
     457            0 :     pub(super) async fn load_key_values(
     458            0 :         &self,
     459            0 :         ctx: &RequestContext,
     460            0 :     ) -> anyhow::Result<Vec<(Key, Lsn, Value)>> {
     461            0 :         let block_reader = FileBlockReader::new(&self.file, self.file_id);
     462            0 :         let tree_reader =
     463            0 :             DiskBtreeReader::new(self.index_start_blk, self.index_root_blk, &block_reader);
     464            0 :         let mut result = Vec::new();
     465            0 :         let mut stream = Box::pin(tree_reader.into_stream(&[0; KEY_SIZE], ctx));
     466            0 :         let block_reader = FileBlockReader::new(&self.file, self.file_id);
     467            0 :         let cursor = block_reader.block_cursor();
     468            0 :         while let Some(item) = stream.next().await {
     469              :             // TODO: dedup code with get_reconstruct_value
     470            0 :             let (raw_key, offset) = item?;
     471            0 :             let key = Key::from_slice(&raw_key[..KEY_SIZE]);
     472              :             // TODO: ctx handling and sharding
     473            0 :             let blob = cursor
     474            0 :                 .read_blob(offset, ctx)
     475            0 :                 .await
     476            0 :                 .with_context(|| format!("failed to read value from offset {}", offset))?;
     477            0 :             let value = Bytes::from(blob);
     478            0 :             result.push((key, self.lsn, Value::Image(value)));
     479              :         }
     480            0 :         Ok(result)
     481            0 :     }
     482              : 
     483              :     /// Traverse the layer's index to build read operations on the overlap of the input keyspace
     484              :     /// and the keys in this layer.
     485              :     ///
     486              :     /// If shard_identity is provided, it will be used to filter keys down to those stored on
     487              :     /// this shard.
     488        24206 :     async fn plan_reads(
     489        24206 :         &self,
     490        24206 :         keyspace: KeySpace,
     491        24206 :         shard_identity: Option<&ShardIdentity>,
     492        24206 :         ctx: &RequestContext,
     493        24206 :     ) -> anyhow::Result<Vec<VectoredRead>> {
     494        24206 :         let mut planner = VectoredReadPlanner::new(
     495        24206 :             self.max_vectored_read_bytes
     496        24206 :                 .expect("Layer is loaded with max vectored bytes config")
     497        24206 :                 .0
     498        24206 :                 .into(),
     499        24206 :         );
     500        24206 : 
     501        24206 :         let block_reader = FileBlockReader::new(&self.file, self.file_id);
     502        24206 :         let tree_reader =
     503        24206 :             DiskBtreeReader::new(self.index_start_blk, self.index_root_blk, block_reader);
     504        24206 : 
     505        24206 :         let ctx = RequestContextBuilder::extend(ctx)
     506        24206 :             .page_content_kind(PageContentKind::ImageLayerBtreeNode)
     507        24206 :             .build();
     508              : 
     509        89079 :         for range in keyspace.ranges.iter() {
     510        89079 :             let mut range_end_handled = false;
     511        89079 :             let mut search_key: [u8; KEY_SIZE] = [0u8; KEY_SIZE];
     512        89079 :             range.start.write_to_byte_slice(&mut search_key);
     513        89079 : 
     514        89079 :             let index_stream = tree_reader.clone().into_stream(&search_key, &ctx);
     515        89079 :             let mut index_stream = std::pin::pin!(index_stream);
     516              : 
     517      3290085 :             while let Some(index_entry) = index_stream.next().await {
     518      3289483 :                 let (raw_key, offset) = index_entry?;
     519              : 
     520      3289483 :                 let key = Key::from_slice(&raw_key[..KEY_SIZE]);
     521      3289483 :                 assert!(key >= range.start);
     522              : 
     523      3289483 :                 let flag = if let Some(shard_identity) = shard_identity {
     524      3145728 :                     if shard_identity.is_key_disposable(&key) {
     525      2359296 :                         BlobFlag::Ignore
     526              :                     } else {
     527       786432 :                         BlobFlag::None
     528              :                     }
     529              :                 } else {
     530       143755 :                     BlobFlag::None
     531              :                 };
     532              : 
     533      3289483 :                 if key >= range.end {
     534        88477 :                     planner.handle_range_end(offset);
     535        88477 :                     range_end_handled = true;
     536        88477 :                     break;
     537      3201006 :                 } else {
     538      3201006 :                     planner.handle(key, self.lsn, offset, flag);
     539      3201006 :                 }
     540              :             }
     541              : 
     542        89079 :             if !range_end_handled {
     543          602 :                 let payload_end = self.index_start_blk as u64 * PAGE_SZ as u64;
     544          602 :                 planner.handle_range_end(payload_end);
     545        88477 :             }
     546              :         }
     547              : 
     548        24206 :         Ok(planner.finish())
     549        24206 :     }
     550              : 
     551              :     /// Given a key range, select the parts of that range that should be retained by the ShardIdentity,
     552              :     /// then execute vectored GET operations, passing the results of all read keys into the writer.
     553           24 :     pub(super) async fn filter(
     554           24 :         &self,
     555           24 :         shard_identity: &ShardIdentity,
     556           24 :         writer: &mut ImageLayerWriter,
     557           24 :         ctx: &RequestContext,
     558           24 :     ) -> anyhow::Result<usize> {
     559              :         // Fragment the range into the regions owned by this ShardIdentity
     560           24 :         let plan = self
     561           24 :             .plan_reads(
     562           24 :                 KeySpace {
     563           24 :                     // If asked for the total key space, plan_reads will give us all the keys in the layer
     564           24 :                     ranges: vec![Key::MIN..Key::MAX],
     565           24 :                 },
     566           24 :                 Some(shard_identity),
     567           24 :                 ctx,
     568           24 :             )
     569         1407 :             .await?;
     570              : 
     571           24 :         let vectored_blob_reader = VectoredBlobReader::new(&self.file);
     572           24 :         let mut key_count = 0;
     573           48 :         for read in plan.into_iter() {
     574           48 :             let buf_size = read.size();
     575           48 : 
     576           48 :             let buf = BytesMut::with_capacity(buf_size);
     577           48 :             let blobs_buf = vectored_blob_reader.read_blobs(&read, buf, ctx).await?;
     578              : 
     579           48 :             let frozen_buf = blobs_buf.buf.freeze();
     580              : 
     581       786432 :             for meta in blobs_buf.blobs.iter() {
     582       786432 :                 let img_buf = frozen_buf.slice(meta.start..meta.end);
     583       786432 : 
     584       786432 :                 key_count += 1;
     585       786432 :                 writer
     586       786432 :                     .put_image(meta.meta.key, img_buf, ctx)
     587       798720 :                     .await
     588       786432 :                     .context(format!("Storing key {}", meta.meta.key))?;
     589              :             }
     590              :         }
     591              : 
     592           24 :         Ok(key_count)
     593           24 :     }
     594              : 
     595        24182 :     async fn do_reads_and_update_state(
     596        24182 :         &self,
     597        24182 :         reads: Vec<VectoredRead>,
     598        24182 :         reconstruct_state: &mut ValuesReconstructState,
     599        24182 :         ctx: &RequestContext,
     600        24182 :     ) {
     601        24182 :         let max_vectored_read_bytes = self
     602        24182 :             .max_vectored_read_bytes
     603        24182 :             .expect("Layer is loaded with max vectored bytes config")
     604        24182 :             .0
     605        24182 :             .into();
     606        24182 : 
     607        24182 :         let vectored_blob_reader = VectoredBlobReader::new(&self.file);
     608        27825 :         for read in reads.into_iter() {
     609        27825 :             let buf_size = read.size();
     610        27825 : 
     611        27825 :             if buf_size > max_vectored_read_bytes {
     612              :                 // If the read is oversized, it should only contain one key.
     613            0 :                 let offenders = read
     614            0 :                     .blobs_at
     615            0 :                     .as_slice()
     616            0 :                     .iter()
     617            0 :                     .map(|(_, blob_meta)| format!("{}@{}", blob_meta.key, blob_meta.lsn))
     618            0 :                     .join(", ");
     619            0 :                 tracing::warn!(
     620            0 :                     "Oversized vectored read ({} > {}) for keys {}",
     621              :                     buf_size,
     622              :                     max_vectored_read_bytes,
     623              :                     offenders
     624              :                 );
     625        27825 :             }
     626              : 
     627        27825 :             let buf = BytesMut::with_capacity(buf_size);
     628        27825 :             let res = vectored_blob_reader.read_blobs(&read, buf, ctx).await;
     629              : 
     630        27825 :             match res {
     631        27825 :                 Ok(blobs_buf) => {
     632        27825 :                     let frozen_buf = blobs_buf.buf.freeze();
     633              : 
     634        55278 :                     for meta in blobs_buf.blobs.iter() {
     635        55278 :                         let img_buf = frozen_buf.slice(meta.start..meta.end);
     636        55278 :                         reconstruct_state.update_key(
     637        55278 :                             &meta.meta.key,
     638        55278 :                             self.lsn,
     639        55278 :                             Value::Image(img_buf),
     640        55278 :                         );
     641        55278 :                     }
     642              :                 }
     643            0 :                 Err(err) => {
     644            0 :                     let kind = err.kind();
     645            0 :                     for (_, blob_meta) in read.blobs_at.as_slice() {
     646            0 :                         reconstruct_state.on_key_error(
     647            0 :                             blob_meta.key,
     648            0 :                             PageReconstructError::from(anyhow!(
     649            0 :                                 "Failed to read blobs from virtual file {}: {}",
     650            0 :                                 self.file.path,
     651            0 :                                 kind
     652            0 :                             )),
     653            0 :                         );
     654            0 :                     }
     655              :                 }
     656              :             };
     657              :         }
     658        24182 :     }
     659              : 
     660          276 :     pub(crate) fn iter<'a>(&'a self, ctx: &'a RequestContext) -> ImageLayerIterator<'a> {
     661          276 :         let block_reader = FileBlockReader::new(&self.file, self.file_id);
     662          276 :         let tree_reader =
     663          276 :             DiskBtreeReader::new(self.index_start_blk, self.index_root_blk, block_reader);
     664          276 :         ImageLayerIterator {
     665          276 :             image_layer: self,
     666          276 :             ctx,
     667          276 :             index_iter: tree_reader.iter(&[0; KEY_SIZE], ctx),
     668          276 :             key_values_batch: VecDeque::new(),
     669          276 :             is_end: false,
     670          276 :             planner: StreamingVectoredReadPlanner::new(
     671          276 :                 1024 * 8192, // The default value. Unit tests might use a different value. 1024 * 8K = 8MB buffer.
     672          276 :                 1024,        // The default value. Unit tests might use a different value
     673          276 :             ),
     674          276 :         }
     675          276 :     }
     676              : }
     677              : 
     678              : /// A builder object for constructing a new image layer.
     679              : ///
     680              : /// Usage:
     681              : ///
     682              : /// 1. Create the ImageLayerWriter by calling ImageLayerWriter::new(...)
     683              : ///
     684              : /// 2. Write the contents by calling `put_page_image` for every key-value
     685              : ///    pair in the key range.
     686              : ///
     687              : /// 3. Call `finish`.
     688              : ///
     689              : struct ImageLayerWriterInner {
     690              :     conf: &'static PageServerConf,
     691              :     path: Utf8PathBuf,
     692              :     timeline_id: TimelineId,
     693              :     tenant_shard_id: TenantShardId,
     694              :     key_range: Range<Key>,
     695              :     lsn: Lsn,
     696              : 
     697              :     // Total uncompressed bytes passed into put_image
     698              :     uncompressed_bytes: u64,
     699              : 
     700              :     // Like `uncompressed_bytes`,
     701              :     // but only of images we might consider for compression
     702              :     uncompressed_bytes_eligible: u64,
     703              : 
     704              :     // Like `uncompressed_bytes`, but only of images
     705              :     // where we have chosen their compressed form
     706              :     uncompressed_bytes_chosen: u64,
     707              : 
     708              :     // Number of keys in the layer.
     709              :     num_keys: usize,
     710              : 
     711              :     blob_writer: BlobWriter<false>,
     712              :     tree: DiskBtreeBuilder<BlockBuf, KEY_SIZE>,
     713              : 
     714              :     #[cfg_attr(not(feature = "testing"), allow(dead_code))]
     715              :     last_written_key: Key,
     716              : }
     717              : 
     718              : impl ImageLayerWriterInner {
     719              :     ///
     720              :     /// Start building a new image layer.
     721              :     ///
     722         1470 :     async fn new(
     723         1470 :         conf: &'static PageServerConf,
     724         1470 :         timeline_id: TimelineId,
     725         1470 :         tenant_shard_id: TenantShardId,
     726         1470 :         key_range: &Range<Key>,
     727         1470 :         lsn: Lsn,
     728         1470 :         ctx: &RequestContext,
     729         1470 :     ) -> anyhow::Result<Self> {
     730         1470 :         // Create the file initially with a temporary filename.
     731         1470 :         // We'll atomically rename it to the final name when we're done.
     732         1470 :         let path = ImageLayer::temp_path_for(
     733         1470 :             conf,
     734         1470 :             timeline_id,
     735         1470 :             tenant_shard_id,
     736         1470 :             &ImageLayerName {
     737         1470 :                 key_range: key_range.clone(),
     738         1470 :                 lsn,
     739         1470 :             },
     740         1470 :         );
     741         1470 :         trace!("creating image layer {}", path);
     742         1470 :         let mut file = {
     743         1470 :             VirtualFile::open_with_options(
     744         1470 :                 &path,
     745         1470 :                 virtual_file::OpenOptions::new()
     746         1470 :                     .write(true)
     747         1470 :                     .create_new(true),
     748         1470 :                 ctx,
     749         1470 :             )
     750          987 :             .await?
     751              :         };
     752              :         // make room for the header block
     753         1470 :         file.seek(SeekFrom::Start(PAGE_SZ as u64)).await?;
     754         1470 :         let blob_writer = BlobWriter::new(file, PAGE_SZ as u64);
     755         1470 : 
     756         1470 :         // Initialize the b-tree index builder
     757         1470 :         let block_buf = BlockBuf::new();
     758         1470 :         let tree_builder = DiskBtreeBuilder::new(block_buf);
     759         1470 : 
     760         1470 :         let writer = Self {
     761         1470 :             conf,
     762         1470 :             path,
     763         1470 :             timeline_id,
     764         1470 :             tenant_shard_id,
     765         1470 :             key_range: key_range.clone(),
     766         1470 :             lsn,
     767         1470 :             tree: tree_builder,
     768         1470 :             blob_writer,
     769         1470 :             uncompressed_bytes: 0,
     770         1470 :             uncompressed_bytes_eligible: 0,
     771         1470 :             uncompressed_bytes_chosen: 0,
     772         1470 :             num_keys: 0,
     773         1470 :             last_written_key: Key::MIN,
     774         1470 :         };
     775         1470 : 
     776         1470 :         Ok(writer)
     777         1470 :     }
     778              : 
     779              :     ///
     780              :     /// Write next value to the file.
     781              :     ///
     782              :     /// The page versions must be appended in blknum order.
     783              :     ///
     784      1638450 :     async fn put_image(
     785      1638450 :         &mut self,
     786      1638450 :         key: Key,
     787      1638450 :         img: Bytes,
     788      1638450 :         ctx: &RequestContext,
     789      1638450 :     ) -> anyhow::Result<()> {
     790      1638450 :         ensure!(self.key_range.contains(&key));
     791      1638450 :         let compression = self.conf.image_compression;
     792      1638450 :         let uncompressed_len = img.len() as u64;
     793      1638450 :         self.uncompressed_bytes += uncompressed_len;
     794      1638450 :         self.num_keys += 1;
     795      1638450 :         let (_img, res) = self
     796      1638450 :             .blob_writer
     797      1638450 :             .write_blob_maybe_compressed(img.slice_len(), ctx, compression)
     798      1664368 :             .await;
     799              :         // TODO: re-use the buffer for `img` further upstack
     800      1638450 :         let (off, compression_info) = res?;
     801      1638450 :         if compression_info.compressed_size.is_some() {
     802        24006 :             // The image has been considered for compression at least
     803        24006 :             self.uncompressed_bytes_eligible += uncompressed_len;
     804      1614444 :         }
     805      1638450 :         if compression_info.written_compressed {
     806            0 :             // The image has been compressed
     807            0 :             self.uncompressed_bytes_chosen += uncompressed_len;
     808      1638450 :         }
     809              : 
     810      1638450 :         let mut keybuf: [u8; KEY_SIZE] = [0u8; KEY_SIZE];
     811      1638450 :         key.write_to_byte_slice(&mut keybuf);
     812      1638450 :         self.tree.append(&keybuf, off)?;
     813              : 
     814              :         #[cfg(feature = "testing")]
     815      1638450 :         {
     816      1638450 :             self.last_written_key = key;
     817      1638450 :         }
     818      1638450 : 
     819      1638450 :         Ok(())
     820      1638450 :     }
     821              : 
     822              :     ///
     823              :     /// Finish writing the image layer.
     824              :     ///
     825          900 :     async fn finish(
     826          900 :         self,
     827          900 :         timeline: &Arc<Timeline>,
     828          900 :         ctx: &RequestContext,
     829          900 :         end_key: Option<Key>,
     830          900 :     ) -> anyhow::Result<ResidentLayer> {
     831          900 :         let index_start_blk =
     832          900 :             ((self.blob_writer.size() + PAGE_SZ as u64 - 1) / PAGE_SZ as u64) as u32;
     833          900 : 
     834          900 :         // Calculate compression ratio
     835          900 :         let compressed_size = self.blob_writer.size() - PAGE_SZ as u64; // Subtract PAGE_SZ for header
     836          900 :         crate::metrics::COMPRESSION_IMAGE_INPUT_BYTES.inc_by(self.uncompressed_bytes);
     837          900 :         crate::metrics::COMPRESSION_IMAGE_INPUT_BYTES_CONSIDERED
     838          900 :             .inc_by(self.uncompressed_bytes_eligible);
     839          900 :         crate::metrics::COMPRESSION_IMAGE_INPUT_BYTES_CHOSEN.inc_by(self.uncompressed_bytes_chosen);
     840          900 :         crate::metrics::COMPRESSION_IMAGE_OUTPUT_BYTES.inc_by(compressed_size);
     841          900 : 
     842          900 :         let mut file = self.blob_writer.into_inner();
     843          900 : 
     844          900 :         // Write out the index
     845          900 :         file.seek(SeekFrom::Start(index_start_blk as u64 * PAGE_SZ as u64))
     846            0 :             .await?;
     847          900 :         let (index_root_blk, block_buf) = self.tree.finish()?;
     848         3168 :         for buf in block_buf.blocks {
     849         2268 :             let (_buf, res) = file.write_all(buf.slice_len(), ctx).await;
     850         2268 :             res?;
     851              :         }
     852              : 
     853          900 :         let final_key_range = if let Some(end_key) = end_key {
     854          102 :             self.key_range.start..end_key
     855              :         } else {
     856          798 :             self.key_range.clone()
     857              :         };
     858              : 
     859              :         // Fill in the summary on blk 0
     860          900 :         let summary = Summary {
     861          900 :             magic: IMAGE_FILE_MAGIC,
     862          900 :             format_version: STORAGE_FORMAT_VERSION,
     863          900 :             tenant_id: self.tenant_shard_id.tenant_id,
     864          900 :             timeline_id: self.timeline_id,
     865          900 :             key_range: final_key_range.clone(),
     866          900 :             lsn: self.lsn,
     867          900 :             index_start_blk,
     868          900 :             index_root_blk,
     869          900 :         };
     870          900 : 
     871          900 :         let mut buf = Vec::with_capacity(PAGE_SZ);
     872          900 :         // TODO: could use smallvec here but it's a pain with Slice<T>
     873          900 :         Summary::ser_into(&summary, &mut buf)?;
     874          900 :         file.seek(SeekFrom::Start(0)).await?;
     875          900 :         let (_buf, res) = file.write_all(buf.slice_len(), ctx).await;
     876          900 :         res?;
     877              : 
     878          900 :         let metadata = file
     879          900 :             .metadata()
     880          457 :             .await
     881          900 :             .context("get metadata to determine file size")?;
     882              : 
     883          900 :         let desc = PersistentLayerDesc::new_img(
     884          900 :             self.tenant_shard_id,
     885          900 :             self.timeline_id,
     886          900 :             final_key_range,
     887          900 :             self.lsn,
     888          900 :             metadata.len(),
     889          900 :         );
     890              : 
     891              :         #[cfg(feature = "testing")]
     892          900 :         if let Some(end_key) = end_key {
     893          102 :             assert!(
     894          102 :                 self.last_written_key < end_key,
     895            0 :                 "written key violates end_key range"
     896              :             );
     897          798 :         }
     898              : 
     899              :         // Note: Because we open the file in write-only mode, we cannot
     900              :         // reuse the same VirtualFile for reading later. That's why we don't
     901              :         // set inner.file here. The first read will have to re-open it.
     902              : 
     903              :         // fsync the file
     904          900 :         file.sync_all().await?;
     905              : 
     906              :         // FIXME: why not carry the virtualfile here, it supports renaming?
     907          900 :         let layer = Layer::finish_creating(self.conf, timeline, desc, &self.path)?;
     908              : 
     909          900 :         info!("created image layer {}", layer.local_path());
     910              : 
     911          900 :         Ok(layer)
     912          900 :     }
     913              : }
     914              : 
     915              : /// A builder object for constructing a new image layer.
     916              : ///
     917              : /// Usage:
     918              : ///
     919              : /// 1. Create the ImageLayerWriter by calling ImageLayerWriter::new(...)
     920              : ///
     921              : /// 2. Write the contents by calling `put_page_image` for every key-value
     922              : ///    pair in the key range.
     923              : ///
     924              : /// 3. Call `finish`.
     925              : ///
     926              : /// # Note
     927              : ///
     928              : /// As described in <https://github.com/neondatabase/neon/issues/2650>, it's
     929              : /// possible for the writer to drop before `finish` is actually called. So this
     930              : /// could lead to odd temporary files in the directory, exhausting file system.
     931              : /// This structure wraps `ImageLayerWriterInner` and also contains `Drop`
     932              : /// implementation that cleans up the temporary file in failure. It's not
     933              : /// possible to do this directly in `ImageLayerWriterInner` since `finish` moves
     934              : /// out some fields, making it impossible to implement `Drop`.
     935              : ///
     936              : #[must_use]
     937              : pub struct ImageLayerWriter {
     938              :     inner: Option<ImageLayerWriterInner>,
     939              : }
     940              : 
     941              : impl ImageLayerWriter {
     942              :     ///
     943              :     /// Start building a new image layer.
     944              :     ///
     945         1470 :     pub async fn new(
     946         1470 :         conf: &'static PageServerConf,
     947         1470 :         timeline_id: TimelineId,
     948         1470 :         tenant_shard_id: TenantShardId,
     949         1470 :         key_range: &Range<Key>,
     950         1470 :         lsn: Lsn,
     951         1470 :         ctx: &RequestContext,
     952         1470 :     ) -> anyhow::Result<ImageLayerWriter> {
     953         1470 :         Ok(Self {
     954         1470 :             inner: Some(
     955         1470 :                 ImageLayerWriterInner::new(conf, timeline_id, tenant_shard_id, key_range, lsn, ctx)
     956          987 :                     .await?,
     957              :             ),
     958              :         })
     959         1470 :     }
     960              : 
     961              :     ///
     962              :     /// Write next value to the file.
     963              :     ///
     964              :     /// The page versions must be appended in blknum order.
     965              :     ///
     966      1638450 :     pub async fn put_image(
     967      1638450 :         &mut self,
     968      1638450 :         key: Key,
     969      1638450 :         img: Bytes,
     970      1638450 :         ctx: &RequestContext,
     971      1638450 :     ) -> anyhow::Result<()> {
     972      1664368 :         self.inner.as_mut().unwrap().put_image(key, img, ctx).await
     973      1638450 :     }
     974              : 
     975              :     /// Estimated size of the image layer.
     976        25146 :     pub(crate) fn estimated_size(&self) -> u64 {
     977        25146 :         let inner = self.inner.as_ref().unwrap();
     978        25146 :         inner.blob_writer.size() + inner.tree.borrow_writer().size() + PAGE_SZ as u64
     979        25146 :     }
     980              : 
     981        25326 :     pub(crate) fn num_keys(&self) -> usize {
     982        25326 :         self.inner.as_ref().unwrap().num_keys
     983        25326 :     }
     984              : 
     985              :     ///
     986              :     /// Finish writing the image layer.
     987              :     ///
     988          798 :     pub(crate) async fn finish(
     989          798 :         mut self,
     990          798 :         timeline: &Arc<Timeline>,
     991          798 :         ctx: &RequestContext,
     992          798 :     ) -> anyhow::Result<super::ResidentLayer> {
     993         2326 :         self.inner.take().unwrap().finish(timeline, ctx, None).await
     994          798 :     }
     995              : 
     996              :     /// Finish writing the image layer with an end key, used in [`super::split_writer::SplitImageLayerWriter`]. The end key determines the end of the image layer's covered range and is exclusive.
     997          102 :     pub(super) async fn finish_with_end_key(
     998          102 :         mut self,
     999          102 :         timeline: &Arc<Timeline>,
    1000          102 :         end_key: Key,
    1001          102 :         ctx: &RequestContext,
    1002          102 :     ) -> anyhow::Result<super::ResidentLayer> {
    1003          102 :         self.inner
    1004          102 :             .take()
    1005          102 :             .unwrap()
    1006          102 :             .finish(timeline, ctx, Some(end_key))
    1007          210 :             .await
    1008          102 :     }
    1009              : }
    1010              : 
    1011              : impl Drop for ImageLayerWriter {
    1012         1470 :     fn drop(&mut self) {
    1013         1470 :         if let Some(inner) = self.inner.take() {
    1014          570 :             inner.blob_writer.into_inner().remove();
    1015          900 :         }
    1016         1470 :     }
    1017              : }
    1018              : 
    1019              : pub struct ImageLayerIterator<'a> {
    1020              :     image_layer: &'a ImageLayerInner,
    1021              :     ctx: &'a RequestContext,
    1022              :     planner: StreamingVectoredReadPlanner,
    1023              :     index_iter: DiskBtreeIterator<'a>,
    1024              :     key_values_batch: VecDeque<(Key, Lsn, Value)>,
    1025              :     is_end: bool,
    1026              : }
    1027              : 
    1028              : impl<'a> ImageLayerIterator<'a> {
    1029            0 :     pub(crate) fn layer_dbg_info(&self) -> String {
    1030            0 :         self.image_layer.layer_dbg_info()
    1031            0 :     }
    1032              : 
    1033              :     /// Retrieve a batch of key-value pairs into the iterator buffer.
    1034        57052 :     async fn next_batch(&mut self) -> anyhow::Result<()> {
    1035        57052 :         assert!(self.key_values_batch.is_empty());
    1036        57052 :         assert!(!self.is_end);
    1037              : 
    1038        57052 :         let plan = loop {
    1039        86310 :             if let Some(res) = self.index_iter.next().await {
    1040        86118 :                 let (raw_key, offset) = res?;
    1041        86118 :                 if let Some(batch_plan) = self.planner.handle(
    1042        86118 :                     Key::from_slice(&raw_key[..KEY_SIZE]),
    1043        86118 :                     self.image_layer.lsn,
    1044        86118 :                     offset,
    1045        86118 :                 ) {
    1046        56860 :                     break batch_plan;
    1047        29258 :                 }
    1048              :             } else {
    1049          192 :                 self.is_end = true;
    1050          192 :                 let payload_end = self.image_layer.index_start_blk as u64 * PAGE_SZ as u64;
    1051          192 :                 if let Some(item) = self.planner.handle_range_end(payload_end) {
    1052          192 :                     break item;
    1053              :                 } else {
    1054            0 :                     return Ok(()); // TODO: a test case on empty iterator
    1055              :                 }
    1056              :             }
    1057              :         };
    1058        57052 :         let vectored_blob_reader = VectoredBlobReader::new(&self.image_layer.file);
    1059        57052 :         let mut next_batch = std::collections::VecDeque::new();
    1060        57052 :         let buf_size = plan.size();
    1061        57052 :         let buf = BytesMut::with_capacity(buf_size);
    1062        57052 :         let blobs_buf = vectored_blob_reader
    1063        57052 :             .read_blobs(&plan, buf, self.ctx)
    1064        28970 :             .await?;
    1065        57052 :         let frozen_buf: Bytes = blobs_buf.buf.freeze();
    1066        86034 :         for meta in blobs_buf.blobs.iter() {
    1067        86034 :             let img_buf = frozen_buf.slice(meta.start..meta.end);
    1068        86034 :             next_batch.push_back((meta.meta.key, self.image_layer.lsn, Value::Image(img_buf)));
    1069        86034 :         }
    1070        57052 :         self.key_values_batch = next_batch;
    1071        57052 :         Ok(())
    1072        57052 :     }
    1073              : 
    1074        85524 :     pub async fn next(&mut self) -> anyhow::Result<Option<(Key, Lsn, Value)>> {
    1075        85524 :         if self.key_values_batch.is_empty() {
    1076        57100 :             if self.is_end {
    1077          300 :                 return Ok(None);
    1078        56800 :             }
    1079        56800 :             self.next_batch().await?;
    1080        28424 :         }
    1081        85224 :         Ok(Some(
    1082        85224 :             self.key_values_batch
    1083        85224 :                 .pop_front()
    1084        85224 :                 .expect("should not be empty"),
    1085        85224 :         ))
    1086        85524 :     }
    1087              : }
    1088              : 
    1089              : #[cfg(test)]
    1090              : mod test {
    1091              :     use std::{sync::Arc, time::Duration};
    1092              : 
    1093              :     use bytes::Bytes;
    1094              :     use itertools::Itertools;
    1095              :     use pageserver_api::{
    1096              :         key::Key,
    1097              :         shard::{ShardCount, ShardIdentity, ShardNumber, ShardStripeSize},
    1098              :     };
    1099              :     use utils::{
    1100              :         generation::Generation,
    1101              :         id::{TenantId, TimelineId},
    1102              :         lsn::Lsn,
    1103              :     };
    1104              : 
    1105              :     use crate::{
    1106              :         context::RequestContext,
    1107              :         repository::Value,
    1108              :         tenant::{
    1109              :             config::TenantConf,
    1110              :             harness::{TenantHarness, TIMELINE_ID},
    1111              :             storage_layer::ResidentLayer,
    1112              :             vectored_blob_io::StreamingVectoredReadPlanner,
    1113              :             Tenant, Timeline,
    1114              :         },
    1115              :         DEFAULT_PG_VERSION,
    1116              :     };
    1117              : 
    1118              :     use super::{ImageLayerIterator, ImageLayerWriter};
    1119              : 
    1120              :     #[tokio::test]
    1121            6 :     async fn image_layer_rewrite() {
    1122            6 :         let tenant_conf = TenantConf {
    1123            6 :             gc_period: Duration::ZERO,
    1124            6 :             compaction_period: Duration::ZERO,
    1125            6 :             ..TenantConf::default()
    1126            6 :         };
    1127            6 :         let tenant_id = TenantId::generate();
    1128            6 :         let mut gen = Generation::new(0xdead0001);
    1129           30 :         let mut get_next_gen = || {
    1130           30 :             let ret = gen;
    1131           30 :             gen = gen.next();
    1132           30 :             ret
    1133           30 :         };
    1134            6 :         // The LSN at which we will create an image layer to filter
    1135            6 :         let lsn = Lsn(0xdeadbeef0000);
    1136            6 :         let timeline_id = TimelineId::generate();
    1137            6 : 
    1138            6 :         //
    1139            6 :         // Create an unsharded parent with a layer.
    1140            6 :         //
    1141            6 : 
    1142            6 :         let harness = TenantHarness::create_custom(
    1143            6 :             "test_image_layer_rewrite--parent",
    1144            6 :             tenant_conf.clone(),
    1145            6 :             tenant_id,
    1146            6 :             ShardIdentity::unsharded(),
    1147            6 :             get_next_gen(),
    1148            6 :         )
    1149            6 :         .await
    1150            6 :         .unwrap();
    1151           24 :         let (tenant, ctx) = harness.load().await;
    1152            6 :         let timeline = tenant
    1153            6 :             .create_test_timeline(timeline_id, lsn, DEFAULT_PG_VERSION, &ctx)
    1154           12 :             .await
    1155            6 :             .unwrap();
    1156            6 : 
    1157            6 :         // This key range contains several 0x8000 page stripes, only one of which belongs to shard zero
    1158            6 :         let input_start = Key::from_hex("000000067f00000001000000ae0000000000").unwrap();
    1159            6 :         let input_end = Key::from_hex("000000067f00000001000000ae0000020000").unwrap();
    1160            6 :         let range = input_start..input_end;
    1161            6 : 
    1162            6 :         // Build an image layer to filter
    1163            6 :         let resident = {
    1164            6 :             let mut writer = ImageLayerWriter::new(
    1165            6 :                 harness.conf,
    1166            6 :                 timeline_id,
    1167            6 :                 harness.tenant_shard_id,
    1168            6 :                 &range,
    1169            6 :                 lsn,
    1170            6 :                 &ctx,
    1171            6 :             )
    1172            6 :             .await
    1173            6 :             .unwrap();
    1174            6 : 
    1175            6 :             let foo_img = Bytes::from_static(&[1, 2, 3, 4]);
    1176            6 :             let mut key = range.start;
    1177       786438 :             while key < range.end {
    1178       798717 :                 writer.put_image(key, foo_img.clone(), &ctx).await.unwrap();
    1179       786432 : 
    1180       786432 :                 key = key.next();
    1181            6 :             }
    1182          357 :             writer.finish(&timeline, &ctx).await.unwrap()
    1183            6 :         };
    1184            6 :         let original_size = resident.metadata().file_size;
    1185            6 : 
    1186            6 :         //
    1187            6 :         // Create child shards and do the rewrite, exercising filter().
    1188            6 :         // TODO: abstraction in TenantHarness for splits.
    1189            6 :         //
    1190            6 : 
    1191            6 :         // Filter for various shards: this exercises cases like values at start of key range, end of key
    1192            6 :         // range, middle of key range.
    1193            6 :         let shard_count = ShardCount::new(4);
    1194           24 :         for shard_number in 0..shard_count.count() {
    1195            6 :             //
    1196            6 :             // mimic the shard split
    1197            6 :             //
    1198           24 :             let shard_identity = ShardIdentity::new(
    1199           24 :                 ShardNumber(shard_number),
    1200           24 :                 shard_count,
    1201           24 :                 ShardStripeSize(0x8000),
    1202           24 :             )
    1203           24 :             .unwrap();
    1204           24 :             let harness = TenantHarness::create_custom(
    1205           24 :                 Box::leak(Box::new(format!(
    1206           24 :                     "test_image_layer_rewrite--child{}",
    1207           24 :                     shard_identity.shard_slug()
    1208           24 :                 ))),
    1209           24 :                 tenant_conf.clone(),
    1210           24 :                 tenant_id,
    1211           24 :                 shard_identity,
    1212           24 :                 // NB: in reality, the shards would each fork off their own gen number sequence from the parent.
    1213           24 :                 // But here, all we care about is that the gen number is unique.
    1214           24 :                 get_next_gen(),
    1215           24 :             )
    1216            6 :             .await
    1217           24 :             .unwrap();
    1218           96 :             let (tenant, ctx) = harness.load().await;
    1219           24 :             let timeline = tenant
    1220           24 :                 .create_test_timeline(timeline_id, lsn, DEFAULT_PG_VERSION, &ctx)
    1221           36 :                 .await
    1222           24 :                 .unwrap();
    1223            6 : 
    1224            6 :             //
    1225            6 :             // use filter() and make assertions
    1226            6 :             //
    1227            6 : 
    1228           24 :             let mut filtered_writer = ImageLayerWriter::new(
    1229           24 :                 harness.conf,
    1230           24 :                 timeline_id,
    1231           24 :                 harness.tenant_shard_id,
    1232           24 :                 &range,
    1233           24 :                 lsn,
    1234           24 :                 &ctx,
    1235           24 :             )
    1236           12 :             .await
    1237           24 :             .unwrap();
    1238            6 : 
    1239           24 :             let wrote_keys = resident
    1240           24 :                 .filter(&shard_identity, &mut filtered_writer, &ctx)
    1241       800157 :                 .await
    1242           24 :                 .unwrap();
    1243           24 :             let replacement = if wrote_keys > 0 {
    1244          387 :                 Some(filtered_writer.finish(&timeline, &ctx).await.unwrap())
    1245            6 :             } else {
    1246            6 :                 None
    1247            6 :             };
    1248            6 : 
    1249            6 :             // This exact size and those below will need updating as/when the layer encoding changes, but
    1250            6 :             // should be deterministic for a given version of the format, as we used no randomness generating the input.
    1251           24 :             assert_eq!(original_size, 1597440);
    1252            6 : 
    1253           24 :             match shard_number {
    1254            6 :                 0 => {
    1255            6 :                     // We should have written out just one stripe for our shard identity
    1256            6 :                     assert_eq!(wrote_keys, 0x8000);
    1257            6 :                     let replacement = replacement.unwrap();
    1258            6 : 
    1259            6 :                     // We should have dropped some of the data
    1260            6 :                     assert!(replacement.metadata().file_size < original_size);
    1261            6 :                     assert!(replacement.metadata().file_size > 0);
    1262            6 : 
    1263            6 :                     // Assert that we dropped ~3/4 of the data.
    1264            6 :                     assert_eq!(replacement.metadata().file_size, 417792);
    1265            6 :                 }
    1266            6 :                 1 => {
    1267            6 :                     // Shard 1 has no keys in our input range
    1268            6 :                     assert_eq!(wrote_keys, 0x0);
    1269            6 :                     assert!(replacement.is_none());
    1270            6 :                 }
    1271            6 :                 2 => {
    1272            6 :                     // Shard 2 has one stripes in the input range
    1273            6 :                     assert_eq!(wrote_keys, 0x8000);
    1274            6 :                     let replacement = replacement.unwrap();
    1275            6 :                     assert!(replacement.metadata().file_size < original_size);
    1276            6 :                     assert!(replacement.metadata().file_size > 0);
    1277            6 :                     assert_eq!(replacement.metadata().file_size, 417792);
    1278            6 :                 }
    1279            6 :                 3 => {
    1280            6 :                     // Shard 3 has two stripes in the input range
    1281            6 :                     assert_eq!(wrote_keys, 0x10000);
    1282            6 :                     let replacement = replacement.unwrap();
    1283            6 :                     assert!(replacement.metadata().file_size < original_size);
    1284            6 :                     assert!(replacement.metadata().file_size > 0);
    1285            6 :                     assert_eq!(replacement.metadata().file_size, 811008);
    1286            6 :                 }
    1287            6 :                 _ => unreachable!(),
    1288            6 :             }
    1289            6 :         }
    1290            6 :     }
    1291              : 
    1292            6 :     async fn produce_image_layer(
    1293            6 :         tenant: &Tenant,
    1294            6 :         tline: &Arc<Timeline>,
    1295            6 :         mut images: Vec<(Key, Bytes)>,
    1296            6 :         lsn: Lsn,
    1297            6 :         ctx: &RequestContext,
    1298            6 :     ) -> anyhow::Result<ResidentLayer> {
    1299            6 :         images.sort();
    1300            6 :         let (key_start, _) = images.first().unwrap();
    1301            6 :         let (key_last, _) = images.last().unwrap();
    1302            6 :         let key_end = key_last.next();
    1303            6 :         let key_range = *key_start..key_end;
    1304            6 :         let mut writer = ImageLayerWriter::new(
    1305            6 :             tenant.conf,
    1306            6 :             tline.timeline_id,
    1307            6 :             tenant.tenant_shard_id,
    1308            6 :             &key_range,
    1309            6 :             lsn,
    1310            6 :             ctx,
    1311            6 :         )
    1312            3 :         .await?;
    1313              : 
    1314         6006 :         for (key, img) in images {
    1315         6093 :             writer.put_image(key, img, ctx).await?;
    1316              :         }
    1317           12 :         let img_layer = writer.finish(tline, ctx).await?;
    1318              : 
    1319            6 :         Ok::<_, anyhow::Error>(img_layer)
    1320            6 :     }
    1321              : 
    1322           84 :     async fn assert_img_iter_equal(
    1323           84 :         img_iter: &mut ImageLayerIterator<'_>,
    1324           84 :         expect: &[(Key, Bytes)],
    1325           84 :         expect_lsn: Lsn,
    1326           84 :     ) {
    1327           84 :         let mut expect_iter = expect.iter();
    1328              :         loop {
    1329        84084 :             let o1 = img_iter.next().await.unwrap();
    1330        84084 :             let o2 = expect_iter.next();
    1331        84084 :             match (o1, o2) {
    1332           84 :                 (None, None) => break,
    1333        84000 :                 (Some((k1, l1, v1)), Some((k2, i2))) => {
    1334        84000 :                     let Value::Image(i1) = v1 else {
    1335            0 :                         panic!("expect Value::Image")
    1336              :                     };
    1337        84000 :                     assert_eq!(&k1, k2);
    1338        84000 :                     assert_eq!(l1, expect_lsn);
    1339        84000 :                     assert_eq!(&i1, i2);
    1340              :                 }
    1341            0 :                 (o1, o2) => panic!("iterators length mismatch: {:?}, {:?}", o1, o2),
    1342              :             }
    1343              :         }
    1344           84 :     }
    1345              : 
    1346              :     #[tokio::test]
    1347            6 :     async fn image_layer_iterator() {
    1348            6 :         let harness = TenantHarness::create("image_layer_iterator").await.unwrap();
    1349           24 :         let (tenant, ctx) = harness.load().await;
    1350            6 : 
    1351            6 :         let tline = tenant
    1352            6 :             .create_test_timeline(TIMELINE_ID, Lsn(0x10), DEFAULT_PG_VERSION, &ctx)
    1353           12 :             .await
    1354            6 :             .unwrap();
    1355            6 : 
    1356         6000 :         fn get_key(id: u32) -> Key {
    1357         6000 :             let mut key = Key::from_hex("000000000033333333444444445500000000").unwrap();
    1358         6000 :             key.field6 = id;
    1359         6000 :             key
    1360         6000 :         }
    1361            6 :         const N: usize = 1000;
    1362            6 :         let test_imgs = (0..N)
    1363         6000 :             .map(|idx| (get_key(idx as u32), Bytes::from(format!("img{idx:05}"))))
    1364            6 :             .collect_vec();
    1365            6 :         let resident_layer =
    1366            6 :             produce_image_layer(&tenant, &tline, test_imgs.clone(), Lsn(0x10), &ctx)
    1367         6108 :                 .await
    1368            6 :                 .unwrap();
    1369            6 :         let img_layer = resident_layer.get_as_image(&ctx).await.unwrap();
    1370           18 :         for max_read_size in [1, 1024] {
    1371           96 :             for batch_size in [1, 2, 4, 8, 3, 7, 13] {
    1372           84 :                 println!("running with batch_size={batch_size} max_read_size={max_read_size}");
    1373           84 :                 // Test if the batch size is correctly determined
    1374           84 :                 let mut iter = img_layer.iter(&ctx);
    1375           84 :                 iter.planner = StreamingVectoredReadPlanner::new(max_read_size, batch_size);
    1376           84 :                 let mut num_items = 0;
    1377          336 :                 for _ in 0..3 {
    1378          252 :                     iter.next_batch().await.unwrap();
    1379          252 :                     num_items += iter.key_values_batch.len();
    1380          252 :                     if max_read_size == 1 {
    1381            6 :                         // every key should be a batch b/c the value is larger than max_read_size
    1382          126 :                         assert_eq!(iter.key_values_batch.len(), 1);
    1383            6 :                     } else {
    1384          126 :                         assert!(iter.key_values_batch.len() <= batch_size);
    1385            6 :                     }
    1386          252 :                     if num_items >= N {
    1387            6 :                         break;
    1388          252 :                     }
    1389          252 :                     iter.key_values_batch.clear();
    1390            6 :                 }
    1391            6 :                 // Test if the result is correct
    1392           84 :                 let mut iter = img_layer.iter(&ctx);
    1393           84 :                 iter.planner = StreamingVectoredReadPlanner::new(max_read_size, batch_size);
    1394        28787 :                 assert_img_iter_equal(&mut iter, &test_imgs, Lsn(0x10)).await;
    1395            6 :             }
    1396            6 :         }
    1397            6 :     }
    1398              : }
        

Generated by: LCOV version 2.1-beta