LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: 2620485e474b48c32427149a5d91ef8fc2cd649e.info Lines: 51.7 % 3018 1559
Test Date: 2025-05-01 22:50:11 Functions: 40.7 % 189 77

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : use std::time::{Duration, Instant};
      11              : 
      12              : use super::layer_manager::LayerManager;
      13              : use super::{
      14              :     CompactFlags, CompactOptions, CompactionError, CreateImageLayersError, DurationRecorder,
      15              :     GetVectoredError, ImageLayerCreationMode, LastImageLayerCreationStatus, RecordedDuration,
      16              :     Timeline,
      17              : };
      18              : 
      19              : use crate::tenant::timeline::DeltaEntry;
      20              : use crate::walredo::RedoAttemptType;
      21              : use anyhow::{Context, anyhow};
      22              : use bytes::Bytes;
      23              : use enumset::EnumSet;
      24              : use fail::fail_point;
      25              : use futures::FutureExt;
      26              : use itertools::Itertools;
      27              : use once_cell::sync::Lazy;
      28              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
      29              : use pageserver_api::key::{KEY_SIZE, Key};
      30              : use pageserver_api::keyspace::{KeySpace, ShardedRange};
      31              : use pageserver_api::models::{CompactInfoResponse, CompactKeyRange};
      32              : use pageserver_api::record::NeonWalRecord;
      33              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      34              : use pageserver_api::value::Value;
      35              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      36              : use pageserver_compaction::interface::*;
      37              : use serde::Serialize;
      38              : use tokio::sync::{OwnedSemaphorePermit, Semaphore};
      39              : use tokio_util::sync::CancellationToken;
      40              : use tracing::{Instrument, debug, error, info, info_span, trace, warn};
      41              : use utils::critical;
      42              : use utils::id::TimelineId;
      43              : use utils::lsn::Lsn;
      44              : 
      45              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      46              : use crate::page_cache;
      47              : use crate::statvfs::Statvfs;
      48              : use crate::tenant::checks::check_valid_layermap;
      49              : use crate::tenant::gc_block::GcBlock;
      50              : use crate::tenant::layer_map::LayerMap;
      51              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      52              : use crate::tenant::remote_timeline_client::index::GcCompactionState;
      53              : use crate::tenant::storage_layer::batch_split_writer::{
      54              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      55              : };
      56              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      57              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      58              : use crate::tenant::storage_layer::{
      59              :     AsLayerDesc, LayerVisibilityHint, PersistentLayerDesc, PersistentLayerKey,
      60              :     ValueReconstructState,
      61              : };
      62              : use crate::tenant::tasks::log_compaction_error;
      63              : use crate::tenant::timeline::{
      64              :     DeltaLayerWriter, ImageLayerCreationOutcome, ImageLayerWriter, IoConcurrency, Layer,
      65              :     ResidentLayer, drop_rlock,
      66              : };
      67              : use crate::tenant::{DeltaLayer, MaybeOffloaded};
      68              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      69              : 
      70              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      71              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      72              : 
      73              : /// Ratio of shard-local pages below which we trigger shard ancestor layer rewrites. 0.3 means that
      74              : /// <= 30% of layer pages must belong to the descendant shard to rewrite the layer.
      75              : ///
      76              : /// We choose a value < 0.5 to avoid rewriting all visible layers every time we do a power-of-two
      77              : /// shard split, which gets expensive for large tenants.
      78              : const ANCESTOR_COMPACTION_REWRITE_THRESHOLD: f64 = 0.3;
      79              : 
      80              : #[derive(Default, Debug, Clone, Copy, Hash, PartialEq, Eq, Serialize)]
      81              : pub struct GcCompactionJobId(pub usize);
      82              : 
      83              : impl std::fmt::Display for GcCompactionJobId {
      84            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      85            0 :         write!(f, "{}", self.0)
      86            0 :     }
      87              : }
      88              : 
      89              : pub struct GcCompactionCombinedSettings {
      90              :     pub gc_compaction_enabled: bool,
      91              :     pub gc_compaction_verification: bool,
      92              :     pub gc_compaction_initial_threshold_kb: u64,
      93              :     pub gc_compaction_ratio_percent: u64,
      94              : }
      95              : 
      96              : #[derive(Debug, Clone)]
      97              : pub enum GcCompactionQueueItem {
      98              :     MetaJob {
      99              :         /// Compaction options
     100              :         options: CompactOptions,
     101              :         /// Whether the compaction is triggered automatically (determines whether we need to update L2 LSN)
     102              :         auto: bool,
     103              :     },
     104              :     SubCompactionJob(CompactOptions),
     105              :     Notify(GcCompactionJobId, Option<Lsn>),
     106              : }
     107              : 
     108              : /// Statistics for gc-compaction meta jobs, which contains several sub compaction jobs.
     109              : #[derive(Debug, Clone, Serialize, Default)]
     110              : pub struct GcCompactionMetaStatistics {
     111              :     /// The total number of sub compaction jobs.
     112              :     pub total_sub_compaction_jobs: usize,
     113              :     /// The total number of sub compaction jobs that failed.
     114              :     pub failed_sub_compaction_jobs: usize,
     115              :     /// The total number of sub compaction jobs that succeeded.
     116              :     pub succeeded_sub_compaction_jobs: usize,
     117              :     /// The layer size before compaction.
     118              :     pub before_compaction_layer_size: u64,
     119              :     /// The layer size after compaction.
     120              :     pub after_compaction_layer_size: u64,
     121              :     /// The start time of the meta job.
     122              :     pub start_time: Option<chrono::DateTime<chrono::Utc>>,
     123              :     /// The end time of the meta job.
     124              :     pub end_time: Option<chrono::DateTime<chrono::Utc>>,
     125              :     /// The duration of the meta job.
     126              :     pub duration_secs: f64,
     127              :     /// The id of the meta job.
     128              :     pub meta_job_id: GcCompactionJobId,
     129              :     /// The LSN below which the layers are compacted, used to compute the statistics.
     130              :     pub below_lsn: Lsn,
     131              :     /// The retention ratio of the meta job (after_compaction_layer_size / before_compaction_layer_size)
     132              :     pub retention_ratio: f64,
     133              : }
     134              : 
     135              : impl GcCompactionMetaStatistics {
     136            0 :     fn finalize(&mut self) {
     137            0 :         let end_time = chrono::Utc::now();
     138            0 :         if let Some(start_time) = self.start_time {
     139            0 :             if end_time > start_time {
     140            0 :                 let delta = end_time - start_time;
     141            0 :                 if let Ok(std_dur) = delta.to_std() {
     142            0 :                     self.duration_secs = std_dur.as_secs_f64();
     143            0 :                 }
     144            0 :             }
     145            0 :         }
     146            0 :         self.retention_ratio = self.after_compaction_layer_size as f64
     147            0 :             / (self.before_compaction_layer_size as f64 + 1.0);
     148            0 :         self.end_time = Some(end_time);
     149            0 :     }
     150              : }
     151              : 
     152              : impl GcCompactionQueueItem {
     153            0 :     pub fn into_compact_info_resp(
     154            0 :         self,
     155            0 :         id: GcCompactionJobId,
     156            0 :         running: bool,
     157            0 :     ) -> Option<CompactInfoResponse> {
     158            0 :         match self {
     159            0 :             GcCompactionQueueItem::MetaJob { options, .. } => Some(CompactInfoResponse {
     160            0 :                 compact_key_range: options.compact_key_range,
     161            0 :                 compact_lsn_range: options.compact_lsn_range,
     162            0 :                 sub_compaction: options.sub_compaction,
     163            0 :                 running,
     164            0 :                 job_id: id.0,
     165            0 :             }),
     166            0 :             GcCompactionQueueItem::SubCompactionJob(options) => Some(CompactInfoResponse {
     167            0 :                 compact_key_range: options.compact_key_range,
     168            0 :                 compact_lsn_range: options.compact_lsn_range,
     169            0 :                 sub_compaction: options.sub_compaction,
     170            0 :                 running,
     171            0 :                 job_id: id.0,
     172            0 :             }),
     173            0 :             GcCompactionQueueItem::Notify(_, _) => None,
     174              :         }
     175            0 :     }
     176              : }
     177              : 
     178              : #[derive(Default)]
     179              : struct GcCompactionGuardItems {
     180              :     notify: Option<tokio::sync::oneshot::Sender<()>>,
     181              :     permit: Option<OwnedSemaphorePermit>,
     182              : }
     183              : 
     184              : struct GcCompactionQueueInner {
     185              :     running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     186              :     queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     187              :     guards: HashMap<GcCompactionJobId, GcCompactionGuardItems>,
     188              :     last_id: GcCompactionJobId,
     189              :     meta_statistics: Option<GcCompactionMetaStatistics>,
     190              : }
     191              : 
     192              : impl GcCompactionQueueInner {
     193            0 :     fn next_id(&mut self) -> GcCompactionJobId {
     194            0 :         let id = self.last_id;
     195            0 :         self.last_id = GcCompactionJobId(id.0 + 1);
     196            0 :         id
     197            0 :     }
     198              : }
     199              : 
     200              : /// A structure to store gc_compaction jobs.
     201              : pub struct GcCompactionQueue {
     202              :     /// All items in the queue, and the currently-running job.
     203              :     inner: std::sync::Mutex<GcCompactionQueueInner>,
     204              :     /// Ensure only one thread is consuming the queue.
     205              :     consumer_lock: tokio::sync::Mutex<()>,
     206              : }
     207              : 
     208            0 : static CONCURRENT_GC_COMPACTION_TASKS: Lazy<Arc<Semaphore>> = Lazy::new(|| {
     209            0 :     // Only allow two timelines on one pageserver to run gc compaction at a time.
     210            0 :     Arc::new(Semaphore::new(2))
     211            0 : });
     212              : 
     213              : impl GcCompactionQueue {
     214            0 :     pub fn new() -> Self {
     215            0 :         GcCompactionQueue {
     216            0 :             inner: std::sync::Mutex::new(GcCompactionQueueInner {
     217            0 :                 running: None,
     218            0 :                 queued: VecDeque::new(),
     219            0 :                 guards: HashMap::new(),
     220            0 :                 last_id: GcCompactionJobId(0),
     221            0 :                 meta_statistics: None,
     222            0 :             }),
     223            0 :             consumer_lock: tokio::sync::Mutex::new(()),
     224            0 :         }
     225            0 :     }
     226              : 
     227            0 :     pub fn cancel_scheduled(&self) {
     228            0 :         let mut guard = self.inner.lock().unwrap();
     229            0 :         guard.queued.clear();
     230            0 :         // TODO: if there is a running job, we should keep the gc guard. However, currently, the cancel
     231            0 :         // API is only used for testing purposes, so we can drop everything here.
     232            0 :         guard.guards.clear();
     233            0 :     }
     234              : 
     235              :     /// Schedule a manual compaction job.
     236            0 :     pub fn schedule_manual_compaction(
     237            0 :         &self,
     238            0 :         options: CompactOptions,
     239            0 :         notify: Option<tokio::sync::oneshot::Sender<()>>,
     240            0 :     ) -> GcCompactionJobId {
     241            0 :         let mut guard = self.inner.lock().unwrap();
     242            0 :         let id = guard.next_id();
     243            0 :         guard.queued.push_back((
     244            0 :             id,
     245            0 :             GcCompactionQueueItem::MetaJob {
     246            0 :                 options,
     247            0 :                 auto: false,
     248            0 :             },
     249            0 :         ));
     250            0 :         guard.guards.entry(id).or_default().notify = notify;
     251            0 :         info!("scheduled compaction job id={}", id);
     252            0 :         id
     253            0 :     }
     254              : 
     255              :     /// Schedule an auto compaction job.
     256            0 :     fn schedule_auto_compaction(
     257            0 :         &self,
     258            0 :         options: CompactOptions,
     259            0 :         permit: OwnedSemaphorePermit,
     260            0 :     ) -> GcCompactionJobId {
     261            0 :         let mut guard = self.inner.lock().unwrap();
     262            0 :         let id = guard.next_id();
     263            0 :         guard.queued.push_back((
     264            0 :             id,
     265            0 :             GcCompactionQueueItem::MetaJob {
     266            0 :                 options,
     267            0 :                 auto: true,
     268            0 :             },
     269            0 :         ));
     270            0 :         guard.guards.entry(id).or_default().permit = Some(permit);
     271            0 :         id
     272            0 :     }
     273              : 
     274              :     /// Trigger an auto compaction.
     275            0 :     pub async fn trigger_auto_compaction(
     276            0 :         &self,
     277            0 :         timeline: &Arc<Timeline>,
     278            0 :     ) -> Result<(), CompactionError> {
     279            0 :         let GcCompactionCombinedSettings {
     280            0 :             gc_compaction_enabled,
     281            0 :             gc_compaction_initial_threshold_kb,
     282            0 :             gc_compaction_ratio_percent,
     283            0 :             ..
     284            0 :         } = timeline.get_gc_compaction_settings();
     285            0 :         if !gc_compaction_enabled {
     286            0 :             return Ok(());
     287            0 :         }
     288            0 :         if self.remaining_jobs_num() > 0 {
     289              :             // Only schedule auto compaction when the queue is empty
     290            0 :             return Ok(());
     291            0 :         }
     292            0 :         if timeline.ancestor_timeline().is_some() {
     293              :             // Do not trigger auto compaction for child timelines. We haven't tested
     294              :             // it enough in staging yet.
     295            0 :             return Ok(());
     296            0 :         }
     297            0 :         if timeline.get_gc_compaction_watermark() == Lsn::INVALID {
     298              :             // If the gc watermark is not set, we don't need to trigger auto compaction.
     299              :             // This check is the same as in `gc_compaction_split_jobs` but we don't log
     300              :             // here and we can also skip the computation of the trigger condition earlier.
     301            0 :             return Ok(());
     302            0 :         }
     303              : 
     304            0 :         let Ok(permit) = CONCURRENT_GC_COMPACTION_TASKS.clone().try_acquire_owned() else {
     305              :             // Only allow one compaction run at a time. TODO: As we do `try_acquire_owned`, we cannot ensure
     306              :             // the fairness of the lock across timelines. We should listen for both `acquire` and `l0_compaction_trigger`
     307              :             // to ensure the fairness while avoid starving other tasks.
     308            0 :             return Ok(());
     309              :         };
     310              : 
     311            0 :         let gc_compaction_state = timeline.get_gc_compaction_state();
     312            0 :         let l2_lsn = gc_compaction_state
     313            0 :             .map(|x| x.last_completed_lsn)
     314            0 :             .unwrap_or(Lsn::INVALID);
     315              : 
     316            0 :         let layers = {
     317            0 :             let guard = timeline.layers.read().await;
     318            0 :             let layer_map = guard.layer_map()?;
     319            0 :             layer_map.iter_historic_layers().collect_vec()
     320            0 :         };
     321            0 :         let mut l2_size: u64 = 0;
     322            0 :         let mut l1_size = 0;
     323            0 :         let gc_cutoff = *timeline.get_applied_gc_cutoff_lsn();
     324            0 :         for layer in layers {
     325            0 :             if layer.lsn_range.start <= l2_lsn {
     326            0 :                 l2_size += layer.file_size();
     327            0 :             } else if layer.lsn_range.start <= gc_cutoff {
     328            0 :                 l1_size += layer.file_size();
     329            0 :             }
     330              :         }
     331              : 
     332            0 :         fn trigger_compaction(
     333            0 :             l1_size: u64,
     334            0 :             l2_size: u64,
     335            0 :             gc_compaction_initial_threshold_kb: u64,
     336            0 :             gc_compaction_ratio_percent: u64,
     337            0 :         ) -> bool {
     338              :             const AUTO_TRIGGER_LIMIT: u64 = 150 * 1024 * 1024 * 1024; // 150GB
     339            0 :             if l1_size + l2_size >= AUTO_TRIGGER_LIMIT {
     340              :                 // Do not auto-trigger when physical size >= 150GB
     341            0 :                 return false;
     342            0 :             }
     343            0 :             // initial trigger
     344            0 :             if l2_size == 0 && l1_size >= gc_compaction_initial_threshold_kb * 1024 {
     345            0 :                 info!(
     346            0 :                     "trigger auto-compaction because l1_size={} >= gc_compaction_initial_threshold_kb={}",
     347              :                     l1_size, gc_compaction_initial_threshold_kb
     348              :                 );
     349            0 :                 return true;
     350            0 :             }
     351            0 :             // size ratio trigger
     352            0 :             if l2_size == 0 {
     353            0 :                 return false;
     354            0 :             }
     355            0 :             if l1_size as f64 / l2_size as f64 >= (gc_compaction_ratio_percent as f64 / 100.0) {
     356            0 :                 info!(
     357            0 :                     "trigger auto-compaction because l1_size={} / l2_size={} > gc_compaction_ratio_percent={}",
     358              :                     l1_size, l2_size, gc_compaction_ratio_percent
     359              :                 );
     360            0 :                 return true;
     361            0 :             }
     362            0 :             false
     363            0 :         }
     364              : 
     365            0 :         if trigger_compaction(
     366            0 :             l1_size,
     367            0 :             l2_size,
     368            0 :             gc_compaction_initial_threshold_kb,
     369            0 :             gc_compaction_ratio_percent,
     370            0 :         ) {
     371            0 :             self.schedule_auto_compaction(
     372            0 :                 CompactOptions {
     373            0 :                     flags: {
     374            0 :                         let mut flags = EnumSet::new();
     375            0 :                         flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     376            0 :                         if timeline.get_compaction_l0_first() {
     377            0 :                             flags |= CompactFlags::YieldForL0;
     378            0 :                         }
     379            0 :                         flags
     380            0 :                     },
     381            0 :                     sub_compaction: true,
     382            0 :                     // Only auto-trigger gc-compaction over the data keyspace due to concerns in
     383            0 :                     // https://github.com/neondatabase/neon/issues/11318.
     384            0 :                     compact_key_range: Some(CompactKeyRange {
     385            0 :                         start: Key::MIN,
     386            0 :                         end: Key::metadata_key_range().start,
     387            0 :                     }),
     388            0 :                     compact_lsn_range: None,
     389            0 :                     sub_compaction_max_job_size_mb: None,
     390            0 :                 },
     391            0 :                 permit,
     392            0 :             );
     393            0 :             info!(
     394            0 :                 "scheduled auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     395              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     396              :             );
     397              :         } else {
     398            0 :             debug!(
     399            0 :                 "did not trigger auto gc-compaction: l1_size={}, l2_size={}, l2_lsn={}, gc_cutoff={}",
     400              :                 l1_size, l2_size, l2_lsn, gc_cutoff
     401              :             );
     402              :         }
     403            0 :         Ok(())
     404            0 :     }
     405              : 
     406            0 :     async fn collect_layer_below_lsn(
     407            0 :         &self,
     408            0 :         timeline: &Arc<Timeline>,
     409            0 :         lsn: Lsn,
     410            0 :     ) -> Result<u64, CompactionError> {
     411            0 :         let guard = timeline.layers.read().await;
     412            0 :         let layer_map = guard.layer_map()?;
     413            0 :         let layers = layer_map.iter_historic_layers().collect_vec();
     414            0 :         let mut size = 0;
     415            0 :         for layer in layers {
     416            0 :             if layer.lsn_range.start <= lsn {
     417            0 :                 size += layer.file_size();
     418            0 :             }
     419              :         }
     420            0 :         Ok(size)
     421            0 :     }
     422              : 
     423              :     /// Notify the caller the job has finished and unblock GC.
     424            0 :     fn notify_and_unblock(&self, id: GcCompactionJobId) {
     425            0 :         info!("compaction job id={} finished", id);
     426            0 :         let mut guard = self.inner.lock().unwrap();
     427            0 :         if let Some(items) = guard.guards.remove(&id) {
     428            0 :             if let Some(tx) = items.notify {
     429            0 :                 let _ = tx.send(());
     430            0 :             }
     431            0 :         }
     432            0 :         if let Some(ref meta_statistics) = guard.meta_statistics {
     433            0 :             if meta_statistics.meta_job_id == id {
     434            0 :                 if let Ok(stats) = serde_json::to_string(&meta_statistics) {
     435            0 :                     info!(
     436            0 :                         "gc-compaction meta statistics for job id = {}: {}",
     437              :                         id, stats
     438              :                     );
     439            0 :                 }
     440            0 :             }
     441            0 :         }
     442            0 :     }
     443              : 
     444            0 :     fn clear_running_job(&self) {
     445            0 :         let mut guard = self.inner.lock().unwrap();
     446            0 :         guard.running = None;
     447            0 :     }
     448              : 
     449            0 :     async fn handle_sub_compaction(
     450            0 :         &self,
     451            0 :         id: GcCompactionJobId,
     452            0 :         options: CompactOptions,
     453            0 :         timeline: &Arc<Timeline>,
     454            0 :         auto: bool,
     455            0 :     ) -> Result<(), CompactionError> {
     456            0 :         info!(
     457            0 :             "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     458              :         );
     459            0 :         let res = timeline
     460            0 :             .gc_compaction_split_jobs(
     461            0 :                 GcCompactJob::from_compact_options(options.clone()),
     462            0 :                 options.sub_compaction_max_job_size_mb,
     463            0 :             )
     464            0 :             .await;
     465            0 :         let jobs = match res {
     466            0 :             Ok(jobs) => jobs,
     467            0 :             Err(err) => {
     468            0 :                 warn!("cannot split gc-compaction jobs: {}, unblocked gc", err);
     469            0 :                 self.notify_and_unblock(id);
     470            0 :                 return Err(err);
     471              :             }
     472              :         };
     473            0 :         if jobs.is_empty() {
     474            0 :             info!("no jobs to run, skipping scheduled compaction task");
     475            0 :             self.notify_and_unblock(id);
     476              :         } else {
     477            0 :             let jobs_len = jobs.len();
     478            0 :             let mut pending_tasks = Vec::new();
     479            0 :             // gc-compaction might pick more layers or fewer layers to compact. The L2 LSN does not need to be accurate.
     480            0 :             // And therefore, we simply assume the maximum LSN of all jobs is the expected L2 LSN.
     481            0 :             let expected_l2_lsn = jobs
     482            0 :                 .iter()
     483            0 :                 .map(|job| job.compact_lsn_range.end)
     484            0 :                 .max()
     485            0 :                 .unwrap();
     486            0 :             for job in jobs {
     487              :                 // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
     488              :                 // until we do further refactors to allow directly call `compact_with_gc`.
     489            0 :                 let mut flags: EnumSet<CompactFlags> = EnumSet::default();
     490            0 :                 flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     491            0 :                 if job.dry_run {
     492            0 :                     flags |= CompactFlags::DryRun;
     493            0 :                 }
     494            0 :                 if options.flags.contains(CompactFlags::YieldForL0) {
     495            0 :                     flags |= CompactFlags::YieldForL0;
     496            0 :                 }
     497            0 :                 let options = CompactOptions {
     498            0 :                     flags,
     499            0 :                     sub_compaction: false,
     500            0 :                     compact_key_range: Some(job.compact_key_range.into()),
     501            0 :                     compact_lsn_range: Some(job.compact_lsn_range.into()),
     502            0 :                     sub_compaction_max_job_size_mb: None,
     503            0 :                 };
     504            0 :                 pending_tasks.push(GcCompactionQueueItem::SubCompactionJob(options));
     505              :             }
     506              : 
     507            0 :             if !auto {
     508            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, None));
     509            0 :             } else {
     510            0 :                 pending_tasks.push(GcCompactionQueueItem::Notify(id, Some(expected_l2_lsn)));
     511            0 :             }
     512              : 
     513            0 :             let layer_size = self
     514            0 :                 .collect_layer_below_lsn(timeline, expected_l2_lsn)
     515            0 :                 .await?;
     516              : 
     517              :             {
     518            0 :                 let mut guard = self.inner.lock().unwrap();
     519            0 :                 let mut tasks = Vec::new();
     520            0 :                 for task in pending_tasks {
     521            0 :                     let id = guard.next_id();
     522            0 :                     tasks.push((id, task));
     523            0 :                 }
     524            0 :                 tasks.reverse();
     525            0 :                 for item in tasks {
     526            0 :                     guard.queued.push_front(item);
     527            0 :                 }
     528            0 :                 guard.meta_statistics = Some(GcCompactionMetaStatistics {
     529            0 :                     meta_job_id: id,
     530            0 :                     start_time: Some(chrono::Utc::now()),
     531            0 :                     before_compaction_layer_size: layer_size,
     532            0 :                     below_lsn: expected_l2_lsn,
     533            0 :                     total_sub_compaction_jobs: jobs_len,
     534            0 :                     ..Default::default()
     535            0 :                 });
     536            0 :             }
     537            0 : 
     538            0 :             info!(
     539            0 :                 "scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs",
     540              :                 jobs_len
     541              :             );
     542              :         }
     543            0 :         Ok(())
     544            0 :     }
     545              : 
     546              :     /// Take a job from the queue and process it. Returns if there are still pending tasks.
     547            0 :     pub async fn iteration(
     548            0 :         &self,
     549            0 :         cancel: &CancellationToken,
     550            0 :         ctx: &RequestContext,
     551            0 :         gc_block: &GcBlock,
     552            0 :         timeline: &Arc<Timeline>,
     553            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     554            0 :         let res = self.iteration_inner(cancel, ctx, gc_block, timeline).await;
     555            0 :         if let Err(err) = &res {
     556            0 :             log_compaction_error(err, None, cancel.is_cancelled(), true);
     557            0 :         }
     558            0 :         match res {
     559            0 :             Ok(res) => Ok(res),
     560            0 :             Err(CompactionError::ShuttingDown) => Err(CompactionError::ShuttingDown),
     561              :             Err(_) => {
     562              :                 // There are some cases where traditional gc might collect some layer
     563              :                 // files causing gc-compaction cannot read the full history of the key.
     564              :                 // This needs to be resolved in the long-term by improving the compaction
     565              :                 // process. For now, let's simply avoid such errors triggering the
     566              :                 // circuit breaker.
     567            0 :                 Ok(CompactionOutcome::Skipped)
     568              :             }
     569              :         }
     570            0 :     }
     571              : 
     572            0 :     async fn iteration_inner(
     573            0 :         &self,
     574            0 :         cancel: &CancellationToken,
     575            0 :         ctx: &RequestContext,
     576            0 :         gc_block: &GcBlock,
     577            0 :         timeline: &Arc<Timeline>,
     578            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     579            0 :         let Ok(_one_op_at_a_time_guard) = self.consumer_lock.try_lock() else {
     580            0 :             return Err(CompactionError::AlreadyRunning(
     581            0 :                 "cannot run gc-compaction because another gc-compaction is running. This should not happen because we only call this function from the gc-compaction queue.",
     582            0 :             ));
     583              :         };
     584              :         let has_pending_tasks;
     585            0 :         let mut yield_for_l0 = false;
     586            0 :         let Some((id, item)) = ({
     587            0 :             let mut guard = self.inner.lock().unwrap();
     588            0 :             if let Some((id, item)) = guard.queued.pop_front() {
     589            0 :                 guard.running = Some((id, item.clone()));
     590            0 :                 has_pending_tasks = !guard.queued.is_empty();
     591            0 :                 Some((id, item))
     592              :             } else {
     593            0 :                 has_pending_tasks = false;
     594            0 :                 None
     595              :             }
     596              :         }) else {
     597            0 :             self.trigger_auto_compaction(timeline).await?;
     598              :             // Always yield after triggering auto-compaction. Gc-compaction is a low-priority task and we
     599              :             // have not implemented preemption mechanism yet. We always want to yield it to more important
     600              :             // tasks if there is one.
     601            0 :             return Ok(CompactionOutcome::Done);
     602              :         };
     603            0 :         match item {
     604            0 :             GcCompactionQueueItem::MetaJob { options, auto } => {
     605            0 :                 if !options
     606            0 :                     .flags
     607            0 :                     .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     608              :                 {
     609            0 :                     warn!(
     610            0 :                         "ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}",
     611              :                         options
     612              :                     );
     613            0 :                 } else if options.sub_compaction {
     614            0 :                     info!(
     615            0 :                         "running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
     616              :                     );
     617            0 :                     self.handle_sub_compaction(id, options, timeline, auto)
     618            0 :                         .await?;
     619              :                 } else {
     620              :                     // Auto compaction always enables sub-compaction so we don't need to handle update_l2_lsn
     621              :                     // in this branch.
     622            0 :                     let _gc_guard = match gc_block.start().await {
     623            0 :                         Ok(guard) => guard,
     624            0 :                         Err(e) => {
     625            0 :                             self.notify_and_unblock(id);
     626            0 :                             self.clear_running_job();
     627            0 :                             return Err(CompactionError::Other(anyhow!(
     628            0 :                                 "cannot run gc-compaction because gc is blocked: {}",
     629            0 :                                 e
     630            0 :                             )));
     631              :                         }
     632              :                     };
     633            0 :                     let res = timeline.compact_with_options(cancel, options, ctx).await;
     634            0 :                     let compaction_result = match res {
     635            0 :                         Ok(res) => res,
     636            0 :                         Err(err) => {
     637            0 :                             warn!(%err, "failed to run gc-compaction");
     638            0 :                             self.notify_and_unblock(id);
     639            0 :                             self.clear_running_job();
     640            0 :                             return Err(err);
     641              :                         }
     642              :                     };
     643            0 :                     if compaction_result == CompactionOutcome::YieldForL0 {
     644            0 :                         yield_for_l0 = true;
     645            0 :                     }
     646              :                 }
     647              :             }
     648            0 :             GcCompactionQueueItem::SubCompactionJob(options) => {
     649              :                 // TODO: error handling, clear the queue if any task fails?
     650            0 :                 let _gc_guard = match gc_block.start().await {
     651            0 :                     Ok(guard) => guard,
     652            0 :                     Err(e) => {
     653            0 :                         self.clear_running_job();
     654            0 :                         return Err(CompactionError::Other(anyhow!(
     655            0 :                             "cannot run gc-compaction because gc is blocked: {}",
     656            0 :                             e
     657            0 :                         )));
     658              :                     }
     659              :                 };
     660            0 :                 let res = timeline.compact_with_options(cancel, options, ctx).await;
     661            0 :                 let compaction_result = match res {
     662            0 :                     Ok(res) => res,
     663            0 :                     Err(err) => {
     664            0 :                         warn!(%err, "failed to run gc-compaction subcompaction job");
     665            0 :                         self.clear_running_job();
     666            0 :                         let mut guard = self.inner.lock().unwrap();
     667            0 :                         if let Some(ref mut meta_statistics) = guard.meta_statistics {
     668            0 :                             meta_statistics.failed_sub_compaction_jobs += 1;
     669            0 :                         }
     670            0 :                         return Err(err);
     671              :                     }
     672              :                 };
     673            0 :                 if compaction_result == CompactionOutcome::YieldForL0 {
     674            0 :                     // We will permenantly give up a task if we yield for L0 compaction: the preempted subcompaction job won't be running
     675            0 :                     // again. This ensures that we don't keep doing duplicated work within gc-compaction. Not directly returning here because
     676            0 :                     // we need to clean things up before returning from the function.
     677            0 :                     yield_for_l0 = true;
     678            0 :                 }
     679              :                 {
     680            0 :                     let mut guard = self.inner.lock().unwrap();
     681            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     682            0 :                         meta_statistics.succeeded_sub_compaction_jobs += 1;
     683            0 :                     }
     684              :                 }
     685              :             }
     686            0 :             GcCompactionQueueItem::Notify(id, l2_lsn) => {
     687            0 :                 let below_lsn = {
     688            0 :                     let mut guard = self.inner.lock().unwrap();
     689            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     690            0 :                         meta_statistics.below_lsn
     691              :                     } else {
     692            0 :                         Lsn::INVALID
     693              :                     }
     694              :                 };
     695            0 :                 let layer_size = if below_lsn != Lsn::INVALID {
     696            0 :                     self.collect_layer_below_lsn(timeline, below_lsn).await?
     697              :                 } else {
     698            0 :                     0
     699              :                 };
     700              :                 {
     701            0 :                     let mut guard = self.inner.lock().unwrap();
     702            0 :                     if let Some(ref mut meta_statistics) = guard.meta_statistics {
     703            0 :                         meta_statistics.after_compaction_layer_size = layer_size;
     704            0 :                         meta_statistics.finalize();
     705            0 :                     }
     706              :                 }
     707            0 :                 self.notify_and_unblock(id);
     708            0 :                 if let Some(l2_lsn) = l2_lsn {
     709            0 :                     let current_l2_lsn = timeline
     710            0 :                         .get_gc_compaction_state()
     711            0 :                         .map(|x| x.last_completed_lsn)
     712            0 :                         .unwrap_or(Lsn::INVALID);
     713            0 :                     if l2_lsn >= current_l2_lsn {
     714            0 :                         info!("l2_lsn updated to {}", l2_lsn);
     715            0 :                         timeline
     716            0 :                             .update_gc_compaction_state(GcCompactionState {
     717            0 :                                 last_completed_lsn: l2_lsn,
     718            0 :                             })
     719            0 :                             .map_err(CompactionError::Other)?;
     720              :                     } else {
     721            0 :                         warn!(
     722            0 :                             "l2_lsn updated to {} but it is less than the current l2_lsn {}",
     723              :                             l2_lsn, current_l2_lsn
     724              :                         );
     725              :                     }
     726            0 :                 }
     727              :             }
     728              :         }
     729            0 :         self.clear_running_job();
     730            0 :         Ok(if yield_for_l0 {
     731            0 :             tracing::info!("give up gc-compaction: yield for L0 compaction");
     732            0 :             CompactionOutcome::YieldForL0
     733            0 :         } else if has_pending_tasks {
     734            0 :             CompactionOutcome::Pending
     735              :         } else {
     736            0 :             CompactionOutcome::Done
     737              :         })
     738            0 :     }
     739              : 
     740              :     #[allow(clippy::type_complexity)]
     741            0 :     pub fn remaining_jobs(
     742            0 :         &self,
     743            0 :     ) -> (
     744            0 :         Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     745            0 :         VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     746            0 :     ) {
     747            0 :         let guard = self.inner.lock().unwrap();
     748            0 :         (guard.running.clone(), guard.queued.clone())
     749            0 :     }
     750              : 
     751            0 :     pub fn remaining_jobs_num(&self) -> usize {
     752            0 :         let guard = self.inner.lock().unwrap();
     753            0 :         guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
     754            0 :     }
     755              : }
     756              : 
     757              : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
     758              : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
     759              : /// called.
     760              : #[derive(Debug, Clone)]
     761              : pub(crate) struct GcCompactJob {
     762              :     pub dry_run: bool,
     763              :     /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
     764              :     /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
     765              :     pub compact_key_range: Range<Key>,
     766              :     /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
     767              :     /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
     768              :     /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
     769              :     /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
     770              :     pub compact_lsn_range: Range<Lsn>,
     771              : }
     772              : 
     773              : impl GcCompactJob {
     774          336 :     pub fn from_compact_options(options: CompactOptions) -> Self {
     775          336 :         GcCompactJob {
     776          336 :             dry_run: options.flags.contains(CompactFlags::DryRun),
     777          336 :             compact_key_range: options
     778          336 :                 .compact_key_range
     779          336 :                 .map(|x| x.into())
     780          336 :                 .unwrap_or(Key::MIN..Key::MAX),
     781          336 :             compact_lsn_range: options
     782          336 :                 .compact_lsn_range
     783          336 :                 .map(|x| x.into())
     784          336 :                 .unwrap_or(Lsn::INVALID..Lsn::MAX),
     785          336 :         }
     786          336 :     }
     787              : }
     788              : 
     789              : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
     790              : /// and contains the exact layers we want to compact.
     791              : pub struct GcCompactionJobDescription {
     792              :     /// All layers to read in the compaction job
     793              :     selected_layers: Vec<Layer>,
     794              :     /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
     795              :     /// keep all deltas <= this LSN or generate an image == this LSN.
     796              :     gc_cutoff: Lsn,
     797              :     /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
     798              :     /// generate an image == this LSN.
     799              :     retain_lsns_below_horizon: Vec<Lsn>,
     800              :     /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
     801              :     /// \>= this LSN will be kept and will not be rewritten.
     802              :     max_layer_lsn: Lsn,
     803              :     /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
     804              :     /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
     805              :     /// k-merge within gc-compaction.
     806              :     min_layer_lsn: Lsn,
     807              :     /// Only compact layers overlapping with this range.
     808              :     compaction_key_range: Range<Key>,
     809              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
     810              :     /// This field is here solely for debugging. The field will not be read once the compaction
     811              :     /// description is generated.
     812              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
     813              : }
     814              : 
     815              : /// The result of bottom-most compaction for a single key at each LSN.
     816              : #[derive(Debug)]
     817              : #[cfg_attr(test, derive(PartialEq))]
     818              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
     819              : 
     820              : /// The result of bottom-most compaction.
     821              : #[derive(Debug)]
     822              : #[cfg_attr(test, derive(PartialEq))]
     823              : pub(crate) struct KeyHistoryRetention {
     824              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
     825              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
     826              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
     827              :     pub(crate) above_horizon: KeyLogAtLsn,
     828              : }
     829              : 
     830              : impl KeyHistoryRetention {
     831              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     832              :     ///
     833              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     834              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     835              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     836              :     /// Then we delete branch @ 0x20.
     837              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     838              :     /// And that wouldnt' change the shape of the layer.
     839              :     ///
     840              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     841              :     ///
     842              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     843          444 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     844          444 :         if dry_run {
     845            0 :             return true;
     846          444 :         }
     847          444 :         if LayerMap::is_l0(&key.key_range, key.is_delta) {
     848              :             // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
     849              :             // We should ignore such layers.
     850            0 :             return true;
     851          444 :         }
     852              :         let layer_generation;
     853              :         {
     854          444 :             let guard = tline.layers.read().await;
     855          444 :             if !guard.contains_key(key) {
     856          312 :                 return false;
     857          132 :             }
     858          132 :             layer_generation = guard.get_from_key(key).metadata().generation;
     859          132 :         }
     860          132 :         if layer_generation == tline.generation {
     861          132 :             info!(
     862              :                 key=%key,
     863              :                 ?layer_generation,
     864            0 :                 "discard layer due to duplicated layer key in the same generation",
     865              :             );
     866          132 :             true
     867              :         } else {
     868            0 :             false
     869              :         }
     870          444 :     }
     871              : 
     872              :     /// Pipe a history of a single key to the writers.
     873              :     ///
     874              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     875              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     876              :     #[allow(clippy::too_many_arguments)]
     877         3828 :     async fn pipe_to(
     878         3828 :         self,
     879         3828 :         key: Key,
     880         3828 :         delta_writer: &mut SplitDeltaLayerWriter<'_>,
     881         3828 :         mut image_writer: Option<&mut SplitImageLayerWriter<'_>>,
     882         3828 :         stat: &mut CompactionStatistics,
     883         3828 :         ctx: &RequestContext,
     884         3828 :     ) -> anyhow::Result<()> {
     885         3828 :         let mut first_batch = true;
     886        12264 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     887         8436 :             if first_batch {
     888         3828 :                 if logs.len() == 1 && logs[0].1.is_image() {
     889         3600 :                     let Value::Image(img) = &logs[0].1 else {
     890            0 :                         unreachable!()
     891              :                     };
     892         3600 :                     stat.produce_image_key(img);
     893         3600 :                     if let Some(image_writer) = image_writer.as_mut() {
     894         3600 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     895              :                     } else {
     896            0 :                         delta_writer
     897            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     898            0 :                             .await?;
     899              :                     }
     900              :                 } else {
     901          396 :                     for (lsn, val) in logs {
     902          168 :                         stat.produce_key(&val);
     903          168 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     904              :                     }
     905              :                 }
     906         3828 :                 first_batch = false;
     907              :             } else {
     908         5304 :                 for (lsn, val) in logs {
     909          696 :                     stat.produce_key(&val);
     910          696 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     911              :                 }
     912              :             }
     913              :         }
     914         3828 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     915         4176 :         for (lsn, val) in above_horizon_logs {
     916          348 :             stat.produce_key(&val);
     917          348 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     918              :         }
     919         3828 :         Ok(())
     920         3828 :     }
     921              : 
     922              :     /// Verify if every key in the retention is readable by replaying the logs.
     923         3876 :     async fn verify(
     924         3876 :         &self,
     925         3876 :         key: Key,
     926         3876 :         base_img_from_ancestor: &Option<(Key, Lsn, Bytes)>,
     927         3876 :         full_history: &[(Key, Lsn, Value)],
     928         3876 :         tline: &Arc<Timeline>,
     929         3876 :     ) -> anyhow::Result<()> {
     930              :         // Usually the min_lsn should be the first record but we do a full iteration to be safe.
     931         5496 :         let Some(min_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).min() else {
     932              :             // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
     933            0 :             return Ok(());
     934              :         };
     935         5496 :         let Some(max_lsn) = full_history.iter().map(|(_, lsn, _)| *lsn).max() else {
     936              :             // This should never happen b/c if we don't have any history of a key, we won't even do `generate_key_retention`.
     937            0 :             return Ok(());
     938              :         };
     939         3876 :         let mut base_img = base_img_from_ancestor
     940         3876 :             .as_ref()
     941         3876 :             .map(|(_, lsn, img)| (*lsn, img));
     942         3876 :         let mut history = Vec::new();
     943              : 
     944        12324 :         async fn collect_and_verify(
     945        12324 :             key: Key,
     946        12324 :             lsn: Lsn,
     947        12324 :             base_img: &Option<(Lsn, &Bytes)>,
     948        12324 :             history: &[(Lsn, &NeonWalRecord)],
     949        12324 :             tline: &Arc<Timeline>,
     950        12324 :             skip_empty: bool,
     951        12324 :         ) -> anyhow::Result<()> {
     952        12324 :             if base_img.is_none() && history.is_empty() {
     953            0 :                 if skip_empty {
     954            0 :                     return Ok(());
     955            0 :                 }
     956            0 :                 anyhow::bail!("verification failed: key {} has no history at {}", key, lsn);
     957        12324 :             };
     958        12324 : 
     959        12324 :             let mut records = history
     960        12324 :                 .iter()
     961        12324 :                 .map(|(lsn, val)| (*lsn, (*val).clone()))
     962        12324 :                 .collect::<Vec<_>>();
     963        12324 : 
     964        12324 :             // WAL redo requires records in the reverse LSN order
     965        12324 :             records.reverse();
     966        12324 :             let data = ValueReconstructState {
     967        12324 :                 img: base_img.as_ref().map(|(lsn, img)| (*lsn, (*img).clone())),
     968        12324 :                 records,
     969        12324 :             };
     970        12324 : 
     971        12324 :             tline
     972        12324 :                 .reconstruct_value(key, lsn, data, RedoAttemptType::GcCompaction)
     973        12324 :                 .await
     974        12324 :                 .with_context(|| format!("verification failed for key {} at lsn {}", key, lsn))?;
     975              : 
     976        12324 :             Ok(())
     977        12324 :         }
     978              : 
     979        12432 :         for (retain_lsn, KeyLogAtLsn(logs)) in &self.below_horizon {
     980        13152 :             for (lsn, val) in logs {
     981          912 :                 match val {
     982         3684 :                     Value::Image(img) => {
     983         3684 :                         base_img = Some((*lsn, img));
     984         3684 :                         history.clear();
     985         3684 :                     }
     986          912 :                     Value::WalRecord(rec) if val.will_init() => {
     987            0 :                         base_img = None;
     988            0 :                         history.clear();
     989            0 :                         history.push((*lsn, rec));
     990            0 :                     }
     991          912 :                     Value::WalRecord(rec) => {
     992          912 :                         history.push((*lsn, rec));
     993          912 :                     }
     994              :                 }
     995              :             }
     996         8556 :             if *retain_lsn >= min_lsn {
     997              :                 // Only verify after the key appears in the full history for the first time.
     998              : 
     999              :                 // We don't modify history: in theory, we could replace the history with a single
    1000              :                 // image as in `generate_key_retention` to make redos at later LSNs faster. But we
    1001              :                 // want to verify everything as if they are read from the real layer map.
    1002         8388 :                 collect_and_verify(key, *retain_lsn, &base_img, &history, tline, false)
    1003         8388 :                     .await
    1004         8388 :                     .context("below horizon retain_lsn")?;
    1005          168 :             }
    1006              :         }
    1007              : 
    1008         4320 :         for (lsn, val) in &self.above_horizon.0 {
    1009          384 :             match val {
    1010           60 :                 Value::Image(img) => {
    1011           60 :                     // Above the GC horizon, we verify every time we see an image.
    1012           60 :                     collect_and_verify(key, *lsn, &base_img, &history, tline, true)
    1013           60 :                         .await
    1014           60 :                         .context("above horizon full image")?;
    1015           60 :                     base_img = Some((*lsn, img));
    1016           60 :                     history.clear();
    1017              :                 }
    1018          384 :                 Value::WalRecord(rec) if val.will_init() => {
    1019            0 :                     // Above the GC horizon, we verify every time we see an init record.
    1020            0 :                     collect_and_verify(key, *lsn, &base_img, &history, tline, true)
    1021            0 :                         .await
    1022            0 :                         .context("above horizon init record")?;
    1023            0 :                     base_img = None;
    1024            0 :                     history.clear();
    1025            0 :                     history.push((*lsn, rec));
    1026              :                 }
    1027          384 :                 Value::WalRecord(rec) => {
    1028          384 :                     history.push((*lsn, rec));
    1029          384 :                 }
    1030              :             }
    1031              :         }
    1032              :         // Ensure the latest record is readable.
    1033         3876 :         collect_and_verify(key, max_lsn, &base_img, &history, tline, false)
    1034         3876 :             .await
    1035         3876 :             .context("latest record")?;
    1036         3876 :         Ok(())
    1037         3876 :     }
    1038              : }
    1039              : 
    1040              : #[derive(Debug, Serialize, Default)]
    1041              : struct CompactionStatisticsNumSize {
    1042              :     num: u64,
    1043              :     size: u64,
    1044              : }
    1045              : 
    1046              : #[derive(Debug, Serialize, Default)]
    1047              : pub struct CompactionStatistics {
    1048              :     /// Delta layer visited (maybe compressed, physical size)
    1049              :     delta_layer_visited: CompactionStatisticsNumSize,
    1050              :     /// Image layer visited (maybe compressed, physical size)
    1051              :     image_layer_visited: CompactionStatisticsNumSize,
    1052              :     /// Delta layer produced (maybe compressed, physical size)
    1053              :     delta_layer_produced: CompactionStatisticsNumSize,
    1054              :     /// Image layer produced (maybe compressed, physical size)
    1055              :     image_layer_produced: CompactionStatisticsNumSize,
    1056              :     /// Delta layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
    1057              :     delta_layer_discarded: CompactionStatisticsNumSize,
    1058              :     /// Image layer discarded (maybe compressed, physical size of the layer being discarded instead of the original layer)
    1059              :     image_layer_discarded: CompactionStatisticsNumSize,
    1060              :     num_unique_keys_visited: usize,
    1061              :     /// Delta visited (uncompressed, original size)
    1062              :     wal_keys_visited: CompactionStatisticsNumSize,
    1063              :     /// Image visited (uncompressed, original size)
    1064              :     image_keys_visited: CompactionStatisticsNumSize,
    1065              :     /// Delta produced (uncompressed, original size)
    1066              :     wal_produced: CompactionStatisticsNumSize,
    1067              :     /// Image produced (uncompressed, original size)
    1068              :     image_produced: CompactionStatisticsNumSize,
    1069              : 
    1070              :     // Time spent in each phase
    1071              :     time_acquire_lock_secs: f64,
    1072              :     time_analyze_secs: f64,
    1073              :     time_download_layer_secs: f64,
    1074              :     time_to_first_kv_pair_secs: f64,
    1075              :     time_main_loop_secs: f64,
    1076              :     time_final_phase_secs: f64,
    1077              :     time_total_secs: f64,
    1078              : 
    1079              :     // Summary
    1080              :     /// Ratio of the key-value size after/before gc-compaction.
    1081              :     uncompressed_retention_ratio: f64,
    1082              :     /// Ratio of the physical size after/before gc-compaction.
    1083              :     compressed_retention_ratio: f64,
    1084              : }
    1085              : 
    1086              : impl CompactionStatistics {
    1087         6408 :     fn estimated_size_of_value(val: &Value) -> usize {
    1088         2628 :         match val {
    1089         3780 :             Value::Image(img) => img.len(),
    1090            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
    1091         2628 :             _ => std::mem::size_of::<NeonWalRecord>(),
    1092              :         }
    1093         6408 :     }
    1094        10068 :     fn estimated_size_of_key() -> usize {
    1095        10068 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
    1096        10068 :     }
    1097          528 :     fn visit_delta_layer(&mut self, size: u64) {
    1098          528 :         self.delta_layer_visited.num += 1;
    1099          528 :         self.delta_layer_visited.size += size;
    1100          528 :     }
    1101          420 :     fn visit_image_layer(&mut self, size: u64) {
    1102          420 :         self.image_layer_visited.num += 1;
    1103          420 :         self.image_layer_visited.size += size;
    1104          420 :     }
    1105         3840 :     fn on_unique_key_visited(&mut self) {
    1106         3840 :         self.num_unique_keys_visited += 1;
    1107         3840 :     }
    1108         1476 :     fn visit_wal_key(&mut self, val: &Value) {
    1109         1476 :         self.wal_keys_visited.num += 1;
    1110         1476 :         self.wal_keys_visited.size +=
    1111         1476 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1112         1476 :     }
    1113         3780 :     fn visit_image_key(&mut self, val: &Value) {
    1114         3780 :         self.image_keys_visited.num += 1;
    1115         3780 :         self.image_keys_visited.size +=
    1116         3780 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1117         3780 :     }
    1118         1212 :     fn produce_key(&mut self, val: &Value) {
    1119         1212 :         match val {
    1120           60 :             Value::Image(img) => self.produce_image_key(img),
    1121         1152 :             Value::WalRecord(_) => self.produce_wal_key(val),
    1122              :         }
    1123         1212 :     }
    1124         1152 :     fn produce_wal_key(&mut self, val: &Value) {
    1125         1152 :         self.wal_produced.num += 1;
    1126         1152 :         self.wal_produced.size +=
    1127         1152 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
    1128         1152 :     }
    1129         3660 :     fn produce_image_key(&mut self, val: &Bytes) {
    1130         3660 :         self.image_produced.num += 1;
    1131         3660 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
    1132         3660 :     }
    1133           84 :     fn discard_delta_layer(&mut self, original_size: u64) {
    1134           84 :         self.delta_layer_discarded.num += 1;
    1135           84 :         self.delta_layer_discarded.size += original_size;
    1136           84 :     }
    1137           48 :     fn discard_image_layer(&mut self, original_size: u64) {
    1138           48 :         self.image_layer_discarded.num += 1;
    1139           48 :         self.image_layer_discarded.size += original_size;
    1140           48 :     }
    1141          144 :     fn produce_delta_layer(&mut self, size: u64) {
    1142          144 :         self.delta_layer_produced.num += 1;
    1143          144 :         self.delta_layer_produced.size += size;
    1144          144 :     }
    1145          180 :     fn produce_image_layer(&mut self, size: u64) {
    1146          180 :         self.image_layer_produced.num += 1;
    1147          180 :         self.image_layer_produced.size += size;
    1148          180 :     }
    1149          312 :     fn finalize(&mut self) {
    1150          312 :         let original_key_value_size = self.image_keys_visited.size + self.wal_keys_visited.size;
    1151          312 :         let produced_key_value_size = self.image_produced.size + self.wal_produced.size;
    1152          312 :         self.uncompressed_retention_ratio =
    1153          312 :             produced_key_value_size as f64 / (original_key_value_size as f64 + 1.0); // avoid div by 0
    1154          312 :         let original_physical_size = self.image_layer_visited.size + self.delta_layer_visited.size;
    1155          312 :         let produced_physical_size = self.image_layer_produced.size
    1156          312 :             + self.delta_layer_produced.size
    1157          312 :             + self.image_layer_discarded.size
    1158          312 :             + self.delta_layer_discarded.size; // Also include the discarded layers to make the ratio accurate
    1159          312 :         self.compressed_retention_ratio =
    1160          312 :             produced_physical_size as f64 / (original_physical_size as f64 + 1.0); // avoid div by 0
    1161          312 :     }
    1162              : }
    1163              : 
    1164              : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
    1165              : pub enum CompactionOutcome {
    1166              :     #[default]
    1167              :     /// No layers need to be compacted after this round. Compaction doesn't need
    1168              :     /// to be immediately scheduled.
    1169              :     Done,
    1170              :     /// Still has pending layers to be compacted after this round. Ideally, the scheduler
    1171              :     /// should immediately schedule another compaction.
    1172              :     Pending,
    1173              :     /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
    1174              :     /// guaranteed when `compaction_l0_first` is enabled).
    1175              :     YieldForL0,
    1176              :     /// Compaction was skipped, because the timeline is ineligible for compaction.
    1177              :     Skipped,
    1178              : }
    1179              : 
    1180              : impl Timeline {
    1181              :     /// TODO: cancellation
    1182              :     ///
    1183              :     /// Returns whether the compaction has pending tasks.
    1184         2184 :     pub(crate) async fn compact_legacy(
    1185         2184 :         self: &Arc<Self>,
    1186         2184 :         cancel: &CancellationToken,
    1187         2184 :         options: CompactOptions,
    1188         2184 :         ctx: &RequestContext,
    1189         2184 :     ) -> Result<CompactionOutcome, CompactionError> {
    1190         2184 :         if options
    1191         2184 :             .flags
    1192         2184 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
    1193              :         {
    1194            0 :             self.compact_with_gc(cancel, options, ctx).await?;
    1195            0 :             return Ok(CompactionOutcome::Done);
    1196         2184 :         }
    1197         2184 : 
    1198         2184 :         if options.flags.contains(CompactFlags::DryRun) {
    1199            0 :             return Err(CompactionError::Other(anyhow!(
    1200            0 :                 "dry-run mode is not supported for legacy compaction for now"
    1201            0 :             )));
    1202         2184 :         }
    1203         2184 : 
    1204         2184 :         if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
    1205              :             // maybe useful in the future? could implement this at some point
    1206            0 :             return Err(CompactionError::Other(anyhow!(
    1207            0 :                 "compaction range is not supported for legacy compaction for now"
    1208            0 :             )));
    1209         2184 :         }
    1210         2184 : 
    1211         2184 :         // High level strategy for compaction / image creation:
    1212         2184 :         //
    1213         2184 :         // 1. First, do a L0 compaction to ensure we move the L0
    1214         2184 :         // layers into the historic layer map get flat levels of
    1215         2184 :         // layers. If we did not compact all L0 layers, we will
    1216         2184 :         // prioritize compacting the timeline again and not do
    1217         2184 :         // any of the compactions below.
    1218         2184 :         //
    1219         2184 :         // 2. Then, calculate the desired "partitioning" of the
    1220         2184 :         // currently in-use key space. The goal is to partition the
    1221         2184 :         // key space into roughly fixed-size chunks, but also take into
    1222         2184 :         // account any existing image layers, and try to align the
    1223         2184 :         // chunk boundaries with the existing image layers to avoid
    1224         2184 :         // too much churn. Also try to align chunk boundaries with
    1225         2184 :         // relation boundaries.  In principle, we don't know about
    1226         2184 :         // relation boundaries here, we just deal with key-value
    1227         2184 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
    1228         2184 :         // map relations into key-value pairs. But in practice we know
    1229         2184 :         // that 'field6' is the block number, and the fields 1-5
    1230         2184 :         // identify a relation. This is just an optimization,
    1231         2184 :         // though.
    1232         2184 :         //
    1233         2184 :         // 3. Once we know the partitioning, for each partition,
    1234         2184 :         // decide if it's time to create a new image layer. The
    1235         2184 :         // criteria is: there has been too much "churn" since the last
    1236         2184 :         // image layer? The "churn" is fuzzy concept, it's a
    1237         2184 :         // combination of too many delta files, or too much WAL in
    1238         2184 :         // total in the delta file. Or perhaps: if creating an image
    1239         2184 :         // file would allow to delete some older files.
    1240         2184 :         //
    1241         2184 :         // 4. In the end, if the tenant gets auto-sharded, we will run
    1242         2184 :         // a shard-ancestor compaction.
    1243         2184 : 
    1244         2184 :         // Is the timeline being deleted?
    1245         2184 :         if self.is_stopping() {
    1246            0 :             trace!("Dropping out of compaction on timeline shutdown");
    1247            0 :             return Err(CompactionError::ShuttingDown);
    1248         2184 :         }
    1249         2184 : 
    1250         2184 :         let target_file_size = self.get_checkpoint_distance();
    1251              : 
    1252              :         // Define partitioning schema if needed
    1253              : 
    1254              :         // 1. L0 Compact
    1255         2184 :         let l0_outcome = {
    1256         2184 :             let timer = self.metrics.compact_time_histo.start_timer();
    1257         2184 :             let l0_outcome = self
    1258         2184 :                 .compact_level0(
    1259         2184 :                     target_file_size,
    1260         2184 :                     options.flags.contains(CompactFlags::ForceL0Compaction),
    1261         2184 :                     ctx,
    1262         2184 :                 )
    1263         2184 :                 .await?;
    1264         2184 :             timer.stop_and_record();
    1265         2184 :             l0_outcome
    1266         2184 :         };
    1267         2184 : 
    1268         2184 :         if options.flags.contains(CompactFlags::OnlyL0Compaction) {
    1269            0 :             return Ok(l0_outcome);
    1270         2184 :         }
    1271         2184 : 
    1272         2184 :         // Yield if we have pending L0 compaction. The scheduler will do another pass.
    1273         2184 :         if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
    1274            0 :             && options.flags.contains(CompactFlags::YieldForL0)
    1275              :         {
    1276            0 :             info!("image/ancestor compaction yielding for L0 compaction");
    1277            0 :             return Ok(CompactionOutcome::YieldForL0);
    1278         2184 :         }
    1279         2184 : 
    1280         2184 :         // 2. Repartition and create image layers if necessary
    1281         2184 :         match self
    1282         2184 :             .repartition(
    1283         2184 :                 self.get_last_record_lsn(),
    1284         2184 :                 self.get_compaction_target_size(),
    1285         2184 :                 options.flags,
    1286         2184 :                 ctx,
    1287         2184 :             )
    1288         2184 :             .await
    1289              :         {
    1290         2184 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
    1291         2184 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
    1292         2184 :                 let image_ctx = RequestContextBuilder::from(ctx)
    1293         2184 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
    1294         2184 :                     .attached_child();
    1295         2184 : 
    1296         2184 :                 let mut partitioning = dense_partitioning;
    1297         2184 :                 partitioning
    1298         2184 :                     .parts
    1299         2184 :                     .extend(sparse_partitioning.into_dense().parts);
    1300              : 
    1301              :                 // 3. Create new image layers for partitions that have been modified "enough".
    1302         2184 :                 let (image_layers, outcome) = self
    1303         2184 :                     .create_image_layers(
    1304         2184 :                         &partitioning,
    1305         2184 :                         lsn,
    1306         2184 :                         if options
    1307         2184 :                             .flags
    1308         2184 :                             .contains(CompactFlags::ForceImageLayerCreation)
    1309              :                         {
    1310           84 :                             ImageLayerCreationMode::Force
    1311              :                         } else {
    1312         2100 :                             ImageLayerCreationMode::Try
    1313              :                         },
    1314         2184 :                         &image_ctx,
    1315         2184 :                         self.last_image_layer_creation_status
    1316         2184 :                             .load()
    1317         2184 :                             .as_ref()
    1318         2184 :                             .clone(),
    1319         2184 :                         options.flags.contains(CompactFlags::YieldForL0),
    1320         2184 :                     )
    1321         2184 :                     .await
    1322         2184 :                     .inspect_err(|err| {
    1323              :                         if let CreateImageLayersError::GetVectoredError(
    1324              :                             GetVectoredError::MissingKey(_),
    1325            0 :                         ) = err
    1326              :                         {
    1327            0 :                             critical!("missing key during compaction: {err:?}");
    1328            0 :                         }
    1329         2184 :                     })?;
    1330              : 
    1331         2184 :                 self.last_image_layer_creation_status
    1332         2184 :                     .store(Arc::new(outcome.clone()));
    1333         2184 : 
    1334         2184 :                 self.upload_new_image_layers(image_layers)?;
    1335         2184 :                 if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
    1336              :                     // Yield and do not do any other kind of compaction.
    1337            0 :                     info!(
    1338            0 :                         "skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction)."
    1339              :                     );
    1340            0 :                     return Ok(CompactionOutcome::YieldForL0);
    1341         2184 :                 }
    1342              :             }
    1343              : 
    1344              :             // Suppress errors when cancelled.
    1345            0 :             Err(_) if self.cancel.is_cancelled() => {}
    1346            0 :             Err(err) if err.is_cancel() => {}
    1347              : 
    1348              :             // Alert on critical errors that indicate data corruption.
    1349            0 :             Err(err) if err.is_critical() => {
    1350            0 :                 critical!("could not compact, repartitioning keyspace failed: {err:?}");
    1351              :             }
    1352              : 
    1353              :             // Log other errors. No partitioning? This is normal, if the timeline was just created
    1354              :             // as an empty timeline. Also in unit tests, when we use the timeline as a simple
    1355              :             // key-value store, ignoring the datadir layout. Log the error but continue.
    1356            0 :             Err(err) => error!("could not compact, repartitioning keyspace failed: {err:?}"),
    1357              :         };
    1358              : 
    1359         2184 :         let partition_count = self.partitioning.read().0.0.parts.len();
    1360         2184 : 
    1361         2184 :         // 4. Shard ancestor compaction
    1362         2184 :         if self.get_compaction_shard_ancestor() && self.shard_identity.count >= ShardCount::new(2) {
    1363              :             // Limit the number of layer rewrites to the number of partitions: this means its
    1364              :             // runtime should be comparable to a full round of image layer creations, rather than
    1365              :             // being potentially much longer.
    1366            0 :             let rewrite_max = partition_count;
    1367              : 
    1368            0 :             let outcome = self
    1369            0 :                 .compact_shard_ancestors(
    1370            0 :                     rewrite_max,
    1371            0 :                     options.flags.contains(CompactFlags::YieldForL0),
    1372            0 :                     ctx,
    1373            0 :                 )
    1374            0 :                 .await?;
    1375            0 :             match outcome {
    1376            0 :                 CompactionOutcome::Pending | CompactionOutcome::YieldForL0 => return Ok(outcome),
    1377            0 :                 CompactionOutcome::Done | CompactionOutcome::Skipped => {}
    1378              :             }
    1379         2184 :         }
    1380              : 
    1381         2184 :         Ok(CompactionOutcome::Done)
    1382         2184 :     }
    1383              : 
    1384              :     /// Check for layers that are elegible to be rewritten:
    1385              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
    1386              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
    1387              :     /// - For future use: layers beyond pitr_interval that are in formats we would
    1388              :     ///   rather not maintain compatibility with indefinitely.
    1389              :     ///
    1390              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
    1391              :     /// how much work it will try to do in each compaction pass.
    1392            0 :     async fn compact_shard_ancestors(
    1393            0 :         self: &Arc<Self>,
    1394            0 :         rewrite_max: usize,
    1395            0 :         yield_for_l0: bool,
    1396            0 :         ctx: &RequestContext,
    1397            0 :     ) -> Result<CompactionOutcome, CompactionError> {
    1398            0 :         let mut outcome = CompactionOutcome::Done;
    1399            0 :         let mut drop_layers = Vec::new();
    1400            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
    1401            0 : 
    1402            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
    1403            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
    1404            0 :         // pitr_interval, for example because a branchpoint references it.
    1405            0 :         //
    1406            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
    1407            0 :         // are rewriting layers.
    1408            0 :         let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
    1409            0 :         let pitr_cutoff = self.gc_info.read().unwrap().cutoffs.time;
    1410              : 
    1411            0 :         let layers = self.layers.read().await;
    1412            0 :         let layers_iter = layers.layer_map()?.iter_historic_layers();
    1413            0 :         let (layers_total, mut layers_checked) = (layers_iter.len(), 0);
    1414            0 :         for layer_desc in layers_iter {
    1415            0 :             layers_checked += 1;
    1416            0 :             let layer = layers.get_from_desc(&layer_desc);
    1417            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
    1418              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
    1419            0 :                 continue;
    1420            0 :             }
    1421            0 : 
    1422            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
    1423            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
    1424            0 :             let layer_local_page_count = sharded_range.page_count();
    1425            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
    1426            0 :             if layer_local_page_count == 0 {
    1427              :                 // This ancestral layer only covers keys that belong to other shards.
    1428              :                 // We include the full metadata in the log: if we had some critical bug that caused
    1429              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
    1430            0 :                 debug!(%layer, old_metadata=?layer.metadata(),
    1431            0 :                     "dropping layer after shard split, contains no keys for this shard",
    1432              :                 );
    1433              : 
    1434            0 :                 if cfg!(debug_assertions) {
    1435              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
    1436              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
    1437              :                     // should be !is_key_disposable()
    1438              :                     // TODO: exclude sparse keyspace from this check, otherwise it will infinitely loop.
    1439            0 :                     let range = layer_desc.get_key_range();
    1440            0 :                     let mut key = range.start;
    1441            0 :                     while key < range.end {
    1442            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
    1443            0 :                         key = key.next();
    1444              :                     }
    1445            0 :                 }
    1446              : 
    1447            0 :                 drop_layers.push(layer);
    1448            0 :                 continue;
    1449            0 :             } else if layer_local_page_count != u32::MAX
    1450            0 :                 && layer_local_page_count == layer_raw_page_count
    1451              :             {
    1452            0 :                 debug!(%layer,
    1453            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
    1454              :                     layer_local_page_count
    1455              :                 );
    1456            0 :                 continue;
    1457            0 :             }
    1458            0 : 
    1459            0 :             // Only rewrite a layer if we can reclaim significant space.
    1460            0 :             if layer_local_page_count != u32::MAX
    1461            0 :                 && layer_local_page_count as f64 / layer_raw_page_count as f64
    1462            0 :                     <= ANCESTOR_COMPACTION_REWRITE_THRESHOLD
    1463              :             {
    1464            0 :                 debug!(%layer,
    1465            0 :                     "layer has a large share of local pages \
    1466            0 :                         ({layer_local_page_count}/{layer_raw_page_count} > \
    1467            0 :                         {ANCESTOR_COMPACTION_REWRITE_THRESHOLD}), not rewriting",
    1468              :                 );
    1469            0 :             }
    1470              : 
    1471              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
    1472              :             // without incurring the I/O cost of a rewrite.
    1473            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
    1474            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
    1475            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
    1476            0 :                 continue;
    1477            0 :             }
    1478            0 : 
    1479            0 :             // We do not yet implement rewrite of delta layers.
    1480            0 :             if layer_desc.is_delta() {
    1481            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
    1482            0 :                 continue;
    1483            0 :             }
    1484            0 : 
    1485            0 :             // We don't bother rewriting layers that aren't visible, since these won't be needed by
    1486            0 :             // reads and will likely be garbage collected soon.
    1487            0 :             if layer.visibility() != LayerVisibilityHint::Visible {
    1488            0 :                 debug!(%layer, "Skipping rewrite of invisible layer");
    1489            0 :                 continue;
    1490            0 :             }
    1491            0 : 
    1492            0 :             // Only rewrite layers if their generations differ.  This guarantees:
    1493            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
    1494            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
    1495            0 :             if layer.metadata().generation == self.generation {
    1496            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
    1497            0 :                 continue;
    1498            0 :             }
    1499            0 : 
    1500            0 :             if layers_to_rewrite.len() >= rewrite_max {
    1501            0 :                 debug!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
    1502            0 :                     layers_to_rewrite.len()
    1503              :                 );
    1504            0 :                 outcome = CompactionOutcome::Pending;
    1505            0 :                 break;
    1506            0 :             }
    1507            0 : 
    1508            0 :             // Fall through: all our conditions for doing a rewrite passed.
    1509            0 :             layers_to_rewrite.push(layer);
    1510              :         }
    1511              : 
    1512              :         // Drop read lock on layer map before we start doing time-consuming I/O.
    1513            0 :         drop(layers);
    1514            0 : 
    1515            0 :         // Drop out early if there's nothing to do.
    1516            0 :         if layers_to_rewrite.is_empty() && drop_layers.is_empty() {
    1517            0 :             return Ok(CompactionOutcome::Done);
    1518            0 :         }
    1519            0 : 
    1520            0 :         info!(
    1521            0 :             "starting shard ancestor compaction, rewriting {} layers and dropping {} layers, \
    1522            0 :                 checked {layers_checked}/{layers_total} layers \
    1523            0 :                 (latest_gc_cutoff={} pitr_cutoff={})",
    1524            0 :             layers_to_rewrite.len(),
    1525            0 :             drop_layers.len(),
    1526            0 :             *latest_gc_cutoff,
    1527              :             pitr_cutoff,
    1528              :         );
    1529            0 :         let started = Instant::now();
    1530            0 : 
    1531            0 :         let mut replace_image_layers = Vec::new();
    1532              : 
    1533            0 :         for layer in layers_to_rewrite {
    1534            0 :             if self.cancel.is_cancelled() {
    1535            0 :                 return Err(CompactionError::ShuttingDown);
    1536            0 :             }
    1537            0 : 
    1538            0 :             info!(layer=%layer, "rewriting layer after shard split");
    1539            0 :             let mut image_layer_writer = ImageLayerWriter::new(
    1540            0 :                 self.conf,
    1541            0 :                 self.timeline_id,
    1542            0 :                 self.tenant_shard_id,
    1543            0 :                 &layer.layer_desc().key_range,
    1544            0 :                 layer.layer_desc().image_layer_lsn(),
    1545            0 :                 &self.gate,
    1546            0 :                 self.cancel.clone(),
    1547            0 :                 ctx,
    1548            0 :             )
    1549            0 :             .await
    1550            0 :             .map_err(CompactionError::Other)?;
    1551              : 
    1552              :             // Safety of layer rewrites:
    1553              :             // - We are writing to a different local file path than we are reading from, so the old Layer
    1554              :             //   cannot interfere with the new one.
    1555              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
    1556              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
    1557              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
    1558              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
    1559              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
    1560              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
    1561              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
    1562              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
    1563              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
    1564              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
    1565            0 :             let resident = layer.download_and_keep_resident(ctx).await?;
    1566              : 
    1567            0 :             let keys_written = resident
    1568            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
    1569            0 :                 .await?;
    1570              : 
    1571            0 :             if keys_written > 0 {
    1572            0 :                 let (desc, path) = image_layer_writer
    1573            0 :                     .finish(ctx)
    1574            0 :                     .await
    1575            0 :                     .map_err(CompactionError::Other)?;
    1576            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
    1577            0 :                     .map_err(CompactionError::Other)?;
    1578            0 :                 info!(layer=%new_layer, "rewrote layer, {} -> {} bytes",
    1579            0 :                     layer.metadata().file_size,
    1580            0 :                     new_layer.metadata().file_size);
    1581              : 
    1582            0 :                 replace_image_layers.push((layer, new_layer));
    1583            0 :             } else {
    1584            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
    1585            0 :                 // the layer has no data for us with the ShardedRange check above, but
    1586            0 :                 drop_layers.push(layer);
    1587            0 :             }
    1588              : 
    1589              :             // Yield for L0 compaction if necessary, but make sure we update the layer map below
    1590              :             // with the work we've already done.
    1591            0 :             if yield_for_l0
    1592            0 :                 && self
    1593            0 :                     .l0_compaction_trigger
    1594            0 :                     .notified()
    1595            0 :                     .now_or_never()
    1596            0 :                     .is_some()
    1597              :             {
    1598            0 :                 info!("shard ancestor compaction yielding for L0 compaction");
    1599            0 :                 outcome = CompactionOutcome::YieldForL0;
    1600            0 :                 break;
    1601            0 :             }
    1602              :         }
    1603              : 
    1604            0 :         for layer in &drop_layers {
    1605            0 :             info!(%layer, old_metadata=?layer.metadata(),
    1606            0 :                 "dropping layer after shard split (no keys for this shard)",
    1607              :             );
    1608              :         }
    1609              : 
    1610              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
    1611              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
    1612              :         // to remote index) and be removed. This is inefficient but safe.
    1613            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
    1614            0 : 
    1615            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
    1616            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
    1617            0 :             .await?;
    1618              : 
    1619            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
    1620            0 : 
    1621            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
    1622            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
    1623            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
    1624            0 :         // load.
    1625            0 :         if outcome != CompactionOutcome::YieldForL0 {
    1626            0 :             info!("shard ancestor compaction waiting for uploads");
    1627            0 :             tokio::select! {
    1628            0 :                 result = self.remote_client.wait_completion() => match result {
    1629            0 :                     Ok(()) => {},
    1630            0 :                     Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
    1631              :                     Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
    1632            0 :                         return Err(CompactionError::ShuttingDown);
    1633              :                     }
    1634              :                 },
    1635              :                 // Don't wait if there's L0 compaction to do. We don't need to update the outcome
    1636              :                 // here, because we've already done the actual work.
    1637            0 :                 _ = self.l0_compaction_trigger.notified(), if yield_for_l0 => {},
    1638              :             }
    1639            0 :         }
    1640              : 
    1641            0 :         info!(
    1642            0 :             "shard ancestor compaction done in {:.3}s{}",
    1643            0 :             started.elapsed().as_secs_f64(),
    1644            0 :             match outcome {
    1645              :                 CompactionOutcome::Pending =>
    1646            0 :                     format!(", with pending work (rewrite_max={rewrite_max})"),
    1647            0 :                 CompactionOutcome::YieldForL0 => String::from(", yielding for L0 compaction"),
    1648            0 :                 CompactionOutcome::Skipped | CompactionOutcome::Done => String::new(),
    1649              :             }
    1650              :         );
    1651              : 
    1652            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
    1653            0 : 
    1654            0 :         Ok(outcome)
    1655            0 :     }
    1656              : 
    1657              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
    1658              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
    1659              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
    1660              :     ///
    1661              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
    1662              :     /// that we know won't be needed for reads.
    1663         1452 :     pub(crate) async fn update_layer_visibility(
    1664         1452 :         &self,
    1665         1452 :     ) -> Result<(), super::layer_manager::Shutdown> {
    1666         1452 :         let head_lsn = self.get_last_record_lsn();
    1667              : 
    1668              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
    1669              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
    1670              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
    1671              :         // they will be subject to L0->L1 compaction in the near future.
    1672         1452 :         let layer_manager = self.layers.read().await;
    1673         1452 :         let layer_map = layer_manager.layer_map()?;
    1674              : 
    1675         1452 :         let readable_points = {
    1676         1452 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
    1677         1452 : 
    1678         1452 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
    1679         1452 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
    1680            0 :                 if *is_offloaded == MaybeOffloaded::Yes {
    1681            0 :                     continue;
    1682            0 :                 }
    1683            0 :                 readable_points.push(*child_lsn);
    1684              :             }
    1685         1452 :             readable_points.push(head_lsn);
    1686         1452 :             readable_points
    1687         1452 :         };
    1688         1452 : 
    1689         1452 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
    1690         3648 :         for (layer_desc, visibility) in layer_visibility {
    1691         2196 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
    1692         2196 :             let layer = layer_manager.get_from_desc(&layer_desc);
    1693         2196 :             layer.set_visibility(visibility);
    1694         2196 :         }
    1695              : 
    1696              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
    1697              :         // avoid assuming that everything at a branch point is visible.
    1698         1452 :         drop(covered);
    1699         1452 :         Ok(())
    1700         1452 :     }
    1701              : 
    1702              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
    1703              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
    1704         2184 :     async fn compact_level0(
    1705         2184 :         self: &Arc<Self>,
    1706         2184 :         target_file_size: u64,
    1707         2184 :         force_compaction_ignore_threshold: bool,
    1708         2184 :         ctx: &RequestContext,
    1709         2184 :     ) -> Result<CompactionOutcome, CompactionError> {
    1710              :         let CompactLevel0Phase1Result {
    1711         2184 :             new_layers,
    1712         2184 :             deltas_to_compact,
    1713         2184 :             outcome,
    1714              :         } = {
    1715         2184 :             let phase1_span = info_span!("compact_level0_phase1");
    1716         2184 :             let ctx = ctx.attached_child();
    1717         2184 :             let mut stats = CompactLevel0Phase1StatsBuilder {
    1718         2184 :                 version: Some(2),
    1719         2184 :                 tenant_id: Some(self.tenant_shard_id),
    1720         2184 :                 timeline_id: Some(self.timeline_id),
    1721         2184 :                 ..Default::default()
    1722         2184 :             };
    1723         2184 : 
    1724         2184 :             let begin = tokio::time::Instant::now();
    1725         2184 :             let phase1_layers_locked = self.layers.read().await;
    1726         2184 :             let now = tokio::time::Instant::now();
    1727         2184 :             stats.read_lock_acquisition_micros =
    1728         2184 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
    1729         2184 :             self.compact_level0_phase1(
    1730         2184 :                 phase1_layers_locked,
    1731         2184 :                 stats,
    1732         2184 :                 target_file_size,
    1733         2184 :                 force_compaction_ignore_threshold,
    1734         2184 :                 &ctx,
    1735         2184 :             )
    1736         2184 :             .instrument(phase1_span)
    1737         2184 :             .await?
    1738              :         };
    1739              : 
    1740         2184 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
    1741              :             // nothing to do
    1742         2016 :             return Ok(CompactionOutcome::Done);
    1743          168 :         }
    1744          168 : 
    1745          168 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
    1746          168 :             .await?;
    1747          168 :         Ok(outcome)
    1748         2184 :     }
    1749              : 
    1750              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
    1751         2184 :     async fn compact_level0_phase1<'a>(
    1752         2184 :         self: &'a Arc<Self>,
    1753         2184 :         guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
    1754         2184 :         mut stats: CompactLevel0Phase1StatsBuilder,
    1755         2184 :         target_file_size: u64,
    1756         2184 :         force_compaction_ignore_threshold: bool,
    1757         2184 :         ctx: &RequestContext,
    1758         2184 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
    1759         2184 :         stats.read_lock_held_spawn_blocking_startup_micros =
    1760         2184 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
    1761         2184 :         let layers = guard.layer_map()?;
    1762         2184 :         let level0_deltas = layers.level0_deltas();
    1763         2184 :         stats.level0_deltas_count = Some(level0_deltas.len());
    1764         2184 : 
    1765         2184 :         // Only compact if enough layers have accumulated.
    1766         2184 :         let threshold = self.get_compaction_threshold();
    1767         2184 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
    1768         2016 :             if force_compaction_ignore_threshold {
    1769            0 :                 if !level0_deltas.is_empty() {
    1770            0 :                     info!(
    1771            0 :                         level0_deltas = level0_deltas.len(),
    1772            0 :                         threshold, "too few deltas to compact, but forcing compaction"
    1773              :                     );
    1774              :                 } else {
    1775            0 :                     info!(
    1776            0 :                         level0_deltas = level0_deltas.len(),
    1777            0 :                         threshold, "too few deltas to compact, cannot force compaction"
    1778              :                     );
    1779            0 :                     return Ok(CompactLevel0Phase1Result::default());
    1780              :                 }
    1781              :             } else {
    1782         2016 :                 debug!(
    1783            0 :                     level0_deltas = level0_deltas.len(),
    1784            0 :                     threshold, "too few deltas to compact"
    1785              :                 );
    1786         2016 :                 return Ok(CompactLevel0Phase1Result::default());
    1787              :             }
    1788          168 :         }
    1789              : 
    1790          168 :         let mut level0_deltas = level0_deltas
    1791          168 :             .iter()
    1792         2412 :             .map(|x| guard.get_from_desc(x))
    1793          168 :             .collect::<Vec<_>>();
    1794          168 : 
    1795          168 :         // Gather the files to compact in this iteration.
    1796          168 :         //
    1797          168 :         // Start with the oldest Level 0 delta file, and collect any other
    1798          168 :         // level 0 files that form a contiguous sequence, such that the end
    1799          168 :         // LSN of previous file matches the start LSN of the next file.
    1800          168 :         //
    1801          168 :         // Note that if the files don't form such a sequence, we might
    1802          168 :         // "compact" just a single file. That's a bit pointless, but it allows
    1803          168 :         // us to get rid of the level 0 file, and compact the other files on
    1804          168 :         // the next iteration. This could probably made smarter, but such
    1805          168 :         // "gaps" in the sequence of level 0 files should only happen in case
    1806          168 :         // of a crash, partial download from cloud storage, or something like
    1807          168 :         // that, so it's not a big deal in practice.
    1808         4488 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
    1809          168 :         let mut level0_deltas_iter = level0_deltas.iter();
    1810          168 : 
    1811          168 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
    1812          168 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
    1813          168 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
    1814          168 : 
    1815          168 :         // Accumulate the size of layers in `deltas_to_compact`
    1816          168 :         let mut deltas_to_compact_bytes = 0;
    1817          168 : 
    1818          168 :         // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
    1819          168 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
    1820          168 :         // work in this function to only operate on this much delta data at once.
    1821          168 :         //
    1822          168 :         // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
    1823          168 :         // the constraint is not respected, we use the larger of the two.
    1824          168 :         let delta_size_limit = std::cmp::max(
    1825          168 :             self.get_compaction_upper_limit(),
    1826          168 :             self.get_compaction_threshold(),
    1827          168 :         ) as u64
    1828          168 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
    1829          168 : 
    1830          168 :         let mut fully_compacted = true;
    1831          168 : 
    1832          168 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident(ctx).await?);
    1833         2412 :         for l in level0_deltas_iter {
    1834         2244 :             let lsn_range = &l.layer_desc().lsn_range;
    1835         2244 : 
    1836         2244 :             if lsn_range.start != prev_lsn_end {
    1837            0 :                 break;
    1838         2244 :             }
    1839         2244 :             deltas_to_compact.push(l.download_and_keep_resident(ctx).await?);
    1840         2244 :             deltas_to_compact_bytes += l.metadata().file_size;
    1841         2244 :             prev_lsn_end = lsn_range.end;
    1842         2244 : 
    1843         2244 :             if deltas_to_compact_bytes >= delta_size_limit {
    1844            0 :                 info!(
    1845            0 :                     l0_deltas_selected = deltas_to_compact.len(),
    1846            0 :                     l0_deltas_total = level0_deltas.len(),
    1847            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
    1848              :                     delta_size_limit
    1849              :                 );
    1850            0 :                 fully_compacted = false;
    1851            0 : 
    1852            0 :                 // Proceed with compaction, but only a subset of L0s
    1853            0 :                 break;
    1854         2244 :             }
    1855              :         }
    1856          168 :         let lsn_range = Range {
    1857          168 :             start: deltas_to_compact
    1858          168 :                 .first()
    1859          168 :                 .unwrap()
    1860          168 :                 .layer_desc()
    1861          168 :                 .lsn_range
    1862          168 :                 .start,
    1863          168 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
    1864          168 :         };
    1865          168 : 
    1866          168 :         info!(
    1867            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
    1868            0 :             lsn_range.start,
    1869            0 :             lsn_range.end,
    1870            0 :             deltas_to_compact.len(),
    1871            0 :             level0_deltas.len()
    1872              :         );
    1873              : 
    1874         2412 :         for l in deltas_to_compact.iter() {
    1875         2412 :             info!("compact includes {l}");
    1876              :         }
    1877              : 
    1878              :         // We don't need the original list of layers anymore. Drop it so that
    1879              :         // we don't accidentally use it later in the function.
    1880          168 :         drop(level0_deltas);
    1881          168 : 
    1882          168 :         stats.read_lock_held_prerequisites_micros = stats
    1883          168 :             .read_lock_held_spawn_blocking_startup_micros
    1884          168 :             .till_now();
    1885              : 
    1886              :         // TODO: replace with streaming k-merge
    1887          168 :         let all_keys = {
    1888          168 :             let mut all_keys = Vec::new();
    1889         2412 :             for l in deltas_to_compact.iter() {
    1890         2412 :                 if self.cancel.is_cancelled() {
    1891            0 :                     return Err(CompactionError::ShuttingDown);
    1892         2412 :                 }
    1893         2412 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1894         2412 :                 let keys = delta
    1895         2412 :                     .index_entries(ctx)
    1896         2412 :                     .await
    1897         2412 :                     .map_err(CompactionError::Other)?;
    1898         2412 :                 all_keys.extend(keys);
    1899              :             }
    1900              :             // The current stdlib sorting implementation is designed in a way where it is
    1901              :             // particularly fast where the slice is made up of sorted sub-ranges.
    1902     26542800 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    1903          168 :             all_keys
    1904          168 :         };
    1905          168 : 
    1906          168 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
    1907              : 
    1908              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
    1909              :         //
    1910              :         // A hole is a key range for which this compaction doesn't have any WAL records.
    1911              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
    1912              :         // cover the hole, but actually don't contain any WAL records for that key range.
    1913              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
    1914              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
    1915              :         //
    1916              :         // The algorithm chooses holes as follows.
    1917              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
    1918              :         // - Filter: min threshold on range length
    1919              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
    1920              :         //
    1921              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
    1922              :         #[derive(PartialEq, Eq)]
    1923              :         struct Hole {
    1924              :             key_range: Range<Key>,
    1925              :             coverage_size: usize,
    1926              :         }
    1927          168 :         let holes: Vec<Hole> = {
    1928              :             use std::cmp::Ordering;
    1929              :             impl Ord for Hole {
    1930            0 :                 fn cmp(&self, other: &Self) -> Ordering {
    1931            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
    1932            0 :                 }
    1933              :             }
    1934              :             impl PartialOrd for Hole {
    1935            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    1936            0 :                     Some(self.cmp(other))
    1937            0 :                 }
    1938              :             }
    1939          168 :             let max_holes = deltas_to_compact.len();
    1940          168 :             let last_record_lsn = self.get_last_record_lsn();
    1941          168 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
    1942          168 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
    1943          168 :             // min-heap (reserve space for one more element added before eviction)
    1944          168 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
    1945          168 :             let mut prev: Option<Key> = None;
    1946              : 
    1947     12384228 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
    1948     12384228 :                 if let Some(prev_key) = prev {
    1949              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
    1950              :                     // compaction is the gap between data key and metadata keys.
    1951     12384060 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
    1952            0 :                         && !Key::is_metadata_key(&prev_key)
    1953              :                     {
    1954            0 :                         let key_range = prev_key..next_key;
    1955            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
    1956            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
    1957            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
    1958            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
    1959            0 :                         let coverage_size =
    1960            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
    1961            0 :                         if coverage_size >= min_hole_coverage_size {
    1962            0 :                             heap.push(Hole {
    1963            0 :                                 key_range,
    1964            0 :                                 coverage_size,
    1965            0 :                             });
    1966            0 :                             if heap.len() > max_holes {
    1967            0 :                                 heap.pop(); // remove smallest hole
    1968            0 :                             }
    1969            0 :                         }
    1970     12384060 :                     }
    1971          168 :                 }
    1972     12384228 :                 prev = Some(next_key.next());
    1973              :             }
    1974          168 :             let mut holes = heap.into_vec();
    1975          168 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
    1976          168 :             holes
    1977          168 :         };
    1978          168 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
    1979          168 :         drop_rlock(guard);
    1980          168 : 
    1981          168 :         if self.cancel.is_cancelled() {
    1982            0 :             return Err(CompactionError::ShuttingDown);
    1983          168 :         }
    1984          168 : 
    1985          168 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
    1986              : 
    1987              :         // This iterator walks through all key-value pairs from all the layers
    1988              :         // we're compacting, in key, LSN order.
    1989              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
    1990              :         // then the Value::Image is ordered before Value::WalRecord.
    1991          168 :         let mut all_values_iter = {
    1992          168 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
    1993         2412 :             for l in deltas_to_compact.iter() {
    1994         2412 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1995         2412 :                 deltas.push(l);
    1996              :             }
    1997          168 :             MergeIterator::create(&deltas, &[], ctx)
    1998          168 :         };
    1999          168 : 
    2000          168 :         // This iterator walks through all keys and is needed to calculate size used by each key
    2001          168 :         let mut all_keys_iter = all_keys
    2002          168 :             .iter()
    2003     12384228 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
    2004     12384060 :             .coalesce(|mut prev, cur| {
    2005     12384060 :                 // Coalesce keys that belong to the same key pair.
    2006     12384060 :                 // This ensures that compaction doesn't put them
    2007     12384060 :                 // into different layer files.
    2008     12384060 :                 // Still limit this by the target file size,
    2009     12384060 :                 // so that we keep the size of the files in
    2010     12384060 :                 // check.
    2011     12384060 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
    2012       240228 :                     prev.2 += cur.2;
    2013       240228 :                     Ok(prev)
    2014              :                 } else {
    2015     12143832 :                     Err((prev, cur))
    2016              :                 }
    2017     12384060 :             });
    2018          168 : 
    2019          168 :         // Merge the contents of all the input delta layers into a new set
    2020          168 :         // of delta layers, based on the current partitioning.
    2021          168 :         //
    2022          168 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
    2023          168 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
    2024          168 :         // would be too large. In that case, we also split on the LSN dimension.
    2025          168 :         //
    2026          168 :         // LSN
    2027          168 :         //  ^
    2028          168 :         //  |
    2029          168 :         //  | +-----------+            +--+--+--+--+
    2030          168 :         //  | |           |            |  |  |  |  |
    2031          168 :         //  | +-----------+            |  |  |  |  |
    2032          168 :         //  | |           |            |  |  |  |  |
    2033          168 :         //  | +-----------+     ==>    |  |  |  |  |
    2034          168 :         //  | |           |            |  |  |  |  |
    2035          168 :         //  | +-----------+            |  |  |  |  |
    2036          168 :         //  | |           |            |  |  |  |  |
    2037          168 :         //  | +-----------+            +--+--+--+--+
    2038          168 :         //  |
    2039          168 :         //  +--------------> key
    2040          168 :         //
    2041          168 :         //
    2042          168 :         // If one key (X) has a lot of page versions:
    2043          168 :         //
    2044          168 :         // LSN
    2045          168 :         //  ^
    2046          168 :         //  |                                 (X)
    2047          168 :         //  | +-----------+            +--+--+--+--+
    2048          168 :         //  | |           |            |  |  |  |  |
    2049          168 :         //  | +-----------+            |  |  +--+  |
    2050          168 :         //  | |           |            |  |  |  |  |
    2051          168 :         //  | +-----------+     ==>    |  |  |  |  |
    2052          168 :         //  | |           |            |  |  +--+  |
    2053          168 :         //  | +-----------+            |  |  |  |  |
    2054          168 :         //  | |           |            |  |  |  |  |
    2055          168 :         //  | +-----------+            +--+--+--+--+
    2056          168 :         //  |
    2057          168 :         //  +--------------> key
    2058          168 :         // TODO: this actually divides the layers into fixed-size chunks, not
    2059          168 :         // based on the partitioning.
    2060          168 :         //
    2061          168 :         // TODO: we should also opportunistically materialize and
    2062          168 :         // garbage collect what we can.
    2063          168 :         let mut new_layers = Vec::new();
    2064          168 :         let mut prev_key: Option<Key> = None;
    2065          168 :         let mut writer: Option<DeltaLayerWriter> = None;
    2066          168 :         let mut key_values_total_size = 0u64;
    2067          168 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    2068          168 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    2069          168 :         let mut next_hole = 0; // index of next hole in holes vector
    2070          168 : 
    2071          168 :         let mut keys = 0;
    2072              : 
    2073     12384396 :         while let Some((key, lsn, value)) = all_values_iter
    2074     12384396 :             .next()
    2075     12384396 :             .await
    2076     12384396 :             .map_err(CompactionError::Other)?
    2077              :         {
    2078     12384228 :             keys += 1;
    2079     12384228 : 
    2080     12384228 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    2081              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    2082              :                 // shuffling an order of million keys per layer, this means we'll check it
    2083              :                 // around tens of times per layer.
    2084            0 :                 return Err(CompactionError::ShuttingDown);
    2085     12384228 :             }
    2086     12384228 : 
    2087     12384228 :             let same_key = prev_key == Some(key);
    2088     12384228 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    2089     12384228 :             if !same_key || lsn == dup_end_lsn {
    2090     12144000 :                 let mut next_key_size = 0u64;
    2091     12144000 :                 let is_dup_layer = dup_end_lsn.is_valid();
    2092     12144000 :                 dup_start_lsn = Lsn::INVALID;
    2093     12144000 :                 if !same_key {
    2094     12144000 :                     dup_end_lsn = Lsn::INVALID;
    2095     12144000 :                 }
    2096              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    2097     12144000 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    2098     12144000 :                     next_key_size = next_size;
    2099     12144000 :                     if key != next_key {
    2100     12143832 :                         if dup_end_lsn.is_valid() {
    2101            0 :                             // We are writting segment with duplicates:
    2102            0 :                             // place all remaining values of this key in separate segment
    2103            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    2104            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    2105     12143832 :                         }
    2106     12143832 :                         break;
    2107          168 :                     }
    2108          168 :                     key_values_total_size += next_size;
    2109          168 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    2110          168 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    2111          168 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    2112              :                         // Split key between multiple layers: such layer can contain only single key
    2113            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    2114            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    2115              :                         } else {
    2116            0 :                             lsn // start with the first LSN for this key
    2117              :                         };
    2118            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    2119            0 :                         break;
    2120          168 :                     }
    2121              :                 }
    2122              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    2123     12144000 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    2124            0 :                     dup_start_lsn = dup_end_lsn;
    2125            0 :                     dup_end_lsn = lsn_range.end;
    2126     12144000 :                 }
    2127     12144000 :                 if writer.is_some() {
    2128     12143832 :                     let written_size = writer.as_mut().unwrap().size();
    2129     12143832 :                     let contains_hole =
    2130     12143832 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    2131              :                     // check if key cause layer overflow or contains hole...
    2132     12143832 :                     if is_dup_layer
    2133     12143832 :                         || dup_end_lsn.is_valid()
    2134     12143832 :                         || written_size + key_values_total_size > target_file_size
    2135     12142152 :                         || contains_hole
    2136              :                     {
    2137              :                         // ... if so, flush previous layer and prepare to write new one
    2138         1680 :                         let (desc, path) = writer
    2139         1680 :                             .take()
    2140         1680 :                             .unwrap()
    2141         1680 :                             .finish(prev_key.unwrap().next(), ctx)
    2142         1680 :                             .await
    2143         1680 :                             .map_err(CompactionError::Other)?;
    2144         1680 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    2145         1680 :                             .map_err(CompactionError::Other)?;
    2146              : 
    2147         1680 :                         new_layers.push(new_delta);
    2148         1680 :                         writer = None;
    2149         1680 : 
    2150         1680 :                         if contains_hole {
    2151            0 :                             // skip hole
    2152            0 :                             next_hole += 1;
    2153         1680 :                         }
    2154     12142152 :                     }
    2155          168 :                 }
    2156              :                 // Remember size of key value because at next iteration we will access next item
    2157     12144000 :                 key_values_total_size = next_key_size;
    2158       240228 :             }
    2159     12384228 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    2160            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    2161            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    2162            0 :                 )))
    2163     12384228 :             });
    2164              : 
    2165     12384228 :             if !self.shard_identity.is_key_disposable(&key) {
    2166     12384228 :                 if writer.is_none() {
    2167         1848 :                     if self.cancel.is_cancelled() {
    2168              :                         // to be somewhat responsive to cancellation, check for each new layer
    2169            0 :                         return Err(CompactionError::ShuttingDown);
    2170         1848 :                     }
    2171              :                     // Create writer if not initiaized yet
    2172         1848 :                     writer = Some(
    2173              :                         DeltaLayerWriter::new(
    2174         1848 :                             self.conf,
    2175         1848 :                             self.timeline_id,
    2176         1848 :                             self.tenant_shard_id,
    2177         1848 :                             key,
    2178         1848 :                             if dup_end_lsn.is_valid() {
    2179              :                                 // this is a layer containing slice of values of the same key
    2180            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    2181            0 :                                 dup_start_lsn..dup_end_lsn
    2182              :                             } else {
    2183         1848 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    2184         1848 :                                 lsn_range.clone()
    2185              :                             },
    2186         1848 :                             &self.gate,
    2187         1848 :                             self.cancel.clone(),
    2188         1848 :                             ctx,
    2189         1848 :                         )
    2190         1848 :                         .await
    2191         1848 :                         .map_err(CompactionError::Other)?,
    2192              :                     );
    2193              : 
    2194         1848 :                     keys = 0;
    2195     12382380 :                 }
    2196              : 
    2197     12384228 :                 writer
    2198     12384228 :                     .as_mut()
    2199     12384228 :                     .unwrap()
    2200     12384228 :                     .put_value(key, lsn, value, ctx)
    2201     12384228 :                     .await
    2202     12384228 :                     .map_err(CompactionError::Other)?;
    2203              :             } else {
    2204            0 :                 let owner = self.shard_identity.get_shard_number(&key);
    2205            0 : 
    2206            0 :                 // This happens after a shard split, when we're compacting an L0 created by our parent shard
    2207            0 :                 debug!("dropping key {key} during compaction (it belongs on shard {owner})");
    2208              :             }
    2209              : 
    2210     12384228 :             if !new_layers.is_empty() {
    2211       118716 :                 fail_point!("after-timeline-compacted-first-L1");
    2212     12265512 :             }
    2213              : 
    2214     12384228 :             prev_key = Some(key);
    2215              :         }
    2216          168 :         if let Some(writer) = writer {
    2217          168 :             let (desc, path) = writer
    2218          168 :                 .finish(prev_key.unwrap().next(), ctx)
    2219          168 :                 .await
    2220          168 :                 .map_err(CompactionError::Other)?;
    2221          168 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    2222          168 :                 .map_err(CompactionError::Other)?;
    2223          168 :             new_layers.push(new_delta);
    2224            0 :         }
    2225              : 
    2226              :         // Sync layers
    2227          168 :         if !new_layers.is_empty() {
    2228              :             // Print a warning if the created layer is larger than double the target size
    2229              :             // Add two pages for potential overhead. This should in theory be already
    2230              :             // accounted for in the target calculation, but for very small targets,
    2231              :             // we still might easily hit the limit otherwise.
    2232          168 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    2233         1848 :             for layer in new_layers.iter() {
    2234         1848 :                 if layer.layer_desc().file_size > warn_limit {
    2235            0 :                     warn!(
    2236              :                         %layer,
    2237            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    2238              :                     );
    2239         1848 :                 }
    2240              :             }
    2241              : 
    2242              :             // The writer.finish() above already did the fsync of the inodes.
    2243              :             // We just need to fsync the directory in which these inodes are linked,
    2244              :             // which we know to be the timeline directory.
    2245              :             //
    2246              :             // We use fatal_err() below because the after writer.finish() returns with success,
    2247              :             // the in-memory state of the filesystem already has the layer file in its final place,
    2248              :             // and subsequent pageserver code could think it's durable while it really isn't.
    2249          168 :             let timeline_dir = VirtualFile::open(
    2250          168 :                 &self
    2251          168 :                     .conf
    2252          168 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    2253          168 :                 ctx,
    2254          168 :             )
    2255          168 :             .await
    2256          168 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    2257          168 :             timeline_dir
    2258          168 :                 .sync_all()
    2259          168 :                 .await
    2260          168 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    2261            0 :         }
    2262              : 
    2263          168 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    2264          168 :         stats.new_deltas_count = Some(new_layers.len());
    2265         1848 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    2266          168 : 
    2267          168 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    2268          168 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    2269              :         {
    2270          168 :             Ok(stats_json) => {
    2271          168 :                 info!(
    2272            0 :                     stats_json = stats_json.as_str(),
    2273            0 :                     "compact_level0_phase1 stats available"
    2274              :                 )
    2275              :             }
    2276            0 :             Err(e) => {
    2277            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    2278              :             }
    2279              :         }
    2280              : 
    2281              :         // Without this, rustc complains about deltas_to_compact still
    2282              :         // being borrowed when we `.into_iter()` below.
    2283          168 :         drop(all_values_iter);
    2284          168 : 
    2285          168 :         Ok(CompactLevel0Phase1Result {
    2286          168 :             new_layers,
    2287          168 :             deltas_to_compact: deltas_to_compact
    2288          168 :                 .into_iter()
    2289         2412 :                 .map(|x| x.drop_eviction_guard())
    2290          168 :                 .collect::<Vec<_>>(),
    2291          168 :             outcome: if fully_compacted {
    2292          168 :                 CompactionOutcome::Done
    2293              :             } else {
    2294            0 :                 CompactionOutcome::Pending
    2295              :             },
    2296              :         })
    2297         2184 :     }
    2298              : }
    2299              : 
    2300              : #[derive(Default)]
    2301              : struct CompactLevel0Phase1Result {
    2302              :     new_layers: Vec<ResidentLayer>,
    2303              :     deltas_to_compact: Vec<Layer>,
    2304              :     // Whether we have included all L0 layers, or selected only part of them due to the
    2305              :     // L0 compaction size limit.
    2306              :     outcome: CompactionOutcome,
    2307              : }
    2308              : 
    2309              : #[derive(Default)]
    2310              : struct CompactLevel0Phase1StatsBuilder {
    2311              :     version: Option<u64>,
    2312              :     tenant_id: Option<TenantShardId>,
    2313              :     timeline_id: Option<TimelineId>,
    2314              :     read_lock_acquisition_micros: DurationRecorder,
    2315              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    2316              :     read_lock_held_key_sort_micros: DurationRecorder,
    2317              :     read_lock_held_prerequisites_micros: DurationRecorder,
    2318              :     read_lock_held_compute_holes_micros: DurationRecorder,
    2319              :     read_lock_drop_micros: DurationRecorder,
    2320              :     write_layer_files_micros: DurationRecorder,
    2321              :     level0_deltas_count: Option<usize>,
    2322              :     new_deltas_count: Option<usize>,
    2323              :     new_deltas_size: Option<u64>,
    2324              : }
    2325              : 
    2326              : #[derive(serde::Serialize)]
    2327              : struct CompactLevel0Phase1Stats {
    2328              :     version: u64,
    2329              :     tenant_id: TenantShardId,
    2330              :     timeline_id: TimelineId,
    2331              :     read_lock_acquisition_micros: RecordedDuration,
    2332              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    2333              :     read_lock_held_key_sort_micros: RecordedDuration,
    2334              :     read_lock_held_prerequisites_micros: RecordedDuration,
    2335              :     read_lock_held_compute_holes_micros: RecordedDuration,
    2336              :     read_lock_drop_micros: RecordedDuration,
    2337              :     write_layer_files_micros: RecordedDuration,
    2338              :     level0_deltas_count: usize,
    2339              :     new_deltas_count: usize,
    2340              :     new_deltas_size: u64,
    2341              : }
    2342              : 
    2343              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    2344              :     type Error = anyhow::Error;
    2345              : 
    2346          168 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    2347          168 :         Ok(Self {
    2348          168 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    2349          168 :             tenant_id: value
    2350          168 :                 .tenant_id
    2351          168 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    2352          168 :             timeline_id: value
    2353          168 :                 .timeline_id
    2354          168 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    2355          168 :             read_lock_acquisition_micros: value
    2356          168 :                 .read_lock_acquisition_micros
    2357          168 :                 .into_recorded()
    2358          168 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    2359          168 :             read_lock_held_spawn_blocking_startup_micros: value
    2360          168 :                 .read_lock_held_spawn_blocking_startup_micros
    2361          168 :                 .into_recorded()
    2362          168 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    2363          168 :             read_lock_held_key_sort_micros: value
    2364          168 :                 .read_lock_held_key_sort_micros
    2365          168 :                 .into_recorded()
    2366          168 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    2367          168 :             read_lock_held_prerequisites_micros: value
    2368          168 :                 .read_lock_held_prerequisites_micros
    2369          168 :                 .into_recorded()
    2370          168 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    2371          168 :             read_lock_held_compute_holes_micros: value
    2372          168 :                 .read_lock_held_compute_holes_micros
    2373          168 :                 .into_recorded()
    2374          168 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    2375          168 :             read_lock_drop_micros: value
    2376          168 :                 .read_lock_drop_micros
    2377          168 :                 .into_recorded()
    2378          168 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    2379          168 :             write_layer_files_micros: value
    2380          168 :                 .write_layer_files_micros
    2381          168 :                 .into_recorded()
    2382          168 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    2383          168 :             level0_deltas_count: value
    2384          168 :                 .level0_deltas_count
    2385          168 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    2386          168 :             new_deltas_count: value
    2387          168 :                 .new_deltas_count
    2388          168 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    2389          168 :             new_deltas_size: value
    2390          168 :                 .new_deltas_size
    2391          168 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    2392              :         })
    2393          168 :     }
    2394              : }
    2395              : 
    2396              : impl Timeline {
    2397              :     /// Entry point for new tiered compaction algorithm.
    2398              :     ///
    2399              :     /// All the real work is in the implementation in the pageserver_compaction
    2400              :     /// crate. The code here would apply to any algorithm implemented by the
    2401              :     /// same interface, but tiered is the only one at the moment.
    2402              :     ///
    2403              :     /// TODO: cancellation
    2404            0 :     pub(crate) async fn compact_tiered(
    2405            0 :         self: &Arc<Self>,
    2406            0 :         _cancel: &CancellationToken,
    2407            0 :         ctx: &RequestContext,
    2408            0 :     ) -> Result<(), CompactionError> {
    2409            0 :         let fanout = self.get_compaction_threshold() as u64;
    2410            0 :         let target_file_size = self.get_checkpoint_distance();
    2411              : 
    2412              :         // Find the top of the historical layers
    2413            0 :         let end_lsn = {
    2414            0 :             let guard = self.layers.read().await;
    2415            0 :             let layers = guard.layer_map()?;
    2416              : 
    2417            0 :             let l0_deltas = layers.level0_deltas();
    2418            0 : 
    2419            0 :             // As an optimization, if we find that there are too few L0 layers,
    2420            0 :             // bail out early. We know that the compaction algorithm would do
    2421            0 :             // nothing in that case.
    2422            0 :             if l0_deltas.len() < fanout as usize {
    2423              :                 // doesn't need compacting
    2424            0 :                 return Ok(());
    2425            0 :             }
    2426            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    2427            0 :         };
    2428            0 : 
    2429            0 :         // Is the timeline being deleted?
    2430            0 :         if self.is_stopping() {
    2431            0 :             trace!("Dropping out of compaction on timeline shutdown");
    2432            0 :             return Err(CompactionError::ShuttingDown);
    2433            0 :         }
    2434              : 
    2435            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    2436              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    2437            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    2438            0 : 
    2439            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    2440            0 :             &mut adaptor,
    2441            0 :             end_lsn,
    2442            0 :             target_file_size,
    2443            0 :             fanout,
    2444            0 :             ctx,
    2445            0 :         )
    2446            0 :         .await
    2447              :         // TODO: compact_tiered needs to return CompactionError
    2448            0 :         .map_err(CompactionError::Other)?;
    2449              : 
    2450            0 :         adaptor.flush_updates().await?;
    2451            0 :         Ok(())
    2452            0 :     }
    2453              : 
    2454              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    2455              :     ///
    2456              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    2457              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    2458              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    2459              :     ///
    2460              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    2461              :     ///
    2462              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    2463              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    2464              :     ///
    2465              :     /// The function will produce:
    2466              :     ///
    2467              :     /// ```plain
    2468              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    2469              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    2470              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    2471              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    2472              :     /// ```
    2473              :     ///
    2474              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    2475              :     #[allow(clippy::too_many_arguments)]
    2476         3888 :     pub(crate) async fn generate_key_retention(
    2477         3888 :         self: &Arc<Timeline>,
    2478         3888 :         key: Key,
    2479         3888 :         full_history: &[(Key, Lsn, Value)],
    2480         3888 :         horizon: Lsn,
    2481         3888 :         retain_lsn_below_horizon: &[Lsn],
    2482         3888 :         delta_threshold_cnt: usize,
    2483         3888 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    2484         3888 :         verification: bool,
    2485         3888 :     ) -> anyhow::Result<KeyHistoryRetention> {
    2486              :         // Pre-checks for the invariants
    2487              : 
    2488         3888 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2489              : 
    2490         3888 :         if debug_mode {
    2491         9432 :             for (log_key, _, _) in full_history {
    2492         5544 :                 assert_eq!(log_key, &key, "mismatched key");
    2493              :             }
    2494         3888 :             for i in 1..full_history.len() {
    2495         1656 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    2496         1656 :                 if full_history[i - 1].1 == full_history[i].1 {
    2497            0 :                     assert!(
    2498            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    2499            0 :                         "unordered delta/image, or duplicated delta"
    2500              :                     );
    2501         1656 :                 }
    2502              :             }
    2503              :             // There was an assertion for no base image that checks if the first
    2504              :             // record in the history is `will_init` before, but it was removed.
    2505              :             // This is explained in the test cases for generate_key_retention.
    2506              :             // Search "incomplete history" for more information.
    2507         8568 :             for lsn in retain_lsn_below_horizon {
    2508         4680 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    2509              :             }
    2510         3888 :             for i in 1..retain_lsn_below_horizon.len() {
    2511         2136 :                 assert!(
    2512         2136 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    2513            0 :                     "unordered LSN"
    2514              :                 );
    2515              :             }
    2516            0 :         }
    2517         3888 :         let has_ancestor = base_img_from_ancestor.is_some();
    2518              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    2519              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    2520         3888 :         let (mut split_history, lsn_split_points) = {
    2521         3888 :             let mut split_history = Vec::new();
    2522         3888 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    2523         3888 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    2524         8568 :             for lsn in retain_lsn_below_horizon {
    2525         4680 :                 lsn_split_points.push(*lsn);
    2526         4680 :             }
    2527         3888 :             lsn_split_points.push(horizon);
    2528         3888 :             let mut current_idx = 0;
    2529         9432 :             for item @ (_, lsn, _) in full_history {
    2530         7008 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    2531         1464 :                     current_idx += 1;
    2532         1464 :                 }
    2533         5544 :                 split_history[current_idx].push(item);
    2534              :             }
    2535         3888 :             (split_history, lsn_split_points)
    2536              :         };
    2537              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    2538        16344 :         for split_for_lsn in &mut split_history {
    2539        12456 :             let mut prev_lsn = None;
    2540        12456 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    2541        12456 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    2542         5544 :                 if let Some(prev_lsn) = &prev_lsn {
    2543          744 :                     if *prev_lsn == lsn {
    2544              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    2545              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    2546              :                         // drop this delta and keep the image.
    2547              :                         //
    2548              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    2549              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    2550              :                         // dropped.
    2551              :                         //
    2552              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    2553              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    2554            0 :                         continue;
    2555          744 :                     }
    2556         4800 :                 }
    2557         5544 :                 prev_lsn = Some(lsn);
    2558         5544 :                 new_split_for_lsn.push(record);
    2559              :             }
    2560        12456 :             *split_for_lsn = new_split_for_lsn;
    2561              :         }
    2562              :         // Step 3: generate images when necessary
    2563         3888 :         let mut retention = Vec::with_capacity(split_history.len());
    2564         3888 :         let mut records_since_last_image = 0;
    2565         3888 :         let batch_cnt = split_history.len();
    2566         3888 :         assert!(
    2567         3888 :             batch_cnt >= 2,
    2568            0 :             "should have at least below + above horizon batches"
    2569              :         );
    2570         3888 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    2571         3888 :         if let Some((key, lsn, ref img)) = base_img_from_ancestor {
    2572          252 :             replay_history.push((key, lsn, Value::Image(img.clone())));
    2573         3636 :         }
    2574              : 
    2575              :         /// Generate debug information for the replay history
    2576            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    2577              :             use std::fmt::Write;
    2578            0 :             let mut output = String::new();
    2579            0 :             if let Some((key, _, _)) = replay_history.first() {
    2580            0 :                 write!(output, "key={} ", key).unwrap();
    2581            0 :                 let mut cnt = 0;
    2582            0 :                 for (_, lsn, val) in replay_history {
    2583            0 :                     if val.is_image() {
    2584            0 :                         write!(output, "i@{} ", lsn).unwrap();
    2585            0 :                     } else if val.will_init() {
    2586            0 :                         write!(output, "di@{} ", lsn).unwrap();
    2587            0 :                     } else {
    2588            0 :                         write!(output, "d@{} ", lsn).unwrap();
    2589            0 :                     }
    2590            0 :                     cnt += 1;
    2591            0 :                     if cnt >= 128 {
    2592            0 :                         write!(output, "... and more").unwrap();
    2593            0 :                         break;
    2594            0 :                     }
    2595              :                 }
    2596            0 :             } else {
    2597            0 :                 write!(output, "<no history>").unwrap();
    2598            0 :             }
    2599            0 :             output
    2600            0 :         }
    2601              : 
    2602            0 :         fn generate_debug_trace(
    2603            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    2604            0 :             full_history: &[(Key, Lsn, Value)],
    2605            0 :             lsns: &[Lsn],
    2606            0 :             horizon: Lsn,
    2607            0 :         ) -> String {
    2608              :             use std::fmt::Write;
    2609            0 :             let mut output = String::new();
    2610            0 :             if let Some(replay_history) = replay_history {
    2611            0 :                 writeln!(
    2612            0 :                     output,
    2613            0 :                     "replay_history: {}",
    2614            0 :                     generate_history_trace(replay_history)
    2615            0 :                 )
    2616            0 :                 .unwrap();
    2617            0 :             } else {
    2618            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    2619            0 :             }
    2620            0 :             writeln!(
    2621            0 :                 output,
    2622            0 :                 "full_history: {}",
    2623            0 :                 generate_history_trace(full_history)
    2624            0 :             )
    2625            0 :             .unwrap();
    2626            0 :             writeln!(
    2627            0 :                 output,
    2628            0 :                 "when processing: [{}] horizon={}",
    2629            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    2630            0 :                 horizon
    2631            0 :             )
    2632            0 :             .unwrap();
    2633            0 :             output
    2634            0 :         }
    2635              : 
    2636         3888 :         let mut key_exists = false;
    2637        12444 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    2638              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    2639        12444 :             records_since_last_image += split_for_lsn.len();
    2640              :             // Whether to produce an image into the final layer files
    2641        12444 :             let produce_image = if i == 0 && !has_ancestor {
    2642              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    2643         3636 :                 true
    2644         8808 :             } else if i == batch_cnt - 1 {
    2645              :                 // Do not generate images for the last batch (above horizon)
    2646         3876 :                 false
    2647         4932 :             } else if records_since_last_image == 0 {
    2648         3864 :                 false
    2649         1068 :             } else if records_since_last_image >= delta_threshold_cnt {
    2650              :                 // Generate images when there are too many records
    2651           36 :                 true
    2652              :             } else {
    2653         1032 :                 false
    2654              :             };
    2655        12444 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    2656              :             // Only retain the items after the last image record
    2657        15324 :             for idx in (0..replay_history.len()).rev() {
    2658        15324 :                 if replay_history[idx].2.will_init() {
    2659        12444 :                     replay_history = replay_history[idx..].to_vec();
    2660        12444 :                     break;
    2661         2880 :                 }
    2662              :             }
    2663        12444 :             if replay_history.is_empty() && !key_exists {
    2664              :                 // The key does not exist at earlier LSN, we can skip this iteration.
    2665            0 :                 retention.push(Vec::new());
    2666            0 :                 continue;
    2667        12444 :             } else {
    2668        12444 :                 key_exists = true;
    2669        12444 :             }
    2670        12444 :             let Some((_, _, val)) = replay_history.first() else {
    2671            0 :                 unreachable!("replay history should not be empty once it exists")
    2672              :             };
    2673        12444 :             if !val.will_init() {
    2674            0 :                 return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
    2675            0 :                     generate_debug_trace(
    2676            0 :                         Some(&replay_history),
    2677            0 :                         full_history,
    2678            0 :                         retain_lsn_below_horizon,
    2679            0 :                         horizon,
    2680            0 :                     )
    2681            0 :                 });
    2682        12444 :             }
    2683              :             // Whether to reconstruct the image. In debug mode, we will generate an image
    2684              :             // at every retain_lsn to ensure data is not corrupted, but we won't put the
    2685              :             // image into the final layer.
    2686        12444 :             let img_and_lsn = if produce_image {
    2687         3672 :                 records_since_last_image = 0;
    2688         3672 :                 let replay_history_for_debug = if debug_mode {
    2689         3672 :                     Some(replay_history.clone())
    2690              :                 } else {
    2691            0 :                     None
    2692              :                 };
    2693         3672 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    2694         3672 :                 let history = std::mem::take(&mut replay_history);
    2695         3672 :                 let mut img = None;
    2696         3672 :                 let mut records = Vec::with_capacity(history.len());
    2697         3672 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    2698         3540 :                     img = Some((*lsn, val.clone()));
    2699         3540 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    2700          240 :                         let Value::WalRecord(rec) = val else {
    2701            0 :                             return Err(anyhow::anyhow!(
    2702            0 :                                 "invalid record, first record is image, expect walrecords"
    2703            0 :                             ))
    2704            0 :                             .with_context(|| {
    2705            0 :                                 generate_debug_trace(
    2706            0 :                                     replay_history_for_debug_ref,
    2707            0 :                                     full_history,
    2708            0 :                                     retain_lsn_below_horizon,
    2709            0 :                                     horizon,
    2710            0 :                                 )
    2711            0 :                             });
    2712              :                         };
    2713          240 :                         records.push((lsn, rec));
    2714              :                     }
    2715              :                 } else {
    2716          216 :                     for (_, lsn, val) in history.into_iter() {
    2717          216 :                         let Value::WalRecord(rec) = val else {
    2718            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    2719            0 :                                 .with_context(|| generate_debug_trace(
    2720            0 :                                     replay_history_for_debug_ref,
    2721            0 :                                     full_history,
    2722            0 :                                     retain_lsn_below_horizon,
    2723            0 :                                     horizon,
    2724            0 :                                 ));
    2725              :                         };
    2726          216 :                         records.push((lsn, rec));
    2727              :                     }
    2728              :                 }
    2729              :                 // WAL redo requires records in the reverse LSN order
    2730         3672 :                 records.reverse();
    2731         3672 :                 let state = ValueReconstructState { img, records };
    2732              :                 // last batch does not generate image so i is always in range, unless we force generate
    2733              :                 // an image during testing
    2734         3672 :                 let request_lsn = if i >= lsn_split_points.len() {
    2735            0 :                     Lsn::MAX
    2736              :                 } else {
    2737         3672 :                     lsn_split_points[i]
    2738              :                 };
    2739         3672 :                 let img = self
    2740         3672 :                     .reconstruct_value(key, request_lsn, state, RedoAttemptType::GcCompaction)
    2741         3672 :                     .await?;
    2742         3660 :                 Some((request_lsn, img))
    2743              :             } else {
    2744         8772 :                 None
    2745              :             };
    2746        12432 :             if produce_image {
    2747         3660 :                 let (request_lsn, img) = img_and_lsn.unwrap();
    2748         3660 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    2749         3660 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    2750         8772 :             } else {
    2751         8772 :                 let deltas = split_for_lsn
    2752         8772 :                     .iter()
    2753         8772 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    2754         8772 :                     .collect_vec();
    2755         8772 :                 retention.push(deltas);
    2756         8772 :             }
    2757              :         }
    2758         3876 :         let mut result = Vec::with_capacity(retention.len());
    2759         3876 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    2760        12432 :         for (idx, logs) in retention.into_iter().enumerate() {
    2761        12432 :             if idx == lsn_split_points.len() {
    2762         3876 :                 let retention = KeyHistoryRetention {
    2763         3876 :                     below_horizon: result,
    2764         3876 :                     above_horizon: KeyLogAtLsn(logs),
    2765         3876 :                 };
    2766         3876 :                 if verification {
    2767         3876 :                     retention
    2768         3876 :                         .verify(key, &base_img_from_ancestor, full_history, self)
    2769         3876 :                         .await?;
    2770            0 :                 }
    2771         3876 :                 return Ok(retention);
    2772         8556 :             } else {
    2773         8556 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    2774         8556 :             }
    2775              :         }
    2776            0 :         unreachable!("key retention is empty")
    2777         3888 :     }
    2778              : 
    2779              :     /// Check how much space is left on the disk
    2780          324 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    2781          324 :         let tenants_dir = self.conf.tenants_path();
    2782              : 
    2783          324 :         let stat = Statvfs::get(&tenants_dir, None)
    2784          324 :             .context("statvfs failed, presumably directory got unlinked")?;
    2785              : 
    2786          324 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    2787          324 : 
    2788          324 :         Ok(avail_bytes)
    2789          324 :     }
    2790              : 
    2791              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    2792              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    2793              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    2794              :     /// compaction.
    2795          324 :     async fn check_compaction_space(
    2796          324 :         self: &Arc<Self>,
    2797          324 :         layer_selection: &[Layer],
    2798          324 :     ) -> Result<(), CompactionError> {
    2799          324 :         let available_space = self
    2800          324 :             .check_available_space()
    2801          324 :             .await
    2802          324 :             .map_err(CompactionError::Other)?;
    2803          324 :         let mut remote_layer_size = 0;
    2804          324 :         let mut all_layer_size = 0;
    2805         1272 :         for layer in layer_selection {
    2806          948 :             let needs_download = layer
    2807          948 :                 .needs_download()
    2808          948 :                 .await
    2809          948 :                 .context("failed to check if layer needs download")
    2810          948 :                 .map_err(CompactionError::Other)?;
    2811          948 :             if needs_download.is_some() {
    2812            0 :                 remote_layer_size += layer.layer_desc().file_size;
    2813          948 :             }
    2814          948 :             all_layer_size += layer.layer_desc().file_size;
    2815              :         }
    2816          324 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    2817          324 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    2818              :         {
    2819            0 :             return Err(CompactionError::Other(anyhow!(
    2820            0 :                 "not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    2821            0 :                 available_space,
    2822            0 :                 allocated_space,
    2823            0 :                 all_layer_size,
    2824            0 :                 remote_layer_size,
    2825            0 :                 all_layer_size + remote_layer_size
    2826            0 :             )));
    2827          324 :         }
    2828          324 :         Ok(())
    2829          324 :     }
    2830              : 
    2831              :     /// Check if the memory usage is within the limit.
    2832          324 :     async fn check_memory_usage(
    2833          324 :         self: &Arc<Self>,
    2834          324 :         layer_selection: &[Layer],
    2835          324 :     ) -> Result<(), CompactionError> {
    2836          324 :         let mut estimated_memory_usage_mb = 0.0;
    2837          324 :         let mut num_image_layers = 0;
    2838          324 :         let mut num_delta_layers = 0;
    2839          324 :         let target_layer_size_bytes = 256 * 1024 * 1024;
    2840         1272 :         for layer in layer_selection {
    2841          948 :             let layer_desc = layer.layer_desc();
    2842          948 :             if layer_desc.is_delta() {
    2843          528 :                 // Delta layers at most have 1MB buffer; 3x to make it safe (there're deltas as large as 16KB).
    2844          528 :                 // Multiply the layer size so that tests can pass.
    2845          528 :                 estimated_memory_usage_mb +=
    2846          528 :                     3.0 * (layer_desc.file_size / target_layer_size_bytes) as f64;
    2847          528 :                 num_delta_layers += 1;
    2848          528 :             } else {
    2849          420 :                 // Image layers at most have 1MB buffer but it might be compressed; assume 5x compression ratio.
    2850          420 :                 estimated_memory_usage_mb +=
    2851          420 :                     5.0 * (layer_desc.file_size / target_layer_size_bytes) as f64;
    2852          420 :                 num_image_layers += 1;
    2853          420 :             }
    2854              :         }
    2855          324 :         if estimated_memory_usage_mb > 1024.0 {
    2856            0 :             return Err(CompactionError::Other(anyhow!(
    2857            0 :                 "estimated memory usage is too high: {}MB, giving up compaction; num_image_layers={}, num_delta_layers={}",
    2858            0 :                 estimated_memory_usage_mb,
    2859            0 :                 num_image_layers,
    2860            0 :                 num_delta_layers
    2861            0 :             )));
    2862          324 :         }
    2863          324 :         Ok(())
    2864          324 :     }
    2865              : 
    2866              :     /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
    2867              :     /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
    2868              :     /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
    2869              :     /// here.
    2870          336 :     pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
    2871          336 :         let gc_cutoff_lsn = {
    2872          336 :             let gc_info = self.gc_info.read().unwrap();
    2873          336 :             gc_info.min_cutoff()
    2874          336 :         };
    2875          336 : 
    2876          336 :         // TODO: standby horizon should use leases so we don't really need to consider it here.
    2877          336 :         // let watermark = watermark.min(self.standby_horizon.load());
    2878          336 : 
    2879          336 :         // TODO: ensure the child branches will not use anything below the watermark, or consider
    2880          336 :         // them when computing the watermark.
    2881          336 :         gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
    2882          336 :     }
    2883              : 
    2884              :     /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
    2885              :     /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
    2886              :     /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
    2887              :     /// like a full compaction of the specified keyspace.
    2888            0 :     pub(crate) async fn gc_compaction_split_jobs(
    2889            0 :         self: &Arc<Self>,
    2890            0 :         job: GcCompactJob,
    2891            0 :         sub_compaction_max_job_size_mb: Option<u64>,
    2892            0 :     ) -> Result<Vec<GcCompactJob>, CompactionError> {
    2893            0 :         let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
    2894            0 :             job.compact_lsn_range.end
    2895              :         } else {
    2896            0 :             self.get_gc_compaction_watermark()
    2897              :         };
    2898              : 
    2899            0 :         if compact_below_lsn == Lsn::INVALID {
    2900            0 :             tracing::warn!(
    2901            0 :                 "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    2902              :             );
    2903            0 :             return Ok(vec![]);
    2904            0 :         }
    2905              : 
    2906              :         // Split compaction job to about 4GB each
    2907              :         const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
    2908            0 :         let sub_compaction_max_job_size_mb =
    2909            0 :             sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
    2910            0 : 
    2911            0 :         let mut compact_jobs = Vec::<GcCompactJob>::new();
    2912            0 :         // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
    2913            0 :         // by estimating the amount of files read for a compaction job. We should also partition on LSN.
    2914            0 :         let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
    2915              :         // Truncate the key range to be within user specified compaction range.
    2916            0 :         fn truncate_to(
    2917            0 :             source_start: &Key,
    2918            0 :             source_end: &Key,
    2919            0 :             target_start: &Key,
    2920            0 :             target_end: &Key,
    2921            0 :         ) -> Option<(Key, Key)> {
    2922            0 :             let start = source_start.max(target_start);
    2923            0 :             let end = source_end.min(target_end);
    2924            0 :             if start < end {
    2925            0 :                 Some((*start, *end))
    2926              :             } else {
    2927            0 :                 None
    2928              :             }
    2929            0 :         }
    2930            0 :         let mut split_key_ranges = Vec::new();
    2931            0 :         let ranges = dense_ks
    2932            0 :             .parts
    2933            0 :             .iter()
    2934            0 :             .map(|partition| partition.ranges.iter())
    2935            0 :             .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
    2936            0 :             .flatten()
    2937            0 :             .cloned()
    2938            0 :             .collect_vec();
    2939            0 :         for range in ranges.iter() {
    2940            0 :             let Some((start, end)) = truncate_to(
    2941            0 :                 &range.start,
    2942            0 :                 &range.end,
    2943            0 :                 &job.compact_key_range.start,
    2944            0 :                 &job.compact_key_range.end,
    2945            0 :             ) else {
    2946            0 :                 continue;
    2947              :             };
    2948            0 :             split_key_ranges.push((start, end));
    2949              :         }
    2950            0 :         split_key_ranges.sort();
    2951            0 :         let all_layers = {
    2952            0 :             let guard = self.layers.read().await;
    2953            0 :             let layer_map = guard.layer_map()?;
    2954            0 :             layer_map.iter_historic_layers().collect_vec()
    2955            0 :         };
    2956            0 :         let mut current_start = None;
    2957            0 :         let ranges_num = split_key_ranges.len();
    2958            0 :         for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
    2959            0 :             if current_start.is_none() {
    2960            0 :                 current_start = Some(start);
    2961            0 :             }
    2962            0 :             let start = current_start.unwrap();
    2963            0 :             if start >= end {
    2964              :                 // We have already processed this partition.
    2965            0 :                 continue;
    2966            0 :             }
    2967            0 :             let overlapping_layers = {
    2968            0 :                 let mut desc = Vec::new();
    2969            0 :                 for layer in all_layers.iter() {
    2970            0 :                     if overlaps_with(&layer.get_key_range(), &(start..end))
    2971            0 :                         && layer.get_lsn_range().start <= compact_below_lsn
    2972            0 :                     {
    2973            0 :                         desc.push(layer.clone());
    2974            0 :                     }
    2975              :                 }
    2976            0 :                 desc
    2977            0 :             };
    2978            0 :             let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
    2979            0 :             if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
    2980              :                 // Try to extend the compaction range so that we include at least one full layer file.
    2981            0 :                 let extended_end = overlapping_layers
    2982            0 :                     .iter()
    2983            0 :                     .map(|layer| layer.key_range.end)
    2984            0 :                     .min();
    2985              :                 // It is possible that the search range does not contain any layer files when we reach the end of the loop.
    2986              :                 // In this case, we simply use the specified key range end.
    2987            0 :                 let end = if let Some(extended_end) = extended_end {
    2988            0 :                     extended_end.max(end)
    2989              :                 } else {
    2990            0 :                     end
    2991              :                 };
    2992            0 :                 let end = if ranges_num == idx + 1 {
    2993              :                     // extend the compaction range to the end of the key range if it's the last partition
    2994            0 :                     end.max(job.compact_key_range.end)
    2995              :                 } else {
    2996            0 :                     end
    2997              :                 };
    2998            0 :                 if total_size == 0 && !compact_jobs.is_empty() {
    2999            0 :                     info!(
    3000            0 :                         "splitting compaction job: {}..{}, estimated_size={}, extending the previous job",
    3001              :                         start, end, total_size
    3002              :                     );
    3003            0 :                     compact_jobs.last_mut().unwrap().compact_key_range.end = end;
    3004            0 :                     current_start = Some(end);
    3005              :                 } else {
    3006            0 :                     info!(
    3007            0 :                         "splitting compaction job: {}..{}, estimated_size={}",
    3008              :                         start, end, total_size
    3009              :                     );
    3010            0 :                     compact_jobs.push(GcCompactJob {
    3011            0 :                         dry_run: job.dry_run,
    3012            0 :                         compact_key_range: start..end,
    3013            0 :                         compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
    3014            0 :                     });
    3015            0 :                     current_start = Some(end);
    3016              :                 }
    3017            0 :             }
    3018              :         }
    3019            0 :         Ok(compact_jobs)
    3020            0 :     }
    3021              : 
    3022              :     /// An experimental compaction building block that combines compaction with garbage collection.
    3023              :     ///
    3024              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    3025              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    3026              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    3027              :     /// and create delta layers with all deltas >= gc horizon.
    3028              :     ///
    3029              :     /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
    3030              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    3031              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    3032              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    3033              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    3034              :     /// part of the range.
    3035              :     ///
    3036              :     /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
    3037              :     /// the LSN. Otherwise, it will use the gc cutoff by default.
    3038          336 :     pub(crate) async fn compact_with_gc(
    3039          336 :         self: &Arc<Self>,
    3040          336 :         cancel: &CancellationToken,
    3041          336 :         options: CompactOptions,
    3042          336 :         ctx: &RequestContext,
    3043          336 :     ) -> Result<CompactionOutcome, CompactionError> {
    3044          336 :         let sub_compaction = options.sub_compaction;
    3045          336 :         let job = GcCompactJob::from_compact_options(options.clone());
    3046          336 :         let yield_for_l0 = options.flags.contains(CompactFlags::YieldForL0);
    3047          336 :         if sub_compaction {
    3048            0 :             info!(
    3049            0 :                 "running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs"
    3050              :             );
    3051            0 :             let jobs = self
    3052            0 :                 .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
    3053            0 :                 .await?;
    3054            0 :             let jobs_len = jobs.len();
    3055            0 :             for (idx, job) in jobs.into_iter().enumerate() {
    3056            0 :                 info!(
    3057            0 :                     "running enhanced gc bottom-most compaction, sub-compaction {}/{}",
    3058            0 :                     idx + 1,
    3059              :                     jobs_len
    3060              :                 );
    3061            0 :                 self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
    3062            0 :                     .await?;
    3063              :             }
    3064            0 :             if jobs_len == 0 {
    3065            0 :                 info!("no jobs to run, skipping gc bottom-most compaction");
    3066            0 :             }
    3067            0 :             return Ok(CompactionOutcome::Done);
    3068          336 :         }
    3069          336 :         self.compact_with_gc_inner(cancel, job, ctx, yield_for_l0)
    3070          336 :             .await
    3071          336 :     }
    3072              : 
    3073          336 :     async fn compact_with_gc_inner(
    3074          336 :         self: &Arc<Self>,
    3075          336 :         cancel: &CancellationToken,
    3076          336 :         job: GcCompactJob,
    3077          336 :         ctx: &RequestContext,
    3078          336 :         yield_for_l0: bool,
    3079          336 :     ) -> Result<CompactionOutcome, CompactionError> {
    3080          336 :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    3081          336 :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    3082          336 :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    3083          336 : 
    3084          336 :         let timer = Instant::now();
    3085          336 :         let begin_timer = timer;
    3086          336 : 
    3087          336 :         let gc_lock = async {
    3088          336 :             tokio::select! {
    3089          336 :                 guard = self.gc_lock.lock() => Ok(guard),
    3090          336 :                 _ = cancel.cancelled() => Err(CompactionError::ShuttingDown),
    3091              :             }
    3092          336 :         };
    3093              : 
    3094          336 :         let time_acquire_lock = timer.elapsed();
    3095          336 :         let timer = Instant::now();
    3096              : 
    3097          336 :         let gc_lock = crate::timed(
    3098          336 :             gc_lock,
    3099          336 :             "acquires gc lock",
    3100          336 :             std::time::Duration::from_secs(5),
    3101          336 :         )
    3102          336 :         .await?;
    3103              : 
    3104          336 :         let dry_run = job.dry_run;
    3105          336 :         let compact_key_range = job.compact_key_range;
    3106          336 :         let compact_lsn_range = job.compact_lsn_range;
    3107              : 
    3108          336 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    3109              : 
    3110          336 :         info!(
    3111            0 :             "running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}",
    3112              :             compact_key_range.start,
    3113              :             compact_key_range.end,
    3114              :             compact_lsn_range.start,
    3115              :             compact_lsn_range.end
    3116              :         );
    3117              : 
    3118          336 :         scopeguard::defer! {
    3119          336 :             info!("done enhanced gc bottom-most compaction");
    3120          336 :         };
    3121          336 : 
    3122          336 :         let mut stat = CompactionStatistics::default();
    3123              : 
    3124              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    3125              :         // The layer selection has the following properties:
    3126              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    3127              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    3128          324 :         let job_desc = {
    3129          336 :             let guard = self.layers.read().await;
    3130          336 :             let layers = guard.layer_map()?;
    3131          336 :             let gc_info = self.gc_info.read().unwrap();
    3132          336 :             let mut retain_lsns_below_horizon = Vec::new();
    3133          336 :             let gc_cutoff = {
    3134              :                 // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
    3135              :                 // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
    3136              :                 // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
    3137              :                 // to get the truth data.
    3138          336 :                 let real_gc_cutoff = self.get_gc_compaction_watermark();
    3139              :                 // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
    3140              :                 // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
    3141              :                 // the real cutoff.
    3142          336 :                 let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
    3143          300 :                     if real_gc_cutoff == Lsn::INVALID {
    3144              :                         // If the gc_cutoff is not generated yet, we should not compact anything.
    3145            0 :                         tracing::warn!(
    3146            0 :                             "no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction"
    3147              :                         );
    3148            0 :                         return Ok(CompactionOutcome::Skipped);
    3149          300 :                     }
    3150          300 :                     real_gc_cutoff
    3151              :                 } else {
    3152           36 :                     compact_lsn_range.end
    3153              :                 };
    3154          336 :                 if gc_cutoff > real_gc_cutoff {
    3155           24 :                     warn!(
    3156            0 :                         "provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff",
    3157              :                         gc_cutoff, real_gc_cutoff
    3158              :                     );
    3159           24 :                     gc_cutoff = real_gc_cutoff;
    3160          312 :                 }
    3161          336 :                 gc_cutoff
    3162              :             };
    3163          420 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    3164          420 :                 if lsn < &gc_cutoff {
    3165          420 :                     retain_lsns_below_horizon.push(*lsn);
    3166          420 :                 }
    3167              :             }
    3168          336 :             for lsn in gc_info.leases.keys() {
    3169            0 :                 if lsn < &gc_cutoff {
    3170            0 :                     retain_lsns_below_horizon.push(*lsn);
    3171            0 :                 }
    3172              :             }
    3173          336 :             let mut selected_layers: Vec<Layer> = Vec::new();
    3174          336 :             drop(gc_info);
    3175              :             // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    3176          336 :             let Some(max_layer_lsn) = layers
    3177          336 :                 .iter_historic_layers()
    3178         1500 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    3179         1284 :                 .map(|desc| desc.get_lsn_range().end)
    3180          336 :                 .max()
    3181              :             else {
    3182            0 :                 info!(
    3183            0 :                     "no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}",
    3184              :                     gc_cutoff
    3185              :                 );
    3186            0 :                 return Ok(CompactionOutcome::Done);
    3187              :             };
    3188              :             // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
    3189              :             // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
    3190              :             // it is a branch.
    3191          336 :             let Some(min_layer_lsn) = layers
    3192          336 :                 .iter_historic_layers()
    3193         1500 :                 .filter(|desc| {
    3194         1500 :                     if compact_lsn_range.start == Lsn::INVALID {
    3195         1224 :                         true // select all layers below if start == Lsn(0)
    3196              :                     } else {
    3197          276 :                         desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
    3198              :                     }
    3199         1500 :                 })
    3200         1392 :                 .map(|desc| desc.get_lsn_range().start)
    3201          336 :                 .min()
    3202              :             else {
    3203            0 :                 info!(
    3204            0 :                     "no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}",
    3205              :                     compact_lsn_range.end
    3206              :                 );
    3207            0 :                 return Ok(CompactionOutcome::Done);
    3208              :             };
    3209              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    3210              :             // layers to compact.
    3211          336 :             let mut rewrite_layers = Vec::new();
    3212         1500 :             for desc in layers.iter_historic_layers() {
    3213         1500 :                 if desc.get_lsn_range().end <= max_layer_lsn
    3214         1284 :                     && desc.get_lsn_range().start >= min_layer_lsn
    3215         1176 :                     && overlaps_with(&desc.get_key_range(), &compact_key_range)
    3216              :                 {
    3217              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    3218              :                     // even if it might contain extra keys
    3219          948 :                     selected_layers.push(guard.get_from_desc(&desc));
    3220          948 :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    3221          948 :                     // to overlap image layers)
    3222          948 :                     if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
    3223           12 :                     {
    3224           12 :                         rewrite_layers.push(desc);
    3225          936 :                     }
    3226          552 :                 }
    3227              :             }
    3228          336 :             if selected_layers.is_empty() {
    3229           12 :                 info!(
    3230            0 :                     "no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}",
    3231              :                     gc_cutoff, compact_key_range.start, compact_key_range.end
    3232              :                 );
    3233           12 :                 return Ok(CompactionOutcome::Done);
    3234          324 :             }
    3235          324 :             retain_lsns_below_horizon.sort();
    3236          324 :             GcCompactionJobDescription {
    3237          324 :                 selected_layers,
    3238          324 :                 gc_cutoff,
    3239          324 :                 retain_lsns_below_horizon,
    3240          324 :                 min_layer_lsn,
    3241          324 :                 max_layer_lsn,
    3242          324 :                 compaction_key_range: compact_key_range,
    3243          324 :                 rewrite_layers,
    3244          324 :             }
    3245              :         };
    3246          324 :         let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
    3247              :             // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
    3248              :             // We use job_desc.min_layer_lsn as if it's the lowest branch point.
    3249           48 :             (true, job_desc.min_layer_lsn)
    3250          276 :         } else if self.ancestor_timeline.is_some() {
    3251              :             // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
    3252              :             // LSN ranges all the way to the ancestor timeline.
    3253           12 :             (true, self.ancestor_lsn)
    3254              :         } else {
    3255          264 :             let res = job_desc
    3256          264 :                 .retain_lsns_below_horizon
    3257          264 :                 .first()
    3258          264 :                 .copied()
    3259          264 :                 .unwrap_or(job_desc.gc_cutoff);
    3260          264 :             if debug_mode {
    3261          264 :                 assert_eq!(
    3262          264 :                     res,
    3263          264 :                     job_desc
    3264          264 :                         .retain_lsns_below_horizon
    3265          264 :                         .iter()
    3266          264 :                         .min()
    3267          264 :                         .copied()
    3268          264 :                         .unwrap_or(job_desc.gc_cutoff)
    3269          264 :                 );
    3270            0 :             }
    3271          264 :             (false, res)
    3272              :         };
    3273              : 
    3274          324 :         let verification = self.get_gc_compaction_settings().gc_compaction_verification;
    3275          324 : 
    3276          324 :         info!(
    3277            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
    3278            0 :             job_desc.selected_layers.len(),
    3279            0 :             job_desc.rewrite_layers.len(),
    3280              :             job_desc.max_layer_lsn,
    3281              :             job_desc.min_layer_lsn,
    3282              :             job_desc.gc_cutoff,
    3283              :             lowest_retain_lsn,
    3284              :             job_desc.compaction_key_range.start,
    3285              :             job_desc.compaction_key_range.end,
    3286              :             has_data_below,
    3287              :         );
    3288              : 
    3289          324 :         let time_analyze = timer.elapsed();
    3290          324 :         let timer = Instant::now();
    3291              : 
    3292         1272 :         for layer in &job_desc.selected_layers {
    3293          948 :             debug!("read layer: {}", layer.layer_desc().key());
    3294              :         }
    3295          336 :         for layer in &job_desc.rewrite_layers {
    3296           12 :             debug!("rewrite layer: {}", layer.key());
    3297              :         }
    3298              : 
    3299          324 :         self.check_compaction_space(&job_desc.selected_layers)
    3300          324 :             .await?;
    3301              : 
    3302          324 :         self.check_memory_usage(&job_desc.selected_layers).await?;
    3303          324 :         if job_desc.selected_layers.len() > 100
    3304            0 :             && job_desc.rewrite_layers.len() as f64 >= job_desc.selected_layers.len() as f64 * 0.7
    3305              :         {
    3306            0 :             return Err(CompactionError::Other(anyhow!(
    3307            0 :                 "too many layers to rewrite: {} / {}, giving up compaction",
    3308            0 :                 job_desc.rewrite_layers.len(),
    3309            0 :                 job_desc.selected_layers.len()
    3310            0 :             )));
    3311          324 :         }
    3312              : 
    3313              :         // Generate statistics for the compaction
    3314         1272 :         for layer in &job_desc.selected_layers {
    3315          948 :             let desc = layer.layer_desc();
    3316          948 :             if desc.is_delta() {
    3317          528 :                 stat.visit_delta_layer(desc.file_size());
    3318          528 :             } else {
    3319          420 :                 stat.visit_image_layer(desc.file_size());
    3320          420 :             }
    3321              :         }
    3322              : 
    3323              :         // Step 1: construct a k-merge iterator over all layers.
    3324              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    3325          324 :         let layer_names = job_desc
    3326          324 :             .selected_layers
    3327          324 :             .iter()
    3328          948 :             .map(|layer| layer.layer_desc().layer_name())
    3329          324 :             .collect_vec();
    3330          324 :         if let Some(err) = check_valid_layermap(&layer_names) {
    3331            0 :             return Err(CompactionError::Other(anyhow!(
    3332            0 :                 "gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss",
    3333            0 :                 err
    3334            0 :             )));
    3335          324 :         }
    3336          324 :         // The maximum LSN we are processing in this compaction loop
    3337          324 :         let end_lsn = job_desc
    3338          324 :             .selected_layers
    3339          324 :             .iter()
    3340          948 :             .map(|l| l.layer_desc().lsn_range.end)
    3341          324 :             .max()
    3342          324 :             .unwrap();
    3343          324 :         let mut delta_layers = Vec::new();
    3344          324 :         let mut image_layers = Vec::new();
    3345          324 :         let mut downloaded_layers = Vec::new();
    3346          324 :         let mut total_downloaded_size = 0;
    3347          324 :         let mut total_layer_size = 0;
    3348         1272 :         for layer in &job_desc.selected_layers {
    3349          948 :             if layer
    3350          948 :                 .needs_download()
    3351          948 :                 .await
    3352          948 :                 .context("failed to check if layer needs download")
    3353          948 :                 .map_err(CompactionError::Other)?
    3354          948 :                 .is_some()
    3355            0 :             {
    3356            0 :                 total_downloaded_size += layer.layer_desc().file_size;
    3357          948 :             }
    3358          948 :             total_layer_size += layer.layer_desc().file_size;
    3359          948 :             if cancel.is_cancelled() {
    3360            0 :                 return Err(CompactionError::ShuttingDown);
    3361          948 :             }
    3362          948 :             let should_yield = yield_for_l0
    3363            0 :                 && self
    3364            0 :                     .l0_compaction_trigger
    3365            0 :                     .notified()
    3366            0 :                     .now_or_never()
    3367            0 :                     .is_some();
    3368          948 :             if should_yield {
    3369            0 :                 tracing::info!("preempt gc-compaction when downloading layers: too many L0 layers");
    3370            0 :                 return Ok(CompactionOutcome::YieldForL0);
    3371          948 :             }
    3372          948 :             let resident_layer = layer
    3373          948 :                 .download_and_keep_resident(ctx)
    3374          948 :                 .await
    3375          948 :                 .context("failed to download and keep resident layer")
    3376          948 :                 .map_err(CompactionError::Other)?;
    3377          948 :             downloaded_layers.push(resident_layer);
    3378              :         }
    3379          324 :         info!(
    3380            0 :             "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
    3381            0 :             total_downloaded_size,
    3382            0 :             total_layer_size,
    3383            0 :             total_downloaded_size as f64 / total_layer_size as f64
    3384              :         );
    3385         1272 :         for resident_layer in &downloaded_layers {
    3386          948 :             if resident_layer.layer_desc().is_delta() {
    3387          528 :                 let layer = resident_layer
    3388          528 :                     .get_as_delta(ctx)
    3389          528 :                     .await
    3390          528 :                     .context("failed to get delta layer")
    3391          528 :                     .map_err(CompactionError::Other)?;
    3392          528 :                 delta_layers.push(layer);
    3393              :             } else {
    3394          420 :                 let layer = resident_layer
    3395          420 :                     .get_as_image(ctx)
    3396          420 :                     .await
    3397          420 :                     .context("failed to get image layer")
    3398          420 :                     .map_err(CompactionError::Other)?;
    3399          420 :                 image_layers.push(layer);
    3400              :             }
    3401              :         }
    3402          324 :         let (dense_ks, sparse_ks) = self
    3403          324 :             .collect_gc_compaction_keyspace()
    3404          324 :             .await
    3405          324 :             .context("failed to collect gc compaction keyspace")
    3406          324 :             .map_err(CompactionError::Other)?;
    3407          324 :         let mut merge_iter = FilterIterator::create(
    3408          324 :             MergeIterator::create_with_options(
    3409          324 :                 &delta_layers,
    3410          324 :                 &image_layers,
    3411          324 :                 ctx,
    3412          324 :                 128 * 8192, /* 1MB buffer for each of the inner iterators */
    3413          324 :                 128,
    3414          324 :             ),
    3415          324 :             dense_ks,
    3416          324 :             sparse_ks,
    3417          324 :         )
    3418          324 :         .context("failed to create filter iterator")
    3419          324 :         .map_err(CompactionError::Other)?;
    3420              : 
    3421          324 :         let time_download_layer = timer.elapsed();
    3422          324 :         let mut timer = Instant::now();
    3423          324 : 
    3424          324 :         // Step 2: Produce images+deltas.
    3425          324 :         let mut accumulated_values = Vec::new();
    3426          324 :         let mut last_key: Option<Key> = None;
    3427              : 
    3428              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    3429              :         // when some condition meet.
    3430          324 :         let mut image_layer_writer = if !has_data_below {
    3431              :             Some(
    3432          264 :                 SplitImageLayerWriter::new(
    3433          264 :                     self.conf,
    3434          264 :                     self.timeline_id,
    3435          264 :                     self.tenant_shard_id,
    3436          264 :                     job_desc.compaction_key_range.start,
    3437          264 :                     lowest_retain_lsn,
    3438          264 :                     self.get_compaction_target_size(),
    3439          264 :                     &self.gate,
    3440          264 :                     self.cancel.clone(),
    3441          264 :                     ctx,
    3442          264 :                 )
    3443          264 :                 .await
    3444          264 :                 .context("failed to create image layer writer")
    3445          264 :                 .map_err(CompactionError::Other)?,
    3446              :             )
    3447              :         } else {
    3448           60 :             None
    3449              :         };
    3450              : 
    3451          324 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    3452          324 :             self.conf,
    3453          324 :             self.timeline_id,
    3454          324 :             self.tenant_shard_id,
    3455          324 :             lowest_retain_lsn..end_lsn,
    3456          324 :             self.get_compaction_target_size(),
    3457          324 :             &self.gate,
    3458          324 :             self.cancel.clone(),
    3459          324 :         )
    3460          324 :         .await
    3461          324 :         .context("failed to create delta layer writer")
    3462          324 :         .map_err(CompactionError::Other)?;
    3463              : 
    3464              :         #[derive(Default)]
    3465              :         struct RewritingLayers {
    3466              :             before: Option<DeltaLayerWriter>,
    3467              :             after: Option<DeltaLayerWriter>,
    3468              :         }
    3469          324 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    3470              : 
    3471              :         /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
    3472              :         /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
    3473              :         /// In those cases, we need to pull up data from below the LSN range we're compaction.
    3474              :         ///
    3475              :         /// This function unifies the cases so that later code doesn't have to think about it.
    3476              :         ///
    3477              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    3478              :         /// is needed for reconstruction. This should be fixed in the future.
    3479              :         ///
    3480              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    3481              :         /// images.
    3482         3840 :         async fn get_ancestor_image(
    3483         3840 :             this_tline: &Arc<Timeline>,
    3484         3840 :             key: Key,
    3485         3840 :             ctx: &RequestContext,
    3486         3840 :             has_data_below: bool,
    3487         3840 :             history_lsn_point: Lsn,
    3488         3840 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    3489         3840 :             if !has_data_below {
    3490         3612 :                 return Ok(None);
    3491          228 :             };
    3492              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    3493              :             // as much existing code as possible.
    3494          228 :             let img = this_tline.get(key, history_lsn_point, ctx).await?;
    3495          228 :             Ok(Some((key, history_lsn_point, img)))
    3496         3840 :         }
    3497              : 
    3498              :         // Actually, we can decide not to write to the image layer at all at this point because
    3499              :         // the key and LSN range are determined. However, to keep things simple here, we still
    3500              :         // create this writer, and discard the writer in the end.
    3501          324 :         let mut time_to_first_kv_pair = None;
    3502              : 
    3503         5952 :         while let Some(((key, lsn, val), desc)) = merge_iter
    3504         5952 :             .next_with_trace()
    3505         5952 :             .await
    3506         5952 :             .context("failed to get next key-value pair")
    3507         5952 :             .map_err(CompactionError::Other)?
    3508              :         {
    3509         5640 :             if time_to_first_kv_pair.is_none() {
    3510          324 :                 time_to_first_kv_pair = Some(timer.elapsed());
    3511          324 :                 timer = Instant::now();
    3512         5316 :             }
    3513              : 
    3514         5640 :             if cancel.is_cancelled() {
    3515            0 :                 return Err(CompactionError::ShuttingDown);
    3516         5640 :             }
    3517              : 
    3518         5640 :             let should_yield = yield_for_l0
    3519            0 :                 && self
    3520            0 :                     .l0_compaction_trigger
    3521            0 :                     .notified()
    3522            0 :                     .now_or_never()
    3523            0 :                     .is_some();
    3524         5640 :             if should_yield {
    3525            0 :                 tracing::info!("preempt gc-compaction in the main loop: too many L0 layers");
    3526            0 :                 return Ok(CompactionOutcome::YieldForL0);
    3527         5640 :             }
    3528         5640 :             if self.shard_identity.is_key_disposable(&key) {
    3529              :                 // If this shard does not need to store this key, simply skip it.
    3530              :                 //
    3531              :                 // This is not handled in the filter iterator because shard is determined by hash.
    3532              :                 // Therefore, it does not give us any performance benefit to do things like skip
    3533              :                 // a whole layer file as handling key spaces (ranges).
    3534            0 :                 if cfg!(debug_assertions) {
    3535            0 :                     let shard = self.shard_identity.shard_index();
    3536            0 :                     let owner = self.shard_identity.get_shard_number(&key);
    3537            0 :                     panic!("key {key} does not belong on shard {shard}, owned by {owner}");
    3538            0 :                 }
    3539            0 :                 continue;
    3540         5640 :             }
    3541         5640 :             if !job_desc.compaction_key_range.contains(&key) {
    3542          384 :                 if !desc.is_delta {
    3543          360 :                     continue;
    3544           24 :                 }
    3545           24 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    3546           24 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    3547            0 :                     if rewriter.before.is_none() {
    3548            0 :                         rewriter.before = Some(
    3549            0 :                             DeltaLayerWriter::new(
    3550            0 :                                 self.conf,
    3551            0 :                                 self.timeline_id,
    3552            0 :                                 self.tenant_shard_id,
    3553            0 :                                 desc.key_range.start,
    3554            0 :                                 desc.lsn_range.clone(),
    3555            0 :                                 &self.gate,
    3556            0 :                                 self.cancel.clone(),
    3557            0 :                                 ctx,
    3558            0 :                             )
    3559            0 :                             .await
    3560            0 :                             .context("failed to create delta layer writer")
    3561            0 :                             .map_err(CompactionError::Other)?,
    3562              :                         );
    3563            0 :                     }
    3564            0 :                     rewriter.before.as_mut().unwrap()
    3565           24 :                 } else if key >= job_desc.compaction_key_range.end {
    3566           24 :                     if rewriter.after.is_none() {
    3567           12 :                         rewriter.after = Some(
    3568           12 :                             DeltaLayerWriter::new(
    3569           12 :                                 self.conf,
    3570           12 :                                 self.timeline_id,
    3571           12 :                                 self.tenant_shard_id,
    3572           12 :                                 job_desc.compaction_key_range.end,
    3573           12 :                                 desc.lsn_range.clone(),
    3574           12 :                                 &self.gate,
    3575           12 :                                 self.cancel.clone(),
    3576           12 :                                 ctx,
    3577           12 :                             )
    3578           12 :                             .await
    3579           12 :                             .context("failed to create delta layer writer")
    3580           12 :                             .map_err(CompactionError::Other)?,
    3581              :                         );
    3582           12 :                     }
    3583           24 :                     rewriter.after.as_mut().unwrap()
    3584              :                 } else {
    3585            0 :                     unreachable!()
    3586              :                 };
    3587           24 :                 rewriter
    3588           24 :                     .put_value(key, lsn, val, ctx)
    3589           24 :                     .await
    3590           24 :                     .context("failed to put value")
    3591           24 :                     .map_err(CompactionError::Other)?;
    3592           24 :                 continue;
    3593         5256 :             }
    3594         5256 :             match val {
    3595         3780 :                 Value::Image(_) => stat.visit_image_key(&val),
    3596         1476 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    3597              :             }
    3598         5256 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    3599         1728 :                 if last_key.is_none() {
    3600          324 :                     last_key = Some(key);
    3601         1404 :                 }
    3602         1728 :                 accumulated_values.push((key, lsn, val));
    3603              :             } else {
    3604         3528 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    3605         3528 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    3606         3528 :                 let retention = self
    3607         3528 :                     .generate_key_retention(
    3608         3528 :                         *last_key,
    3609         3528 :                         &accumulated_values,
    3610         3528 :                         job_desc.gc_cutoff,
    3611         3528 :                         &job_desc.retain_lsns_below_horizon,
    3612         3528 :                         COMPACTION_DELTA_THRESHOLD,
    3613         3528 :                         get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
    3614         3528 :                             .await
    3615         3528 :                             .context("failed to get ancestor image")
    3616         3528 :                             .map_err(CompactionError::Other)?,
    3617         3528 :                         verification,
    3618         3528 :                     )
    3619         3528 :                     .await
    3620         3528 :                     .context("failed to generate key retention")
    3621         3528 :                     .map_err(CompactionError::Other)?;
    3622         3516 :                 retention
    3623         3516 :                     .pipe_to(
    3624         3516 :                         *last_key,
    3625         3516 :                         &mut delta_layer_writer,
    3626         3516 :                         image_layer_writer.as_mut(),
    3627         3516 :                         &mut stat,
    3628         3516 :                         ctx,
    3629         3516 :                     )
    3630         3516 :                     .await
    3631         3516 :                     .context("failed to pipe to delta layer writer")
    3632         3516 :                     .map_err(CompactionError::Other)?;
    3633         3516 :                 accumulated_values.clear();
    3634         3516 :                 *last_key = key;
    3635         3516 :                 accumulated_values.push((key, lsn, val));
    3636              :             }
    3637              :         }
    3638              : 
    3639              :         // TODO: move the below part to the loop body
    3640          312 :         let Some(last_key) = last_key else {
    3641            0 :             return Err(CompactionError::Other(anyhow!(
    3642            0 :                 "no keys produced during compaction"
    3643            0 :             )));
    3644              :         };
    3645          312 :         stat.on_unique_key_visited();
    3646              : 
    3647          312 :         let retention = self
    3648          312 :             .generate_key_retention(
    3649          312 :                 last_key,
    3650          312 :                 &accumulated_values,
    3651          312 :                 job_desc.gc_cutoff,
    3652          312 :                 &job_desc.retain_lsns_below_horizon,
    3653          312 :                 COMPACTION_DELTA_THRESHOLD,
    3654          312 :                 get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn)
    3655          312 :                     .await
    3656          312 :                     .context("failed to get ancestor image")
    3657          312 :                     .map_err(CompactionError::Other)?,
    3658          312 :                 verification,
    3659          312 :             )
    3660          312 :             .await
    3661          312 :             .context("failed to generate key retention")
    3662          312 :             .map_err(CompactionError::Other)?;
    3663          312 :         retention
    3664          312 :             .pipe_to(
    3665          312 :                 last_key,
    3666          312 :                 &mut delta_layer_writer,
    3667          312 :                 image_layer_writer.as_mut(),
    3668          312 :                 &mut stat,
    3669          312 :                 ctx,
    3670          312 :             )
    3671          312 :             .await
    3672          312 :             .context("failed to pipe to delta layer writer")
    3673          312 :             .map_err(CompactionError::Other)?;
    3674              :         // end: move the above part to the loop body
    3675              : 
    3676          312 :         let time_main_loop = timer.elapsed();
    3677          312 :         let timer = Instant::now();
    3678          312 : 
    3679          312 :         let mut rewrote_delta_layers = Vec::new();
    3680          324 :         for (key, writers) in delta_layer_rewriters {
    3681           12 :             if let Some(delta_writer_before) = writers.before {
    3682            0 :                 let (desc, path) = delta_writer_before
    3683            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    3684            0 :                     .await
    3685            0 :                     .context("failed to finish delta layer writer")
    3686            0 :                     .map_err(CompactionError::Other)?;
    3687            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3688            0 :                     .context("failed to finish creating delta layer")
    3689            0 :                     .map_err(CompactionError::Other)?;
    3690            0 :                 rewrote_delta_layers.push(layer);
    3691           12 :             }
    3692           12 :             if let Some(delta_writer_after) = writers.after {
    3693           12 :                 let (desc, path) = delta_writer_after
    3694           12 :                     .finish(key.key_range.end, ctx)
    3695           12 :                     .await
    3696           12 :                     .context("failed to finish delta layer writer")
    3697           12 :                     .map_err(CompactionError::Other)?;
    3698           12 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)
    3699           12 :                     .context("failed to finish creating delta layer")
    3700           12 :                     .map_err(CompactionError::Other)?;
    3701           12 :                 rewrote_delta_layers.push(layer);
    3702            0 :             }
    3703              :         }
    3704              : 
    3705          444 :         let discard = |key: &PersistentLayerKey| {
    3706          444 :             let key = key.clone();
    3707          444 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    3708          444 :         };
    3709              : 
    3710          312 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    3711          252 :             if !dry_run {
    3712          228 :                 let end_key = job_desc.compaction_key_range.end;
    3713          228 :                 writer
    3714          228 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    3715          228 :                     .await
    3716          228 :                     .context("failed to finish image layer writer")
    3717          228 :                     .map_err(CompactionError::Other)?
    3718              :             } else {
    3719           24 :                 drop(writer);
    3720           24 :                 Vec::new()
    3721              :             }
    3722              :         } else {
    3723           60 :             Vec::new()
    3724              :         };
    3725              : 
    3726          312 :         let produced_delta_layers = if !dry_run {
    3727          288 :             delta_layer_writer
    3728          288 :                 .finish_with_discard_fn(self, ctx, discard)
    3729          288 :                 .await
    3730          288 :                 .context("failed to finish delta layer writer")
    3731          288 :                 .map_err(CompactionError::Other)?
    3732              :         } else {
    3733           24 :             drop(delta_layer_writer);
    3734           24 :             Vec::new()
    3735              :         };
    3736              : 
    3737              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    3738              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    3739          312 :         let mut compact_to = Vec::new();
    3740          312 :         let mut keep_layers = HashSet::new();
    3741          312 :         let produced_delta_layers_len = produced_delta_layers.len();
    3742          312 :         let produced_image_layers_len = produced_image_layers.len();
    3743          312 : 
    3744          312 :         let layer_selection_by_key = job_desc
    3745          312 :             .selected_layers
    3746          312 :             .iter()
    3747          912 :             .map(|l| (l.layer_desc().key(), l.layer_desc().clone()))
    3748          312 :             .collect::<HashMap<_, _>>();
    3749              : 
    3750          528 :         for action in produced_delta_layers {
    3751          216 :             match action {
    3752          132 :                 BatchWriterResult::Produced(layer) => {
    3753          132 :                     if cfg!(debug_assertions) {
    3754          132 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    3755            0 :                     }
    3756          132 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    3757          132 :                     compact_to.push(layer);
    3758              :                 }
    3759           84 :                 BatchWriterResult::Discarded(l) => {
    3760           84 :                     if cfg!(debug_assertions) {
    3761           84 :                         info!("discarded delta layer: {}", l);
    3762            0 :                     }
    3763           84 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3764           84 :                         stat.discard_delta_layer(layer_desc.file_size());
    3765           84 :                     } else {
    3766            0 :                         tracing::warn!(
    3767            0 :                             "discarded delta layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3768              :                             l
    3769              :                         );
    3770            0 :                         stat.discard_delta_layer(0);
    3771              :                     }
    3772           84 :                     keep_layers.insert(l);
    3773              :                 }
    3774              :             }
    3775              :         }
    3776          324 :         for layer in &rewrote_delta_layers {
    3777           12 :             debug!(
    3778            0 :                 "produced rewritten delta layer: {}",
    3779            0 :                 layer.layer_desc().key()
    3780              :             );
    3781              :             // For now, we include rewritten delta layer size in the "produce_delta_layer". We could
    3782              :             // make it a separate statistics in the future.
    3783           12 :             stat.produce_delta_layer(layer.layer_desc().file_size());
    3784              :         }
    3785          312 :         compact_to.extend(rewrote_delta_layers);
    3786          540 :         for action in produced_image_layers {
    3787          228 :             match action {
    3788          180 :                 BatchWriterResult::Produced(layer) => {
    3789          180 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    3790          180 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    3791          180 :                     compact_to.push(layer);
    3792              :                 }
    3793           48 :                 BatchWriterResult::Discarded(l) => {
    3794           48 :                     debug!("discarded image layer: {}", l);
    3795           48 :                     if let Some(layer_desc) = layer_selection_by_key.get(&l) {
    3796           48 :                         stat.discard_image_layer(layer_desc.file_size());
    3797           48 :                     } else {
    3798            0 :                         tracing::warn!(
    3799            0 :                             "discarded image layer not in layer_selection: {}, produced a layer outside of the compaction key range?",
    3800              :                             l
    3801              :                         );
    3802            0 :                         stat.discard_image_layer(0);
    3803              :                     }
    3804           48 :                     keep_layers.insert(l);
    3805              :                 }
    3806              :             }
    3807              :         }
    3808              : 
    3809          312 :         let mut layer_selection = job_desc.selected_layers;
    3810              : 
    3811              :         // Partial compaction might select more data than it processes, e.g., if
    3812              :         // the compaction_key_range only partially overlaps:
    3813              :         //
    3814              :         //         [---compaction_key_range---]
    3815              :         //   [---A----][----B----][----C----][----D----]
    3816              :         //
    3817              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    3818              :         // the compaction key range, so we can always discard them. However, for image
    3819              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    3820              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    3821              :         //
    3822              :         // The created image layers contain whatever is needed from B, C, and from
    3823              :         // `----]` of A, and from  `[---` of D.
    3824              :         //
    3825              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    3826              :         // keep that data.
    3827              :         //
    3828              :         // The solution for now is to keep A and D completely if they are image layers.
    3829              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    3830              :         // is _not_ fully covered by compaction_key_range).
    3831         1224 :         for layer in &layer_selection {
    3832          912 :             if !layer.layer_desc().is_delta() {
    3833          396 :                 if !overlaps_with(
    3834          396 :                     &layer.layer_desc().key_range,
    3835          396 :                     &job_desc.compaction_key_range,
    3836          396 :                 ) {
    3837            0 :                     return Err(CompactionError::Other(anyhow!(
    3838            0 :                         "violated constraint: image layer outside of compaction key range"
    3839            0 :                     )));
    3840          396 :                 }
    3841          396 :                 if !fully_contains(
    3842          396 :                     &job_desc.compaction_key_range,
    3843          396 :                     &layer.layer_desc().key_range,
    3844          396 :                 ) {
    3845           48 :                     keep_layers.insert(layer.layer_desc().key());
    3846          348 :                 }
    3847          516 :             }
    3848              :         }
    3849              : 
    3850          912 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    3851          312 : 
    3852          312 :         let time_final_phase = timer.elapsed();
    3853          312 : 
    3854          312 :         stat.time_final_phase_secs = time_final_phase.as_secs_f64();
    3855          312 :         stat.time_to_first_kv_pair_secs = time_to_first_kv_pair
    3856          312 :             .unwrap_or(Duration::ZERO)
    3857          312 :             .as_secs_f64();
    3858          312 :         stat.time_main_loop_secs = time_main_loop.as_secs_f64();
    3859          312 :         stat.time_acquire_lock_secs = time_acquire_lock.as_secs_f64();
    3860          312 :         stat.time_download_layer_secs = time_download_layer.as_secs_f64();
    3861          312 :         stat.time_analyze_secs = time_analyze.as_secs_f64();
    3862          312 :         stat.time_total_secs = begin_timer.elapsed().as_secs_f64();
    3863          312 :         stat.finalize();
    3864          312 : 
    3865          312 :         info!(
    3866            0 :             "gc-compaction statistics: {}",
    3867            0 :             serde_json::to_string(&stat)
    3868            0 :                 .context("failed to serialize gc-compaction statistics")
    3869            0 :                 .map_err(CompactionError::Other)?
    3870              :         );
    3871              : 
    3872          312 :         if dry_run {
    3873           24 :             return Ok(CompactionOutcome::Done);
    3874          288 :         }
    3875          288 : 
    3876          288 :         info!(
    3877            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    3878            0 :             produced_delta_layers_len,
    3879            0 :             produced_image_layers_len,
    3880            0 :             keep_layers.len()
    3881              :         );
    3882              : 
    3883              :         // Step 3: Place back to the layer map.
    3884              : 
    3885              :         // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
    3886          288 :         let all_layers = {
    3887          288 :             let guard = self.layers.read().await;
    3888          288 :             let layer_map = guard.layer_map()?;
    3889          288 :             layer_map.iter_historic_layers().collect_vec()
    3890          288 :         };
    3891          288 : 
    3892          288 :         let mut final_layers = all_layers
    3893          288 :             .iter()
    3894         1284 :             .map(|layer| layer.layer_name())
    3895          288 :             .collect::<HashSet<_>>();
    3896          912 :         for layer in &layer_selection {
    3897          624 :             final_layers.remove(&layer.layer_desc().layer_name());
    3898          624 :         }
    3899          612 :         for layer in &compact_to {
    3900          324 :             final_layers.insert(layer.layer_desc().layer_name());
    3901          324 :         }
    3902          288 :         let final_layers = final_layers.into_iter().collect_vec();
    3903              : 
    3904              :         // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
    3905              :         // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
    3906              :         // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
    3907          288 :         if let Some(err) = check_valid_layermap(&final_layers) {
    3908            0 :             return Err(CompactionError::Other(anyhow!(
    3909            0 :                 "gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss",
    3910            0 :                 err
    3911            0 :             )));
    3912          288 :         }
    3913              : 
    3914              :         // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
    3915              :         // operate on L1 layers.
    3916              :         {
    3917              :             // Gc-compaction will rewrite the history of a key. This could happen in two ways:
    3918              :             //
    3919              :             // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
    3920              :             // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
    3921              :             // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
    3922              :             // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
    3923              :             // now gets stored in I at the compact LSN.
    3924              :             //
    3925              :             // ---------------                                       ---------------
    3926              :             //   delta1@LSN20                                         image1@LSN20
    3927              :             // ---------------  (read path collects delta@LSN20,  => ---------------  (read path cannot find anything
    3928              :             //   delta1@LSN10    yields)                                               below LSN 20)
    3929              :             // ---------------
    3930              :             //
    3931              :             // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
    3932              :             // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
    3933              :             // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
    3934              :             //
    3935              :             // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
    3936              :             // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
    3937              :             // layer containing 4, yields, and we update the layer map to put the delta layer.
    3938              :             //
    3939              :             // ---------------                                      ---------------
    3940              :             //   delta1@LSN4                                          image1@LSN4
    3941              :             // ---------------  (read path collects delta@LSN4,  => ---------------  (read path collects LSN4 and LSN1,
    3942              :             //  delta1@LSN1-3    yields)                              delta1@LSN1     which is an invalid history)
    3943              :             // ---------------                                      ---------------
    3944              :             //
    3945              :             // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
    3946              :             // and only allow reads to continue after the update is finished.
    3947              : 
    3948          288 :             let update_guard = self.gc_compaction_layer_update_lock.write().await;
    3949              :             // Acquiring the update guard ensures current read operations end and new read operations are blocked.
    3950              :             // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
    3951          288 :             let mut guard = self.layers.write().await;
    3952          288 :             guard
    3953          288 :                 .open_mut()?
    3954          288 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
    3955          288 :             drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
    3956          288 :         };
    3957          288 : 
    3958          288 :         // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
    3959          288 :         // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
    3960          288 :         // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
    3961          288 :         // be batched into `schedule_compaction_update`.
    3962          288 :         let disk_consistent_lsn = self.disk_consistent_lsn.load();
    3963          288 :         self.schedule_uploads(disk_consistent_lsn, None)
    3964          288 :             .context("failed to schedule uploads")
    3965          288 :             .map_err(CompactionError::Other)?;
    3966              :         // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
    3967              :         // of `compact_from`.
    3968          288 :         let compact_from = {
    3969          288 :             let mut compact_from = Vec::new();
    3970          288 :             let mut compact_to_set = HashMap::new();
    3971          612 :             for layer in &compact_to {
    3972          324 :                 compact_to_set.insert(layer.layer_desc().key(), layer);
    3973          324 :             }
    3974          912 :             for layer in &layer_selection {
    3975          624 :                 if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
    3976            0 :                     tracing::info!(
    3977            0 :                         "skipping delete {} because found same layer key at different generation {}",
    3978              :                         layer,
    3979              :                         to
    3980              :                     );
    3981          624 :                 } else {
    3982          624 :                     compact_from.push(layer.clone());
    3983          624 :                 }
    3984              :             }
    3985          288 :             compact_from
    3986          288 :         };
    3987          288 :         self.remote_client
    3988          288 :             .schedule_compaction_update(&compact_from, &compact_to)?;
    3989              : 
    3990          288 :         drop(gc_lock);
    3991          288 : 
    3992          288 :         Ok(CompactionOutcome::Done)
    3993          336 :     }
    3994              : }
    3995              : 
    3996              : struct TimelineAdaptor {
    3997              :     timeline: Arc<Timeline>,
    3998              : 
    3999              :     keyspace: (Lsn, KeySpace),
    4000              : 
    4001              :     new_deltas: Vec<ResidentLayer>,
    4002              :     new_images: Vec<ResidentLayer>,
    4003              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    4004              : }
    4005              : 
    4006              : impl TimelineAdaptor {
    4007            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    4008            0 :         Self {
    4009            0 :             timeline: timeline.clone(),
    4010            0 :             keyspace,
    4011            0 :             new_images: Vec::new(),
    4012            0 :             new_deltas: Vec::new(),
    4013            0 :             layers_to_delete: Vec::new(),
    4014            0 :         }
    4015            0 :     }
    4016              : 
    4017            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    4018            0 :         let layers_to_delete = {
    4019            0 :             let guard = self.timeline.layers.read().await;
    4020            0 :             self.layers_to_delete
    4021            0 :                 .iter()
    4022            0 :                 .map(|x| guard.get_from_desc(x))
    4023            0 :                 .collect::<Vec<Layer>>()
    4024            0 :         };
    4025            0 :         self.timeline
    4026            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    4027            0 :             .await?;
    4028              : 
    4029            0 :         self.timeline
    4030            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    4031              : 
    4032            0 :         self.new_deltas.clear();
    4033            0 :         self.layers_to_delete.clear();
    4034            0 :         Ok(())
    4035            0 :     }
    4036              : }
    4037              : 
    4038              : #[derive(Clone)]
    4039              : struct ResidentDeltaLayer(ResidentLayer);
    4040              : #[derive(Clone)]
    4041              : struct ResidentImageLayer(ResidentLayer);
    4042              : 
    4043              : impl CompactionJobExecutor for TimelineAdaptor {
    4044              :     type Key = pageserver_api::key::Key;
    4045              : 
    4046              :     type Layer = OwnArc<PersistentLayerDesc>;
    4047              :     type DeltaLayer = ResidentDeltaLayer;
    4048              :     type ImageLayer = ResidentImageLayer;
    4049              : 
    4050              :     type RequestContext = crate::context::RequestContext;
    4051              : 
    4052            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    4053            0 :         self.timeline.get_shard_identity()
    4054            0 :     }
    4055              : 
    4056            0 :     async fn get_layers(
    4057            0 :         &mut self,
    4058            0 :         key_range: &Range<Key>,
    4059            0 :         lsn_range: &Range<Lsn>,
    4060            0 :         _ctx: &RequestContext,
    4061            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    4062            0 :         self.flush_updates().await?;
    4063              : 
    4064            0 :         let guard = self.timeline.layers.read().await;
    4065            0 :         let layer_map = guard.layer_map()?;
    4066              : 
    4067            0 :         let result = layer_map
    4068            0 :             .iter_historic_layers()
    4069            0 :             .filter(|l| {
    4070            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    4071            0 :             })
    4072            0 :             .map(OwnArc)
    4073            0 :             .collect();
    4074            0 :         Ok(result)
    4075            0 :     }
    4076              : 
    4077            0 :     async fn get_keyspace(
    4078            0 :         &mut self,
    4079            0 :         key_range: &Range<Key>,
    4080            0 :         lsn: Lsn,
    4081            0 :         _ctx: &RequestContext,
    4082            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    4083            0 :         if lsn == self.keyspace.0 {
    4084            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    4085            0 :                 &self.keyspace.1.ranges,
    4086            0 :                 key_range,
    4087            0 :             ))
    4088              :         } else {
    4089              :             // The current compaction implementation only ever requests the key space
    4090              :             // at the compaction end LSN.
    4091            0 :             anyhow::bail!("keyspace not available for requested lsn");
    4092              :         }
    4093            0 :     }
    4094              : 
    4095            0 :     async fn downcast_delta_layer(
    4096            0 :         &self,
    4097            0 :         layer: &OwnArc<PersistentLayerDesc>,
    4098            0 :         ctx: &RequestContext,
    4099            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    4100            0 :         // this is a lot more complex than a simple downcast...
    4101            0 :         if layer.is_delta() {
    4102            0 :             let l = {
    4103            0 :                 let guard = self.timeline.layers.read().await;
    4104            0 :                 guard.get_from_desc(layer)
    4105              :             };
    4106            0 :             let result = l.download_and_keep_resident(ctx).await?;
    4107              : 
    4108            0 :             Ok(Some(ResidentDeltaLayer(result)))
    4109              :         } else {
    4110            0 :             Ok(None)
    4111              :         }
    4112            0 :     }
    4113              : 
    4114            0 :     async fn create_image(
    4115            0 :         &mut self,
    4116            0 :         lsn: Lsn,
    4117            0 :         key_range: &Range<Key>,
    4118            0 :         ctx: &RequestContext,
    4119            0 :     ) -> anyhow::Result<()> {
    4120            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    4121            0 :     }
    4122              : 
    4123            0 :     async fn create_delta(
    4124            0 :         &mut self,
    4125            0 :         lsn_range: &Range<Lsn>,
    4126            0 :         key_range: &Range<Key>,
    4127            0 :         input_layers: &[ResidentDeltaLayer],
    4128            0 :         ctx: &RequestContext,
    4129            0 :     ) -> anyhow::Result<()> {
    4130            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    4131              : 
    4132            0 :         let mut all_entries = Vec::new();
    4133            0 :         for dl in input_layers.iter() {
    4134            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    4135              :         }
    4136              : 
    4137              :         // The current stdlib sorting implementation is designed in a way where it is
    4138              :         // particularly fast where the slice is made up of sorted sub-ranges.
    4139            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    4140              : 
    4141            0 :         let mut writer = DeltaLayerWriter::new(
    4142            0 :             self.timeline.conf,
    4143            0 :             self.timeline.timeline_id,
    4144            0 :             self.timeline.tenant_shard_id,
    4145            0 :             key_range.start,
    4146            0 :             lsn_range.clone(),
    4147            0 :             &self.timeline.gate,
    4148            0 :             self.timeline.cancel.clone(),
    4149            0 :             ctx,
    4150            0 :         )
    4151            0 :         .await?;
    4152              : 
    4153            0 :         let mut dup_values = 0;
    4154            0 : 
    4155            0 :         // This iterator walks through all key-value pairs from all the layers
    4156            0 :         // we're compacting, in key, LSN order.
    4157            0 :         let mut prev: Option<(Key, Lsn)> = None;
    4158              :         for &DeltaEntry {
    4159            0 :             key, lsn, ref val, ..
    4160            0 :         } in all_entries.iter()
    4161              :         {
    4162            0 :             if prev == Some((key, lsn)) {
    4163              :                 // This is a duplicate. Skip it.
    4164              :                 //
    4165              :                 // It can happen if compaction is interrupted after writing some
    4166              :                 // layers but not all, and we are compacting the range again.
    4167              :                 // The calculations in the algorithm assume that there are no
    4168              :                 // duplicates, so the math on targeted file size is likely off,
    4169              :                 // and we will create smaller files than expected.
    4170            0 :                 dup_values += 1;
    4171            0 :                 continue;
    4172            0 :             }
    4173              : 
    4174            0 :             let value = val.load(ctx).await?;
    4175              : 
    4176            0 :             writer.put_value(key, lsn, value, ctx).await?;
    4177              : 
    4178            0 :             prev = Some((key, lsn));
    4179              :         }
    4180              : 
    4181            0 :         if dup_values > 0 {
    4182            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    4183            0 :         }
    4184              : 
    4185            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    4186            0 :             Err(anyhow::anyhow!(
    4187            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    4188            0 :             ))
    4189            0 :         });
    4190              : 
    4191            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    4192            0 :         let new_delta_layer =
    4193            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    4194              : 
    4195            0 :         self.new_deltas.push(new_delta_layer);
    4196            0 :         Ok(())
    4197            0 :     }
    4198              : 
    4199            0 :     async fn delete_layer(
    4200            0 :         &mut self,
    4201            0 :         layer: &OwnArc<PersistentLayerDesc>,
    4202            0 :         _ctx: &RequestContext,
    4203            0 :     ) -> anyhow::Result<()> {
    4204            0 :         self.layers_to_delete.push(layer.clone().0);
    4205            0 :         Ok(())
    4206            0 :     }
    4207              : }
    4208              : 
    4209              : impl TimelineAdaptor {
    4210            0 :     async fn create_image_impl(
    4211            0 :         &mut self,
    4212            0 :         lsn: Lsn,
    4213            0 :         key_range: &Range<Key>,
    4214            0 :         ctx: &RequestContext,
    4215            0 :     ) -> Result<(), CreateImageLayersError> {
    4216            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    4217              : 
    4218            0 :         let image_layer_writer = ImageLayerWriter::new(
    4219            0 :             self.timeline.conf,
    4220            0 :             self.timeline.timeline_id,
    4221            0 :             self.timeline.tenant_shard_id,
    4222            0 :             key_range,
    4223            0 :             lsn,
    4224            0 :             &self.timeline.gate,
    4225            0 :             self.timeline.cancel.clone(),
    4226            0 :             ctx,
    4227            0 :         )
    4228            0 :         .await?;
    4229              : 
    4230            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    4231            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    4232            0 :                 "failpoint image-layer-writer-fail-before-finish"
    4233            0 :             )))
    4234            0 :         });
    4235              : 
    4236            0 :         let keyspace = KeySpace {
    4237            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    4238              :         };
    4239              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    4240            0 :         let outcome = self
    4241            0 :             .timeline
    4242            0 :             .create_image_layer_for_rel_blocks(
    4243            0 :                 &keyspace,
    4244            0 :                 image_layer_writer,
    4245            0 :                 lsn,
    4246            0 :                 ctx,
    4247            0 :                 key_range.clone(),
    4248            0 :                 IoConcurrency::sequential(),
    4249            0 :             )
    4250            0 :             .await?;
    4251              : 
    4252              :         if let ImageLayerCreationOutcome::Generated {
    4253            0 :             unfinished_image_layer,
    4254            0 :         } = outcome
    4255              :         {
    4256            0 :             let (desc, path) = unfinished_image_layer.finish(ctx).await?;
    4257            0 :             let image_layer =
    4258            0 :                 Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    4259            0 :             self.new_images.push(image_layer);
    4260            0 :         }
    4261              : 
    4262            0 :         timer.stop_and_record();
    4263            0 : 
    4264            0 :         Ok(())
    4265            0 :     }
    4266              : }
    4267              : 
    4268              : impl CompactionRequestContext for crate::context::RequestContext {}
    4269              : 
    4270              : #[derive(Debug, Clone)]
    4271              : pub struct OwnArc<T>(pub Arc<T>);
    4272              : 
    4273              : impl<T> Deref for OwnArc<T> {
    4274              :     type Target = <Arc<T> as Deref>::Target;
    4275            0 :     fn deref(&self) -> &Self::Target {
    4276            0 :         &self.0
    4277            0 :     }
    4278              : }
    4279              : 
    4280              : impl<T> AsRef<T> for OwnArc<T> {
    4281            0 :     fn as_ref(&self) -> &T {
    4282            0 :         self.0.as_ref()
    4283            0 :     }
    4284              : }
    4285              : 
    4286              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    4287            0 :     fn key_range(&self) -> &Range<Key> {
    4288            0 :         &self.key_range
    4289            0 :     }
    4290            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4291            0 :         &self.lsn_range
    4292            0 :     }
    4293            0 :     fn file_size(&self) -> u64 {
    4294            0 :         self.file_size
    4295            0 :     }
    4296            0 :     fn short_id(&self) -> std::string::String {
    4297            0 :         self.as_ref().short_id().to_string()
    4298            0 :     }
    4299            0 :     fn is_delta(&self) -> bool {
    4300            0 :         self.as_ref().is_delta()
    4301            0 :     }
    4302              : }
    4303              : 
    4304              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    4305            0 :     fn key_range(&self) -> &Range<Key> {
    4306            0 :         &self.layer_desc().key_range
    4307            0 :     }
    4308            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4309            0 :         &self.layer_desc().lsn_range
    4310            0 :     }
    4311            0 :     fn file_size(&self) -> u64 {
    4312            0 :         self.layer_desc().file_size
    4313            0 :     }
    4314            0 :     fn short_id(&self) -> std::string::String {
    4315            0 :         self.layer_desc().short_id().to_string()
    4316            0 :     }
    4317            0 :     fn is_delta(&self) -> bool {
    4318            0 :         true
    4319            0 :     }
    4320              : }
    4321              : 
    4322              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    4323            0 :     fn key_range(&self) -> &Range<Key> {
    4324            0 :         &self.0.layer_desc().key_range
    4325            0 :     }
    4326            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4327            0 :         &self.0.layer_desc().lsn_range
    4328            0 :     }
    4329            0 :     fn file_size(&self) -> u64 {
    4330            0 :         self.0.layer_desc().file_size
    4331            0 :     }
    4332            0 :     fn short_id(&self) -> std::string::String {
    4333            0 :         self.0.layer_desc().short_id().to_string()
    4334            0 :     }
    4335            0 :     fn is_delta(&self) -> bool {
    4336            0 :         true
    4337            0 :     }
    4338              : }
    4339              : 
    4340              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    4341              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    4342              : 
    4343            0 :     async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    4344            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    4345            0 :     }
    4346              : }
    4347              : 
    4348              : impl CompactionLayer<Key> for ResidentImageLayer {
    4349            0 :     fn key_range(&self) -> &Range<Key> {
    4350            0 :         &self.0.layer_desc().key_range
    4351            0 :     }
    4352            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    4353            0 :         &self.0.layer_desc().lsn_range
    4354            0 :     }
    4355            0 :     fn file_size(&self) -> u64 {
    4356            0 :         self.0.layer_desc().file_size
    4357            0 :     }
    4358            0 :     fn short_id(&self) -> std::string::String {
    4359            0 :         self.0.layer_desc().short_id().to_string()
    4360            0 :     }
    4361            0 :     fn is_delta(&self) -> bool {
    4362            0 :         false
    4363            0 :     }
    4364              : }
    4365              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta