LCOV - code coverage report
Current view: top level - pageserver/src/tenant/storage_layer - inmemory_layer.rs (source / functions) Coverage Total Hit
Test: 1e20c4f2b28aa592527961bb32170ebbd2c9172f.info Lines: 91.9 % 467 429
Test Date: 2025-07-16 12:29:03 Functions: 86.0 % 43 37

            Line data    Source code
       1              : //! An in-memory layer stores recently received key-value pairs.
       2              : //!
       3              : //! The "in-memory" part of the name is a bit misleading: the actual page versions are
       4              : //! held in an ephemeral file, not in memory. The metadata for each page version, i.e.
       5              : //! its position in the file, is kept in memory, though.
       6              : //!
       7              : use std::cmp::Ordering;
       8              : use std::collections::{BTreeMap, HashMap};
       9              : use std::fmt::Write;
      10              : use std::ops::Range;
      11              : use std::sync::atomic::{AtomicU64, AtomicUsize, Ordering as AtomicOrdering};
      12              : use std::sync::{Arc, OnceLock};
      13              : use std::time::Instant;
      14              : 
      15              : use anyhow::Result;
      16              : use camino::Utf8PathBuf;
      17              : use pageserver_api::key::{CompactKey, Key};
      18              : use pageserver_api::keyspace::KeySpace;
      19              : use pageserver_api::models::InMemoryLayerInfo;
      20              : use pageserver_api::shard::TenantShardId;
      21              : use tokio::sync::RwLock;
      22              : use tokio_util::sync::CancellationToken;
      23              : use tracing::*;
      24              : use utils::id::TimelineId;
      25              : use utils::lsn::Lsn;
      26              : use utils::vec_map::VecMap;
      27              : use wal_decoder::serialized_batch::{SerializedValueBatch, SerializedValueMeta, ValueMeta};
      28              : 
      29              : use super::{DeltaLayerWriter, PersistentLayerDesc, ValuesReconstructState};
      30              : use crate::assert_u64_eq_usize::{U64IsUsize, UsizeIsU64, u64_to_usize};
      31              : use crate::config::PageServerConf;
      32              : use crate::context::{PageContentKind, RequestContext, RequestContextBuilder};
      33              : // avoid binding to Write (conflicts with std::io::Write)
      34              : // while being able to use std::fmt::Write's methods
      35              : use crate::metrics::TIMELINE_EPHEMERAL_BYTES;
      36              : use crate::tenant::ephemeral_file::EphemeralFile;
      37              : use crate::tenant::storage_layer::{OnDiskValue, OnDiskValueIo};
      38              : use crate::tenant::timeline::GetVectoredError;
      39              : use crate::virtual_file::owned_buffers_io::io_buf_ext::IoBufExt;
      40              : use crate::{l0_flush, page_cache};
      41              : 
      42              : pub(crate) mod vectored_dio_read;
      43              : 
      44              : #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
      45              : pub(crate) struct InMemoryLayerFileId(page_cache::FileId);
      46              : 
      47              : pub struct InMemoryLayer {
      48              :     conf: &'static PageServerConf,
      49              :     tenant_shard_id: TenantShardId,
      50              :     timeline_id: TimelineId,
      51              :     file_id: InMemoryLayerFileId,
      52              : 
      53              :     /// This layer contains all the changes from 'start_lsn'. The
      54              :     /// start is inclusive.
      55              :     start_lsn: Lsn,
      56              : 
      57              :     /// Frozen layers have an exclusive end LSN.
      58              :     /// Writes are only allowed when this is `None`.
      59              :     pub(crate) end_lsn: OnceLock<Lsn>,
      60              : 
      61              :     /// Used for traversal path. Cached representation of the in-memory layer after frozen.
      62              :     frozen_local_path_str: OnceLock<Arc<str>>,
      63              : 
      64              :     opened_at: Instant,
      65              : 
      66              :     /// All versions of all pages in the layer are kept here. Indexed
      67              :     /// by block number and LSN. The [`IndexEntry`] is an offset into the
      68              :     /// ephemeral file where the page version is stored.
      69              :     ///
      70              :     /// We use a separate lock for the index to reduce the critical section
      71              :     /// during which reads cannot be planned.
      72              :     ///
      73              :     /// Note that the file backing [`InMemoryLayer::file`] is append-only,
      74              :     /// so it is not necessary to hold a lock on the index while reading or writing from the file.
      75              :     /// In particular:
      76              :     /// 1. It is safe to read and release [`InMemoryLayer::index`] before reading from [`InMemoryLayer::file`].
      77              :     /// 2. It is safe to write to [`InMemoryLayer::file`] before locking and updating [`InMemoryLayer::index`].
      78              :     index: RwLock<BTreeMap<CompactKey, VecMap<Lsn, IndexEntry>>>,
      79              : 
      80              :     /// Wrapper for the actual on-disk file. Uses interior mutability for concurrent reads/writes.
      81              :     file: EphemeralFile,
      82              : 
      83              :     estimated_in_mem_size: AtomicU64,
      84              : }
      85              : 
      86              : impl std::fmt::Debug for InMemoryLayer {
      87            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      88            0 :         f.debug_struct("InMemoryLayer")
      89            0 :             .field("start_lsn", &self.start_lsn)
      90            0 :             .field("end_lsn", &self.end_lsn)
      91            0 :             .finish()
      92            0 :     }
      93              : }
      94              : 
      95              : /// Support the same max blob length as blob_io, because ultimately
      96              : /// all the InMemoryLayer contents end up being written into a delta layer,
      97              : /// using the [`crate::tenant::blob_io`].
      98              : const MAX_SUPPORTED_BLOB_LEN: usize = crate::tenant::blob_io::MAX_SUPPORTED_BLOB_LEN;
      99              : const MAX_SUPPORTED_BLOB_LEN_BITS: usize = {
     100              :     let trailing_ones = MAX_SUPPORTED_BLOB_LEN.trailing_ones() as usize;
     101              :     let leading_zeroes = MAX_SUPPORTED_BLOB_LEN.leading_zeros() as usize;
     102              :     assert!(trailing_ones + leading_zeroes == std::mem::size_of::<usize>() * 8);
     103              :     trailing_ones
     104              : };
     105              : 
     106              : /// See [`InMemoryLayer::index`].
     107              : ///
     108              : /// For memory efficiency, the data is packed into a u64.
     109              : ///
     110              : /// Layout:
     111              : /// - 1 bit: `will_init`
     112              : /// - [`MAX_SUPPORTED_BLOB_LEN_BITS`][]: `len`
     113              : /// - [`MAX_SUPPORTED_POS_BITS`](IndexEntry::MAX_SUPPORTED_POS_BITS): `pos`
     114              : #[derive(Debug, Clone, Copy, PartialEq, Eq)]
     115              : pub struct IndexEntry(u64);
     116              : 
     117              : impl IndexEntry {
     118              :     /// See [`Self::MAX_SUPPORTED_POS`].
     119              :     const MAX_SUPPORTED_POS_BITS: usize = {
     120              :         let remainder = 64 - 1 - MAX_SUPPORTED_BLOB_LEN_BITS;
     121              :         if remainder < 32 {
     122              :             panic!("pos can be u32 as per type system, support that");
     123              :         }
     124              :         remainder
     125              :     };
     126              :     /// The maximum supported blob offset that can be represented by [`Self`].
     127              :     /// See also [`Self::validate_checkpoint_distance`].
     128              :     const MAX_SUPPORTED_POS: usize = (1 << Self::MAX_SUPPORTED_POS_BITS) - 1;
     129              : 
     130              :     // Layout
     131              :     const WILL_INIT_RANGE: Range<usize> = 0..1;
     132              :     const LEN_RANGE: Range<usize> =
     133              :         Self::WILL_INIT_RANGE.end..Self::WILL_INIT_RANGE.end + MAX_SUPPORTED_BLOB_LEN_BITS;
     134              :     const POS_RANGE: Range<usize> =
     135              :         Self::LEN_RANGE.end..Self::LEN_RANGE.end + Self::MAX_SUPPORTED_POS_BITS;
     136              :     const _ASSERT: () = {
     137              :         if Self::POS_RANGE.end != 64 {
     138              :             panic!("we don't want undefined bits for our own sanity")
     139              :         }
     140              :     };
     141              : 
     142              :     /// Fails if and only if the offset or length encoded in `arg` is too large to be represented by [`Self`].
     143              :     ///
     144              :     /// The only reason why that can happen in the system is if the [`InMemoryLayer`] grows too long.
     145              :     /// The [`InMemoryLayer`] size is determined by the checkpoint distance, enforced by [`crate::tenant::Timeline::should_roll`].
     146              :     ///
     147              :     /// Thus, to avoid failure of this function, whenever we start up and/or change checkpoint distance,
     148              :     /// call [`Self::validate_checkpoint_distance`] with the new checkpoint distance value.
     149              :     ///
     150              :     /// TODO: this check should happen ideally at config parsing time (and in the request handler when a change to checkpoint distance is requested)
     151              :     /// When cleaning this up, also look into the s3 max file size check that is performed in delta layer writer.
     152              :     #[inline(always)]
     153      2565246 :     fn new(arg: IndexEntryNewArgs) -> anyhow::Result<Self> {
     154              :         let IndexEntryNewArgs {
     155      2565246 :             base_offset,
     156      2565246 :             batch_offset,
     157      2565246 :             len,
     158      2565246 :             will_init,
     159      2565246 :         } = arg;
     160              : 
     161      2565246 :         let pos = base_offset
     162      2565246 :             .checked_add(batch_offset)
     163      2565246 :             .ok_or_else(|| anyhow::anyhow!("base_offset + batch_offset overflows u64: base_offset={base_offset} batch_offset={batch_offset}"))?;
     164              : 
     165      2565246 :         if pos.into_usize() > Self::MAX_SUPPORTED_POS {
     166            4 :             anyhow::bail!(
     167            4 :                 "base_offset+batch_offset exceeds the maximum supported value: base_offset={base_offset} batch_offset={batch_offset} (+)={pos} max={max}",
     168              :                 max = Self::MAX_SUPPORTED_POS
     169              :             );
     170      2565242 :         }
     171              : 
     172      2565242 :         if len > MAX_SUPPORTED_BLOB_LEN {
     173            1 :             anyhow::bail!(
     174            1 :                 "len exceeds the maximum supported length: len={len} max={MAX_SUPPORTED_BLOB_LEN}",
     175              :             );
     176      2565241 :         }
     177              : 
     178      2565241 :         let mut data: u64 = 0;
     179              :         use bit_field::BitField;
     180      2565241 :         data.set_bits(Self::WILL_INIT_RANGE, if will_init { 1 } else { 0 });
     181      2565241 :         data.set_bits(Self::LEN_RANGE, len.into_u64());
     182      2565241 :         data.set_bits(Self::POS_RANGE, pos);
     183              : 
     184      2565241 :         Ok(Self(data))
     185      2565246 :     }
     186              : 
     187              :     #[inline(always)]
     188      3149664 :     fn unpack(&self) -> IndexEntryUnpacked {
     189              :         use bit_field::BitField;
     190      3149664 :         IndexEntryUnpacked {
     191      3149664 :             will_init: self.0.get_bits(Self::WILL_INIT_RANGE) != 0,
     192      3149664 :             len: self.0.get_bits(Self::LEN_RANGE),
     193      3149664 :             pos: self.0.get_bits(Self::POS_RANGE),
     194      3149664 :         }
     195      3149664 :     }
     196              : 
     197              :     /// See [`Self::new`].
     198          137 :     pub(crate) const fn validate_checkpoint_distance(
     199          137 :         checkpoint_distance: u64,
     200          137 :     ) -> Result<(), &'static str> {
     201          137 :         if checkpoint_distance > Self::MAX_SUPPORTED_POS as u64 {
     202            0 :             return Err("exceeds the maximum supported value");
     203          137 :         }
     204          137 :         let res = u64_to_usize(checkpoint_distance).checked_add(MAX_SUPPORTED_BLOB_LEN);
     205          137 :         if res.is_none() {
     206            0 :             return Err(
     207            0 :                 "checkpoint distance + max supported blob len overflows in-memory addition",
     208            0 :             );
     209          137 :         }
     210              : 
     211              :         // NB: it is ok for the result of the addition to be larger than MAX_SUPPORTED_POS
     212              : 
     213          137 :         Ok(())
     214          137 :     }
     215              : 
     216              :     const _ASSERT_DEFAULT_CHECKPOINT_DISTANCE_IS_VALID: () = {
     217              :         let res = Self::validate_checkpoint_distance(
     218              :             pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE,
     219              :         );
     220              :         if res.is_err() {
     221              :             panic!("default checkpoint distance is valid")
     222              :         }
     223              :     };
     224              : }
     225              : 
     226              : /// Args to [`IndexEntry::new`].
     227              : #[derive(Clone, Copy)]
     228              : struct IndexEntryNewArgs {
     229              :     base_offset: u64,
     230              :     batch_offset: u64,
     231              :     len: usize,
     232              :     will_init: bool,
     233              : }
     234              : 
     235              : /// Unpacked representation of the bitfielded [`IndexEntry`].
     236              : #[derive(Clone, Copy, PartialEq, Eq, Debug)]
     237              : struct IndexEntryUnpacked {
     238              :     will_init: bool,
     239              :     len: u64,
     240              :     pos: u64,
     241              : }
     242              : 
     243              : /// State shared by all in-memory (ephemeral) layers.  Updated infrequently during background ticks in Timeline,
     244              : /// to minimize contention.
     245              : ///
     246              : /// This global state is used to implement behaviors that require a global view of the system, e.g.
     247              : /// rolling layers proactively to limit the total amount of dirty data.
     248              : pub(crate) struct GlobalResources {
     249              :     // Limit on how high dirty_bytes may grow before we start freezing layers to reduce it.
     250              :     // Zero means unlimited.
     251              :     pub(crate) max_dirty_bytes: AtomicU64,
     252              :     // How many bytes are in all EphemeralFile objects
     253              :     dirty_bytes: AtomicU64,
     254              :     // How many layers are contributing to dirty_bytes
     255              :     dirty_layers: AtomicUsize,
     256              : }
     257              : 
     258              : // Per-timeline RAII struct for its contribution to [`GlobalResources`]
     259              : pub(crate) struct GlobalResourceUnits {
     260              :     // How many dirty bytes have I added to the global dirty_bytes: this guard object is responsible
     261              :     // for decrementing the global counter by this many bytes when dropped.
     262              :     dirty_bytes: u64,
     263              : }
     264              : 
     265              : impl GlobalResourceUnits {
     266              :     // Hint for the layer append path to update us when the layer size differs from the last
     267              :     // call to update_size by this much.  If we don't reach this threshold, we'll still get
     268              :     // updated when the Timeline "ticks" in the background.
     269              :     const MAX_SIZE_DRIFT: u64 = 10 * 1024 * 1024;
     270              : 
     271          669 :     pub(crate) fn new() -> Self {
     272          669 :         GLOBAL_RESOURCES
     273          669 :             .dirty_layers
     274          669 :             .fetch_add(1, AtomicOrdering::Relaxed);
     275          669 :         Self { dirty_bytes: 0 }
     276          669 :     }
     277              : 
     278              :     /// Do not call this frequently: all timelines will write to these same global atomics,
     279              :     /// so this is a relatively expensive operation.  Wait at least a few seconds between calls.
     280              :     ///
     281              :     /// Returns the effective layer size limit that should be applied, if any, to keep
     282              :     /// the total number of dirty bytes below the configured maximum.
     283          606 :     pub(crate) fn publish_size(&mut self, size: u64) -> Option<u64> {
     284          606 :         let new_global_dirty_bytes = match size.cmp(&self.dirty_bytes) {
     285          601 :             Ordering::Equal => GLOBAL_RESOURCES.dirty_bytes.load(AtomicOrdering::Relaxed),
     286              :             Ordering::Greater => {
     287            4 :                 let delta = size - self.dirty_bytes;
     288            4 :                 let old = GLOBAL_RESOURCES
     289            4 :                     .dirty_bytes
     290            4 :                     .fetch_add(delta, AtomicOrdering::Relaxed);
     291            4 :                 old + delta
     292              :             }
     293              :             Ordering::Less => {
     294            1 :                 let delta = self.dirty_bytes - size;
     295            1 :                 let old = GLOBAL_RESOURCES
     296            1 :                     .dirty_bytes
     297            1 :                     .fetch_sub(delta, AtomicOrdering::Relaxed);
     298            1 :                 old - delta
     299              :             }
     300              :         };
     301              : 
     302              :         // This is a sloppy update: concurrent updates to the counter will race, and the exact
     303              :         // value of the metric might not be the exact latest value of GLOBAL_RESOURCES::dirty_bytes.
     304              :         // That's okay: as long as the metric contains some recent value, it doesn't have to always
     305              :         // be literally the last update.
     306          606 :         TIMELINE_EPHEMERAL_BYTES.set(new_global_dirty_bytes);
     307              : 
     308          606 :         self.dirty_bytes = size;
     309              : 
     310          606 :         let max_dirty_bytes = GLOBAL_RESOURCES
     311          606 :             .max_dirty_bytes
     312          606 :             .load(AtomicOrdering::Relaxed);
     313          606 :         if max_dirty_bytes > 0 && new_global_dirty_bytes > max_dirty_bytes {
     314              :             // Set the layer file limit to the average layer size: this implies that all above-average
     315              :             // sized layers will be elegible for freezing.  They will be frozen in the order they
     316              :             // next enter publish_size.
     317            0 :             Some(
     318            0 :                 new_global_dirty_bytes
     319            0 :                     / GLOBAL_RESOURCES.dirty_layers.load(AtomicOrdering::Relaxed) as u64,
     320            0 :             )
     321              :         } else {
     322          606 :             None
     323              :         }
     324          606 :     }
     325              : 
     326              :     // Call publish_size if the input size differs from last published size by more than
     327              :     // the drift limit
     328      2402454 :     pub(crate) fn maybe_publish_size(&mut self, size: u64) {
     329      2402454 :         let publish = match size.cmp(&self.dirty_bytes) {
     330            0 :             Ordering::Equal => false,
     331      2402454 :             Ordering::Greater => size - self.dirty_bytes > Self::MAX_SIZE_DRIFT,
     332            0 :             Ordering::Less => self.dirty_bytes - size > Self::MAX_SIZE_DRIFT,
     333              :         };
     334              : 
     335      2402454 :         if publish {
     336            4 :             self.publish_size(size);
     337      2402450 :         }
     338      2402454 :     }
     339              : }
     340              : 
     341              : impl Drop for GlobalResourceUnits {
     342          602 :     fn drop(&mut self) {
     343          602 :         GLOBAL_RESOURCES
     344          602 :             .dirty_layers
     345          602 :             .fetch_sub(1, AtomicOrdering::Relaxed);
     346              : 
     347              :         // Subtract our contribution to the global total dirty bytes
     348          602 :         self.publish_size(0);
     349          602 :     }
     350              : }
     351              : 
     352              : pub(crate) static GLOBAL_RESOURCES: GlobalResources = GlobalResources {
     353              :     max_dirty_bytes: AtomicU64::new(0),
     354              :     dirty_bytes: AtomicU64::new(0),
     355              :     dirty_layers: AtomicUsize::new(0),
     356              : };
     357              : 
     358              : impl InMemoryLayer {
     359       311161 :     pub(crate) fn file_id(&self) -> InMemoryLayerFileId {
     360       311161 :         self.file_id
     361       311161 :     }
     362              : 
     363          601 :     pub(crate) fn get_timeline_id(&self) -> TimelineId {
     364          601 :         self.timeline_id
     365          601 :     }
     366              : 
     367         1197 :     pub(crate) fn info(&self) -> InMemoryLayerInfo {
     368         1197 :         let lsn_start = self.start_lsn;
     369              : 
     370         1197 :         if let Some(&lsn_end) = self.end_lsn.get() {
     371         1196 :             InMemoryLayerInfo::Frozen { lsn_start, lsn_end }
     372              :         } else {
     373            1 :             InMemoryLayerInfo::Open { lsn_start }
     374              :         }
     375         1197 :     }
     376              : 
     377         1853 :     pub(crate) fn len(&self) -> u64 {
     378         1853 :         self.file.len()
     379         1853 :     }
     380              : 
     381      2402132 :     pub(crate) fn assert_writable(&self) {
     382      2402132 :         assert!(self.end_lsn.get().is_none());
     383      2402132 :     }
     384              : 
     385      1212060 :     pub(crate) fn end_lsn_or_max(&self) -> Lsn {
     386      1212060 :         self.end_lsn.get().copied().unwrap_or(Lsn::MAX)
     387      1212060 :     }
     388              : 
     389      1211463 :     pub(crate) fn get_lsn_range(&self) -> Range<Lsn> {
     390      1211463 :         self.start_lsn..self.end_lsn_or_max()
     391      1211463 :     }
     392              : 
     393              :     /// debugging function to print out the contents of the layer
     394              :     ///
     395              :     /// this is likely completly unused
     396            0 :     pub async fn dump(&self, _verbose: bool, _ctx: &RequestContext) -> Result<()> {
     397            0 :         let end_str = self.end_lsn_or_max();
     398              : 
     399            0 :         println!(
     400            0 :             "----- in-memory layer for tli {} LSNs {}-{} ----",
     401              :             self.timeline_id, self.start_lsn, end_str,
     402              :         );
     403              : 
     404            0 :         Ok(())
     405            0 :     }
     406              : 
     407              :     // Look up the keys in the provided keyspace and update
     408              :     // the reconstruct state with whatever is found.
     409       307317 :     pub async fn get_values_reconstruct_data(
     410       307317 :         self: &Arc<InMemoryLayer>,
     411       307317 :         keyspace: KeySpace,
     412       307317 :         lsn_range: Range<Lsn>,
     413       307317 :         reconstruct_state: &mut ValuesReconstructState,
     414       307317 :         ctx: &RequestContext,
     415       307317 :     ) -> Result<(), GetVectoredError> {
     416       307317 :         let ctx = RequestContextBuilder::from(ctx)
     417       307317 :             .page_content_kind(PageContentKind::InMemoryLayer)
     418       307317 :             .attached_child();
     419              : 
     420       307317 :         let index = self.index.read().await;
     421              : 
     422              :         struct ValueRead {
     423              :             entry_lsn: Lsn,
     424              :             read: vectored_dio_read::LogicalRead<Vec<u8>>,
     425              :         }
     426       307317 :         let mut reads: HashMap<Key, Vec<ValueRead>> = HashMap::new();
     427       307317 :         let mut ios: HashMap<(Key, Lsn), OnDiskValueIo> = Default::default();
     428              : 
     429       310966 :         for range in keyspace.ranges.iter() {
     430       310966 :             for (key, vec_map) in index.range(range.start.to_compact()..range.end.to_compact()) {
     431       264074 :                 let key = Key::from_compact(*key);
     432       264074 :                 let slice = vec_map.slice_range(lsn_range.clone());
     433              : 
     434       956884 :                 for (entry_lsn, index_entry) in slice.iter().rev() {
     435              :                     let IndexEntryUnpacked {
     436       956884 :                         pos,
     437       956884 :                         len,
     438       956884 :                         will_init,
     439       956884 :                     } = index_entry.unpack();
     440              : 
     441       956884 :                     reads.entry(key).or_default().push(ValueRead {
     442       956884 :                         entry_lsn: *entry_lsn,
     443       956884 :                         read: vectored_dio_read::LogicalRead::new(
     444       956884 :                             pos,
     445       956884 :                             Vec::with_capacity(len as usize),
     446       956884 :                         ),
     447       956884 :                     });
     448              : 
     449       956884 :                     let io = reconstruct_state.update_key(&key, *entry_lsn, will_init);
     450       956884 :                     ios.insert((key, *entry_lsn), io);
     451              : 
     452       956884 :                     if will_init {
     453       253722 :                         break;
     454       703162 :                     }
     455              :                 }
     456              :             }
     457              :         }
     458       307317 :         drop(index); // release the lock before we spawn the IO
     459       307317 :         let read_from = Arc::clone(self);
     460       307317 :         let read_ctx = ctx.attached_child();
     461       307317 :         reconstruct_state
     462       307317 :             .spawn_io(async move {
     463       307317 :                 let f = vectored_dio_read::execute(
     464       307317 :                     &read_from.file,
     465       307317 :                     reads
     466       307317 :                         .iter()
     467       307317 :                         .flat_map(|(_, value_reads)| value_reads.iter().map(|v| &v.read)),
     468       307317 :                     &read_ctx,
     469              :                 );
     470       307317 :                 send_future::SendFuture::send(f) // https://github.com/rust-lang/rust/issues/96865
     471       307317 :                     .await;
     472              : 
     473       571389 :                 for (key, value_reads) in reads {
     474      1220956 :                     for ValueRead { entry_lsn, read } in value_reads {
     475       956884 :                         let io = ios.remove(&(key, entry_lsn)).expect("sender must exist");
     476       956884 :                         match read.into_result().expect("we run execute() above") {
     477            0 :                             Err(e) => {
     478            0 :                                 io.complete(Err(std::io::Error::new(
     479            0 :                                     e.kind(),
     480            0 :                                     "dio vec read failed",
     481            0 :                                 )));
     482            0 :                             }
     483       956884 :                             Ok(value_buf) => {
     484       956884 :                                 io.complete(Ok(OnDiskValue::WalRecordOrImage(value_buf.into())));
     485       956884 :                             }
     486              :                         }
     487              :                     }
     488              :                 }
     489              : 
     490       307317 :                 assert!(ios.is_empty());
     491              : 
     492              :                 // Keep layer existent until this IO is done;
     493              :                 // This is kinda forced for InMemoryLayer because we need to inner.read() anyway,
     494              :                 // but it's less obvious for DeltaLayer and ImageLayer. So, keep this explicit
     495              :                 // drop for consistency among all three layer types.
     496       307317 :                 drop(read_from);
     497       307317 :             })
     498       307317 :             .await;
     499              : 
     500       307317 :         Ok(())
     501       307317 :     }
     502              : }
     503              : 
     504         1198 : fn inmem_layer_display(mut f: impl Write, start_lsn: Lsn, end_lsn: Lsn) -> std::fmt::Result {
     505         1198 :     write!(f, "inmem-{:016X}-{:016X}", start_lsn.0, end_lsn.0)
     506         1198 : }
     507              : 
     508          601 : fn inmem_layer_log_display(
     509          601 :     mut f: impl Write,
     510          601 :     timeline: TimelineId,
     511          601 :     start_lsn: Lsn,
     512          601 :     end_lsn: Lsn,
     513          601 : ) -> std::fmt::Result {
     514          601 :     write!(f, "timeline {timeline} in-memory ")?;
     515          601 :     inmem_layer_display(f, start_lsn, end_lsn)
     516          601 : }
     517              : 
     518              : impl std::fmt::Display for InMemoryLayer {
     519          597 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
     520          597 :         let end_lsn = self.end_lsn_or_max();
     521          597 :         inmem_layer_display(f, self.start_lsn, end_lsn)
     522          597 :     }
     523              : }
     524              : 
     525              : impl InMemoryLayer {
     526          630 :     pub fn estimated_in_mem_size(&self) -> u64 {
     527          630 :         self.estimated_in_mem_size.load(AtomicOrdering::Relaxed)
     528          630 :     }
     529              : 
     530              :     /// Create a new, empty, in-memory layer
     531          665 :     pub async fn create(
     532          665 :         conf: &'static PageServerConf,
     533          665 :         timeline_id: TimelineId,
     534          665 :         tenant_shard_id: TenantShardId,
     535          665 :         start_lsn: Lsn,
     536          665 :         gate: &utils::sync::gate::Gate,
     537          665 :         cancel: &CancellationToken,
     538          665 :         ctx: &RequestContext,
     539          665 :     ) -> Result<InMemoryLayer> {
     540          665 :         trace!(
     541            0 :             "initializing new empty InMemoryLayer for writing on timeline {timeline_id} at {start_lsn}"
     542              :         );
     543              : 
     544          665 :         let file =
     545          665 :             EphemeralFile::create(conf, tenant_shard_id, timeline_id, gate, cancel, ctx).await?;
     546          665 :         let key = InMemoryLayerFileId(file.page_cache_file_id());
     547              : 
     548          665 :         Ok(InMemoryLayer {
     549          665 :             file_id: key,
     550          665 :             frozen_local_path_str: OnceLock::new(),
     551          665 :             conf,
     552          665 :             timeline_id,
     553          665 :             tenant_shard_id,
     554          665 :             start_lsn,
     555          665 :             end_lsn: OnceLock::new(),
     556          665 :             opened_at: Instant::now(),
     557          665 :             index: RwLock::new(BTreeMap::new()),
     558          665 :             file,
     559          665 :             estimated_in_mem_size: AtomicU64::new(0),
     560          665 :         })
     561          665 :     }
     562              : 
     563              :     /// Write path.
     564              :     ///
     565              :     /// Errors are not retryable, the [`InMemoryLayer`] must be discarded, and not be read from.
     566              :     /// The reason why it's not retryable is that the [`EphemeralFile`] writes are not retryable.
     567              :     ///
     568              :     /// This method shall not be called concurrently. We enforce this property via [`crate::tenant::Timeline::write_lock`].
     569              :     ///
     570              :     /// TODO: it can be made retryable if we aborted the process on EphemeralFile write errors.
     571      2402132 :     pub async fn put_batch(
     572      2402132 :         &self,
     573      2402132 :         serialized_batch: SerializedValueBatch,
     574      2402132 :         ctx: &RequestContext,
     575      2402132 :     ) -> anyhow::Result<()> {
     576      2402132 :         self.assert_writable();
     577              : 
     578      2402132 :         let base_offset = self.file.len();
     579              : 
     580              :         let SerializedValueBatch {
     581      2402132 :             raw,
     582      2402132 :             metadata,
     583              :             max_lsn: _,
     584              :             len: _,
     585      2402132 :         } = serialized_batch;
     586              : 
     587              :         // Write the batch to the file
     588      2402132 :         self.file.write_raw(&raw, ctx).await?;
     589      2402132 :         let new_size = self.file.len();
     590              : 
     591      2402132 :         let expected_new_len = base_offset
     592      2402132 :             .checked_add(raw.len().into_u64())
     593              :             // write_raw would error if we were to overflow u64.
     594              :             // also IndexEntry and higher levels in
     595              :             //the code don't allow the file to grow that large
     596      2402132 :             .unwrap();
     597      2402132 :         assert_eq!(new_size, expected_new_len);
     598              : 
     599              :         // Update the index with the new entries
     600      2402132 :         let mut index = self.index.write().await;
     601              : 
     602      4967353 :         for meta in metadata {
     603              :             let SerializedValueMeta {
     604      2565221 :                 key,
     605      2565221 :                 lsn,
     606      2565221 :                 batch_offset,
     607      2565221 :                 len,
     608      2565221 :                 will_init,
     609      2565221 :             } = match meta {
     610      2565221 :                 ValueMeta::Serialized(ser) => ser,
     611              :                 ValueMeta::Observed(_) => {
     612            0 :                     continue;
     613              :                 }
     614              :             };
     615              : 
     616              :             // Add the base_offset to the batch's index entries which are relative to the batch start.
     617      2565221 :             let index_entry = IndexEntry::new(IndexEntryNewArgs {
     618      2565221 :                 base_offset,
     619      2565221 :                 batch_offset,
     620      2565221 :                 len,
     621      2565221 :                 will_init,
     622      2565221 :             })?;
     623              : 
     624      2565221 :             let vec_map = index.entry(key).or_default();
     625      2565221 :             let old = vec_map.append_or_update_last(lsn, index_entry).unwrap().0;
     626      2565221 :             if old.is_some() {
     627              :                 // This should not break anything, but is unexpected: ingestion code aims to filter out
     628              :                 // multiple writes to the same key at the same LSN.  This happens in cases where our
     629              :                 // ingenstion code generates some write like an empty page, and we see a write from postgres
     630              :                 // to the same key in the same wal record.  If one such write makes it through, we
     631              :                 // index the most recent write, implicitly ignoring the earlier write.  We log a warning
     632              :                 // because this case is unexpected, and we would like tests to fail if this happens.
     633            0 :                 warn!("Key {} at {} written twice at same LSN", key, lsn);
     634      2565221 :             }
     635      2565221 :             self.estimated_in_mem_size.fetch_add(
     636      2565221 :                 (std::mem::size_of::<CompactKey>()
     637      2565221 :                     + std::mem::size_of::<Lsn>()
     638      2565221 :                     + std::mem::size_of::<IndexEntry>()) as u64,
     639      2565221 :                 AtomicOrdering::Relaxed,
     640              :             );
     641              :         }
     642              : 
     643      2402132 :         Ok(())
     644      2402132 :     }
     645              : 
     646      2401506 :     pub(crate) fn get_opened_at(&self) -> Instant {
     647      2401506 :         self.opened_at
     648      2401506 :     }
     649              : 
     650            0 :     pub(crate) fn tick(&self) -> Option<u64> {
     651            0 :         self.file.tick()
     652            0 :     }
     653              : 
     654            1 :     pub(crate) async fn put_tombstones(&self, _key_ranges: &[(Range<Key>, Lsn)]) -> Result<()> {
     655              :         // TODO: Currently, we just leak the storage for any deleted keys
     656            1 :         Ok(())
     657            1 :     }
     658              : 
     659              :     /// Records the end_lsn for non-dropped layers.
     660              :     /// `end_lsn` is exclusive
     661              :     ///
     662              :     /// A note on locking:
     663              :     /// The current API of [`InMemoryLayer`] does not ensure that there's no ongoing
     664              :     /// writes while freezing the layer. This is enforced at a higher level via
     665              :     /// [`crate::tenant::Timeline::write_lock`]. Freeze might be called via two code paths:
     666              :     /// 1. Via the active [`crate::tenant::timeline::TimelineWriter`]. This holds the
     667              :     ///    Timeline::write_lock for its lifetime. The rolling is handled in
     668              :     ///    [`crate::tenant::timeline::TimelineWriter::put_batch`]. It's a &mut self function
     669              :     ///    so can't be called from different threads.
     670              :     /// 2. In the background via [`crate::tenant::Timeline::maybe_freeze_ephemeral_layer`].
     671              :     ///    This only proceeds if try_lock on Timeline::write_lock succeeds (i.e. there's no active writer),
     672              :     ///    hence there can be no concurrent writes
     673          601 :     pub async fn freeze(&self, end_lsn: Lsn) {
     674          601 :         assert!(
     675          601 :             self.start_lsn < end_lsn,
     676            0 :             "{} >= {}",
     677              :             self.start_lsn,
     678              :             end_lsn
     679              :         );
     680          601 :         self.end_lsn.set(end_lsn).expect("end_lsn set only once");
     681              : 
     682          601 :         self.frozen_local_path_str
     683          601 :             .set({
     684          601 :                 let mut buf = String::new();
     685          601 :                 inmem_layer_log_display(&mut buf, self.get_timeline_id(), self.start_lsn, end_lsn)
     686          601 :                     .unwrap();
     687          601 :                 buf.into()
     688              :             })
     689          601 :             .expect("frozen_local_path_str set only once");
     690              : 
     691              :         #[cfg(debug_assertions)]
     692              :         {
     693          601 :             let index = self.index.read().await;
     694      2128372 :             for vec_map in index.values() {
     695      2213338 :                 for (lsn, _) in vec_map.as_slice() {
     696      2213338 :                     assert!(*lsn < end_lsn);
     697              :                 }
     698              :             }
     699              :         }
     700          601 :     }
     701              : 
     702              :     /// Write this frozen in-memory layer to disk. If `key_range` is set, the delta
     703              :     /// layer will only contain the key range the user specifies, and may return `None`
     704              :     /// if there are no matching keys.
     705              :     ///
     706              :     /// Returns a new delta layer with all the same data as this in-memory layer
     707          486 :     pub async fn write_to_disk(
     708          486 :         &self,
     709          486 :         ctx: &RequestContext,
     710          486 :         key_range: Option<Range<Key>>,
     711          486 :         l0_flush_global_state: &l0_flush::Inner,
     712          486 :         gate: &utils::sync::gate::Gate,
     713          486 :         cancel: CancellationToken,
     714          486 :     ) -> Result<Option<(PersistentLayerDesc, Utf8PathBuf)>> {
     715          486 :         let index = self.index.read().await;
     716              : 
     717              :         use l0_flush::Inner;
     718          486 :         let _concurrency_permit = match l0_flush_global_state {
     719          486 :             Inner::Direct { semaphore, .. } => Some(semaphore.acquire().await),
     720              :         };
     721              : 
     722          486 :         let end_lsn = *self.end_lsn.get().unwrap();
     723              : 
     724          486 :         let key_count = if let Some(key_range) = key_range {
     725            0 :             let key_range = key_range.start.to_compact()..key_range.end.to_compact();
     726              : 
     727            0 :             index.iter().filter(|(k, _)| key_range.contains(k)).count()
     728              :         } else {
     729          486 :             index.len()
     730              :         };
     731          486 :         if key_count == 0 {
     732            0 :             return Ok(None);
     733          486 :         }
     734              : 
     735          486 :         let mut delta_layer_writer = DeltaLayerWriter::new(
     736          486 :             self.conf,
     737          486 :             self.timeline_id,
     738          486 :             self.tenant_shard_id,
     739          486 :             Key::MIN,
     740          486 :             self.start_lsn..end_lsn,
     741          486 :             gate,
     742          486 :             cancel,
     743          486 :             ctx,
     744          486 :         )
     745          486 :         .await?;
     746              : 
     747          486 :         match l0_flush_global_state {
     748              :             l0_flush::Inner::Direct { .. } => {
     749          486 :                 let file_contents = self.file.load_to_io_buf(ctx).await?;
     750          486 :                 let file_contents = file_contents.freeze();
     751              : 
     752      2127396 :                 for (key, vec_map) in index.iter() {
     753              :                     // Write all page versions
     754      2192760 :                     for (lsn, entry) in vec_map
     755      2127396 :                         .as_slice()
     756      2127396 :                         .iter()
     757      2192760 :                         .map(|(lsn, entry)| (lsn, entry.unpack()))
     758              :                     {
     759              :                         let IndexEntryUnpacked {
     760      2192760 :                             pos,
     761      2192760 :                             len,
     762      2192760 :                             will_init,
     763      2192760 :                         } = entry;
     764      2192760 :                         let buf = file_contents.slice(pos as usize..(pos + len) as usize);
     765      2192760 :                         let (_buf, res) = delta_layer_writer
     766      2192760 :                             .put_value_bytes(
     767      2192760 :                                 Key::from_compact(*key),
     768      2192760 :                                 *lsn,
     769      2192760 :                                 buf.slice_len(),
     770      2192760 :                                 will_init,
     771      2192760 :                                 ctx,
     772              :                             )
     773      2192760 :                             .await;
     774      2192760 :                         res?;
     775              :                     }
     776              :                 }
     777              :             }
     778              :         }
     779              : 
     780              :         // MAX is used here because we identify L0 layers by full key range
     781          486 :         let (desc, path) = delta_layer_writer.finish(Key::MAX, ctx).await?;
     782              : 
     783              :         // Hold the permit until all the IO is done, including the fsync in `delta_layer_writer.finish()``.
     784              :         //
     785              :         // If we didn't and our caller drops this future, tokio-epoll-uring would extend the lifetime of
     786              :         // the `file_contents: Vec<u8>` until the IO is done, but not the permit's lifetime.
     787              :         // Thus, we'd have more concurrenct `Vec<u8>` in existence than the semaphore allows.
     788              :         //
     789              :         // We hold across the fsync so that on ext4 mounted with data=ordered, all the kernel page cache pages
     790              :         // we dirtied when writing to the filesystem have been flushed and marked !dirty.
     791          486 :         drop(_concurrency_permit);
     792              : 
     793          486 :         Ok(Some((desc, path)))
     794          486 :     }
     795              : }
     796              : 
     797              : #[cfg(test)]
     798              : mod tests {
     799              :     use super::*;
     800              : 
     801              :     #[test]
     802            1 :     fn test_index_entry() {
     803              :         const MAX_SUPPORTED_POS: usize = IndexEntry::MAX_SUPPORTED_POS;
     804              :         use {IndexEntryNewArgs as Args, IndexEntryUnpacked as Unpacked};
     805              : 
     806           20 :         let roundtrip = |args, expect: Unpacked| {
     807           20 :             let res = IndexEntry::new(args).expect("this tests expects no errors");
     808              :             let IndexEntryUnpacked {
     809           20 :                 will_init,
     810           20 :                 len,
     811           20 :                 pos,
     812           20 :             } = res.unpack();
     813           20 :             assert_eq!(will_init, expect.will_init);
     814           20 :             assert_eq!(len, expect.len);
     815           20 :             assert_eq!(pos, expect.pos);
     816           20 :         };
     817              : 
     818              :         // basic roundtrip
     819            3 :         for pos in [0, MAX_SUPPORTED_POS] {
     820            6 :             for len in [0, MAX_SUPPORTED_BLOB_LEN] {
     821           12 :                 for will_init in [true, false] {
     822            8 :                     let expect = Unpacked {
     823            8 :                         will_init,
     824            8 :                         len: len.into_u64(),
     825            8 :                         pos: pos.into_u64(),
     826            8 :                     };
     827            8 :                     roundtrip(
     828            8 :                         Args {
     829            8 :                             will_init,
     830            8 :                             base_offset: pos.into_u64(),
     831            8 :                             batch_offset: 0,
     832            8 :                             len,
     833            8 :                         },
     834            8 :                         expect,
     835            8 :                     );
     836            8 :                     roundtrip(
     837            8 :                         Args {
     838            8 :                             will_init,
     839            8 :                             base_offset: 0,
     840            8 :                             batch_offset: pos.into_u64(),
     841            8 :                             len,
     842            8 :                         },
     843            8 :                         expect,
     844            8 :                     );
     845            8 :                 }
     846              :             }
     847              :         }
     848              : 
     849              :         // too-large len
     850            1 :         let too_large = Args {
     851            1 :             will_init: false,
     852            1 :             len: MAX_SUPPORTED_BLOB_LEN + 1,
     853            1 :             base_offset: 0,
     854            1 :             batch_offset: 0,
     855            1 :         };
     856            1 :         assert!(IndexEntry::new(too_large).is_err());
     857              : 
     858              :         // too-large pos
     859              :         {
     860            1 :             let too_large = Args {
     861            1 :                 will_init: false,
     862            1 :                 len: 0,
     863            1 :                 base_offset: MAX_SUPPORTED_POS.into_u64() + 1,
     864            1 :                 batch_offset: 0,
     865            1 :             };
     866            1 :             assert!(IndexEntry::new(too_large).is_err());
     867            1 :             let too_large = Args {
     868            1 :                 will_init: false,
     869            1 :                 len: 0,
     870            1 :                 base_offset: 0,
     871            1 :                 batch_offset: MAX_SUPPORTED_POS.into_u64() + 1,
     872            1 :             };
     873            1 :             assert!(IndexEntry::new(too_large).is_err());
     874              :         }
     875              : 
     876              :         // too large (base_offset + batch_offset)
     877              :         {
     878            1 :             let too_large = Args {
     879            1 :                 will_init: false,
     880            1 :                 len: 0,
     881            1 :                 base_offset: MAX_SUPPORTED_POS.into_u64(),
     882            1 :                 batch_offset: 1,
     883            1 :             };
     884            1 :             assert!(IndexEntry::new(too_large).is_err());
     885            1 :             let too_large = Args {
     886            1 :                 will_init: false,
     887            1 :                 len: 0,
     888            1 :                 base_offset: MAX_SUPPORTED_POS.into_u64() - 1,
     889            1 :                 batch_offset: MAX_SUPPORTED_POS.into_u64() - 1,
     890            1 :             };
     891            1 :             assert!(IndexEntry::new(too_large).is_err());
     892              :         }
     893              : 
     894              :         // valid special cases
     895              :         // - area past the max supported pos that is accessible by len
     896            3 :         for len in [1, MAX_SUPPORTED_BLOB_LEN] {
     897            2 :             roundtrip(
     898            2 :                 Args {
     899            2 :                     will_init: false,
     900            2 :                     len,
     901            2 :                     base_offset: MAX_SUPPORTED_POS.into_u64(),
     902            2 :                     batch_offset: 0,
     903            2 :                 },
     904            2 :                 Unpacked {
     905            2 :                     will_init: false,
     906            2 :                     len: len as u64,
     907            2 :                     pos: MAX_SUPPORTED_POS.into_u64(),
     908            2 :                 },
     909            2 :             );
     910            2 :             roundtrip(
     911            2 :                 Args {
     912            2 :                     will_init: false,
     913            2 :                     len,
     914            2 :                     base_offset: 0,
     915            2 :                     batch_offset: MAX_SUPPORTED_POS.into_u64(),
     916            2 :                 },
     917            2 :                 Unpacked {
     918            2 :                     will_init: false,
     919            2 :                     len: len as u64,
     920            2 :                     pos: MAX_SUPPORTED_POS.into_u64(),
     921            2 :                 },
     922            2 :             );
     923            2 :         }
     924            1 :     }
     925              : }
        

Generated by: LCOV version 2.1-beta