LCOV - code coverage report
Current view: top level - pageserver/src/tenant/timeline - compaction.rs (source / functions) Coverage Total Hit
Test: 07bee600374ccd486c69370d0972d9035964fe68.info Lines: 55.8 % 2321 1294
Test Date: 2025-02-20 13:11:02 Functions: 39.5 % 162 64

            Line data    Source code
       1              : //! New compaction implementation. The algorithm itself is implemented in the
       2              : //! compaction crate. This file implements the callbacks and structs that allow
       3              : //! the algorithm to drive the process.
       4              : //!
       5              : //! The old legacy algorithm is implemented directly in `timeline.rs`.
       6              : 
       7              : use std::collections::{BinaryHeap, HashMap, HashSet, VecDeque};
       8              : use std::ops::{Deref, Range};
       9              : use std::sync::Arc;
      10              : 
      11              : use super::layer_manager::LayerManager;
      12              : use super::{
      13              :     CompactFlags, CompactOptions, CreateImageLayersError, DurationRecorder, GetVectoredError,
      14              :     ImageLayerCreationMode, LastImageLayerCreationStatus, PageReconstructError, RecordedDuration,
      15              :     Timeline,
      16              : };
      17              : 
      18              : use anyhow::{anyhow, bail, Context};
      19              : use bytes::Bytes;
      20              : use enumset::EnumSet;
      21              : use fail::fail_point;
      22              : use itertools::Itertools;
      23              : use pageserver_api::key::KEY_SIZE;
      24              : use pageserver_api::keyspace::ShardedRange;
      25              : use pageserver_api::models::CompactInfoResponse;
      26              : use pageserver_api::shard::{ShardCount, ShardIdentity, TenantShardId};
      27              : use serde::Serialize;
      28              : use tokio_util::sync::CancellationToken;
      29              : use tracing::{debug, error, info, info_span, trace, warn, Instrument};
      30              : use utils::critical;
      31              : use utils::id::TimelineId;
      32              : 
      33              : use crate::context::{AccessStatsBehavior, RequestContext, RequestContextBuilder};
      34              : use crate::page_cache;
      35              : use crate::pgdatadir_mapping::CollectKeySpaceError;
      36              : use crate::statvfs::Statvfs;
      37              : use crate::tenant::checks::check_valid_layermap;
      38              : use crate::tenant::gc_block::GcBlock;
      39              : use crate::tenant::layer_map::LayerMap;
      40              : use crate::tenant::remote_timeline_client::WaitCompletionError;
      41              : use crate::tenant::storage_layer::batch_split_writer::{
      42              :     BatchWriterResult, SplitDeltaLayerWriter, SplitImageLayerWriter,
      43              : };
      44              : use crate::tenant::storage_layer::filter_iterator::FilterIterator;
      45              : use crate::tenant::storage_layer::merge_iterator::MergeIterator;
      46              : use crate::tenant::storage_layer::{
      47              :     AsLayerDesc, PersistentLayerDesc, PersistentLayerKey, ValueReconstructState,
      48              : };
      49              : use crate::tenant::timeline::{drop_rlock, DeltaLayerWriter, ImageLayerWriter};
      50              : use crate::tenant::timeline::{ImageLayerCreationOutcome, IoConcurrency};
      51              : use crate::tenant::timeline::{Layer, ResidentLayer};
      52              : use crate::tenant::{gc_block, DeltaLayer, MaybeOffloaded};
      53              : use crate::virtual_file::{MaybeFatalIo, VirtualFile};
      54              : use pageserver_api::config::tenant_conf_defaults::DEFAULT_CHECKPOINT_DISTANCE;
      55              : 
      56              : use pageserver_api::key::Key;
      57              : use pageserver_api::keyspace::KeySpace;
      58              : use pageserver_api::record::NeonWalRecord;
      59              : use pageserver_api::value::Value;
      60              : 
      61              : use utils::lsn::Lsn;
      62              : 
      63              : use pageserver_compaction::helpers::{fully_contains, overlaps_with};
      64              : use pageserver_compaction::interface::*;
      65              : 
      66              : use super::CompactionError;
      67              : 
      68              : /// Maximum number of deltas before generating an image layer in bottom-most compaction.
      69              : const COMPACTION_DELTA_THRESHOLD: usize = 5;
      70              : 
      71              : #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq)]
      72              : pub struct GcCompactionJobId(pub usize);
      73              : 
      74              : impl std::fmt::Display for GcCompactionJobId {
      75            0 :     fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
      76            0 :         write!(f, "{}", self.0)
      77            0 :     }
      78              : }
      79              : 
      80              : #[derive(Debug, Clone)]
      81              : pub enum GcCompactionQueueItem {
      82              :     Manual(CompactOptions),
      83              :     SubCompactionJob(CompactOptions),
      84              :     #[allow(dead_code)]
      85              :     UpdateL2Lsn(Lsn),
      86              :     Notify(GcCompactionJobId),
      87              : }
      88              : 
      89              : impl GcCompactionQueueItem {
      90            0 :     pub fn into_compact_info_resp(
      91            0 :         self,
      92            0 :         id: GcCompactionJobId,
      93            0 :         running: bool,
      94            0 :     ) -> Option<CompactInfoResponse> {
      95            0 :         match self {
      96            0 :             GcCompactionQueueItem::Manual(options) => Some(CompactInfoResponse {
      97            0 :                 compact_key_range: options.compact_key_range,
      98            0 :                 compact_lsn_range: options.compact_lsn_range,
      99            0 :                 sub_compaction: options.sub_compaction,
     100            0 :                 running,
     101            0 :                 job_id: id.0,
     102            0 :             }),
     103            0 :             GcCompactionQueueItem::SubCompactionJob(options) => Some(CompactInfoResponse {
     104            0 :                 compact_key_range: options.compact_key_range,
     105            0 :                 compact_lsn_range: options.compact_lsn_range,
     106            0 :                 sub_compaction: options.sub_compaction,
     107            0 :                 running,
     108            0 :                 job_id: id.0,
     109            0 :             }),
     110            0 :             GcCompactionQueueItem::UpdateL2Lsn(_) => None,
     111            0 :             GcCompactionQueueItem::Notify(_) => None,
     112              :         }
     113            0 :     }
     114              : }
     115              : 
     116              : struct GcCompactionQueueInner {
     117              :     running: Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     118              :     queued: VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     119              :     notify: HashMap<GcCompactionJobId, tokio::sync::oneshot::Sender<()>>,
     120              :     gc_guards: HashMap<GcCompactionJobId, gc_block::Guard>,
     121              :     last_id: GcCompactionJobId,
     122              : }
     123              : 
     124              : impl GcCompactionQueueInner {
     125            0 :     fn next_id(&mut self) -> GcCompactionJobId {
     126            0 :         let id = self.last_id;
     127            0 :         self.last_id = GcCompactionJobId(id.0 + 1);
     128            0 :         id
     129            0 :     }
     130              : }
     131              : 
     132              : /// A structure to store gc_compaction jobs.
     133              : pub struct GcCompactionQueue {
     134              :     /// All items in the queue, and the currently-running job.
     135              :     inner: std::sync::Mutex<GcCompactionQueueInner>,
     136              :     /// Ensure only one thread is consuming the queue.
     137              :     consumer_lock: tokio::sync::Mutex<()>,
     138              : }
     139              : 
     140              : impl GcCompactionQueue {
     141            0 :     pub fn new() -> Self {
     142            0 :         GcCompactionQueue {
     143            0 :             inner: std::sync::Mutex::new(GcCompactionQueueInner {
     144            0 :                 running: None,
     145            0 :                 queued: VecDeque::new(),
     146            0 :                 notify: HashMap::new(),
     147            0 :                 gc_guards: HashMap::new(),
     148            0 :                 last_id: GcCompactionJobId(0),
     149            0 :             }),
     150            0 :             consumer_lock: tokio::sync::Mutex::new(()),
     151            0 :         }
     152            0 :     }
     153              : 
     154            0 :     pub fn cancel_scheduled(&self) {
     155            0 :         let mut guard = self.inner.lock().unwrap();
     156            0 :         guard.queued.clear();
     157            0 :         guard.notify.clear();
     158            0 :         guard.gc_guards.clear();
     159            0 :     }
     160              : 
     161              :     /// Schedule a manual compaction job.
     162            0 :     pub fn schedule_manual_compaction(
     163            0 :         &self,
     164            0 :         options: CompactOptions,
     165            0 :         notify: Option<tokio::sync::oneshot::Sender<()>>,
     166            0 :     ) -> GcCompactionJobId {
     167            0 :         let mut guard = self.inner.lock().unwrap();
     168            0 :         let id = guard.next_id();
     169            0 :         guard
     170            0 :             .queued
     171            0 :             .push_back((id, GcCompactionQueueItem::Manual(options)));
     172            0 :         if let Some(notify) = notify {
     173            0 :             guard.notify.insert(id, notify);
     174            0 :         }
     175            0 :         info!("scheduled compaction job id={}", id);
     176            0 :         id
     177            0 :     }
     178              : 
     179              :     /// Trigger an auto compaction.
     180              :     #[allow(dead_code)]
     181            0 :     pub fn trigger_auto_compaction(&self, _: &Arc<Timeline>) {}
     182              : 
     183              :     /// Notify the caller the job has finished and unblock GC.
     184            0 :     fn notify_and_unblock(&self, id: GcCompactionJobId) {
     185            0 :         info!("compaction job id={} finished", id);
     186            0 :         let mut guard = self.inner.lock().unwrap();
     187            0 :         if let Some(blocking) = guard.gc_guards.remove(&id) {
     188            0 :             drop(blocking)
     189            0 :         }
     190            0 :         if let Some(tx) = guard.notify.remove(&id) {
     191            0 :             let _ = tx.send(());
     192            0 :         }
     193            0 :     }
     194              : 
     195            0 :     async fn handle_sub_compaction(
     196            0 :         &self,
     197            0 :         id: GcCompactionJobId,
     198            0 :         options: CompactOptions,
     199            0 :         timeline: &Arc<Timeline>,
     200            0 :         gc_block: &GcBlock,
     201            0 :     ) -> Result<(), CompactionError> {
     202            0 :         info!("running scheduled enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs");
     203            0 :         let jobs: Vec<GcCompactJob> = timeline
     204            0 :             .gc_compaction_split_jobs(
     205            0 :                 GcCompactJob::from_compact_options(options.clone()),
     206            0 :                 options.sub_compaction_max_job_size_mb,
     207            0 :             )
     208            0 :             .await
     209            0 :             .map_err(CompactionError::Other)?;
     210            0 :         if jobs.is_empty() {
     211            0 :             info!("no jobs to run, skipping scheduled compaction task");
     212            0 :             self.notify_and_unblock(id);
     213              :         } else {
     214            0 :             let gc_guard = match gc_block.start().await {
     215            0 :                 Ok(guard) => guard,
     216            0 :                 Err(e) => {
     217            0 :                     return Err(CompactionError::Other(anyhow!(
     218            0 :                         "cannot run gc-compaction because gc is blocked: {}",
     219            0 :                         e
     220            0 :                     )));
     221              :                 }
     222              :             };
     223              : 
     224            0 :             let jobs_len = jobs.len();
     225            0 :             let mut pending_tasks = Vec::new();
     226            0 :             for job in jobs {
     227              :                 // Unfortunately we need to convert the `GcCompactJob` back to `CompactionOptions`
     228              :                 // until we do further refactors to allow directly call `compact_with_gc`.
     229            0 :                 let mut flags: EnumSet<CompactFlags> = EnumSet::default();
     230            0 :                 flags |= CompactFlags::EnhancedGcBottomMostCompaction;
     231            0 :                 if job.dry_run {
     232            0 :                     flags |= CompactFlags::DryRun;
     233            0 :                 }
     234            0 :                 let options = CompactOptions {
     235            0 :                     flags,
     236            0 :                     sub_compaction: false,
     237            0 :                     compact_key_range: Some(job.compact_key_range.into()),
     238            0 :                     compact_lsn_range: Some(job.compact_lsn_range.into()),
     239            0 :                     sub_compaction_max_job_size_mb: None,
     240            0 :                 };
     241            0 :                 pending_tasks.push(GcCompactionQueueItem::SubCompactionJob(options));
     242              :             }
     243            0 :             pending_tasks.push(GcCompactionQueueItem::Notify(id));
     244            0 :             {
     245            0 :                 let mut guard = self.inner.lock().unwrap();
     246            0 :                 guard.gc_guards.insert(id, gc_guard);
     247            0 :                 let mut tasks = Vec::new();
     248            0 :                 for task in pending_tasks {
     249            0 :                     let id = guard.next_id();
     250            0 :                     tasks.push((id, task));
     251            0 :                 }
     252            0 :                 tasks.reverse();
     253            0 :                 for item in tasks {
     254            0 :                     guard.queued.push_front(item);
     255            0 :                 }
     256              :             }
     257            0 :             info!("scheduled enhanced gc bottom-most compaction with sub-compaction, split into {} jobs", jobs_len);
     258              :         }
     259            0 :         Ok(())
     260            0 :     }
     261              : 
     262              :     /// Take a job from the queue and process it. Returns if there are still pending tasks.
     263            0 :     pub async fn iteration(
     264            0 :         &self,
     265            0 :         cancel: &CancellationToken,
     266            0 :         ctx: &RequestContext,
     267            0 :         gc_block: &GcBlock,
     268            0 :         timeline: &Arc<Timeline>,
     269            0 :     ) -> Result<CompactionOutcome, CompactionError> {
     270            0 :         let _one_op_at_a_time_guard = self.consumer_lock.lock().await;
     271              :         let has_pending_tasks;
     272            0 :         let (id, item) = {
     273            0 :             let mut guard = self.inner.lock().unwrap();
     274            0 :             let Some((id, item)) = guard.queued.pop_front() else {
     275            0 :                 return Ok(CompactionOutcome::Done);
     276              :             };
     277            0 :             guard.running = Some((id, item.clone()));
     278            0 :             has_pending_tasks = !guard.queued.is_empty();
     279            0 :             (id, item)
     280            0 :         };
     281            0 : 
     282            0 :         match item {
     283            0 :             GcCompactionQueueItem::Manual(options) => {
     284            0 :                 if !options
     285            0 :                     .flags
     286            0 :                     .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     287              :                 {
     288            0 :                     warn!("ignoring scheduled compaction task: scheduled task must be gc compaction: {:?}", options);
     289            0 :                 } else if options.sub_compaction {
     290            0 :                     self.handle_sub_compaction(id, options, timeline, gc_block)
     291            0 :                         .await?;
     292              :                 } else {
     293            0 :                     let gc_guard = match gc_block.start().await {
     294            0 :                         Ok(guard) => guard,
     295            0 :                         Err(e) => {
     296            0 :                             return Err(CompactionError::Other(anyhow!(
     297            0 :                                 "cannot run gc-compaction because gc is blocked: {}",
     298            0 :                                 e
     299            0 :                             )));
     300              :                         }
     301              :                     };
     302            0 :                     {
     303            0 :                         let mut guard = self.inner.lock().unwrap();
     304            0 :                         guard.gc_guards.insert(id, gc_guard);
     305            0 :                     }
     306            0 :                     let _ = timeline.compact_with_options(cancel, options, ctx).await?;
     307            0 :                     self.notify_and_unblock(id);
     308              :                 }
     309              :             }
     310            0 :             GcCompactionQueueItem::SubCompactionJob(options) => {
     311            0 :                 let _ = timeline.compact_with_options(cancel, options, ctx).await?;
     312              :             }
     313            0 :             GcCompactionQueueItem::Notify(id) => {
     314            0 :                 self.notify_and_unblock(id);
     315            0 :             }
     316              :             GcCompactionQueueItem::UpdateL2Lsn(_) => {
     317            0 :                 unreachable!()
     318              :             }
     319              :         }
     320            0 :         {
     321            0 :             let mut guard = self.inner.lock().unwrap();
     322            0 :             guard.running = None;
     323            0 :         }
     324            0 :         Ok(if has_pending_tasks {
     325            0 :             CompactionOutcome::Pending
     326              :         } else {
     327            0 :             CompactionOutcome::Done
     328              :         })
     329            0 :     }
     330              : 
     331              :     #[allow(clippy::type_complexity)]
     332            0 :     pub fn remaining_jobs(
     333            0 :         &self,
     334            0 :     ) -> (
     335            0 :         Option<(GcCompactionJobId, GcCompactionQueueItem)>,
     336            0 :         VecDeque<(GcCompactionJobId, GcCompactionQueueItem)>,
     337            0 :     ) {
     338            0 :         let guard = self.inner.lock().unwrap();
     339            0 :         (guard.running.clone(), guard.queued.clone())
     340            0 :     }
     341              : 
     342              :     #[allow(dead_code)]
     343            0 :     pub fn remaining_jobs_num(&self) -> usize {
     344            0 :         let guard = self.inner.lock().unwrap();
     345            0 :         guard.queued.len() + if guard.running.is_some() { 1 } else { 0 }
     346            0 :     }
     347              : }
     348              : 
     349              : /// A job description for the gc-compaction job. This structure describes the rectangle range that the job will
     350              : /// process. The exact layers that need to be compacted/rewritten will be generated when `compact_with_gc` gets
     351              : /// called.
     352              : #[derive(Debug, Clone)]
     353              : pub(crate) struct GcCompactJob {
     354              :     pub dry_run: bool,
     355              :     /// The key range to be compacted. The compaction algorithm will only regenerate key-value pairs within this range
     356              :     /// [left inclusive, right exclusive), and other pairs will be rewritten into new files if necessary.
     357              :     pub compact_key_range: Range<Key>,
     358              :     /// The LSN range to be compacted. The compaction algorithm will use this range to determine the layers to be
     359              :     /// selected for the compaction, and it does not guarantee the generated layers will have exactly the same LSN range
     360              :     /// as specified here. The true range being compacted is `min_lsn/max_lsn` in [`GcCompactionJobDescription`].
     361              :     /// min_lsn will always <= the lower bound specified here, and max_lsn will always >= the upper bound specified here.
     362              :     pub compact_lsn_range: Range<Lsn>,
     363              : }
     364              : 
     365              : impl GcCompactJob {
     366          108 :     pub fn from_compact_options(options: CompactOptions) -> Self {
     367          108 :         GcCompactJob {
     368          108 :             dry_run: options.flags.contains(CompactFlags::DryRun),
     369          108 :             compact_key_range: options
     370          108 :                 .compact_key_range
     371          108 :                 .map(|x| x.into())
     372          108 :                 .unwrap_or(Key::MIN..Key::MAX),
     373          108 :             compact_lsn_range: options
     374          108 :                 .compact_lsn_range
     375          108 :                 .map(|x| x.into())
     376          108 :                 .unwrap_or(Lsn::INVALID..Lsn::MAX),
     377          108 :         }
     378          108 :     }
     379              : }
     380              : 
     381              : /// A job description for the gc-compaction job. This structure is generated when `compact_with_gc` is called
     382              : /// and contains the exact layers we want to compact.
     383              : pub struct GcCompactionJobDescription {
     384              :     /// All layers to read in the compaction job
     385              :     selected_layers: Vec<Layer>,
     386              :     /// GC cutoff of the job. This is the lowest LSN that will be accessed by the read/GC path and we need to
     387              :     /// keep all deltas <= this LSN or generate an image == this LSN.
     388              :     gc_cutoff: Lsn,
     389              :     /// LSNs to retain for the job. Read path will use this LSN so we need to keep deltas <= this LSN or
     390              :     /// generate an image == this LSN.
     391              :     retain_lsns_below_horizon: Vec<Lsn>,
     392              :     /// Maximum layer LSN processed in this compaction, that is max(end_lsn of layers). Exclusive. All data
     393              :     /// \>= this LSN will be kept and will not be rewritten.
     394              :     max_layer_lsn: Lsn,
     395              :     /// Minimum layer LSN processed in this compaction, that is min(start_lsn of layers). Inclusive.
     396              :     /// All access below (strict lower than `<`) this LSN will be routed through the normal read path instead of
     397              :     /// k-merge within gc-compaction.
     398              :     min_layer_lsn: Lsn,
     399              :     /// Only compact layers overlapping with this range.
     400              :     compaction_key_range: Range<Key>,
     401              :     /// When partial compaction is enabled, these layers need to be rewritten to ensure no overlap.
     402              :     /// This field is here solely for debugging. The field will not be read once the compaction
     403              :     /// description is generated.
     404              :     rewrite_layers: Vec<Arc<PersistentLayerDesc>>,
     405              : }
     406              : 
     407              : /// The result of bottom-most compaction for a single key at each LSN.
     408              : #[derive(Debug)]
     409              : #[cfg_attr(test, derive(PartialEq))]
     410              : pub struct KeyLogAtLsn(pub Vec<(Lsn, Value)>);
     411              : 
     412              : /// The result of bottom-most compaction.
     413              : #[derive(Debug)]
     414              : #[cfg_attr(test, derive(PartialEq))]
     415              : pub(crate) struct KeyHistoryRetention {
     416              :     /// Stores logs to reconstruct the value at the given LSN, that is to say, logs <= LSN or image == LSN.
     417              :     pub(crate) below_horizon: Vec<(Lsn, KeyLogAtLsn)>,
     418              :     /// Stores logs to reconstruct the value at any LSN above the horizon, that is to say, log > LSN.
     419              :     pub(crate) above_horizon: KeyLogAtLsn,
     420              : }
     421              : 
     422              : impl KeyHistoryRetention {
     423              :     /// Hack: skip delta layer if we need to produce a layer of a same key-lsn.
     424              :     ///
     425              :     /// This can happen if we have removed some deltas in "the middle" of some existing layer's key-lsn-range.
     426              :     /// For example, consider the case where a single delta with range [0x10,0x50) exists.
     427              :     /// And we have branches at LSN 0x10, 0x20, 0x30.
     428              :     /// Then we delete branch @ 0x20.
     429              :     /// Bottom-most compaction may now delete the delta [0x20,0x30).
     430              :     /// And that wouldnt' change the shape of the layer.
     431              :     ///
     432              :     /// Note that bottom-most-gc-compaction never _adds_ new data in that case, only removes.
     433              :     ///
     434              :     /// `discard_key` will only be called when the writer reaches its target (instead of for every key), so it's fine to grab a lock inside.
     435          148 :     async fn discard_key(key: &PersistentLayerKey, tline: &Arc<Timeline>, dry_run: bool) -> bool {
     436          148 :         if dry_run {
     437            0 :             return true;
     438          148 :         }
     439          148 :         if LayerMap::is_l0(&key.key_range, key.is_delta) {
     440              :             // gc-compaction should not produce L0 deltas, otherwise it will break the layer order.
     441              :             // We should ignore such layers.
     442            0 :             return true;
     443          148 :         }
     444              :         let layer_generation;
     445              :         {
     446          148 :             let guard = tline.layers.read().await;
     447          148 :             if !guard.contains_key(key) {
     448          104 :                 return false;
     449           44 :             }
     450           44 :             layer_generation = guard.get_from_key(key).metadata().generation;
     451           44 :         }
     452           44 :         if layer_generation == tline.generation {
     453           44 :             info!(
     454              :                 key=%key,
     455              :                 ?layer_generation,
     456            0 :                 "discard layer due to duplicated layer key in the same generation",
     457              :             );
     458           44 :             true
     459              :         } else {
     460            0 :             false
     461              :         }
     462          148 :     }
     463              : 
     464              :     /// Pipe a history of a single key to the writers.
     465              :     ///
     466              :     /// If `image_writer` is none, the images will be placed into the delta layers.
     467              :     /// The delta writer will contain all images and deltas (below and above the horizon) except the bottom-most images.
     468              :     #[allow(clippy::too_many_arguments)]
     469         1244 :     async fn pipe_to(
     470         1244 :         self,
     471         1244 :         key: Key,
     472         1244 :         delta_writer: &mut SplitDeltaLayerWriter,
     473         1244 :         mut image_writer: Option<&mut SplitImageLayerWriter>,
     474         1244 :         stat: &mut CompactionStatistics,
     475         1244 :         ctx: &RequestContext,
     476         1244 :     ) -> anyhow::Result<()> {
     477         1244 :         let mut first_batch = true;
     478         4024 :         for (cutoff_lsn, KeyLogAtLsn(logs)) in self.below_horizon {
     479         2780 :             if first_batch {
     480         1244 :                 if logs.len() == 1 && logs[0].1.is_image() {
     481         1168 :                     let Value::Image(img) = &logs[0].1 else {
     482            0 :                         unreachable!()
     483              :                     };
     484         1168 :                     stat.produce_image_key(img);
     485         1168 :                     if let Some(image_writer) = image_writer.as_mut() {
     486         1168 :                         image_writer.put_image(key, img.clone(), ctx).await?;
     487              :                     } else {
     488            0 :                         delta_writer
     489            0 :                             .put_value(key, cutoff_lsn, Value::Image(img.clone()), ctx)
     490            0 :                             .await?;
     491              :                     }
     492              :                 } else {
     493          132 :                     for (lsn, val) in logs {
     494           56 :                         stat.produce_key(&val);
     495           56 :                         delta_writer.put_value(key, lsn, val, ctx).await?;
     496              :                     }
     497              :                 }
     498         1244 :                 first_batch = false;
     499              :             } else {
     500         1768 :                 for (lsn, val) in logs {
     501          232 :                     stat.produce_key(&val);
     502          232 :                     delta_writer.put_value(key, lsn, val, ctx).await?;
     503              :                 }
     504              :             }
     505              :         }
     506         1244 :         let KeyLogAtLsn(above_horizon_logs) = self.above_horizon;
     507         1360 :         for (lsn, val) in above_horizon_logs {
     508          116 :             stat.produce_key(&val);
     509          116 :             delta_writer.put_value(key, lsn, val, ctx).await?;
     510              :         }
     511         1244 :         Ok(())
     512         1244 :     }
     513              : }
     514              : 
     515              : #[derive(Debug, Serialize, Default)]
     516              : struct CompactionStatisticsNumSize {
     517              :     num: u64,
     518              :     size: u64,
     519              : }
     520              : 
     521              : #[derive(Debug, Serialize, Default)]
     522              : pub struct CompactionStatistics {
     523              :     delta_layer_visited: CompactionStatisticsNumSize,
     524              :     image_layer_visited: CompactionStatisticsNumSize,
     525              :     delta_layer_produced: CompactionStatisticsNumSize,
     526              :     image_layer_produced: CompactionStatisticsNumSize,
     527              :     num_delta_layer_discarded: usize,
     528              :     num_image_layer_discarded: usize,
     529              :     num_unique_keys_visited: usize,
     530              :     wal_keys_visited: CompactionStatisticsNumSize,
     531              :     image_keys_visited: CompactionStatisticsNumSize,
     532              :     wal_produced: CompactionStatisticsNumSize,
     533              :     image_produced: CompactionStatisticsNumSize,
     534              : }
     535              : 
     536              : impl CompactionStatistics {
     537         2084 :     fn estimated_size_of_value(val: &Value) -> usize {
     538          864 :         match val {
     539         1220 :             Value::Image(img) => img.len(),
     540            0 :             Value::WalRecord(NeonWalRecord::Postgres { rec, .. }) => rec.len(),
     541          864 :             _ => std::mem::size_of::<NeonWalRecord>(),
     542              :         }
     543         2084 :     }
     544         3272 :     fn estimated_size_of_key() -> usize {
     545         3272 :         KEY_SIZE // TODO: distinguish image layer and delta layer (count LSN in delta layer)
     546         3272 :     }
     547          172 :     fn visit_delta_layer(&mut self, size: u64) {
     548          172 :         self.delta_layer_visited.num += 1;
     549          172 :         self.delta_layer_visited.size += size;
     550          172 :     }
     551          132 :     fn visit_image_layer(&mut self, size: u64) {
     552          132 :         self.image_layer_visited.num += 1;
     553          132 :         self.image_layer_visited.size += size;
     554          132 :     }
     555         1244 :     fn on_unique_key_visited(&mut self) {
     556         1244 :         self.num_unique_keys_visited += 1;
     557         1244 :     }
     558          480 :     fn visit_wal_key(&mut self, val: &Value) {
     559          480 :         self.wal_keys_visited.num += 1;
     560          480 :         self.wal_keys_visited.size +=
     561          480 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     562          480 :     }
     563         1220 :     fn visit_image_key(&mut self, val: &Value) {
     564         1220 :         self.image_keys_visited.num += 1;
     565         1220 :         self.image_keys_visited.size +=
     566         1220 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     567         1220 :     }
     568          404 :     fn produce_key(&mut self, val: &Value) {
     569          404 :         match val {
     570           20 :             Value::Image(img) => self.produce_image_key(img),
     571          384 :             Value::WalRecord(_) => self.produce_wal_key(val),
     572              :         }
     573          404 :     }
     574          384 :     fn produce_wal_key(&mut self, val: &Value) {
     575          384 :         self.wal_produced.num += 1;
     576          384 :         self.wal_produced.size +=
     577          384 :             Self::estimated_size_of_value(val) as u64 + Self::estimated_size_of_key() as u64;
     578          384 :     }
     579         1188 :     fn produce_image_key(&mut self, val: &Bytes) {
     580         1188 :         self.image_produced.num += 1;
     581         1188 :         self.image_produced.size += val.len() as u64 + Self::estimated_size_of_key() as u64;
     582         1188 :     }
     583           28 :     fn discard_delta_layer(&mut self) {
     584           28 :         self.num_delta_layer_discarded += 1;
     585           28 :     }
     586           16 :     fn discard_image_layer(&mut self) {
     587           16 :         self.num_image_layer_discarded += 1;
     588           16 :     }
     589           44 :     fn produce_delta_layer(&mut self, size: u64) {
     590           44 :         self.delta_layer_produced.num += 1;
     591           44 :         self.delta_layer_produced.size += size;
     592           44 :     }
     593           60 :     fn produce_image_layer(&mut self, size: u64) {
     594           60 :         self.image_layer_produced.num += 1;
     595           60 :         self.image_layer_produced.size += size;
     596           60 :     }
     597              : }
     598              : 
     599              : #[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
     600              : pub enum CompactionOutcome {
     601              :     #[default]
     602              :     /// No layers need to be compacted after this round. Compaction doesn't need
     603              :     /// to be immediately scheduled.
     604              :     Done,
     605              :     /// Still has pending layers to be compacted after this round. Ideally, the scheduler
     606              :     /// should immediately schedule another compaction.
     607              :     Pending,
     608              :     /// A timeline needs L0 compaction. Yield and schedule an immediate L0 compaction pass (only
     609              :     /// guaranteed when `compaction_l0_first` is enabled).
     610              :     YieldForL0,
     611              :     /// Compaction was skipped, because the timeline is ineligible for compaction.
     612              :     Skipped,
     613              : }
     614              : 
     615              : impl Timeline {
     616              :     /// TODO: cancellation
     617              :     ///
     618              :     /// Returns whether the compaction has pending tasks.
     619          728 :     pub(crate) async fn compact_legacy(
     620          728 :         self: &Arc<Self>,
     621          728 :         cancel: &CancellationToken,
     622          728 :         options: CompactOptions,
     623          728 :         ctx: &RequestContext,
     624          728 :     ) -> Result<CompactionOutcome, CompactionError> {
     625          728 :         if options
     626          728 :             .flags
     627          728 :             .contains(CompactFlags::EnhancedGcBottomMostCompaction)
     628              :         {
     629            0 :             self.compact_with_gc(cancel, options, ctx)
     630            0 :                 .await
     631            0 :                 .map_err(CompactionError::Other)?;
     632            0 :             return Ok(CompactionOutcome::Done);
     633          728 :         }
     634          728 : 
     635          728 :         if options.flags.contains(CompactFlags::DryRun) {
     636            0 :             return Err(CompactionError::Other(anyhow!(
     637            0 :                 "dry-run mode is not supported for legacy compaction for now"
     638            0 :             )));
     639          728 :         }
     640          728 : 
     641          728 :         if options.compact_key_range.is_some() || options.compact_lsn_range.is_some() {
     642              :             // maybe useful in the future? could implement this at some point
     643            0 :             return Err(CompactionError::Other(anyhow!(
     644            0 :                 "compaction range is not supported for legacy compaction for now"
     645            0 :             )));
     646          728 :         }
     647          728 : 
     648          728 :         // High level strategy for compaction / image creation:
     649          728 :         //
     650          728 :         // 1. First, do a L0 compaction to ensure we move the L0
     651          728 :         // layers into the historic layer map get flat levels of
     652          728 :         // layers. If we did not compact all L0 layers, we will
     653          728 :         // prioritize compacting the timeline again and not do
     654          728 :         // any of the compactions below.
     655          728 :         //
     656          728 :         // 2. Then, calculate the desired "partitioning" of the
     657          728 :         // currently in-use key space. The goal is to partition the
     658          728 :         // key space into roughly fixed-size chunks, but also take into
     659          728 :         // account any existing image layers, and try to align the
     660          728 :         // chunk boundaries with the existing image layers to avoid
     661          728 :         // too much churn. Also try to align chunk boundaries with
     662          728 :         // relation boundaries.  In principle, we don't know about
     663          728 :         // relation boundaries here, we just deal with key-value
     664          728 :         // pairs, and the code in pgdatadir_mapping.rs knows how to
     665          728 :         // map relations into key-value pairs. But in practice we know
     666          728 :         // that 'field6' is the block number, and the fields 1-5
     667          728 :         // identify a relation. This is just an optimization,
     668          728 :         // though.
     669          728 :         //
     670          728 :         // 3. Once we know the partitioning, for each partition,
     671          728 :         // decide if it's time to create a new image layer. The
     672          728 :         // criteria is: there has been too much "churn" since the last
     673          728 :         // image layer? The "churn" is fuzzy concept, it's a
     674          728 :         // combination of too many delta files, or too much WAL in
     675          728 :         // total in the delta file. Or perhaps: if creating an image
     676          728 :         // file would allow to delete some older files.
     677          728 :         //
     678          728 :         // 4. In the end, if the tenant gets auto-sharded, we will run
     679          728 :         // a shard-ancestor compaction.
     680          728 : 
     681          728 :         // Is the timeline being deleted?
     682          728 :         if self.is_stopping() {
     683            0 :             trace!("Dropping out of compaction on timeline shutdown");
     684            0 :             return Err(CompactionError::ShuttingDown);
     685          728 :         }
     686          728 : 
     687          728 :         let target_file_size = self.get_checkpoint_distance();
     688              : 
     689              :         // Define partitioning schema if needed
     690              : 
     691              :         // 1. L0 Compact
     692          728 :         let l0_outcome = {
     693          728 :             let timer = self.metrics.compact_time_histo.start_timer();
     694          728 :             let l0_outcome = self
     695          728 :                 .compact_level0(
     696          728 :                     target_file_size,
     697          728 :                     options.flags.contains(CompactFlags::ForceL0Compaction),
     698          728 :                     ctx,
     699          728 :                 )
     700          728 :                 .await?;
     701          728 :             timer.stop_and_record();
     702          728 :             l0_outcome
     703          728 :         };
     704          728 : 
     705          728 :         if options.flags.contains(CompactFlags::OnlyL0Compaction) {
     706            0 :             return Ok(l0_outcome);
     707          728 :         }
     708          728 : 
     709          728 :         // Yield if we have pending L0 compaction. The scheduler will do another pass.
     710          728 :         if (l0_outcome == CompactionOutcome::Pending || l0_outcome == CompactionOutcome::YieldForL0)
     711            0 :             && !options.flags.contains(CompactFlags::NoYield)
     712              :         {
     713            0 :             info!("image/ancestor compaction yielding for L0 compaction");
     714            0 :             return Ok(CompactionOutcome::YieldForL0);
     715          728 :         }
     716          728 : 
     717          728 :         // 2. Repartition and create image layers if necessary
     718          728 :         match self
     719          728 :             .repartition(
     720          728 :                 self.get_last_record_lsn(),
     721          728 :                 self.get_compaction_target_size(),
     722          728 :                 options.flags,
     723          728 :                 ctx,
     724          728 :             )
     725          728 :             .await
     726              :         {
     727          728 :             Ok(((dense_partitioning, sparse_partitioning), lsn)) => {
     728          728 :                 // Disables access_stats updates, so that the files we read remain candidates for eviction after we're done with them
     729          728 :                 let image_ctx = RequestContextBuilder::extend(ctx)
     730          728 :                     .access_stats_behavior(AccessStatsBehavior::Skip)
     731          728 :                     .build();
     732          728 : 
     733          728 :                 let mut partitioning = dense_partitioning;
     734          728 :                 partitioning
     735          728 :                     .parts
     736          728 :                     .extend(sparse_partitioning.into_dense().parts);
     737              : 
     738              :                 // 3. Create new image layers for partitions that have been modified "enough".
     739          728 :                 let (image_layers, outcome) = self
     740          728 :                     .create_image_layers(
     741          728 :                         &partitioning,
     742          728 :                         lsn,
     743          728 :                         if options
     744          728 :                             .flags
     745          728 :                             .contains(CompactFlags::ForceImageLayerCreation)
     746              :                         {
     747           28 :                             ImageLayerCreationMode::Force
     748              :                         } else {
     749          700 :                             ImageLayerCreationMode::Try
     750              :                         },
     751          728 :                         &image_ctx,
     752          728 :                         self.last_image_layer_creation_status
     753          728 :                             .load()
     754          728 :                             .as_ref()
     755          728 :                             .clone(),
     756          728 :                         !options.flags.contains(CompactFlags::NoYield),
     757          728 :                     )
     758          728 :                     .await
     759          728 :                     .inspect_err(|err| {
     760              :                         if let CreateImageLayersError::GetVectoredError(
     761              :                             GetVectoredError::MissingKey(_),
     762            0 :                         ) = err
     763              :                         {
     764            0 :                             critical!("missing key during compaction: {err:?}");
     765            0 :                         }
     766          728 :                     })?;
     767              : 
     768          728 :                 self.last_image_layer_creation_status
     769          728 :                     .store(Arc::new(outcome.clone()));
     770          728 : 
     771          728 :                 self.upload_new_image_layers(image_layers)?;
     772          728 :                 if let LastImageLayerCreationStatus::Incomplete { .. } = outcome {
     773              :                     // Yield and do not do any other kind of compaction.
     774            0 :                     info!("skipping shard ancestor compaction due to pending image layer generation tasks (preempted by L0 compaction).");
     775            0 :                     return Ok(CompactionOutcome::YieldForL0);
     776          728 :                 }
     777              :             }
     778              : 
     779              :             // Suppress errors when cancelled.
     780            0 :             Err(_) if self.cancel.is_cancelled() => {}
     781            0 :             Err(CompactionError::ShuttingDown) => {}
     782              : 
     783              :             // Alert on critical errors that indicate data corruption.
     784              :             Err(
     785            0 :                 err @ CompactionError::CollectKeySpaceError(
     786            0 :                     CollectKeySpaceError::Decode(_)
     787            0 :                     | CollectKeySpaceError::PageRead(
     788            0 :                         PageReconstructError::MissingKey(_) | PageReconstructError::WalRedo(_),
     789            0 :                     ),
     790            0 :                 ),
     791            0 :             ) => critical!("could not compact, repartitioning keyspace failed: {err:?}"),
     792              : 
     793              :             // Log other errors. No partitioning? This is normal, if the timeline was just created
     794              :             // as an empty timeline. Also in unit tests, when we use the timeline as a simple
     795              :             // key-value store, ignoring the datadir layout. Log the error but continue.
     796            0 :             Err(err) => error!("could not compact, repartitioning keyspace failed: {err:?}"),
     797              :         };
     798              : 
     799          728 :         let partition_count = self.partitioning.read().0 .0.parts.len();
     800          728 : 
     801          728 :         // 4. Shard ancestor compaction
     802          728 : 
     803          728 :         if self.shard_identity.count >= ShardCount::new(2) {
     804              :             // Limit the number of layer rewrites to the number of partitions: this means its
     805              :             // runtime should be comparable to a full round of image layer creations, rather than
     806              :             // being potentially much longer.
     807            0 :             let rewrite_max = partition_count;
     808            0 : 
     809            0 :             self.compact_shard_ancestors(rewrite_max, ctx).await?;
     810          728 :         }
     811              : 
     812          728 :         Ok(CompactionOutcome::Done)
     813          728 :     }
     814              : 
     815              :     /// Check for layers that are elegible to be rewritten:
     816              :     /// - Shard splitting: After a shard split, ancestor layers beyond pitr_interval, so that
     817              :     ///   we don't indefinitely retain keys in this shard that aren't needed.
     818              :     /// - For future use: layers beyond pitr_interval that are in formats we would
     819              :     ///   rather not maintain compatibility with indefinitely.
     820              :     ///
     821              :     /// Note: this phase may read and write many gigabytes of data: use rewrite_max to bound
     822              :     /// how much work it will try to do in each compaction pass.
     823            0 :     async fn compact_shard_ancestors(
     824            0 :         self: &Arc<Self>,
     825            0 :         rewrite_max: usize,
     826            0 :         ctx: &RequestContext,
     827            0 :     ) -> Result<(), CompactionError> {
     828            0 :         let mut drop_layers = Vec::new();
     829            0 :         let mut layers_to_rewrite: Vec<Layer> = Vec::new();
     830            0 : 
     831            0 :         // We will use the Lsn cutoff of the last GC as a threshold for rewriting layers: if a
     832            0 :         // layer is behind this Lsn, it indicates that the layer is being retained beyond the
     833            0 :         // pitr_interval, for example because a branchpoint references it.
     834            0 :         //
     835            0 :         // Holding this read guard also blocks [`Self::gc_timeline`] from entering while we
     836            0 :         // are rewriting layers.
     837            0 :         let latest_gc_cutoff = self.get_applied_gc_cutoff_lsn();
     838            0 : 
     839            0 :         tracing::info!(
     840            0 :             "latest_gc_cutoff: {}, pitr cutoff {}",
     841            0 :             *latest_gc_cutoff,
     842            0 :             self.gc_info.read().unwrap().cutoffs.time
     843              :         );
     844              : 
     845            0 :         let layers = self.layers.read().await;
     846            0 :         for layer_desc in layers.layer_map()?.iter_historic_layers() {
     847            0 :             let layer = layers.get_from_desc(&layer_desc);
     848            0 :             if layer.metadata().shard.shard_count == self.shard_identity.count {
     849              :                 // This layer does not belong to a historic ancestor, no need to re-image it.
     850            0 :                 continue;
     851            0 :             }
     852            0 : 
     853            0 :             // This layer was created on an ancestor shard: check if it contains any data for this shard.
     854            0 :             let sharded_range = ShardedRange::new(layer_desc.get_key_range(), &self.shard_identity);
     855            0 :             let layer_local_page_count = sharded_range.page_count();
     856            0 :             let layer_raw_page_count = ShardedRange::raw_size(&layer_desc.get_key_range());
     857            0 :             if layer_local_page_count == 0 {
     858              :                 // This ancestral layer only covers keys that belong to other shards.
     859              :                 // We include the full metadata in the log: if we had some critical bug that caused
     860              :                 // us to incorrectly drop layers, this would simplify manually debugging + reinstating those layers.
     861            0 :                 info!(%layer, old_metadata=?layer.metadata(),
     862            0 :                     "dropping layer after shard split, contains no keys for this shard.",
     863              :                 );
     864              : 
     865            0 :                 if cfg!(debug_assertions) {
     866              :                     // Expensive, exhaustive check of keys in this layer: this guards against ShardedRange's calculations being
     867              :                     // wrong.  If ShardedRange claims the local page count is zero, then no keys in this layer
     868              :                     // should be !is_key_disposable()
     869            0 :                     let range = layer_desc.get_key_range();
     870            0 :                     let mut key = range.start;
     871            0 :                     while key < range.end {
     872            0 :                         debug_assert!(self.shard_identity.is_key_disposable(&key));
     873            0 :                         key = key.next();
     874              :                     }
     875            0 :                 }
     876              : 
     877            0 :                 drop_layers.push(layer);
     878            0 :                 continue;
     879            0 :             } else if layer_local_page_count != u32::MAX
     880            0 :                 && layer_local_page_count == layer_raw_page_count
     881              :             {
     882            0 :                 debug!(%layer,
     883            0 :                     "layer is entirely shard local ({} keys), no need to filter it",
     884              :                     layer_local_page_count
     885              :                 );
     886            0 :                 continue;
     887            0 :             }
     888            0 : 
     889            0 :             // Don't bother re-writing a layer unless it will at least halve its size
     890            0 :             if layer_local_page_count != u32::MAX
     891            0 :                 && layer_local_page_count > layer_raw_page_count / 2
     892              :             {
     893            0 :                 debug!(%layer,
     894            0 :                     "layer is already mostly local ({}/{}), not rewriting",
     895              :                     layer_local_page_count,
     896              :                     layer_raw_page_count
     897              :                 );
     898            0 :             }
     899              : 
     900              :             // Don't bother re-writing a layer if it is within the PITR window: it will age-out eventually
     901              :             // without incurring the I/O cost of a rewrite.
     902            0 :             if layer_desc.get_lsn_range().end >= *latest_gc_cutoff {
     903            0 :                 debug!(%layer, "Skipping rewrite of layer still in GC window ({} >= {})",
     904            0 :                     layer_desc.get_lsn_range().end, *latest_gc_cutoff);
     905            0 :                 continue;
     906            0 :             }
     907            0 : 
     908            0 :             if layer_desc.is_delta() {
     909              :                 // We do not yet implement rewrite of delta layers
     910            0 :                 debug!(%layer, "Skipping rewrite of delta layer");
     911            0 :                 continue;
     912            0 :             }
     913            0 : 
     914            0 :             // Only rewrite layers if their generations differ.  This guarantees:
     915            0 :             //  - that local rewrite is safe, as local layer paths will differ between existing layer and rewritten one
     916            0 :             //  - that the layer is persistent in remote storage, as we only see old-generation'd layer via loading from remote storage
     917            0 :             if layer.metadata().generation == self.generation {
     918            0 :                 debug!(%layer, "Skipping rewrite, is not from old generation");
     919            0 :                 continue;
     920            0 :             }
     921            0 : 
     922            0 :             if layers_to_rewrite.len() >= rewrite_max {
     923            0 :                 tracing::info!(%layer, "Will rewrite layer on a future compaction, already rewrote {}",
     924            0 :                     layers_to_rewrite.len()
     925              :                 );
     926            0 :                 continue;
     927            0 :             }
     928            0 : 
     929            0 :             // Fall through: all our conditions for doing a rewrite passed.
     930            0 :             layers_to_rewrite.push(layer);
     931              :         }
     932              : 
     933              :         // Drop read lock on layer map before we start doing time-consuming I/O
     934            0 :         drop(layers);
     935            0 : 
     936            0 :         let mut replace_image_layers = Vec::new();
     937              : 
     938            0 :         for layer in layers_to_rewrite {
     939            0 :             tracing::info!(layer=%layer, "Rewriting layer after shard split...");
     940            0 :             let mut image_layer_writer = ImageLayerWriter::new(
     941            0 :                 self.conf,
     942            0 :                 self.timeline_id,
     943            0 :                 self.tenant_shard_id,
     944            0 :                 &layer.layer_desc().key_range,
     945            0 :                 layer.layer_desc().image_layer_lsn(),
     946            0 :                 ctx,
     947            0 :             )
     948            0 :             .await
     949            0 :             .map_err(CompactionError::Other)?;
     950              : 
     951              :             // Safety of layer rewrites:
     952              :             // - We are writing to a different local file path than we are reading from, so the old Layer
     953              :             //   cannot interfere with the new one.
     954              :             // - In the page cache, contents for a particular VirtualFile are stored with a file_id that
     955              :             //   is different for two layers with the same name (in `ImageLayerInner::new` we always
     956              :             //   acquire a fresh id from [`crate::page_cache::next_file_id`].  So readers do not risk
     957              :             //   reading the index from one layer file, and then data blocks from the rewritten layer file.
     958              :             // - Any readers that have a reference to the old layer will keep it alive until they are done
     959              :             //   with it. If they are trying to promote from remote storage, that will fail, but this is the same
     960              :             //   as for compaction generally: compaction is allowed to delete layers that readers might be trying to use.
     961              :             // - We do not run concurrently with other kinds of compaction, so the only layer map writes we race with are:
     962              :             //    - GC, which at worst witnesses us "undelete" a layer that they just deleted.
     963              :             //    - ingestion, which only inserts layers, therefore cannot collide with us.
     964            0 :             let resident = layer.download_and_keep_resident().await?;
     965              : 
     966            0 :             let keys_written = resident
     967            0 :                 .filter(&self.shard_identity, &mut image_layer_writer, ctx)
     968            0 :                 .await?;
     969              : 
     970            0 :             if keys_written > 0 {
     971            0 :                 let (desc, path) = image_layer_writer
     972            0 :                     .finish(ctx)
     973            0 :                     .await
     974            0 :                     .map_err(CompactionError::Other)?;
     975            0 :                 let new_layer = Layer::finish_creating(self.conf, self, desc, &path)
     976            0 :                     .map_err(CompactionError::Other)?;
     977            0 :                 tracing::info!(layer=%new_layer, "Rewrote layer, {} -> {} bytes",
     978            0 :                     layer.metadata().file_size,
     979            0 :                     new_layer.metadata().file_size);
     980              : 
     981            0 :                 replace_image_layers.push((layer, new_layer));
     982            0 :             } else {
     983            0 :                 // Drop the old layer.  Usually for this case we would already have noticed that
     984            0 :                 // the layer has no data for us with the ShardedRange check above, but
     985            0 :                 drop_layers.push(layer);
     986            0 :             }
     987              :         }
     988              : 
     989              :         // At this point, we have replaced local layer files with their rewritten form, but not yet uploaded
     990              :         // metadata to reflect that. If we restart here, the replaced layer files will look invalid (size mismatch
     991              :         // to remote index) and be removed. This is inefficient but safe.
     992            0 :         fail::fail_point!("compact-shard-ancestors-localonly");
     993            0 : 
     994            0 :         // Update the LayerMap so that readers will use the new layers, and enqueue it for writing to remote storage
     995            0 :         self.rewrite_layers(replace_image_layers, drop_layers)
     996            0 :             .await?;
     997              : 
     998            0 :         fail::fail_point!("compact-shard-ancestors-enqueued");
     999            0 : 
    1000            0 :         // We wait for all uploads to complete before finishing this compaction stage.  This is not
    1001            0 :         // necessary for correctness, but it simplifies testing, and avoids proceeding with another
    1002            0 :         // Timeline's compaction while this timeline's uploads may be generating lots of disk I/O
    1003            0 :         // load.
    1004            0 :         match self.remote_client.wait_completion().await {
    1005            0 :             Ok(()) => (),
    1006            0 :             Err(WaitCompletionError::NotInitialized(ni)) => return Err(CompactionError::from(ni)),
    1007              :             Err(WaitCompletionError::UploadQueueShutDownOrStopped) => {
    1008            0 :                 return Err(CompactionError::ShuttingDown)
    1009              :             }
    1010              :         }
    1011              : 
    1012            0 :         fail::fail_point!("compact-shard-ancestors-persistent");
    1013            0 : 
    1014            0 :         Ok(())
    1015            0 :     }
    1016              : 
    1017              :     /// Update the LayerVisibilityHint of layers covered by image layers, based on whether there is
    1018              :     /// an image layer between them and the most recent readable LSN (branch point or tip of timeline).  The
    1019              :     /// purpose of the visibility hint is to record which layers need to be available to service reads.
    1020              :     ///
    1021              :     /// The result may be used as an input to eviction and secondary downloads to de-prioritize layers
    1022              :     /// that we know won't be needed for reads.
    1023          460 :     pub(super) async fn update_layer_visibility(
    1024          460 :         &self,
    1025          460 :     ) -> Result<(), super::layer_manager::Shutdown> {
    1026          460 :         let head_lsn = self.get_last_record_lsn();
    1027              : 
    1028              :         // We will sweep through layers in reverse-LSN order.  We only do historic layers.  L0 deltas
    1029              :         // are implicitly left visible, because LayerVisibilityHint's default is Visible, and we never modify it here.
    1030              :         // Note that L0 deltas _can_ be covered by image layers, but we consider them 'visible' because we anticipate that
    1031              :         // they will be subject to L0->L1 compaction in the near future.
    1032          460 :         let layer_manager = self.layers.read().await;
    1033          460 :         let layer_map = layer_manager.layer_map()?;
    1034              : 
    1035          460 :         let readable_points = {
    1036          460 :             let children = self.gc_info.read().unwrap().retain_lsns.clone();
    1037          460 : 
    1038          460 :             let mut readable_points = Vec::with_capacity(children.len() + 1);
    1039          460 :             for (child_lsn, _child_timeline_id, is_offloaded) in &children {
    1040            0 :                 if *is_offloaded == MaybeOffloaded::Yes {
    1041            0 :                     continue;
    1042            0 :                 }
    1043            0 :                 readable_points.push(*child_lsn);
    1044              :             }
    1045          460 :             readable_points.push(head_lsn);
    1046          460 :             readable_points
    1047          460 :         };
    1048          460 : 
    1049          460 :         let (layer_visibility, covered) = layer_map.get_visibility(readable_points);
    1050         1168 :         for (layer_desc, visibility) in layer_visibility {
    1051          708 :             // FIXME: a more efficiency bulk zip() through the layers rather than NlogN getting each one
    1052          708 :             let layer = layer_manager.get_from_desc(&layer_desc);
    1053          708 :             layer.set_visibility(visibility);
    1054          708 :         }
    1055              : 
    1056              :         // TODO: publish our covered KeySpace to our parent, so that when they update their visibility, they can
    1057              :         // avoid assuming that everything at a branch point is visible.
    1058          460 :         drop(covered);
    1059          460 :         Ok(())
    1060          460 :     }
    1061              : 
    1062              :     /// Collect a bunch of Level 0 layer files, and compact and reshuffle them as
    1063              :     /// as Level 1 files. Returns whether the L0 layers are fully compacted.
    1064          728 :     async fn compact_level0(
    1065          728 :         self: &Arc<Self>,
    1066          728 :         target_file_size: u64,
    1067          728 :         force_compaction_ignore_threshold: bool,
    1068          728 :         ctx: &RequestContext,
    1069          728 :     ) -> Result<CompactionOutcome, CompactionError> {
    1070              :         let CompactLevel0Phase1Result {
    1071          728 :             new_layers,
    1072          728 :             deltas_to_compact,
    1073          728 :             outcome,
    1074              :         } = {
    1075          728 :             let phase1_span = info_span!("compact_level0_phase1");
    1076          728 :             let ctx = ctx.attached_child();
    1077          728 :             let mut stats = CompactLevel0Phase1StatsBuilder {
    1078          728 :                 version: Some(2),
    1079          728 :                 tenant_id: Some(self.tenant_shard_id),
    1080          728 :                 timeline_id: Some(self.timeline_id),
    1081          728 :                 ..Default::default()
    1082          728 :             };
    1083          728 : 
    1084          728 :             let begin = tokio::time::Instant::now();
    1085          728 :             let phase1_layers_locked = self.layers.read().await;
    1086          728 :             let now = tokio::time::Instant::now();
    1087          728 :             stats.read_lock_acquisition_micros =
    1088          728 :                 DurationRecorder::Recorded(RecordedDuration(now - begin), now);
    1089          728 :             self.compact_level0_phase1(
    1090          728 :                 phase1_layers_locked,
    1091          728 :                 stats,
    1092          728 :                 target_file_size,
    1093          728 :                 force_compaction_ignore_threshold,
    1094          728 :                 &ctx,
    1095          728 :             )
    1096          728 :             .instrument(phase1_span)
    1097          728 :             .await?
    1098              :         };
    1099              : 
    1100          728 :         if new_layers.is_empty() && deltas_to_compact.is_empty() {
    1101              :             // nothing to do
    1102          672 :             return Ok(CompactionOutcome::Done);
    1103           56 :         }
    1104           56 : 
    1105           56 :         self.finish_compact_batch(&new_layers, &Vec::new(), &deltas_to_compact)
    1106           56 :             .await?;
    1107           56 :         Ok(outcome)
    1108          728 :     }
    1109              : 
    1110              :     /// Level0 files first phase of compaction, explained in the [`Self::compact_legacy`] comment.
    1111          728 :     async fn compact_level0_phase1<'a>(
    1112          728 :         self: &'a Arc<Self>,
    1113          728 :         guard: tokio::sync::RwLockReadGuard<'a, LayerManager>,
    1114          728 :         mut stats: CompactLevel0Phase1StatsBuilder,
    1115          728 :         target_file_size: u64,
    1116          728 :         force_compaction_ignore_threshold: bool,
    1117          728 :         ctx: &RequestContext,
    1118          728 :     ) -> Result<CompactLevel0Phase1Result, CompactionError> {
    1119          728 :         stats.read_lock_held_spawn_blocking_startup_micros =
    1120          728 :             stats.read_lock_acquisition_micros.till_now(); // set by caller
    1121          728 :         let layers = guard.layer_map()?;
    1122          728 :         let level0_deltas = layers.level0_deltas();
    1123          728 :         stats.level0_deltas_count = Some(level0_deltas.len());
    1124          728 : 
    1125          728 :         // Only compact if enough layers have accumulated.
    1126          728 :         let threshold = self.get_compaction_threshold();
    1127          728 :         if level0_deltas.is_empty() || level0_deltas.len() < threshold {
    1128          672 :             if force_compaction_ignore_threshold {
    1129            0 :                 if !level0_deltas.is_empty() {
    1130            0 :                     info!(
    1131            0 :                         level0_deltas = level0_deltas.len(),
    1132            0 :                         threshold, "too few deltas to compact, but forcing compaction"
    1133              :                     );
    1134              :                 } else {
    1135            0 :                     info!(
    1136            0 :                         level0_deltas = level0_deltas.len(),
    1137            0 :                         threshold, "too few deltas to compact, cannot force compaction"
    1138              :                     );
    1139            0 :                     return Ok(CompactLevel0Phase1Result::default());
    1140              :                 }
    1141              :             } else {
    1142          672 :                 debug!(
    1143            0 :                     level0_deltas = level0_deltas.len(),
    1144            0 :                     threshold, "too few deltas to compact"
    1145              :                 );
    1146          672 :                 return Ok(CompactLevel0Phase1Result::default());
    1147              :             }
    1148           56 :         }
    1149              : 
    1150           56 :         let mut level0_deltas = level0_deltas
    1151           56 :             .iter()
    1152          804 :             .map(|x| guard.get_from_desc(x))
    1153           56 :             .collect::<Vec<_>>();
    1154           56 : 
    1155           56 :         // Gather the files to compact in this iteration.
    1156           56 :         //
    1157           56 :         // Start with the oldest Level 0 delta file, and collect any other
    1158           56 :         // level 0 files that form a contiguous sequence, such that the end
    1159           56 :         // LSN of previous file matches the start LSN of the next file.
    1160           56 :         //
    1161           56 :         // Note that if the files don't form such a sequence, we might
    1162           56 :         // "compact" just a single file. That's a bit pointless, but it allows
    1163           56 :         // us to get rid of the level 0 file, and compact the other files on
    1164           56 :         // the next iteration. This could probably made smarter, but such
    1165           56 :         // "gaps" in the sequence of level 0 files should only happen in case
    1166           56 :         // of a crash, partial download from cloud storage, or something like
    1167           56 :         // that, so it's not a big deal in practice.
    1168         1496 :         level0_deltas.sort_by_key(|l| l.layer_desc().lsn_range.start);
    1169           56 :         let mut level0_deltas_iter = level0_deltas.iter();
    1170           56 : 
    1171           56 :         let first_level0_delta = level0_deltas_iter.next().unwrap();
    1172           56 :         let mut prev_lsn_end = first_level0_delta.layer_desc().lsn_range.end;
    1173           56 :         let mut deltas_to_compact = Vec::with_capacity(level0_deltas.len());
    1174           56 : 
    1175           56 :         // Accumulate the size of layers in `deltas_to_compact`
    1176           56 :         let mut deltas_to_compact_bytes = 0;
    1177           56 : 
    1178           56 :         // Under normal circumstances, we will accumulate up to compaction_upper_limit L0s of size
    1179           56 :         // checkpoint_distance each.  To avoid edge cases using extra system resources, bound our
    1180           56 :         // work in this function to only operate on this much delta data at once.
    1181           56 :         //
    1182           56 :         // In general, compaction_threshold should be <= compaction_upper_limit, but in case that
    1183           56 :         // the constraint is not respected, we use the larger of the two.
    1184           56 :         let delta_size_limit = std::cmp::max(
    1185           56 :             self.get_compaction_upper_limit(),
    1186           56 :             self.get_compaction_threshold(),
    1187           56 :         ) as u64
    1188           56 :             * std::cmp::max(self.get_checkpoint_distance(), DEFAULT_CHECKPOINT_DISTANCE);
    1189           56 : 
    1190           56 :         let mut fully_compacted = true;
    1191           56 : 
    1192           56 :         deltas_to_compact.push(first_level0_delta.download_and_keep_resident().await?);
    1193          804 :         for l in level0_deltas_iter {
    1194          748 :             let lsn_range = &l.layer_desc().lsn_range;
    1195          748 : 
    1196          748 :             if lsn_range.start != prev_lsn_end {
    1197            0 :                 break;
    1198          748 :             }
    1199          748 :             deltas_to_compact.push(l.download_and_keep_resident().await?);
    1200          748 :             deltas_to_compact_bytes += l.metadata().file_size;
    1201          748 :             prev_lsn_end = lsn_range.end;
    1202          748 : 
    1203          748 :             if deltas_to_compact_bytes >= delta_size_limit {
    1204            0 :                 info!(
    1205            0 :                     l0_deltas_selected = deltas_to_compact.len(),
    1206            0 :                     l0_deltas_total = level0_deltas.len(),
    1207            0 :                     "L0 compaction picker hit max delta layer size limit: {}",
    1208              :                     delta_size_limit
    1209              :                 );
    1210            0 :                 fully_compacted = false;
    1211            0 : 
    1212            0 :                 // Proceed with compaction, but only a subset of L0s
    1213            0 :                 break;
    1214          748 :             }
    1215              :         }
    1216           56 :         let lsn_range = Range {
    1217           56 :             start: deltas_to_compact
    1218           56 :                 .first()
    1219           56 :                 .unwrap()
    1220           56 :                 .layer_desc()
    1221           56 :                 .lsn_range
    1222           56 :                 .start,
    1223           56 :             end: deltas_to_compact.last().unwrap().layer_desc().lsn_range.end,
    1224           56 :         };
    1225           56 : 
    1226           56 :         info!(
    1227            0 :             "Starting Level0 compaction in LSN range {}-{} for {} layers ({} deltas in total)",
    1228            0 :             lsn_range.start,
    1229            0 :             lsn_range.end,
    1230            0 :             deltas_to_compact.len(),
    1231            0 :             level0_deltas.len()
    1232              :         );
    1233              : 
    1234          804 :         for l in deltas_to_compact.iter() {
    1235          804 :             info!("compact includes {l}");
    1236              :         }
    1237              : 
    1238              :         // We don't need the original list of layers anymore. Drop it so that
    1239              :         // we don't accidentally use it later in the function.
    1240           56 :         drop(level0_deltas);
    1241           56 : 
    1242           56 :         stats.read_lock_held_prerequisites_micros = stats
    1243           56 :             .read_lock_held_spawn_blocking_startup_micros
    1244           56 :             .till_now();
    1245              : 
    1246              :         // TODO: replace with streaming k-merge
    1247           56 :         let all_keys = {
    1248           56 :             let mut all_keys = Vec::new();
    1249          804 :             for l in deltas_to_compact.iter() {
    1250          804 :                 if self.cancel.is_cancelled() {
    1251            0 :                     return Err(CompactionError::ShuttingDown);
    1252          804 :                 }
    1253          804 :                 let delta = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1254          804 :                 let keys = delta
    1255          804 :                     .index_entries(ctx)
    1256          804 :                     .await
    1257          804 :                     .map_err(CompactionError::Other)?;
    1258          804 :                 all_keys.extend(keys);
    1259              :             }
    1260              :             // The current stdlib sorting implementation is designed in a way where it is
    1261              :             // particularly fast where the slice is made up of sorted sub-ranges.
    1262      8847538 :             all_keys.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    1263           56 :             all_keys
    1264           56 :         };
    1265           56 : 
    1266           56 :         stats.read_lock_held_key_sort_micros = stats.read_lock_held_prerequisites_micros.till_now();
    1267              : 
    1268              :         // Determine N largest holes where N is number of compacted layers. The vec is sorted by key range start.
    1269              :         //
    1270              :         // A hole is a key range for which this compaction doesn't have any WAL records.
    1271              :         // Our goal in this compaction iteration is to avoid creating L1s that, in terms of their key range,
    1272              :         // cover the hole, but actually don't contain any WAL records for that key range.
    1273              :         // The reason is that the mere stack of L1s (`count_deltas`) triggers image layer creation (`create_image_layers`).
    1274              :         // That image layer creation would be useless for a hole range covered by L1s that don't contain any WAL records.
    1275              :         //
    1276              :         // The algorithm chooses holes as follows.
    1277              :         // - Slide a 2-window over the keys in key orde to get the hole range (=distance between two keys).
    1278              :         // - Filter: min threshold on range length
    1279              :         // - Rank: by coverage size (=number of image layers required to reconstruct each key in the range for which we have any data)
    1280              :         //
    1281              :         // For more details, intuition, and some ASCII art see https://github.com/neondatabase/neon/pull/3597#discussion_r1112704451
    1282              :         #[derive(PartialEq, Eq)]
    1283              :         struct Hole {
    1284              :             key_range: Range<Key>,
    1285              :             coverage_size: usize,
    1286              :         }
    1287           56 :         let holes: Vec<Hole> = {
    1288              :             use std::cmp::Ordering;
    1289              :             impl Ord for Hole {
    1290            0 :                 fn cmp(&self, other: &Self) -> Ordering {
    1291            0 :                     self.coverage_size.cmp(&other.coverage_size).reverse()
    1292            0 :                 }
    1293              :             }
    1294              :             impl PartialOrd for Hole {
    1295            0 :                 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
    1296            0 :                     Some(self.cmp(other))
    1297            0 :                 }
    1298              :             }
    1299           56 :             let max_holes = deltas_to_compact.len();
    1300           56 :             let last_record_lsn = self.get_last_record_lsn();
    1301           56 :             let min_hole_range = (target_file_size / page_cache::PAGE_SZ as u64) as i128;
    1302           56 :             let min_hole_coverage_size = 3; // TODO: something more flexible?
    1303           56 :                                             // min-heap (reserve space for one more element added before eviction)
    1304           56 :             let mut heap: BinaryHeap<Hole> = BinaryHeap::with_capacity(max_holes + 1);
    1305           56 :             let mut prev: Option<Key> = None;
    1306              : 
    1307      4128076 :             for &DeltaEntry { key: next_key, .. } in all_keys.iter() {
    1308      4128076 :                 if let Some(prev_key) = prev {
    1309              :                     // just first fast filter, do not create hole entries for metadata keys. The last hole in the
    1310              :                     // compaction is the gap between data key and metadata keys.
    1311      4128020 :                     if next_key.to_i128() - prev_key.to_i128() >= min_hole_range
    1312            0 :                         && !Key::is_metadata_key(&prev_key)
    1313              :                     {
    1314            0 :                         let key_range = prev_key..next_key;
    1315            0 :                         // Measuring hole by just subtraction of i128 representation of key range boundaries
    1316            0 :                         // has not so much sense, because largest holes will corresponds field1/field2 changes.
    1317            0 :                         // But we are mostly interested to eliminate holes which cause generation of excessive image layers.
    1318            0 :                         // That is why it is better to measure size of hole as number of covering image layers.
    1319            0 :                         let coverage_size =
    1320            0 :                             layers.image_coverage(&key_range, last_record_lsn).len();
    1321            0 :                         if coverage_size >= min_hole_coverage_size {
    1322            0 :                             heap.push(Hole {
    1323            0 :                                 key_range,
    1324            0 :                                 coverage_size,
    1325            0 :                             });
    1326            0 :                             if heap.len() > max_holes {
    1327            0 :                                 heap.pop(); // remove smallest hole
    1328            0 :                             }
    1329            0 :                         }
    1330      4128020 :                     }
    1331           56 :                 }
    1332      4128076 :                 prev = Some(next_key.next());
    1333              :             }
    1334           56 :             let mut holes = heap.into_vec();
    1335           56 :             holes.sort_unstable_by_key(|hole| hole.key_range.start);
    1336           56 :             holes
    1337           56 :         };
    1338           56 :         stats.read_lock_held_compute_holes_micros = stats.read_lock_held_key_sort_micros.till_now();
    1339           56 :         drop_rlock(guard);
    1340           56 : 
    1341           56 :         if self.cancel.is_cancelled() {
    1342            0 :             return Err(CompactionError::ShuttingDown);
    1343           56 :         }
    1344           56 : 
    1345           56 :         stats.read_lock_drop_micros = stats.read_lock_held_compute_holes_micros.till_now();
    1346              : 
    1347              :         // This iterator walks through all key-value pairs from all the layers
    1348              :         // we're compacting, in key, LSN order.
    1349              :         // If there's both a Value::Image and Value::WalRecord for the same (key,lsn),
    1350              :         // then the Value::Image is ordered before Value::WalRecord.
    1351           56 :         let mut all_values_iter = {
    1352           56 :             let mut deltas = Vec::with_capacity(deltas_to_compact.len());
    1353          804 :             for l in deltas_to_compact.iter() {
    1354          804 :                 let l = l.get_as_delta(ctx).await.map_err(CompactionError::Other)?;
    1355          804 :                 deltas.push(l);
    1356              :             }
    1357           56 :             MergeIterator::create(&deltas, &[], ctx)
    1358           56 :         };
    1359           56 : 
    1360           56 :         // This iterator walks through all keys and is needed to calculate size used by each key
    1361           56 :         let mut all_keys_iter = all_keys
    1362           56 :             .iter()
    1363      4128076 :             .map(|DeltaEntry { key, lsn, size, .. }| (*key, *lsn, *size))
    1364      4128020 :             .coalesce(|mut prev, cur| {
    1365      4128020 :                 // Coalesce keys that belong to the same key pair.
    1366      4128020 :                 // This ensures that compaction doesn't put them
    1367      4128020 :                 // into different layer files.
    1368      4128020 :                 // Still limit this by the target file size,
    1369      4128020 :                 // so that we keep the size of the files in
    1370      4128020 :                 // check.
    1371      4128020 :                 if prev.0 == cur.0 && prev.2 < target_file_size {
    1372        80076 :                     prev.2 += cur.2;
    1373        80076 :                     Ok(prev)
    1374              :                 } else {
    1375      4047944 :                     Err((prev, cur))
    1376              :                 }
    1377      4128020 :             });
    1378           56 : 
    1379           56 :         // Merge the contents of all the input delta layers into a new set
    1380           56 :         // of delta layers, based on the current partitioning.
    1381           56 :         //
    1382           56 :         // We split the new delta layers on the key dimension. We iterate through the key space, and for each key, check if including the next key to the current output layer we're building would cause the layer to become too large. If so, dump the current output layer and start new one.
    1383           56 :         // It's possible that there is a single key with so many page versions that storing all of them in a single layer file
    1384           56 :         // would be too large. In that case, we also split on the LSN dimension.
    1385           56 :         //
    1386           56 :         // LSN
    1387           56 :         //  ^
    1388           56 :         //  |
    1389           56 :         //  | +-----------+            +--+--+--+--+
    1390           56 :         //  | |           |            |  |  |  |  |
    1391           56 :         //  | +-----------+            |  |  |  |  |
    1392           56 :         //  | |           |            |  |  |  |  |
    1393           56 :         //  | +-----------+     ==>    |  |  |  |  |
    1394           56 :         //  | |           |            |  |  |  |  |
    1395           56 :         //  | +-----------+            |  |  |  |  |
    1396           56 :         //  | |           |            |  |  |  |  |
    1397           56 :         //  | +-----------+            +--+--+--+--+
    1398           56 :         //  |
    1399           56 :         //  +--------------> key
    1400           56 :         //
    1401           56 :         //
    1402           56 :         // If one key (X) has a lot of page versions:
    1403           56 :         //
    1404           56 :         // LSN
    1405           56 :         //  ^
    1406           56 :         //  |                                 (X)
    1407           56 :         //  | +-----------+            +--+--+--+--+
    1408           56 :         //  | |           |            |  |  |  |  |
    1409           56 :         //  | +-----------+            |  |  +--+  |
    1410           56 :         //  | |           |            |  |  |  |  |
    1411           56 :         //  | +-----------+     ==>    |  |  |  |  |
    1412           56 :         //  | |           |            |  |  +--+  |
    1413           56 :         //  | +-----------+            |  |  |  |  |
    1414           56 :         //  | |           |            |  |  |  |  |
    1415           56 :         //  | +-----------+            +--+--+--+--+
    1416           56 :         //  |
    1417           56 :         //  +--------------> key
    1418           56 :         // TODO: this actually divides the layers into fixed-size chunks, not
    1419           56 :         // based on the partitioning.
    1420           56 :         //
    1421           56 :         // TODO: we should also opportunistically materialize and
    1422           56 :         // garbage collect what we can.
    1423           56 :         let mut new_layers = Vec::new();
    1424           56 :         let mut prev_key: Option<Key> = None;
    1425           56 :         let mut writer: Option<DeltaLayerWriter> = None;
    1426           56 :         let mut key_values_total_size = 0u64;
    1427           56 :         let mut dup_start_lsn: Lsn = Lsn::INVALID; // start LSN of layer containing values of the single key
    1428           56 :         let mut dup_end_lsn: Lsn = Lsn::INVALID; // end LSN of layer containing values of the single key
    1429           56 :         let mut next_hole = 0; // index of next hole in holes vector
    1430           56 : 
    1431           56 :         let mut keys = 0;
    1432              : 
    1433      4128132 :         while let Some((key, lsn, value)) = all_values_iter
    1434      4128132 :             .next()
    1435      4128132 :             .await
    1436      4128132 :             .map_err(CompactionError::Other)?
    1437              :         {
    1438      4128076 :             keys += 1;
    1439      4128076 : 
    1440      4128076 :             if keys % 32_768 == 0 && self.cancel.is_cancelled() {
    1441              :                 // avoid hitting the cancellation token on every key. in benches, we end up
    1442              :                 // shuffling an order of million keys per layer, this means we'll check it
    1443              :                 // around tens of times per layer.
    1444            0 :                 return Err(CompactionError::ShuttingDown);
    1445      4128076 :             }
    1446      4128076 : 
    1447      4128076 :             let same_key = prev_key == Some(key);
    1448      4128076 :             // We need to check key boundaries once we reach next key or end of layer with the same key
    1449      4128076 :             if !same_key || lsn == dup_end_lsn {
    1450      4048000 :                 let mut next_key_size = 0u64;
    1451      4048000 :                 let is_dup_layer = dup_end_lsn.is_valid();
    1452      4048000 :                 dup_start_lsn = Lsn::INVALID;
    1453      4048000 :                 if !same_key {
    1454      4048000 :                     dup_end_lsn = Lsn::INVALID;
    1455      4048000 :                 }
    1456              :                 // Determine size occupied by this key. We stop at next key or when size becomes larger than target_file_size
    1457      4048000 :                 for (next_key, next_lsn, next_size) in all_keys_iter.by_ref() {
    1458      4048000 :                     next_key_size = next_size;
    1459      4048000 :                     if key != next_key {
    1460      4047944 :                         if dup_end_lsn.is_valid() {
    1461            0 :                             // We are writting segment with duplicates:
    1462            0 :                             // place all remaining values of this key in separate segment
    1463            0 :                             dup_start_lsn = dup_end_lsn; // new segments starts where old stops
    1464            0 :                             dup_end_lsn = lsn_range.end; // there are no more values of this key till end of LSN range
    1465      4047944 :                         }
    1466      4047944 :                         break;
    1467           56 :                     }
    1468           56 :                     key_values_total_size += next_size;
    1469           56 :                     // Check if it is time to split segment: if total keys size is larger than target file size.
    1470           56 :                     // We need to avoid generation of empty segments if next_size > target_file_size.
    1471           56 :                     if key_values_total_size > target_file_size && lsn != next_lsn {
    1472              :                         // Split key between multiple layers: such layer can contain only single key
    1473            0 :                         dup_start_lsn = if dup_end_lsn.is_valid() {
    1474            0 :                             dup_end_lsn // new segment with duplicates starts where old one stops
    1475              :                         } else {
    1476            0 :                             lsn // start with the first LSN for this key
    1477              :                         };
    1478            0 :                         dup_end_lsn = next_lsn; // upper LSN boundary is exclusive
    1479            0 :                         break;
    1480           56 :                     }
    1481              :                 }
    1482              :                 // handle case when loop reaches last key: in this case dup_end is non-zero but dup_start is not set.
    1483      4048000 :                 if dup_end_lsn.is_valid() && !dup_start_lsn.is_valid() {
    1484            0 :                     dup_start_lsn = dup_end_lsn;
    1485            0 :                     dup_end_lsn = lsn_range.end;
    1486      4048000 :                 }
    1487      4048000 :                 if writer.is_some() {
    1488      4047944 :                     let written_size = writer.as_mut().unwrap().size();
    1489      4047944 :                     let contains_hole =
    1490      4047944 :                         next_hole < holes.len() && key >= holes[next_hole].key_range.end;
    1491              :                     // check if key cause layer overflow or contains hole...
    1492      4047944 :                     if is_dup_layer
    1493      4047944 :                         || dup_end_lsn.is_valid()
    1494      4047944 :                         || written_size + key_values_total_size > target_file_size
    1495      4047384 :                         || contains_hole
    1496              :                     {
    1497              :                         // ... if so, flush previous layer and prepare to write new one
    1498          560 :                         let (desc, path) = writer
    1499          560 :                             .take()
    1500          560 :                             .unwrap()
    1501          560 :                             .finish(prev_key.unwrap().next(), ctx)
    1502          560 :                             .await
    1503          560 :                             .map_err(CompactionError::Other)?;
    1504          560 :                         let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1505          560 :                             .map_err(CompactionError::Other)?;
    1506              : 
    1507          560 :                         new_layers.push(new_delta);
    1508          560 :                         writer = None;
    1509          560 : 
    1510          560 :                         if contains_hole {
    1511            0 :                             // skip hole
    1512            0 :                             next_hole += 1;
    1513          560 :                         }
    1514      4047384 :                     }
    1515           56 :                 }
    1516              :                 // Remember size of key value because at next iteration we will access next item
    1517      4048000 :                 key_values_total_size = next_key_size;
    1518        80076 :             }
    1519      4128076 :             fail_point!("delta-layer-writer-fail-before-finish", |_| {
    1520            0 :                 Err(CompactionError::Other(anyhow::anyhow!(
    1521            0 :                     "failpoint delta-layer-writer-fail-before-finish"
    1522            0 :                 )))
    1523      4128076 :             });
    1524              : 
    1525      4128076 :             if !self.shard_identity.is_key_disposable(&key) {
    1526      4128076 :                 if writer.is_none() {
    1527          616 :                     if self.cancel.is_cancelled() {
    1528              :                         // to be somewhat responsive to cancellation, check for each new layer
    1529            0 :                         return Err(CompactionError::ShuttingDown);
    1530          616 :                     }
    1531              :                     // Create writer if not initiaized yet
    1532          616 :                     writer = Some(
    1533              :                         DeltaLayerWriter::new(
    1534          616 :                             self.conf,
    1535          616 :                             self.timeline_id,
    1536          616 :                             self.tenant_shard_id,
    1537          616 :                             key,
    1538          616 :                             if dup_end_lsn.is_valid() {
    1539              :                                 // this is a layer containing slice of values of the same key
    1540            0 :                                 debug!("Create new dup layer {}..{}", dup_start_lsn, dup_end_lsn);
    1541            0 :                                 dup_start_lsn..dup_end_lsn
    1542              :                             } else {
    1543          616 :                                 debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    1544          616 :                                 lsn_range.clone()
    1545              :                             },
    1546          616 :                             ctx,
    1547          616 :                         )
    1548          616 :                         .await
    1549          616 :                         .map_err(CompactionError::Other)?,
    1550              :                     );
    1551              : 
    1552          616 :                     keys = 0;
    1553      4127460 :                 }
    1554              : 
    1555      4128076 :                 writer
    1556      4128076 :                     .as_mut()
    1557      4128076 :                     .unwrap()
    1558      4128076 :                     .put_value(key, lsn, value, ctx)
    1559      4128076 :                     .await
    1560      4128076 :                     .map_err(CompactionError::Other)?;
    1561              :             } else {
    1562            0 :                 let owner = self.shard_identity.get_shard_number(&key);
    1563            0 : 
    1564            0 :                 // This happens after a shard split, when we're compacting an L0 created by our parent shard
    1565            0 :                 debug!("dropping key {key} during compaction (it belongs on shard {owner})");
    1566              :             }
    1567              : 
    1568      4128076 :             if !new_layers.is_empty() {
    1569        39572 :                 fail_point!("after-timeline-compacted-first-L1");
    1570      4088504 :             }
    1571              : 
    1572      4128076 :             prev_key = Some(key);
    1573              :         }
    1574           56 :         if let Some(writer) = writer {
    1575           56 :             let (desc, path) = writer
    1576           56 :                 .finish(prev_key.unwrap().next(), ctx)
    1577           56 :                 .await
    1578           56 :                 .map_err(CompactionError::Other)?;
    1579           56 :             let new_delta = Layer::finish_creating(self.conf, self, desc, &path)
    1580           56 :                 .map_err(CompactionError::Other)?;
    1581           56 :             new_layers.push(new_delta);
    1582            0 :         }
    1583              : 
    1584              :         // Sync layers
    1585           56 :         if !new_layers.is_empty() {
    1586              :             // Print a warning if the created layer is larger than double the target size
    1587              :             // Add two pages for potential overhead. This should in theory be already
    1588              :             // accounted for in the target calculation, but for very small targets,
    1589              :             // we still might easily hit the limit otherwise.
    1590           56 :             let warn_limit = target_file_size * 2 + page_cache::PAGE_SZ as u64 * 2;
    1591          616 :             for layer in new_layers.iter() {
    1592          616 :                 if layer.layer_desc().file_size > warn_limit {
    1593            0 :                     warn!(
    1594              :                         %layer,
    1595            0 :                         "created delta file of size {} larger than double of target of {target_file_size}", layer.layer_desc().file_size
    1596              :                     );
    1597          616 :                 }
    1598              :             }
    1599              : 
    1600              :             // The writer.finish() above already did the fsync of the inodes.
    1601              :             // We just need to fsync the directory in which these inodes are linked,
    1602              :             // which we know to be the timeline directory.
    1603              :             //
    1604              :             // We use fatal_err() below because the after writer.finish() returns with success,
    1605              :             // the in-memory state of the filesystem already has the layer file in its final place,
    1606              :             // and subsequent pageserver code could think it's durable while it really isn't.
    1607           56 :             let timeline_dir = VirtualFile::open(
    1608           56 :                 &self
    1609           56 :                     .conf
    1610           56 :                     .timeline_path(&self.tenant_shard_id, &self.timeline_id),
    1611           56 :                 ctx,
    1612           56 :             )
    1613           56 :             .await
    1614           56 :             .fatal_err("VirtualFile::open for timeline dir fsync");
    1615           56 :             timeline_dir
    1616           56 :                 .sync_all()
    1617           56 :                 .await
    1618           56 :                 .fatal_err("VirtualFile::sync_all timeline dir");
    1619            0 :         }
    1620              : 
    1621           56 :         stats.write_layer_files_micros = stats.read_lock_drop_micros.till_now();
    1622           56 :         stats.new_deltas_count = Some(new_layers.len());
    1623          616 :         stats.new_deltas_size = Some(new_layers.iter().map(|l| l.layer_desc().file_size).sum());
    1624           56 : 
    1625           56 :         match TryInto::<CompactLevel0Phase1Stats>::try_into(stats)
    1626           56 :             .and_then(|stats| serde_json::to_string(&stats).context("serde_json::to_string"))
    1627              :         {
    1628           56 :             Ok(stats_json) => {
    1629           56 :                 info!(
    1630            0 :                     stats_json = stats_json.as_str(),
    1631            0 :                     "compact_level0_phase1 stats available"
    1632              :                 )
    1633              :             }
    1634            0 :             Err(e) => {
    1635            0 :                 warn!("compact_level0_phase1 stats failed to serialize: {:#}", e);
    1636              :             }
    1637              :         }
    1638              : 
    1639              :         // Without this, rustc complains about deltas_to_compact still
    1640              :         // being borrowed when we `.into_iter()` below.
    1641           56 :         drop(all_values_iter);
    1642           56 : 
    1643           56 :         Ok(CompactLevel0Phase1Result {
    1644           56 :             new_layers,
    1645           56 :             deltas_to_compact: deltas_to_compact
    1646           56 :                 .into_iter()
    1647          804 :                 .map(|x| x.drop_eviction_guard())
    1648           56 :                 .collect::<Vec<_>>(),
    1649           56 :             outcome: if fully_compacted {
    1650           56 :                 CompactionOutcome::Done
    1651              :             } else {
    1652            0 :                 CompactionOutcome::Pending
    1653              :             },
    1654              :         })
    1655          728 :     }
    1656              : }
    1657              : 
    1658              : #[derive(Default)]
    1659              : struct CompactLevel0Phase1Result {
    1660              :     new_layers: Vec<ResidentLayer>,
    1661              :     deltas_to_compact: Vec<Layer>,
    1662              :     // Whether we have included all L0 layers, or selected only part of them due to the
    1663              :     // L0 compaction size limit.
    1664              :     outcome: CompactionOutcome,
    1665              : }
    1666              : 
    1667              : #[derive(Default)]
    1668              : struct CompactLevel0Phase1StatsBuilder {
    1669              :     version: Option<u64>,
    1670              :     tenant_id: Option<TenantShardId>,
    1671              :     timeline_id: Option<TimelineId>,
    1672              :     read_lock_acquisition_micros: DurationRecorder,
    1673              :     read_lock_held_spawn_blocking_startup_micros: DurationRecorder,
    1674              :     read_lock_held_key_sort_micros: DurationRecorder,
    1675              :     read_lock_held_prerequisites_micros: DurationRecorder,
    1676              :     read_lock_held_compute_holes_micros: DurationRecorder,
    1677              :     read_lock_drop_micros: DurationRecorder,
    1678              :     write_layer_files_micros: DurationRecorder,
    1679              :     level0_deltas_count: Option<usize>,
    1680              :     new_deltas_count: Option<usize>,
    1681              :     new_deltas_size: Option<u64>,
    1682              : }
    1683              : 
    1684              : #[derive(serde::Serialize)]
    1685              : struct CompactLevel0Phase1Stats {
    1686              :     version: u64,
    1687              :     tenant_id: TenantShardId,
    1688              :     timeline_id: TimelineId,
    1689              :     read_lock_acquisition_micros: RecordedDuration,
    1690              :     read_lock_held_spawn_blocking_startup_micros: RecordedDuration,
    1691              :     read_lock_held_key_sort_micros: RecordedDuration,
    1692              :     read_lock_held_prerequisites_micros: RecordedDuration,
    1693              :     read_lock_held_compute_holes_micros: RecordedDuration,
    1694              :     read_lock_drop_micros: RecordedDuration,
    1695              :     write_layer_files_micros: RecordedDuration,
    1696              :     level0_deltas_count: usize,
    1697              :     new_deltas_count: usize,
    1698              :     new_deltas_size: u64,
    1699              : }
    1700              : 
    1701              : impl TryFrom<CompactLevel0Phase1StatsBuilder> for CompactLevel0Phase1Stats {
    1702              :     type Error = anyhow::Error;
    1703              : 
    1704           56 :     fn try_from(value: CompactLevel0Phase1StatsBuilder) -> Result<Self, Self::Error> {
    1705           56 :         Ok(Self {
    1706           56 :             version: value.version.ok_or_else(|| anyhow!("version not set"))?,
    1707           56 :             tenant_id: value
    1708           56 :                 .tenant_id
    1709           56 :                 .ok_or_else(|| anyhow!("tenant_id not set"))?,
    1710           56 :             timeline_id: value
    1711           56 :                 .timeline_id
    1712           56 :                 .ok_or_else(|| anyhow!("timeline_id not set"))?,
    1713           56 :             read_lock_acquisition_micros: value
    1714           56 :                 .read_lock_acquisition_micros
    1715           56 :                 .into_recorded()
    1716           56 :                 .ok_or_else(|| anyhow!("read_lock_acquisition_micros not set"))?,
    1717           56 :             read_lock_held_spawn_blocking_startup_micros: value
    1718           56 :                 .read_lock_held_spawn_blocking_startup_micros
    1719           56 :                 .into_recorded()
    1720           56 :                 .ok_or_else(|| anyhow!("read_lock_held_spawn_blocking_startup_micros not set"))?,
    1721           56 :             read_lock_held_key_sort_micros: value
    1722           56 :                 .read_lock_held_key_sort_micros
    1723           56 :                 .into_recorded()
    1724           56 :                 .ok_or_else(|| anyhow!("read_lock_held_key_sort_micros not set"))?,
    1725           56 :             read_lock_held_prerequisites_micros: value
    1726           56 :                 .read_lock_held_prerequisites_micros
    1727           56 :                 .into_recorded()
    1728           56 :                 .ok_or_else(|| anyhow!("read_lock_held_prerequisites_micros not set"))?,
    1729           56 :             read_lock_held_compute_holes_micros: value
    1730           56 :                 .read_lock_held_compute_holes_micros
    1731           56 :                 .into_recorded()
    1732           56 :                 .ok_or_else(|| anyhow!("read_lock_held_compute_holes_micros not set"))?,
    1733           56 :             read_lock_drop_micros: value
    1734           56 :                 .read_lock_drop_micros
    1735           56 :                 .into_recorded()
    1736           56 :                 .ok_or_else(|| anyhow!("read_lock_drop_micros not set"))?,
    1737           56 :             write_layer_files_micros: value
    1738           56 :                 .write_layer_files_micros
    1739           56 :                 .into_recorded()
    1740           56 :                 .ok_or_else(|| anyhow!("write_layer_files_micros not set"))?,
    1741           56 :             level0_deltas_count: value
    1742           56 :                 .level0_deltas_count
    1743           56 :                 .ok_or_else(|| anyhow!("level0_deltas_count not set"))?,
    1744           56 :             new_deltas_count: value
    1745           56 :                 .new_deltas_count
    1746           56 :                 .ok_or_else(|| anyhow!("new_deltas_count not set"))?,
    1747           56 :             new_deltas_size: value
    1748           56 :                 .new_deltas_size
    1749           56 :                 .ok_or_else(|| anyhow!("new_deltas_size not set"))?,
    1750              :         })
    1751           56 :     }
    1752              : }
    1753              : 
    1754              : impl Timeline {
    1755              :     /// Entry point for new tiered compaction algorithm.
    1756              :     ///
    1757              :     /// All the real work is in the implementation in the pageserver_compaction
    1758              :     /// crate. The code here would apply to any algorithm implemented by the
    1759              :     /// same interface, but tiered is the only one at the moment.
    1760              :     ///
    1761              :     /// TODO: cancellation
    1762            0 :     pub(crate) async fn compact_tiered(
    1763            0 :         self: &Arc<Self>,
    1764            0 :         _cancel: &CancellationToken,
    1765            0 :         ctx: &RequestContext,
    1766            0 :     ) -> Result<(), CompactionError> {
    1767            0 :         let fanout = self.get_compaction_threshold() as u64;
    1768            0 :         let target_file_size = self.get_checkpoint_distance();
    1769              : 
    1770              :         // Find the top of the historical layers
    1771            0 :         let end_lsn = {
    1772            0 :             let guard = self.layers.read().await;
    1773            0 :             let layers = guard.layer_map()?;
    1774              : 
    1775            0 :             let l0_deltas = layers.level0_deltas();
    1776            0 : 
    1777            0 :             // As an optimization, if we find that there are too few L0 layers,
    1778            0 :             // bail out early. We know that the compaction algorithm would do
    1779            0 :             // nothing in that case.
    1780            0 :             if l0_deltas.len() < fanout as usize {
    1781              :                 // doesn't need compacting
    1782            0 :                 return Ok(());
    1783            0 :             }
    1784            0 :             l0_deltas.iter().map(|l| l.lsn_range.end).max().unwrap()
    1785            0 :         };
    1786            0 : 
    1787            0 :         // Is the timeline being deleted?
    1788            0 :         if self.is_stopping() {
    1789            0 :             trace!("Dropping out of compaction on timeline shutdown");
    1790            0 :             return Err(CompactionError::ShuttingDown);
    1791            0 :         }
    1792              : 
    1793            0 :         let (dense_ks, _sparse_ks) = self.collect_keyspace(end_lsn, ctx).await?;
    1794              :         // TODO(chi): ignore sparse_keyspace for now, compact it in the future.
    1795            0 :         let mut adaptor = TimelineAdaptor::new(self, (end_lsn, dense_ks));
    1796            0 : 
    1797            0 :         pageserver_compaction::compact_tiered::compact_tiered(
    1798            0 :             &mut adaptor,
    1799            0 :             end_lsn,
    1800            0 :             target_file_size,
    1801            0 :             fanout,
    1802            0 :             ctx,
    1803            0 :         )
    1804            0 :         .await
    1805              :         // TODO: compact_tiered needs to return CompactionError
    1806            0 :         .map_err(CompactionError::Other)?;
    1807              : 
    1808            0 :         adaptor.flush_updates().await?;
    1809            0 :         Ok(())
    1810            0 :     }
    1811              : 
    1812              :     /// Take a list of images and deltas, produce images and deltas according to GC horizon and retain_lsns.
    1813              :     ///
    1814              :     /// It takes a key, the values of the key within the compaction process, a GC horizon, and all retain_lsns below the horizon.
    1815              :     /// For now, it requires the `accumulated_values` contains the full history of the key (i.e., the key with the lowest LSN is
    1816              :     /// an image or a WAL not requiring a base image). This restriction will be removed once we implement gc-compaction on branch.
    1817              :     ///
    1818              :     /// The function returns the deltas and the base image that need to be placed at each of the retain LSN. For example, we have:
    1819              :     ///
    1820              :     /// A@0x10, +B@0x20, +C@0x30, +D@0x40, +E@0x50, +F@0x60
    1821              :     /// horizon = 0x50, retain_lsn = 0x20, 0x40, delta_threshold=3
    1822              :     ///
    1823              :     /// The function will produce:
    1824              :     ///
    1825              :     /// ```plain
    1826              :     /// 0x20(retain_lsn) -> img=AB@0x20                  always produce a single image below the lowest retain LSN
    1827              :     /// 0x40(retain_lsn) -> deltas=[+C@0x30, +D@0x40]    two deltas since the last base image, keeping the deltas
    1828              :     /// 0x50(horizon)    -> deltas=[ABCDE@0x50]          three deltas since the last base image, generate an image but put it in the delta
    1829              :     /// above_horizon    -> deltas=[+F@0x60]             full history above the horizon
    1830              :     /// ```
    1831              :     ///
    1832              :     /// Note that `accumulated_values` must be sorted by LSN and should belong to a single key.
    1833         1260 :     pub(crate) async fn generate_key_retention(
    1834         1260 :         self: &Arc<Timeline>,
    1835         1260 :         key: Key,
    1836         1260 :         full_history: &[(Key, Lsn, Value)],
    1837         1260 :         horizon: Lsn,
    1838         1260 :         retain_lsn_below_horizon: &[Lsn],
    1839         1260 :         delta_threshold_cnt: usize,
    1840         1260 :         base_img_from_ancestor: Option<(Key, Lsn, Bytes)>,
    1841         1260 :     ) -> anyhow::Result<KeyHistoryRetention> {
    1842              :         // Pre-checks for the invariants
    1843              : 
    1844         1260 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    1845              : 
    1846         1260 :         if debug_mode {
    1847         3060 :             for (log_key, _, _) in full_history {
    1848         1800 :                 assert_eq!(log_key, &key, "mismatched key");
    1849              :             }
    1850         1260 :             for i in 1..full_history.len() {
    1851          540 :                 assert!(full_history[i - 1].1 <= full_history[i].1, "unordered LSN");
    1852          540 :                 if full_history[i - 1].1 == full_history[i].1 {
    1853            0 :                     assert!(
    1854            0 :                         matches!(full_history[i - 1].2, Value::Image(_)),
    1855            0 :                         "unordered delta/image, or duplicated delta"
    1856              :                     );
    1857          540 :                 }
    1858              :             }
    1859              :             // There was an assertion for no base image that checks if the first
    1860              :             // record in the history is `will_init` before, but it was removed.
    1861              :             // This is explained in the test cases for generate_key_retention.
    1862              :             // Search "incomplete history" for more information.
    1863         2820 :             for lsn in retain_lsn_below_horizon {
    1864         1560 :                 assert!(lsn < &horizon, "retain lsn must be below horizon")
    1865              :             }
    1866         1260 :             for i in 1..retain_lsn_below_horizon.len() {
    1867          712 :                 assert!(
    1868          712 :                     retain_lsn_below_horizon[i - 1] <= retain_lsn_below_horizon[i],
    1869            0 :                     "unordered LSN"
    1870              :                 );
    1871              :             }
    1872            0 :         }
    1873         1260 :         let has_ancestor = base_img_from_ancestor.is_some();
    1874              :         // Step 1: split history into len(retain_lsn_below_horizon) + 2 buckets, where the last bucket is for all deltas above the horizon,
    1875              :         // and the second-to-last bucket is for the horizon. Each bucket contains lsn_last_bucket < deltas <= lsn_this_bucket.
    1876         1260 :         let (mut split_history, lsn_split_points) = {
    1877         1260 :             let mut split_history = Vec::new();
    1878         1260 :             split_history.resize_with(retain_lsn_below_horizon.len() + 2, Vec::new);
    1879         1260 :             let mut lsn_split_points = Vec::with_capacity(retain_lsn_below_horizon.len() + 1);
    1880         2820 :             for lsn in retain_lsn_below_horizon {
    1881         1560 :                 lsn_split_points.push(*lsn);
    1882         1560 :             }
    1883         1260 :             lsn_split_points.push(horizon);
    1884         1260 :             let mut current_idx = 0;
    1885         3060 :             for item @ (_, lsn, _) in full_history {
    1886         2288 :                 while current_idx < lsn_split_points.len() && *lsn > lsn_split_points[current_idx] {
    1887          488 :                     current_idx += 1;
    1888          488 :                 }
    1889         1800 :                 split_history[current_idx].push(item);
    1890              :             }
    1891         1260 :             (split_history, lsn_split_points)
    1892              :         };
    1893              :         // Step 2: filter out duplicated records due to the k-merge of image/delta layers
    1894         5340 :         for split_for_lsn in &mut split_history {
    1895         4080 :             let mut prev_lsn = None;
    1896         4080 :             let mut new_split_for_lsn = Vec::with_capacity(split_for_lsn.len());
    1897         4080 :             for record @ (_, lsn, _) in std::mem::take(split_for_lsn) {
    1898         1800 :                 if let Some(prev_lsn) = &prev_lsn {
    1899          236 :                     if *prev_lsn == lsn {
    1900              :                         // The case that we have an LSN with both data from the delta layer and the image layer. As
    1901              :                         // `ValueWrapper` ensures that an image is ordered before a delta at the same LSN, we simply
    1902              :                         // drop this delta and keep the image.
    1903              :                         //
    1904              :                         // For example, we have delta layer key1@0x10, key1@0x20, and image layer key1@0x10, we will
    1905              :                         // keep the image for key1@0x10 and the delta for key1@0x20. key1@0x10 delta will be simply
    1906              :                         // dropped.
    1907              :                         //
    1908              :                         // TODO: in case we have both delta + images for a given LSN and it does not exceed the delta
    1909              :                         // threshold, we could have kept delta instead to save space. This is an optimization for the future.
    1910            0 :                         continue;
    1911          236 :                     }
    1912         1564 :                 }
    1913         1800 :                 prev_lsn = Some(lsn);
    1914         1800 :                 new_split_for_lsn.push(record);
    1915              :             }
    1916         4080 :             *split_for_lsn = new_split_for_lsn;
    1917              :         }
    1918              :         // Step 3: generate images when necessary
    1919         1260 :         let mut retention = Vec::with_capacity(split_history.len());
    1920         1260 :         let mut records_since_last_image = 0;
    1921         1260 :         let batch_cnt = split_history.len();
    1922         1260 :         assert!(
    1923         1260 :             batch_cnt >= 2,
    1924            0 :             "should have at least below + above horizon batches"
    1925              :         );
    1926         1260 :         let mut replay_history: Vec<(Key, Lsn, Value)> = Vec::new();
    1927         1260 :         if let Some((key, lsn, img)) = base_img_from_ancestor {
    1928           84 :             replay_history.push((key, lsn, Value::Image(img)));
    1929         1176 :         }
    1930              : 
    1931              :         /// Generate debug information for the replay history
    1932            0 :         fn generate_history_trace(replay_history: &[(Key, Lsn, Value)]) -> String {
    1933              :             use std::fmt::Write;
    1934            0 :             let mut output = String::new();
    1935            0 :             if let Some((key, _, _)) = replay_history.first() {
    1936            0 :                 write!(output, "key={} ", key).unwrap();
    1937            0 :                 let mut cnt = 0;
    1938            0 :                 for (_, lsn, val) in replay_history {
    1939            0 :                     if val.is_image() {
    1940            0 :                         write!(output, "i@{} ", lsn).unwrap();
    1941            0 :                     } else if val.will_init() {
    1942            0 :                         write!(output, "di@{} ", lsn).unwrap();
    1943            0 :                     } else {
    1944            0 :                         write!(output, "d@{} ", lsn).unwrap();
    1945            0 :                     }
    1946            0 :                     cnt += 1;
    1947            0 :                     if cnt >= 128 {
    1948            0 :                         write!(output, "... and more").unwrap();
    1949            0 :                         break;
    1950            0 :                     }
    1951              :                 }
    1952            0 :             } else {
    1953            0 :                 write!(output, "<no history>").unwrap();
    1954            0 :             }
    1955            0 :             output
    1956            0 :         }
    1957              : 
    1958            0 :         fn generate_debug_trace(
    1959            0 :             replay_history: Option<&[(Key, Lsn, Value)]>,
    1960            0 :             full_history: &[(Key, Lsn, Value)],
    1961            0 :             lsns: &[Lsn],
    1962            0 :             horizon: Lsn,
    1963            0 :         ) -> String {
    1964              :             use std::fmt::Write;
    1965            0 :             let mut output = String::new();
    1966            0 :             if let Some(replay_history) = replay_history {
    1967            0 :                 writeln!(
    1968            0 :                     output,
    1969            0 :                     "replay_history: {}",
    1970            0 :                     generate_history_trace(replay_history)
    1971            0 :                 )
    1972            0 :                 .unwrap();
    1973            0 :             } else {
    1974            0 :                 writeln!(output, "replay_history: <disabled>",).unwrap();
    1975            0 :             }
    1976            0 :             writeln!(
    1977            0 :                 output,
    1978            0 :                 "full_history: {}",
    1979            0 :                 generate_history_trace(full_history)
    1980            0 :             )
    1981            0 :             .unwrap();
    1982            0 :             writeln!(
    1983            0 :                 output,
    1984            0 :                 "when processing: [{}] horizon={}",
    1985            0 :                 lsns.iter().map(|l| format!("{l}")).join(","),
    1986            0 :                 horizon
    1987            0 :             )
    1988            0 :             .unwrap();
    1989            0 :             output
    1990            0 :         }
    1991              : 
    1992         1260 :         let mut key_exists = false;
    1993         4080 :         for (i, split_for_lsn) in split_history.into_iter().enumerate() {
    1994              :             // TODO: there could be image keys inside the splits, and we can compute records_since_last_image accordingly.
    1995         4080 :             records_since_last_image += split_for_lsn.len();
    1996              :             // Whether to produce an image into the final layer files
    1997         4080 :             let produce_image = if i == 0 && !has_ancestor {
    1998              :                 // We always generate images for the first batch (below horizon / lowest retain_lsn)
    1999         1176 :                 true
    2000         2904 :             } else if i == batch_cnt - 1 {
    2001              :                 // Do not generate images for the last batch (above horizon)
    2002         1260 :                 false
    2003         1644 :             } else if records_since_last_image == 0 {
    2004         1288 :                 false
    2005          356 :             } else if records_since_last_image >= delta_threshold_cnt {
    2006              :                 // Generate images when there are too many records
    2007           12 :                 true
    2008              :             } else {
    2009          344 :                 false
    2010              :             };
    2011         4080 :             replay_history.extend(split_for_lsn.iter().map(|x| (*x).clone()));
    2012              :             // Only retain the items after the last image record
    2013         5028 :             for idx in (0..replay_history.len()).rev() {
    2014         5028 :                 if replay_history[idx].2.will_init() {
    2015         4080 :                     replay_history = replay_history[idx..].to_vec();
    2016         4080 :                     break;
    2017          948 :                 }
    2018              :             }
    2019         4080 :             if replay_history.is_empty() && !key_exists {
    2020              :                 // The key does not exist at earlier LSN, we can skip this iteration.
    2021            0 :                 retention.push(Vec::new());
    2022            0 :                 continue;
    2023         4080 :             } else {
    2024         4080 :                 key_exists = true;
    2025         4080 :             }
    2026         4080 :             let Some((_, _, val)) = replay_history.first() else {
    2027            0 :                 unreachable!("replay history should not be empty once it exists")
    2028              :             };
    2029         4080 :             if !val.will_init() {
    2030            0 :                 return Err(anyhow::anyhow!("invalid history, no base image")).with_context(|| {
    2031            0 :                     generate_debug_trace(
    2032            0 :                         Some(&replay_history),
    2033            0 :                         full_history,
    2034            0 :                         retain_lsn_below_horizon,
    2035            0 :                         horizon,
    2036            0 :                     )
    2037            0 :                 });
    2038         4080 :             }
    2039              :             // Whether to reconstruct the image. In debug mode, we will generate an image
    2040              :             // at every retain_lsn to ensure data is not corrupted, but we won't put the
    2041              :             // image into the final layer.
    2042         4080 :             let generate_image = produce_image || debug_mode;
    2043         4080 :             if produce_image {
    2044         1188 :                 records_since_last_image = 0;
    2045         2892 :             }
    2046         4080 :             let img_and_lsn = if generate_image {
    2047         4080 :                 let replay_history_for_debug = if debug_mode {
    2048         4080 :                     Some(replay_history.clone())
    2049              :                 } else {
    2050            0 :                     None
    2051              :                 };
    2052         4080 :                 let replay_history_for_debug_ref = replay_history_for_debug.as_deref();
    2053         4080 :                 let history = if produce_image {
    2054         1188 :                     std::mem::take(&mut replay_history)
    2055              :                 } else {
    2056         2892 :                     replay_history.clone()
    2057              :                 };
    2058         4080 :                 let mut img = None;
    2059         4080 :                 let mut records = Vec::with_capacity(history.len());
    2060         4080 :                 if let (_, lsn, Value::Image(val)) = history.first().as_ref().unwrap() {
    2061         4036 :                     img = Some((*lsn, val.clone()));
    2062         4036 :                     for (_, lsn, val) in history.into_iter().skip(1) {
    2063          920 :                         let Value::WalRecord(rec) = val else {
    2064            0 :                             return Err(anyhow::anyhow!(
    2065            0 :                                 "invalid record, first record is image, expect walrecords"
    2066            0 :                             ))
    2067            0 :                             .with_context(|| {
    2068            0 :                                 generate_debug_trace(
    2069            0 :                                     replay_history_for_debug_ref,
    2070            0 :                                     full_history,
    2071            0 :                                     retain_lsn_below_horizon,
    2072            0 :                                     horizon,
    2073            0 :                                 )
    2074            0 :                             });
    2075              :                         };
    2076          920 :                         records.push((lsn, rec));
    2077              :                     }
    2078              :                 } else {
    2079           72 :                     for (_, lsn, val) in history.into_iter() {
    2080           72 :                         let Value::WalRecord(rec) = val else {
    2081            0 :                             return Err(anyhow::anyhow!("invalid record, first record is walrecord, expect rest are walrecord"))
    2082            0 :                                 .with_context(|| generate_debug_trace(
    2083            0 :                                     replay_history_for_debug_ref,
    2084            0 :                                     full_history,
    2085            0 :                                     retain_lsn_below_horizon,
    2086            0 :                                     horizon,
    2087            0 :                                 ));
    2088              :                         };
    2089           72 :                         records.push((lsn, rec));
    2090              :                     }
    2091              :                 }
    2092         4080 :                 records.reverse();
    2093         4080 :                 let state = ValueReconstructState { img, records };
    2094              :                 // last batch does not generate image so i is always in range, unless we force generate
    2095              :                 // an image during testing
    2096         4080 :                 let request_lsn = if i >= lsn_split_points.len() {
    2097         1260 :                     Lsn::MAX
    2098              :                 } else {
    2099         2820 :                     lsn_split_points[i]
    2100              :                 };
    2101         4080 :                 let img = self.reconstruct_value(key, request_lsn, state).await?;
    2102         4080 :                 Some((request_lsn, img))
    2103              :             } else {
    2104            0 :                 None
    2105              :             };
    2106         4080 :             if produce_image {
    2107         1188 :                 let (request_lsn, img) = img_and_lsn.unwrap();
    2108         1188 :                 replay_history.push((key, request_lsn, Value::Image(img.clone())));
    2109         1188 :                 retention.push(vec![(request_lsn, Value::Image(img))]);
    2110         2892 :             } else {
    2111         2892 :                 let deltas = split_for_lsn
    2112         2892 :                     .iter()
    2113         2892 :                     .map(|(_, lsn, value)| (*lsn, value.clone()))
    2114         2892 :                     .collect_vec();
    2115         2892 :                 retention.push(deltas);
    2116         2892 :             }
    2117              :         }
    2118         1260 :         let mut result = Vec::with_capacity(retention.len());
    2119         1260 :         assert_eq!(retention.len(), lsn_split_points.len() + 1);
    2120         4080 :         for (idx, logs) in retention.into_iter().enumerate() {
    2121         4080 :             if idx == lsn_split_points.len() {
    2122         1260 :                 return Ok(KeyHistoryRetention {
    2123         1260 :                     below_horizon: result,
    2124         1260 :                     above_horizon: KeyLogAtLsn(logs),
    2125         1260 :                 });
    2126         2820 :             } else {
    2127         2820 :                 result.push((lsn_split_points[idx], KeyLogAtLsn(logs)));
    2128         2820 :             }
    2129              :         }
    2130            0 :         unreachable!("key retention is empty")
    2131         1260 :     }
    2132              : 
    2133              :     /// Check how much space is left on the disk
    2134          104 :     async fn check_available_space(self: &Arc<Self>) -> anyhow::Result<u64> {
    2135          104 :         let tenants_dir = self.conf.tenants_path();
    2136              : 
    2137          104 :         let stat = Statvfs::get(&tenants_dir, None)
    2138          104 :             .context("statvfs failed, presumably directory got unlinked")?;
    2139              : 
    2140          104 :         let (avail_bytes, _) = stat.get_avail_total_bytes();
    2141          104 : 
    2142          104 :         Ok(avail_bytes)
    2143          104 :     }
    2144              : 
    2145              :     /// Check if the compaction can proceed safely without running out of space. We assume the size
    2146              :     /// upper bound of the produced files of a compaction job is the same as all layers involved in
    2147              :     /// the compaction. Therefore, we need `2 * layers_to_be_compacted_size` at least to do a
    2148              :     /// compaction.
    2149          104 :     async fn check_compaction_space(
    2150          104 :         self: &Arc<Self>,
    2151          104 :         layer_selection: &[Layer],
    2152          104 :     ) -> anyhow::Result<()> {
    2153          104 :         let available_space = self.check_available_space().await?;
    2154          104 :         let mut remote_layer_size = 0;
    2155          104 :         let mut all_layer_size = 0;
    2156          408 :         for layer in layer_selection {
    2157          304 :             let needs_download = layer.needs_download().await?;
    2158          304 :             if needs_download.is_some() {
    2159            0 :                 remote_layer_size += layer.layer_desc().file_size;
    2160          304 :             }
    2161          304 :             all_layer_size += layer.layer_desc().file_size;
    2162              :         }
    2163          104 :         let allocated_space = (available_space as f64 * 0.8) as u64; /* reserve 20% space for other tasks */
    2164          104 :         if all_layer_size /* space needed for newly-generated file */ + remote_layer_size /* space for downloading layers */ > allocated_space
    2165              :         {
    2166            0 :             return Err(anyhow!("not enough space for compaction: available_space={}, allocated_space={}, all_layer_size={}, remote_layer_size={}, required_space={}",
    2167            0 :                 available_space, allocated_space, all_layer_size, remote_layer_size, all_layer_size + remote_layer_size));
    2168          104 :         }
    2169          104 :         Ok(())
    2170          104 :     }
    2171              : 
    2172              :     /// Get a watermark for gc-compaction, that is the lowest LSN that we can use as the `gc_horizon` for
    2173              :     /// the compaction algorithm. It is min(space_cutoff, time_cutoff, latest_gc_cutoff, standby_horizon).
    2174              :     /// Leases and retain_lsns are considered in the gc-compaction job itself so we don't need to account for them
    2175              :     /// here.
    2176          108 :     pub(crate) fn get_gc_compaction_watermark(self: &Arc<Self>) -> Lsn {
    2177          108 :         let gc_cutoff_lsn = {
    2178          108 :             let gc_info = self.gc_info.read().unwrap();
    2179          108 :             gc_info.min_cutoff()
    2180          108 :         };
    2181          108 : 
    2182          108 :         // TODO: standby horizon should use leases so we don't really need to consider it here.
    2183          108 :         // let watermark = watermark.min(self.standby_horizon.load());
    2184          108 : 
    2185          108 :         // TODO: ensure the child branches will not use anything below the watermark, or consider
    2186          108 :         // them when computing the watermark.
    2187          108 :         gc_cutoff_lsn.min(*self.get_applied_gc_cutoff_lsn())
    2188          108 :     }
    2189              : 
    2190              :     /// Split a gc-compaction job into multiple compaction jobs. The split is based on the key range and the estimated size of the compaction job.
    2191              :     /// The function returns a list of compaction jobs that can be executed separately. If the upper bound of the compact LSN
    2192              :     /// range is not specified, we will use the latest gc_cutoff as the upper bound, so that all jobs in the jobset acts
    2193              :     /// like a full compaction of the specified keyspace.
    2194            0 :     pub(crate) async fn gc_compaction_split_jobs(
    2195            0 :         self: &Arc<Self>,
    2196            0 :         job: GcCompactJob,
    2197            0 :         sub_compaction_max_job_size_mb: Option<u64>,
    2198            0 :     ) -> anyhow::Result<Vec<GcCompactJob>> {
    2199            0 :         let compact_below_lsn = if job.compact_lsn_range.end != Lsn::MAX {
    2200            0 :             job.compact_lsn_range.end
    2201              :         } else {
    2202            0 :             self.get_gc_compaction_watermark()
    2203              :         };
    2204              : 
    2205            0 :         if compact_below_lsn == Lsn::INVALID {
    2206            0 :             tracing::warn!("no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction");
    2207            0 :             return Ok(vec![]);
    2208            0 :         }
    2209              : 
    2210              :         // Split compaction job to about 4GB each
    2211              :         const GC_COMPACT_MAX_SIZE_MB: u64 = 4 * 1024;
    2212            0 :         let sub_compaction_max_job_size_mb =
    2213            0 :             sub_compaction_max_job_size_mb.unwrap_or(GC_COMPACT_MAX_SIZE_MB);
    2214            0 : 
    2215            0 :         let mut compact_jobs = Vec::new();
    2216            0 :         // For now, we simply use the key partitioning information; we should do a more fine-grained partitioning
    2217            0 :         // by estimating the amount of files read for a compaction job. We should also partition on LSN.
    2218            0 :         let ((dense_ks, sparse_ks), _) = self.partitioning.read().as_ref().clone();
    2219              :         // Truncate the key range to be within user specified compaction range.
    2220            0 :         fn truncate_to(
    2221            0 :             source_start: &Key,
    2222            0 :             source_end: &Key,
    2223            0 :             target_start: &Key,
    2224            0 :             target_end: &Key,
    2225            0 :         ) -> Option<(Key, Key)> {
    2226            0 :             let start = source_start.max(target_start);
    2227            0 :             let end = source_end.min(target_end);
    2228            0 :             if start < end {
    2229            0 :                 Some((*start, *end))
    2230              :             } else {
    2231            0 :                 None
    2232              :             }
    2233            0 :         }
    2234            0 :         let mut split_key_ranges = Vec::new();
    2235            0 :         let ranges = dense_ks
    2236            0 :             .parts
    2237            0 :             .iter()
    2238            0 :             .map(|partition| partition.ranges.iter())
    2239            0 :             .chain(sparse_ks.parts.iter().map(|x| x.0.ranges.iter()))
    2240            0 :             .flatten()
    2241            0 :             .cloned()
    2242            0 :             .collect_vec();
    2243            0 :         for range in ranges.iter() {
    2244            0 :             let Some((start, end)) = truncate_to(
    2245            0 :                 &range.start,
    2246            0 :                 &range.end,
    2247            0 :                 &job.compact_key_range.start,
    2248            0 :                 &job.compact_key_range.end,
    2249            0 :             ) else {
    2250            0 :                 continue;
    2251              :             };
    2252            0 :             split_key_ranges.push((start, end));
    2253              :         }
    2254            0 :         split_key_ranges.sort();
    2255            0 :         let all_layers = {
    2256            0 :             let guard = self.layers.read().await;
    2257            0 :             let layer_map = guard.layer_map()?;
    2258            0 :             layer_map.iter_historic_layers().collect_vec()
    2259            0 :         };
    2260            0 :         let mut current_start = None;
    2261            0 :         let ranges_num = split_key_ranges.len();
    2262            0 :         for (idx, (start, end)) in split_key_ranges.into_iter().enumerate() {
    2263            0 :             if current_start.is_none() {
    2264            0 :                 current_start = Some(start);
    2265            0 :             }
    2266            0 :             let start = current_start.unwrap();
    2267            0 :             if start >= end {
    2268              :                 // We have already processed this partition.
    2269            0 :                 continue;
    2270            0 :             }
    2271            0 :             let overlapping_layers = {
    2272            0 :                 let mut desc = Vec::new();
    2273            0 :                 for layer in all_layers.iter() {
    2274            0 :                     if overlaps_with(&layer.get_key_range(), &(start..end))
    2275            0 :                         && layer.get_lsn_range().start <= compact_below_lsn
    2276            0 :                     {
    2277            0 :                         desc.push(layer.clone());
    2278            0 :                     }
    2279              :                 }
    2280            0 :                 desc
    2281            0 :             };
    2282            0 :             let total_size = overlapping_layers.iter().map(|x| x.file_size).sum::<u64>();
    2283            0 :             if total_size > sub_compaction_max_job_size_mb * 1024 * 1024 || ranges_num == idx + 1 {
    2284              :                 // Try to extend the compaction range so that we include at least one full layer file.
    2285            0 :                 let extended_end = overlapping_layers
    2286            0 :                     .iter()
    2287            0 :                     .map(|layer| layer.key_range.end)
    2288            0 :                     .min();
    2289              :                 // It is possible that the search range does not contain any layer files when we reach the end of the loop.
    2290              :                 // In this case, we simply use the specified key range end.
    2291            0 :                 let end = if let Some(extended_end) = extended_end {
    2292            0 :                     extended_end.max(end)
    2293              :                 } else {
    2294            0 :                     end
    2295              :                 };
    2296            0 :                 let end = if ranges_num == idx + 1 {
    2297              :                     // extend the compaction range to the end of the key range if it's the last partition
    2298            0 :                     end.max(job.compact_key_range.end)
    2299              :                 } else {
    2300            0 :                     end
    2301              :                 };
    2302            0 :                 info!(
    2303            0 :                     "splitting compaction job: {}..{}, estimated_size={}",
    2304              :                     start, end, total_size
    2305              :                 );
    2306            0 :                 compact_jobs.push(GcCompactJob {
    2307            0 :                     dry_run: job.dry_run,
    2308            0 :                     compact_key_range: start..end,
    2309            0 :                     compact_lsn_range: job.compact_lsn_range.start..compact_below_lsn,
    2310            0 :                 });
    2311            0 :                 current_start = Some(end);
    2312            0 :             }
    2313              :         }
    2314            0 :         Ok(compact_jobs)
    2315            0 :     }
    2316              : 
    2317              :     /// An experimental compaction building block that combines compaction with garbage collection.
    2318              :     ///
    2319              :     /// The current implementation picks all delta + image layers that are below or intersecting with
    2320              :     /// the GC horizon without considering retain_lsns. Then, it does a full compaction over all these delta
    2321              :     /// layers and image layers, which generates image layers on the gc horizon, drop deltas below gc horizon,
    2322              :     /// and create delta layers with all deltas >= gc horizon.
    2323              :     ///
    2324              :     /// If `options.compact_range` is provided, it will only compact the keys within the range, aka partial compaction.
    2325              :     /// Partial compaction will read and process all layers overlapping with the key range, even if it might
    2326              :     /// contain extra keys. After the gc-compaction phase completes, delta layers that are not fully contained
    2327              :     /// within the key range will be rewritten to ensure they do not overlap with the delta layers. Providing
    2328              :     /// Key::MIN..Key..MAX to the function indicates a full compaction, though technically, `Key::MAX` is not
    2329              :     /// part of the range.
    2330              :     ///
    2331              :     /// If `options.compact_lsn_range.end` is provided, the compaction will only compact layers below or intersect with
    2332              :     /// the LSN. Otherwise, it will use the gc cutoff by default.
    2333          108 :     pub(crate) async fn compact_with_gc(
    2334          108 :         self: &Arc<Self>,
    2335          108 :         cancel: &CancellationToken,
    2336          108 :         options: CompactOptions,
    2337          108 :         ctx: &RequestContext,
    2338          108 :     ) -> anyhow::Result<()> {
    2339          108 :         let sub_compaction = options.sub_compaction;
    2340          108 :         let job = GcCompactJob::from_compact_options(options.clone());
    2341          108 :         if sub_compaction {
    2342            0 :             info!("running enhanced gc bottom-most compaction with sub-compaction, splitting compaction jobs");
    2343            0 :             let jobs = self
    2344            0 :                 .gc_compaction_split_jobs(job, options.sub_compaction_max_job_size_mb)
    2345            0 :                 .await?;
    2346            0 :             let jobs_len = jobs.len();
    2347            0 :             for (idx, job) in jobs.into_iter().enumerate() {
    2348            0 :                 info!(
    2349            0 :                     "running enhanced gc bottom-most compaction, sub-compaction {}/{}",
    2350            0 :                     idx + 1,
    2351              :                     jobs_len
    2352              :                 );
    2353            0 :                 self.compact_with_gc_inner(cancel, job, ctx).await?;
    2354              :             }
    2355            0 :             if jobs_len == 0 {
    2356            0 :                 info!("no jobs to run, skipping gc bottom-most compaction");
    2357            0 :             }
    2358            0 :             return Ok(());
    2359          108 :         }
    2360          108 :         self.compact_with_gc_inner(cancel, job, ctx).await
    2361          108 :     }
    2362              : 
    2363          108 :     async fn compact_with_gc_inner(
    2364          108 :         self: &Arc<Self>,
    2365          108 :         cancel: &CancellationToken,
    2366          108 :         job: GcCompactJob,
    2367          108 :         ctx: &RequestContext,
    2368          108 :     ) -> anyhow::Result<()> {
    2369          108 :         // Block other compaction/GC tasks from running for now. GC-compaction could run along
    2370          108 :         // with legacy compaction tasks in the future. Always ensure the lock order is compaction -> gc.
    2371          108 :         // Note that we already acquired the compaction lock when the outer `compact` function gets called.
    2372          108 : 
    2373          108 :         let gc_lock = async {
    2374          108 :             tokio::select! {
    2375          108 :                 guard = self.gc_lock.lock() => Ok(guard),
    2376              :                 // TODO: refactor to CompactionError to correctly pass cancelled error
    2377          108 :                 _ = cancel.cancelled() => Err(anyhow!("cancelled")),
    2378              :             }
    2379          108 :         };
    2380              : 
    2381          108 :         let gc_lock = crate::timed(
    2382          108 :             gc_lock,
    2383          108 :             "acquires gc lock",
    2384          108 :             std::time::Duration::from_secs(5),
    2385          108 :         )
    2386          108 :         .await?;
    2387              : 
    2388          108 :         let dry_run = job.dry_run;
    2389          108 :         let compact_key_range = job.compact_key_range;
    2390          108 :         let compact_lsn_range = job.compact_lsn_range;
    2391              : 
    2392          108 :         let debug_mode = cfg!(debug_assertions) || cfg!(feature = "testing");
    2393              : 
    2394          108 :         info!("running enhanced gc bottom-most compaction, dry_run={dry_run}, compact_key_range={}..{}, compact_lsn_range={}..{}", compact_key_range.start, compact_key_range.end, compact_lsn_range.start, compact_lsn_range.end);
    2395              : 
    2396          108 :         scopeguard::defer! {
    2397          108 :             info!("done enhanced gc bottom-most compaction");
    2398          108 :         };
    2399          108 : 
    2400          108 :         let mut stat = CompactionStatistics::default();
    2401              : 
    2402              :         // Step 0: pick all delta layers + image layers below/intersect with the GC horizon.
    2403              :         // The layer selection has the following properties:
    2404              :         // 1. If a layer is in the selection, all layers below it are in the selection.
    2405              :         // 2. Inferred from (1), for each key in the layer selection, the value can be reconstructed only with the layers in the layer selection.
    2406          104 :         let job_desc = {
    2407          108 :             let guard = self.layers.read().await;
    2408          108 :             let layers = guard.layer_map()?;
    2409          108 :             let gc_info = self.gc_info.read().unwrap();
    2410          108 :             let mut retain_lsns_below_horizon = Vec::new();
    2411          108 :             let gc_cutoff = {
    2412              :                 // Currently, gc-compaction only kicks in after the legacy gc has updated the gc_cutoff.
    2413              :                 // Therefore, it can only clean up data that cannot be cleaned up with legacy gc, instead of
    2414              :                 // cleaning everything that theoritically it could. In the future, it should use `self.gc_info`
    2415              :                 // to get the truth data.
    2416          108 :                 let real_gc_cutoff = self.get_gc_compaction_watermark();
    2417              :                 // The compaction algorithm will keep all keys above the gc_cutoff while keeping only necessary keys below the gc_cutoff for
    2418              :                 // each of the retain_lsn. Therefore, if the user-provided `compact_lsn_range.end` is larger than the real gc cutoff, we will use
    2419              :                 // the real cutoff.
    2420          108 :                 let mut gc_cutoff = if compact_lsn_range.end == Lsn::MAX {
    2421           96 :                     if real_gc_cutoff == Lsn::INVALID {
    2422              :                         // If the gc_cutoff is not generated yet, we should not compact anything.
    2423            0 :                         tracing::warn!("no layers to compact with gc: gc_cutoff not generated yet, skipping gc bottom-most compaction");
    2424            0 :                         return Ok(());
    2425           96 :                     }
    2426           96 :                     real_gc_cutoff
    2427              :                 } else {
    2428           12 :                     compact_lsn_range.end
    2429              :                 };
    2430          108 :                 if gc_cutoff > real_gc_cutoff {
    2431            8 :                     warn!("provided compact_lsn_range.end={} is larger than the real_gc_cutoff={}, using the real gc cutoff", gc_cutoff, real_gc_cutoff);
    2432            8 :                     gc_cutoff = real_gc_cutoff;
    2433          100 :                 }
    2434          108 :                 gc_cutoff
    2435              :             };
    2436          140 :             for (lsn, _timeline_id, _is_offloaded) in &gc_info.retain_lsns {
    2437          140 :                 if lsn < &gc_cutoff {
    2438          140 :                     retain_lsns_below_horizon.push(*lsn);
    2439          140 :                 }
    2440              :             }
    2441          108 :             for lsn in gc_info.leases.keys() {
    2442            0 :                 if lsn < &gc_cutoff {
    2443            0 :                     retain_lsns_below_horizon.push(*lsn);
    2444            0 :                 }
    2445              :             }
    2446          108 :             let mut selected_layers: Vec<Layer> = Vec::new();
    2447          108 :             drop(gc_info);
    2448              :             // Firstly, pick all the layers intersect or below the gc_cutoff, get the largest LSN in the selected layers.
    2449          108 :             let Some(max_layer_lsn) = layers
    2450          108 :                 .iter_historic_layers()
    2451          488 :                 .filter(|desc| desc.get_lsn_range().start <= gc_cutoff)
    2452          416 :                 .map(|desc| desc.get_lsn_range().end)
    2453          108 :                 .max()
    2454              :             else {
    2455            0 :                 info!("no layers to compact with gc: no historic layers below gc_cutoff, gc_cutoff={}", gc_cutoff);
    2456            0 :                 return Ok(());
    2457              :             };
    2458              :             // Next, if the user specifies compact_lsn_range.start, we need to filter some layers out. All the layers (strictly) below
    2459              :             // the min_layer_lsn computed as below will be filtered out and the data will be accessed using the normal read path, as if
    2460              :             // it is a branch.
    2461          108 :             let Some(min_layer_lsn) = layers
    2462          108 :                 .iter_historic_layers()
    2463          488 :                 .filter(|desc| {
    2464          488 :                     if compact_lsn_range.start == Lsn::INVALID {
    2465          396 :                         true // select all layers below if start == Lsn(0)
    2466              :                     } else {
    2467           92 :                         desc.get_lsn_range().end > compact_lsn_range.start // strictly larger than compact_above_lsn
    2468              :                     }
    2469          488 :                 })
    2470          452 :                 .map(|desc| desc.get_lsn_range().start)
    2471          108 :                 .min()
    2472              :             else {
    2473            0 :                 info!("no layers to compact with gc: no historic layers above compact_above_lsn, compact_above_lsn={}", compact_lsn_range.end);
    2474            0 :                 return Ok(());
    2475              :             };
    2476              :             // Then, pick all the layers that are below the max_layer_lsn. This is to ensure we can pick all single-key
    2477              :             // layers to compact.
    2478          108 :             let mut rewrite_layers = Vec::new();
    2479          488 :             for desc in layers.iter_historic_layers() {
    2480          488 :                 if desc.get_lsn_range().end <= max_layer_lsn
    2481          416 :                     && desc.get_lsn_range().start >= min_layer_lsn
    2482          380 :                     && overlaps_with(&desc.get_key_range(), &compact_key_range)
    2483              :                 {
    2484              :                     // If the layer overlaps with the compaction key range, we need to read it to obtain all keys within the range,
    2485              :                     // even if it might contain extra keys
    2486          304 :                     selected_layers.push(guard.get_from_desc(&desc));
    2487          304 :                     // If the layer is not fully contained within the key range, we need to rewrite it if it's a delta layer (it's fine
    2488          304 :                     // to overlap image layers)
    2489          304 :                     if desc.is_delta() && !fully_contains(&compact_key_range, &desc.get_key_range())
    2490            4 :                     {
    2491            4 :                         rewrite_layers.push(desc);
    2492          300 :                     }
    2493          184 :                 }
    2494              :             }
    2495          108 :             if selected_layers.is_empty() {
    2496            4 :                 info!("no layers to compact with gc: no layers within the key range, gc_cutoff={}, key_range={}..{}", gc_cutoff, compact_key_range.start, compact_key_range.end);
    2497            4 :                 return Ok(());
    2498          104 :             }
    2499          104 :             retain_lsns_below_horizon.sort();
    2500          104 :             GcCompactionJobDescription {
    2501          104 :                 selected_layers,
    2502          104 :                 gc_cutoff,
    2503          104 :                 retain_lsns_below_horizon,
    2504          104 :                 min_layer_lsn,
    2505          104 :                 max_layer_lsn,
    2506          104 :                 compaction_key_range: compact_key_range,
    2507          104 :                 rewrite_layers,
    2508          104 :             }
    2509              :         };
    2510          104 :         let (has_data_below, lowest_retain_lsn) = if compact_lsn_range.start != Lsn::INVALID {
    2511              :             // If we only compact above some LSN, we should get the history from the current branch below the specified LSN.
    2512              :             // We use job_desc.min_layer_lsn as if it's the lowest branch point.
    2513           16 :             (true, job_desc.min_layer_lsn)
    2514           88 :         } else if self.ancestor_timeline.is_some() {
    2515              :             // In theory, we can also use min_layer_lsn here, but using ancestor LSN makes sure the delta layers cover the
    2516              :             // LSN ranges all the way to the ancestor timeline.
    2517            4 :             (true, self.ancestor_lsn)
    2518              :         } else {
    2519           84 :             let res = job_desc
    2520           84 :                 .retain_lsns_below_horizon
    2521           84 :                 .first()
    2522           84 :                 .copied()
    2523           84 :                 .unwrap_or(job_desc.gc_cutoff);
    2524           84 :             if debug_mode {
    2525           84 :                 assert_eq!(
    2526           84 :                     res,
    2527           84 :                     job_desc
    2528           84 :                         .retain_lsns_below_horizon
    2529           84 :                         .iter()
    2530           84 :                         .min()
    2531           84 :                         .copied()
    2532           84 :                         .unwrap_or(job_desc.gc_cutoff)
    2533           84 :                 );
    2534            0 :             }
    2535           84 :             (false, res)
    2536              :         };
    2537          104 :         info!(
    2538            0 :             "picked {} layers for compaction ({} layers need rewriting) with max_layer_lsn={} min_layer_lsn={} gc_cutoff={} lowest_retain_lsn={}, key_range={}..{}, has_data_below={}",
    2539            0 :             job_desc.selected_layers.len(),
    2540            0 :             job_desc.rewrite_layers.len(),
    2541              :             job_desc.max_layer_lsn,
    2542              :             job_desc.min_layer_lsn,
    2543              :             job_desc.gc_cutoff,
    2544              :             lowest_retain_lsn,
    2545              :             job_desc.compaction_key_range.start,
    2546              :             job_desc.compaction_key_range.end,
    2547              :             has_data_below,
    2548              :         );
    2549              : 
    2550          408 :         for layer in &job_desc.selected_layers {
    2551          304 :             debug!("read layer: {}", layer.layer_desc().key());
    2552              :         }
    2553          108 :         for layer in &job_desc.rewrite_layers {
    2554            4 :             debug!("rewrite layer: {}", layer.key());
    2555              :         }
    2556              : 
    2557          104 :         self.check_compaction_space(&job_desc.selected_layers)
    2558          104 :             .await?;
    2559              : 
    2560              :         // Generate statistics for the compaction
    2561          408 :         for layer in &job_desc.selected_layers {
    2562          304 :             let desc = layer.layer_desc();
    2563          304 :             if desc.is_delta() {
    2564          172 :                 stat.visit_delta_layer(desc.file_size());
    2565          172 :             } else {
    2566          132 :                 stat.visit_image_layer(desc.file_size());
    2567          132 :             }
    2568              :         }
    2569              : 
    2570              :         // Step 1: construct a k-merge iterator over all layers.
    2571              :         // Also, verify if the layer map can be split by drawing a horizontal line at every LSN start/end split point.
    2572          104 :         let layer_names = job_desc
    2573          104 :             .selected_layers
    2574          104 :             .iter()
    2575          304 :             .map(|layer| layer.layer_desc().layer_name())
    2576          104 :             .collect_vec();
    2577          104 :         if let Some(err) = check_valid_layermap(&layer_names) {
    2578            0 :             bail!("gc-compaction layer map check failed because {}, cannot proceed with compaction due to potential data loss", err);
    2579          104 :         }
    2580          104 :         // The maximum LSN we are processing in this compaction loop
    2581          104 :         let end_lsn = job_desc
    2582          104 :             .selected_layers
    2583          104 :             .iter()
    2584          304 :             .map(|l| l.layer_desc().lsn_range.end)
    2585          104 :             .max()
    2586          104 :             .unwrap();
    2587          104 :         let mut delta_layers = Vec::new();
    2588          104 :         let mut image_layers = Vec::new();
    2589          104 :         let mut downloaded_layers = Vec::new();
    2590          104 :         let mut total_downloaded_size = 0;
    2591          104 :         let mut total_layer_size = 0;
    2592          408 :         for layer in &job_desc.selected_layers {
    2593          304 :             if layer.needs_download().await?.is_some() {
    2594            0 :                 total_downloaded_size += layer.layer_desc().file_size;
    2595          304 :             }
    2596          304 :             total_layer_size += layer.layer_desc().file_size;
    2597          304 :             let resident_layer = layer.download_and_keep_resident().await?;
    2598          304 :             downloaded_layers.push(resident_layer);
    2599              :         }
    2600          104 :         info!(
    2601            0 :             "finish downloading layers, downloaded={}, total={}, ratio={:.2}",
    2602            0 :             total_downloaded_size,
    2603            0 :             total_layer_size,
    2604            0 :             total_downloaded_size as f64 / total_layer_size as f64
    2605              :         );
    2606          408 :         for resident_layer in &downloaded_layers {
    2607          304 :             if resident_layer.layer_desc().is_delta() {
    2608          172 :                 let layer = resident_layer.get_as_delta(ctx).await?;
    2609          172 :                 delta_layers.push(layer);
    2610              :             } else {
    2611          132 :                 let layer = resident_layer.get_as_image(ctx).await?;
    2612          132 :                 image_layers.push(layer);
    2613              :             }
    2614              :         }
    2615          104 :         let (dense_ks, sparse_ks) = self.collect_gc_compaction_keyspace().await?;
    2616          104 :         let mut merge_iter = FilterIterator::create(
    2617          104 :             MergeIterator::create(&delta_layers, &image_layers, ctx),
    2618          104 :             dense_ks,
    2619          104 :             sparse_ks,
    2620          104 :         )?;
    2621              : 
    2622              :         // Step 2: Produce images+deltas.
    2623          104 :         let mut accumulated_values = Vec::new();
    2624          104 :         let mut last_key: Option<Key> = None;
    2625              : 
    2626              :         // Only create image layers when there is no ancestor branches. TODO: create covering image layer
    2627              :         // when some condition meet.
    2628          104 :         let mut image_layer_writer = if !has_data_below {
    2629              :             Some(
    2630           84 :                 SplitImageLayerWriter::new(
    2631           84 :                     self.conf,
    2632           84 :                     self.timeline_id,
    2633           84 :                     self.tenant_shard_id,
    2634           84 :                     job_desc.compaction_key_range.start,
    2635           84 :                     lowest_retain_lsn,
    2636           84 :                     self.get_compaction_target_size(),
    2637           84 :                     ctx,
    2638           84 :                 )
    2639           84 :                 .await?,
    2640              :             )
    2641              :         } else {
    2642           20 :             None
    2643              :         };
    2644              : 
    2645          104 :         let mut delta_layer_writer = SplitDeltaLayerWriter::new(
    2646          104 :             self.conf,
    2647          104 :             self.timeline_id,
    2648          104 :             self.tenant_shard_id,
    2649          104 :             lowest_retain_lsn..end_lsn,
    2650          104 :             self.get_compaction_target_size(),
    2651          104 :         )
    2652          104 :         .await?;
    2653              : 
    2654              :         #[derive(Default)]
    2655              :         struct RewritingLayers {
    2656              :             before: Option<DeltaLayerWriter>,
    2657              :             after: Option<DeltaLayerWriter>,
    2658              :         }
    2659          104 :         let mut delta_layer_rewriters = HashMap::<Arc<PersistentLayerKey>, RewritingLayers>::new();
    2660              : 
    2661              :         /// When compacting not at a bottom range (=`[0,X)`) of the root branch, we "have data below" (`has_data_below=true`).
    2662              :         /// The two cases are compaction in ancestor branches and when `compact_lsn_range.start` is set.
    2663              :         /// In those cases, we need to pull up data from below the LSN range we're compaction.
    2664              :         ///
    2665              :         /// This function unifies the cases so that later code doesn't have to think about it.
    2666              :         ///
    2667              :         /// Currently, we always get the ancestor image for each key in the child branch no matter whether the image
    2668              :         /// is needed for reconstruction. This should be fixed in the future.
    2669              :         ///
    2670              :         /// Furthermore, we should do vectored get instead of a single get, or better, use k-merge for ancestor
    2671              :         /// images.
    2672         1244 :         async fn get_ancestor_image(
    2673         1244 :             this_tline: &Arc<Timeline>,
    2674         1244 :             key: Key,
    2675         1244 :             ctx: &RequestContext,
    2676         1244 :             has_data_below: bool,
    2677         1244 :             history_lsn_point: Lsn,
    2678         1244 :         ) -> anyhow::Result<Option<(Key, Lsn, Bytes)>> {
    2679         1244 :             if !has_data_below {
    2680         1168 :                 return Ok(None);
    2681           76 :             };
    2682              :             // This function is implemented as a get of the current timeline at ancestor LSN, therefore reusing
    2683              :             // as much existing code as possible.
    2684           76 :             let img = this_tline.get(key, history_lsn_point, ctx).await?;
    2685           76 :             Ok(Some((key, history_lsn_point, img)))
    2686         1244 :         }
    2687              : 
    2688              :         // Actually, we can decide not to write to the image layer at all at this point because
    2689              :         // the key and LSN range are determined. However, to keep things simple here, we still
    2690              :         // create this writer, and discard the writer in the end.
    2691              : 
    2692         1932 :         while let Some(((key, lsn, val), desc)) = merge_iter.next_with_trace().await? {
    2693         1828 :             if cancel.is_cancelled() {
    2694            0 :                 return Err(anyhow!("cancelled")); // TODO: refactor to CompactionError and pass cancel error
    2695         1828 :             }
    2696         1828 :             if self.shard_identity.is_key_disposable(&key) {
    2697              :                 // If this shard does not need to store this key, simply skip it.
    2698              :                 //
    2699              :                 // This is not handled in the filter iterator because shard is determined by hash.
    2700              :                 // Therefore, it does not give us any performance benefit to do things like skip
    2701              :                 // a whole layer file as handling key spaces (ranges).
    2702            0 :                 if cfg!(debug_assertions) {
    2703            0 :                     let shard = self.shard_identity.shard_index();
    2704            0 :                     let owner = self.shard_identity.get_shard_number(&key);
    2705            0 :                     panic!("key {key} does not belong on shard {shard}, owned by {owner}");
    2706            0 :                 }
    2707            0 :                 continue;
    2708         1828 :             }
    2709         1828 :             if !job_desc.compaction_key_range.contains(&key) {
    2710          128 :                 if !desc.is_delta {
    2711          120 :                     continue;
    2712            8 :                 }
    2713            8 :                 let rewriter = delta_layer_rewriters.entry(desc.clone()).or_default();
    2714            8 :                 let rewriter = if key < job_desc.compaction_key_range.start {
    2715            0 :                     if rewriter.before.is_none() {
    2716            0 :                         rewriter.before = Some(
    2717            0 :                             DeltaLayerWriter::new(
    2718            0 :                                 self.conf,
    2719            0 :                                 self.timeline_id,
    2720            0 :                                 self.tenant_shard_id,
    2721            0 :                                 desc.key_range.start,
    2722            0 :                                 desc.lsn_range.clone(),
    2723            0 :                                 ctx,
    2724            0 :                             )
    2725            0 :                             .await?,
    2726              :                         );
    2727            0 :                     }
    2728            0 :                     rewriter.before.as_mut().unwrap()
    2729            8 :                 } else if key >= job_desc.compaction_key_range.end {
    2730            8 :                     if rewriter.after.is_none() {
    2731            4 :                         rewriter.after = Some(
    2732            4 :                             DeltaLayerWriter::new(
    2733            4 :                                 self.conf,
    2734            4 :                                 self.timeline_id,
    2735            4 :                                 self.tenant_shard_id,
    2736            4 :                                 job_desc.compaction_key_range.end,
    2737            4 :                                 desc.lsn_range.clone(),
    2738            4 :                                 ctx,
    2739            4 :                             )
    2740            4 :                             .await?,
    2741              :                         );
    2742            4 :                     }
    2743            8 :                     rewriter.after.as_mut().unwrap()
    2744              :                 } else {
    2745            0 :                     unreachable!()
    2746              :                 };
    2747            8 :                 rewriter.put_value(key, lsn, val, ctx).await?;
    2748            8 :                 continue;
    2749         1700 :             }
    2750         1700 :             match val {
    2751         1220 :                 Value::Image(_) => stat.visit_image_key(&val),
    2752          480 :                 Value::WalRecord(_) => stat.visit_wal_key(&val),
    2753              :             }
    2754         1700 :             if last_key.is_none() || last_key.as_ref() == Some(&key) {
    2755          560 :                 if last_key.is_none() {
    2756          104 :                     last_key = Some(key);
    2757          456 :                 }
    2758          560 :                 accumulated_values.push((key, lsn, val));
    2759              :             } else {
    2760         1140 :                 let last_key: &mut Key = last_key.as_mut().unwrap();
    2761         1140 :                 stat.on_unique_key_visited(); // TODO: adjust statistics for partial compaction
    2762         1140 :                 let retention = self
    2763         1140 :                     .generate_key_retention(
    2764         1140 :                         *last_key,
    2765         1140 :                         &accumulated_values,
    2766         1140 :                         job_desc.gc_cutoff,
    2767         1140 :                         &job_desc.retain_lsns_below_horizon,
    2768         1140 :                         COMPACTION_DELTA_THRESHOLD,
    2769         1140 :                         get_ancestor_image(self, *last_key, ctx, has_data_below, lowest_retain_lsn)
    2770         1140 :                             .await?,
    2771              :                     )
    2772         1140 :                     .await?;
    2773         1140 :                 retention
    2774         1140 :                     .pipe_to(
    2775         1140 :                         *last_key,
    2776         1140 :                         &mut delta_layer_writer,
    2777         1140 :                         image_layer_writer.as_mut(),
    2778         1140 :                         &mut stat,
    2779         1140 :                         ctx,
    2780         1140 :                     )
    2781         1140 :                     .await?;
    2782         1140 :                 accumulated_values.clear();
    2783         1140 :                 *last_key = key;
    2784         1140 :                 accumulated_values.push((key, lsn, val));
    2785              :             }
    2786              :         }
    2787              : 
    2788              :         // TODO: move the below part to the loop body
    2789          104 :         let last_key = last_key.expect("no keys produced during compaction");
    2790          104 :         stat.on_unique_key_visited();
    2791              : 
    2792          104 :         let retention = self
    2793          104 :             .generate_key_retention(
    2794          104 :                 last_key,
    2795          104 :                 &accumulated_values,
    2796          104 :                 job_desc.gc_cutoff,
    2797          104 :                 &job_desc.retain_lsns_below_horizon,
    2798          104 :                 COMPACTION_DELTA_THRESHOLD,
    2799          104 :                 get_ancestor_image(self, last_key, ctx, has_data_below, lowest_retain_lsn).await?,
    2800              :             )
    2801          104 :             .await?;
    2802          104 :         retention
    2803          104 :             .pipe_to(
    2804          104 :                 last_key,
    2805          104 :                 &mut delta_layer_writer,
    2806          104 :                 image_layer_writer.as_mut(),
    2807          104 :                 &mut stat,
    2808          104 :                 ctx,
    2809          104 :             )
    2810          104 :             .await?;
    2811              :         // end: move the above part to the loop body
    2812              : 
    2813          104 :         let mut rewrote_delta_layers = Vec::new();
    2814          108 :         for (key, writers) in delta_layer_rewriters {
    2815            4 :             if let Some(delta_writer_before) = writers.before {
    2816            0 :                 let (desc, path) = delta_writer_before
    2817            0 :                     .finish(job_desc.compaction_key_range.start, ctx)
    2818            0 :                     .await?;
    2819            0 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    2820            0 :                 rewrote_delta_layers.push(layer);
    2821            4 :             }
    2822            4 :             if let Some(delta_writer_after) = writers.after {
    2823            4 :                 let (desc, path) = delta_writer_after.finish(key.key_range.end, ctx).await?;
    2824            4 :                 let layer = Layer::finish_creating(self.conf, self, desc, &path)?;
    2825            4 :                 rewrote_delta_layers.push(layer);
    2826            0 :             }
    2827              :         }
    2828              : 
    2829          148 :         let discard = |key: &PersistentLayerKey| {
    2830          148 :             let key = key.clone();
    2831          148 :             async move { KeyHistoryRetention::discard_key(&key, self, dry_run).await }
    2832          148 :         };
    2833              : 
    2834          104 :         let produced_image_layers = if let Some(writer) = image_layer_writer {
    2835           84 :             if !dry_run {
    2836           76 :                 let end_key = job_desc.compaction_key_range.end;
    2837           76 :                 writer
    2838           76 :                     .finish_with_discard_fn(self, ctx, end_key, discard)
    2839           76 :                     .await?
    2840              :             } else {
    2841            8 :                 drop(writer);
    2842            8 :                 Vec::new()
    2843              :             }
    2844              :         } else {
    2845           20 :             Vec::new()
    2846              :         };
    2847              : 
    2848          104 :         let produced_delta_layers = if !dry_run {
    2849           96 :             delta_layer_writer
    2850           96 :                 .finish_with_discard_fn(self, ctx, discard)
    2851           96 :                 .await?
    2852              :         } else {
    2853            8 :             drop(delta_layer_writer);
    2854            8 :             Vec::new()
    2855              :         };
    2856              : 
    2857              :         // TODO: make image/delta/rewrote_delta layers generation atomic. At this point, we already generated resident layers, and if
    2858              :         // compaction is cancelled at this point, we might have some layers that are not cleaned up.
    2859          104 :         let mut compact_to = Vec::new();
    2860          104 :         let mut keep_layers = HashSet::new();
    2861          104 :         let produced_delta_layers_len = produced_delta_layers.len();
    2862          104 :         let produced_image_layers_len = produced_image_layers.len();
    2863          176 :         for action in produced_delta_layers {
    2864           72 :             match action {
    2865           44 :                 BatchWriterResult::Produced(layer) => {
    2866           44 :                     if cfg!(debug_assertions) {
    2867           44 :                         info!("produced delta layer: {}", layer.layer_desc().key());
    2868            0 :                     }
    2869           44 :                     stat.produce_delta_layer(layer.layer_desc().file_size());
    2870           44 :                     compact_to.push(layer);
    2871              :                 }
    2872           28 :                 BatchWriterResult::Discarded(l) => {
    2873           28 :                     if cfg!(debug_assertions) {
    2874           28 :                         info!("discarded delta layer: {}", l);
    2875            0 :                     }
    2876           28 :                     keep_layers.insert(l);
    2877           28 :                     stat.discard_delta_layer();
    2878              :                 }
    2879              :             }
    2880              :         }
    2881          108 :         for layer in &rewrote_delta_layers {
    2882            4 :             debug!(
    2883            0 :                 "produced rewritten delta layer: {}",
    2884            0 :                 layer.layer_desc().key()
    2885              :             );
    2886              :         }
    2887          104 :         compact_to.extend(rewrote_delta_layers);
    2888          180 :         for action in produced_image_layers {
    2889           76 :             match action {
    2890           60 :                 BatchWriterResult::Produced(layer) => {
    2891           60 :                     debug!("produced image layer: {}", layer.layer_desc().key());
    2892           60 :                     stat.produce_image_layer(layer.layer_desc().file_size());
    2893           60 :                     compact_to.push(layer);
    2894              :                 }
    2895           16 :                 BatchWriterResult::Discarded(l) => {
    2896           16 :                     debug!("discarded image layer: {}", l);
    2897           16 :                     keep_layers.insert(l);
    2898           16 :                     stat.discard_image_layer();
    2899              :                 }
    2900              :             }
    2901              :         }
    2902              : 
    2903          104 :         let mut layer_selection = job_desc.selected_layers;
    2904              : 
    2905              :         // Partial compaction might select more data than it processes, e.g., if
    2906              :         // the compaction_key_range only partially overlaps:
    2907              :         //
    2908              :         //         [---compaction_key_range---]
    2909              :         //   [---A----][----B----][----C----][----D----]
    2910              :         //
    2911              :         // For delta layers, we will rewrite the layers so that it is cut exactly at
    2912              :         // the compaction key range, so we can always discard them. However, for image
    2913              :         // layers, as we do not rewrite them for now, we need to handle them differently.
    2914              :         // Assume image layers  A, B, C, D are all in the `layer_selection`.
    2915              :         //
    2916              :         // The created image layers contain whatever is needed from B, C, and from
    2917              :         // `----]` of A, and from  `[---` of D.
    2918              :         //
    2919              :         // In contrast, `[---A` and `D----]` have not been processed, so, we must
    2920              :         // keep that data.
    2921              :         //
    2922              :         // The solution for now is to keep A and D completely if they are image layers.
    2923              :         // (layer_selection is what we'll remove from the layer map, so, retain what
    2924              :         // is _not_ fully covered by compaction_key_range).
    2925          408 :         for layer in &layer_selection {
    2926          304 :             if !layer.layer_desc().is_delta() {
    2927          132 :                 if !overlaps_with(
    2928          132 :                     &layer.layer_desc().key_range,
    2929          132 :                     &job_desc.compaction_key_range,
    2930          132 :                 ) {
    2931            0 :                     bail!("violated constraint: image layer outside of compaction key range");
    2932          132 :                 }
    2933          132 :                 if !fully_contains(
    2934          132 :                     &job_desc.compaction_key_range,
    2935          132 :                     &layer.layer_desc().key_range,
    2936          132 :                 ) {
    2937           16 :                     keep_layers.insert(layer.layer_desc().key());
    2938          116 :                 }
    2939          172 :             }
    2940              :         }
    2941              : 
    2942          304 :         layer_selection.retain(|x| !keep_layers.contains(&x.layer_desc().key()));
    2943          104 : 
    2944          104 :         info!(
    2945            0 :             "gc-compaction statistics: {}",
    2946            0 :             serde_json::to_string(&stat)?
    2947              :         );
    2948              : 
    2949          104 :         if dry_run {
    2950            8 :             return Ok(());
    2951           96 :         }
    2952           96 : 
    2953           96 :         info!(
    2954            0 :             "produced {} delta layers and {} image layers, {} layers are kept",
    2955            0 :             produced_delta_layers_len,
    2956            0 :             produced_image_layers_len,
    2957            0 :             keep_layers.len()
    2958              :         );
    2959              : 
    2960              :         // Step 3: Place back to the layer map.
    2961              : 
    2962              :         // First, do a sanity check to ensure the newly-created layer map does not contain overlaps.
    2963           96 :         let all_layers = {
    2964           96 :             let guard = self.layers.read().await;
    2965           96 :             let layer_map = guard.layer_map()?;
    2966           96 :             layer_map.iter_historic_layers().collect_vec()
    2967           96 :         };
    2968           96 : 
    2969           96 :         let mut final_layers = all_layers
    2970           96 :             .iter()
    2971          428 :             .map(|layer| layer.layer_name())
    2972           96 :             .collect::<HashSet<_>>();
    2973          304 :         for layer in &layer_selection {
    2974          208 :             final_layers.remove(&layer.layer_desc().layer_name());
    2975          208 :         }
    2976          204 :         for layer in &compact_to {
    2977          108 :             final_layers.insert(layer.layer_desc().layer_name());
    2978          108 :         }
    2979           96 :         let final_layers = final_layers.into_iter().collect_vec();
    2980              : 
    2981              :         // TODO: move this check before we call `finish` on image layer writers. However, this will require us to get the layer name before we finish
    2982              :         // the writer, so potentially, we will need a function like `ImageLayerBatchWriter::get_all_pending_layer_keys` to get all the keys that are
    2983              :         // in the writer before finalizing the persistent layers. Now we would leave some dangling layers on the disk if the check fails.
    2984           96 :         if let Some(err) = check_valid_layermap(&final_layers) {
    2985            0 :             bail!("gc-compaction layer map check failed after compaction because {}, compaction result not applied to the layer map due to potential data loss", err);
    2986           96 :         }
    2987              : 
    2988              :         // Between the sanity check and this compaction update, there could be new layers being flushed, but it should be fine because we only
    2989              :         // operate on L1 layers.
    2990              :         {
    2991              :             // Gc-compaction will rewrite the history of a key. This could happen in two ways:
    2992              :             //
    2993              :             // 1. We create an image layer to replace all the deltas below the compact LSN. In this case, assume
    2994              :             // we have 2 delta layers A and B, both below the compact LSN. We create an image layer I to replace
    2995              :             // A and B at the compact LSN. If the read path finishes reading A, yields, and now we update the layer
    2996              :             // map, the read path then cannot find any keys below A, reporting a missing key error, while the key
    2997              :             // now gets stored in I at the compact LSN.
    2998              :             //
    2999              :             // ---------------                                       ---------------
    3000              :             //   delta1@LSN20                                         image1@LSN20
    3001              :             // ---------------  (read path collects delta@LSN20,  => ---------------  (read path cannot find anything
    3002              :             //   delta1@LSN10    yields)                                               below LSN 20)
    3003              :             // ---------------
    3004              :             //
    3005              :             // 2. We create a delta layer to replace all the deltas below the compact LSN, and in the delta layers,
    3006              :             // we combines the history of a key into a single image. For example, we have deltas at LSN 1, 2, 3, 4,
    3007              :             // Assume one delta layer contains LSN 1, 2, 3 and the other contains LSN 4.
    3008              :             //
    3009              :             // We let gc-compaction combine delta 2, 3, 4 into an image at LSN 4, which produces a delta layer that
    3010              :             // contains the delta at LSN 1, the image at LSN 4. If the read path finishes reading the original delta
    3011              :             // layer containing 4, yields, and we update the layer map to put the delta layer.
    3012              :             //
    3013              :             // ---------------                                      ---------------
    3014              :             //   delta1@LSN4                                          image1@LSN4
    3015              :             // ---------------  (read path collects delta@LSN4,  => ---------------  (read path collects LSN4 and LSN1,
    3016              :             //  delta1@LSN1-3    yields)                              delta1@LSN1     which is an invalid history)
    3017              :             // ---------------                                      ---------------
    3018              :             //
    3019              :             // Therefore, the gc-compaction layer update operation should wait for all ongoing reads, block all pending reads,
    3020              :             // and only allow reads to continue after the update is finished.
    3021              : 
    3022           96 :             let update_guard = self.gc_compaction_layer_update_lock.write().await;
    3023              :             // Acquiring the update guard ensures current read operations end and new read operations are blocked.
    3024              :             // TODO: can we use `latest_gc_cutoff` Rcu to achieve the same effect?
    3025           96 :             let mut guard = self.layers.write().await;
    3026           96 :             guard
    3027           96 :                 .open_mut()?
    3028           96 :                 .finish_gc_compaction(&layer_selection, &compact_to, &self.metrics);
    3029           96 :             drop(update_guard); // Allow new reads to start ONLY after we finished updating the layer map.
    3030           96 :         };
    3031           96 : 
    3032           96 :         // Schedule an index-only upload to update the `latest_gc_cutoff` in the index_part.json.
    3033           96 :         // Otherwise, after restart, the index_part only contains the old `latest_gc_cutoff` and
    3034           96 :         // find_gc_cutoffs will try accessing things below the cutoff. TODO: ideally, this should
    3035           96 :         // be batched into `schedule_compaction_update`.
    3036           96 :         let disk_consistent_lsn = self.disk_consistent_lsn.load();
    3037           96 :         self.schedule_uploads(disk_consistent_lsn, None)?;
    3038              :         // If a layer gets rewritten throughout gc-compaction, we need to keep that layer only in `compact_to` instead
    3039              :         // of `compact_from`.
    3040           96 :         let compact_from = {
    3041           96 :             let mut compact_from = Vec::new();
    3042           96 :             let mut compact_to_set = HashMap::new();
    3043          204 :             for layer in &compact_to {
    3044          108 :                 compact_to_set.insert(layer.layer_desc().key(), layer);
    3045          108 :             }
    3046          304 :             for layer in &layer_selection {
    3047          208 :                 if let Some(to) = compact_to_set.get(&layer.layer_desc().key()) {
    3048            0 :                     tracing::info!(
    3049            0 :                         "skipping delete {} because found same layer key at different generation {}",
    3050              :                         layer, to
    3051              :                     );
    3052          208 :                 } else {
    3053          208 :                     compact_from.push(layer.clone());
    3054          208 :                 }
    3055              :             }
    3056           96 :             compact_from
    3057           96 :         };
    3058           96 :         self.remote_client
    3059           96 :             .schedule_compaction_update(&compact_from, &compact_to)?;
    3060              : 
    3061           96 :         drop(gc_lock);
    3062           96 : 
    3063           96 :         Ok(())
    3064          108 :     }
    3065              : }
    3066              : 
    3067              : struct TimelineAdaptor {
    3068              :     timeline: Arc<Timeline>,
    3069              : 
    3070              :     keyspace: (Lsn, KeySpace),
    3071              : 
    3072              :     new_deltas: Vec<ResidentLayer>,
    3073              :     new_images: Vec<ResidentLayer>,
    3074              :     layers_to_delete: Vec<Arc<PersistentLayerDesc>>,
    3075              : }
    3076              : 
    3077              : impl TimelineAdaptor {
    3078            0 :     pub fn new(timeline: &Arc<Timeline>, keyspace: (Lsn, KeySpace)) -> Self {
    3079            0 :         Self {
    3080            0 :             timeline: timeline.clone(),
    3081            0 :             keyspace,
    3082            0 :             new_images: Vec::new(),
    3083            0 :             new_deltas: Vec::new(),
    3084            0 :             layers_to_delete: Vec::new(),
    3085            0 :         }
    3086            0 :     }
    3087              : 
    3088            0 :     pub async fn flush_updates(&mut self) -> Result<(), CompactionError> {
    3089            0 :         let layers_to_delete = {
    3090            0 :             let guard = self.timeline.layers.read().await;
    3091            0 :             self.layers_to_delete
    3092            0 :                 .iter()
    3093            0 :                 .map(|x| guard.get_from_desc(x))
    3094            0 :                 .collect::<Vec<Layer>>()
    3095            0 :         };
    3096            0 :         self.timeline
    3097            0 :             .finish_compact_batch(&self.new_deltas, &self.new_images, &layers_to_delete)
    3098            0 :             .await?;
    3099              : 
    3100            0 :         self.timeline
    3101            0 :             .upload_new_image_layers(std::mem::take(&mut self.new_images))?;
    3102              : 
    3103            0 :         self.new_deltas.clear();
    3104            0 :         self.layers_to_delete.clear();
    3105            0 :         Ok(())
    3106            0 :     }
    3107              : }
    3108              : 
    3109              : #[derive(Clone)]
    3110              : struct ResidentDeltaLayer(ResidentLayer);
    3111              : #[derive(Clone)]
    3112              : struct ResidentImageLayer(ResidentLayer);
    3113              : 
    3114              : impl CompactionJobExecutor for TimelineAdaptor {
    3115              :     type Key = pageserver_api::key::Key;
    3116              : 
    3117              :     type Layer = OwnArc<PersistentLayerDesc>;
    3118              :     type DeltaLayer = ResidentDeltaLayer;
    3119              :     type ImageLayer = ResidentImageLayer;
    3120              : 
    3121              :     type RequestContext = crate::context::RequestContext;
    3122              : 
    3123            0 :     fn get_shard_identity(&self) -> &ShardIdentity {
    3124            0 :         self.timeline.get_shard_identity()
    3125            0 :     }
    3126              : 
    3127            0 :     async fn get_layers(
    3128            0 :         &mut self,
    3129            0 :         key_range: &Range<Key>,
    3130            0 :         lsn_range: &Range<Lsn>,
    3131            0 :         _ctx: &RequestContext,
    3132            0 :     ) -> anyhow::Result<Vec<OwnArc<PersistentLayerDesc>>> {
    3133            0 :         self.flush_updates().await?;
    3134              : 
    3135            0 :         let guard = self.timeline.layers.read().await;
    3136            0 :         let layer_map = guard.layer_map()?;
    3137              : 
    3138            0 :         let result = layer_map
    3139            0 :             .iter_historic_layers()
    3140            0 :             .filter(|l| {
    3141            0 :                 overlaps_with(&l.lsn_range, lsn_range) && overlaps_with(&l.key_range, key_range)
    3142            0 :             })
    3143            0 :             .map(OwnArc)
    3144            0 :             .collect();
    3145            0 :         Ok(result)
    3146            0 :     }
    3147              : 
    3148            0 :     async fn get_keyspace(
    3149            0 :         &mut self,
    3150            0 :         key_range: &Range<Key>,
    3151            0 :         lsn: Lsn,
    3152            0 :         _ctx: &RequestContext,
    3153            0 :     ) -> anyhow::Result<Vec<Range<Key>>> {
    3154            0 :         if lsn == self.keyspace.0 {
    3155            0 :             Ok(pageserver_compaction::helpers::intersect_keyspace(
    3156            0 :                 &self.keyspace.1.ranges,
    3157            0 :                 key_range,
    3158            0 :             ))
    3159              :         } else {
    3160              :             // The current compaction implementation only ever requests the key space
    3161              :             // at the compaction end LSN.
    3162            0 :             anyhow::bail!("keyspace not available for requested lsn");
    3163              :         }
    3164            0 :     }
    3165              : 
    3166            0 :     async fn downcast_delta_layer(
    3167            0 :         &self,
    3168            0 :         layer: &OwnArc<PersistentLayerDesc>,
    3169            0 :     ) -> anyhow::Result<Option<ResidentDeltaLayer>> {
    3170            0 :         // this is a lot more complex than a simple downcast...
    3171            0 :         if layer.is_delta() {
    3172            0 :             let l = {
    3173            0 :                 let guard = self.timeline.layers.read().await;
    3174            0 :                 guard.get_from_desc(layer)
    3175              :             };
    3176            0 :             let result = l.download_and_keep_resident().await?;
    3177              : 
    3178            0 :             Ok(Some(ResidentDeltaLayer(result)))
    3179              :         } else {
    3180            0 :             Ok(None)
    3181              :         }
    3182            0 :     }
    3183              : 
    3184            0 :     async fn create_image(
    3185            0 :         &mut self,
    3186            0 :         lsn: Lsn,
    3187            0 :         key_range: &Range<Key>,
    3188            0 :         ctx: &RequestContext,
    3189            0 :     ) -> anyhow::Result<()> {
    3190            0 :         Ok(self.create_image_impl(lsn, key_range, ctx).await?)
    3191            0 :     }
    3192              : 
    3193            0 :     async fn create_delta(
    3194            0 :         &mut self,
    3195            0 :         lsn_range: &Range<Lsn>,
    3196            0 :         key_range: &Range<Key>,
    3197            0 :         input_layers: &[ResidentDeltaLayer],
    3198            0 :         ctx: &RequestContext,
    3199            0 :     ) -> anyhow::Result<()> {
    3200            0 :         debug!("Create new layer {}..{}", lsn_range.start, lsn_range.end);
    3201              : 
    3202            0 :         let mut all_entries = Vec::new();
    3203            0 :         for dl in input_layers.iter() {
    3204            0 :             all_entries.extend(dl.load_keys(ctx).await?);
    3205              :         }
    3206              : 
    3207              :         // The current stdlib sorting implementation is designed in a way where it is
    3208              :         // particularly fast where the slice is made up of sorted sub-ranges.
    3209            0 :         all_entries.sort_by_key(|DeltaEntry { key, lsn, .. }| (*key, *lsn));
    3210              : 
    3211            0 :         let mut writer = DeltaLayerWriter::new(
    3212            0 :             self.timeline.conf,
    3213            0 :             self.timeline.timeline_id,
    3214            0 :             self.timeline.tenant_shard_id,
    3215            0 :             key_range.start,
    3216            0 :             lsn_range.clone(),
    3217            0 :             ctx,
    3218            0 :         )
    3219            0 :         .await?;
    3220              : 
    3221            0 :         let mut dup_values = 0;
    3222            0 : 
    3223            0 :         // This iterator walks through all key-value pairs from all the layers
    3224            0 :         // we're compacting, in key, LSN order.
    3225            0 :         let mut prev: Option<(Key, Lsn)> = None;
    3226              :         for &DeltaEntry {
    3227            0 :             key, lsn, ref val, ..
    3228            0 :         } in all_entries.iter()
    3229              :         {
    3230            0 :             if prev == Some((key, lsn)) {
    3231              :                 // This is a duplicate. Skip it.
    3232              :                 //
    3233              :                 // It can happen if compaction is interrupted after writing some
    3234              :                 // layers but not all, and we are compacting the range again.
    3235              :                 // The calculations in the algorithm assume that there are no
    3236              :                 // duplicates, so the math on targeted file size is likely off,
    3237              :                 // and we will create smaller files than expected.
    3238            0 :                 dup_values += 1;
    3239            0 :                 continue;
    3240            0 :             }
    3241              : 
    3242            0 :             let value = val.load(ctx).await?;
    3243              : 
    3244            0 :             writer.put_value(key, lsn, value, ctx).await?;
    3245              : 
    3246            0 :             prev = Some((key, lsn));
    3247              :         }
    3248              : 
    3249            0 :         if dup_values > 0 {
    3250            0 :             warn!("delta layer created with {} duplicate values", dup_values);
    3251            0 :         }
    3252              : 
    3253            0 :         fail_point!("delta-layer-writer-fail-before-finish", |_| {
    3254            0 :             Err(anyhow::anyhow!(
    3255            0 :                 "failpoint delta-layer-writer-fail-before-finish"
    3256            0 :             ))
    3257            0 :         });
    3258              : 
    3259            0 :         let (desc, path) = writer.finish(prev.unwrap().0.next(), ctx).await?;
    3260            0 :         let new_delta_layer =
    3261            0 :             Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    3262              : 
    3263            0 :         self.new_deltas.push(new_delta_layer);
    3264            0 :         Ok(())
    3265            0 :     }
    3266              : 
    3267            0 :     async fn delete_layer(
    3268            0 :         &mut self,
    3269            0 :         layer: &OwnArc<PersistentLayerDesc>,
    3270            0 :         _ctx: &RequestContext,
    3271            0 :     ) -> anyhow::Result<()> {
    3272            0 :         self.layers_to_delete.push(layer.clone().0);
    3273            0 :         Ok(())
    3274            0 :     }
    3275              : }
    3276              : 
    3277              : impl TimelineAdaptor {
    3278            0 :     async fn create_image_impl(
    3279            0 :         &mut self,
    3280            0 :         lsn: Lsn,
    3281            0 :         key_range: &Range<Key>,
    3282            0 :         ctx: &RequestContext,
    3283            0 :     ) -> Result<(), CreateImageLayersError> {
    3284            0 :         let timer = self.timeline.metrics.create_images_time_histo.start_timer();
    3285              : 
    3286            0 :         let image_layer_writer = ImageLayerWriter::new(
    3287            0 :             self.timeline.conf,
    3288            0 :             self.timeline.timeline_id,
    3289            0 :             self.timeline.tenant_shard_id,
    3290            0 :             key_range,
    3291            0 :             lsn,
    3292            0 :             ctx,
    3293            0 :         )
    3294            0 :         .await?;
    3295              : 
    3296            0 :         fail_point!("image-layer-writer-fail-before-finish", |_| {
    3297            0 :             Err(CreateImageLayersError::Other(anyhow::anyhow!(
    3298            0 :                 "failpoint image-layer-writer-fail-before-finish"
    3299            0 :             )))
    3300            0 :         });
    3301              : 
    3302            0 :         let keyspace = KeySpace {
    3303            0 :             ranges: self.get_keyspace(key_range, lsn, ctx).await?,
    3304              :         };
    3305              :         // TODO set proper (stateful) start. The create_image_layer_for_rel_blocks function mostly
    3306            0 :         let outcome = self
    3307            0 :             .timeline
    3308            0 :             .create_image_layer_for_rel_blocks(
    3309            0 :                 &keyspace,
    3310            0 :                 image_layer_writer,
    3311            0 :                 lsn,
    3312            0 :                 ctx,
    3313            0 :                 key_range.clone(),
    3314            0 :                 IoConcurrency::sequential(),
    3315            0 :             )
    3316            0 :             .await?;
    3317              : 
    3318              :         if let ImageLayerCreationOutcome::Generated {
    3319            0 :             unfinished_image_layer,
    3320            0 :         } = outcome
    3321              :         {
    3322            0 :             let (desc, path) = unfinished_image_layer.finish(ctx).await?;
    3323            0 :             let image_layer =
    3324            0 :                 Layer::finish_creating(self.timeline.conf, &self.timeline, desc, &path)?;
    3325            0 :             self.new_images.push(image_layer);
    3326            0 :         }
    3327              : 
    3328            0 :         timer.stop_and_record();
    3329            0 : 
    3330            0 :         Ok(())
    3331            0 :     }
    3332              : }
    3333              : 
    3334              : impl CompactionRequestContext for crate::context::RequestContext {}
    3335              : 
    3336              : #[derive(Debug, Clone)]
    3337              : pub struct OwnArc<T>(pub Arc<T>);
    3338              : 
    3339              : impl<T> Deref for OwnArc<T> {
    3340              :     type Target = <Arc<T> as Deref>::Target;
    3341            0 :     fn deref(&self) -> &Self::Target {
    3342            0 :         &self.0
    3343            0 :     }
    3344              : }
    3345              : 
    3346              : impl<T> AsRef<T> for OwnArc<T> {
    3347            0 :     fn as_ref(&self) -> &T {
    3348            0 :         self.0.as_ref()
    3349            0 :     }
    3350              : }
    3351              : 
    3352              : impl CompactionLayer<Key> for OwnArc<PersistentLayerDesc> {
    3353            0 :     fn key_range(&self) -> &Range<Key> {
    3354            0 :         &self.key_range
    3355            0 :     }
    3356            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3357            0 :         &self.lsn_range
    3358            0 :     }
    3359            0 :     fn file_size(&self) -> u64 {
    3360            0 :         self.file_size
    3361            0 :     }
    3362            0 :     fn short_id(&self) -> std::string::String {
    3363            0 :         self.as_ref().short_id().to_string()
    3364            0 :     }
    3365            0 :     fn is_delta(&self) -> bool {
    3366            0 :         self.as_ref().is_delta()
    3367            0 :     }
    3368              : }
    3369              : 
    3370              : impl CompactionLayer<Key> for OwnArc<DeltaLayer> {
    3371            0 :     fn key_range(&self) -> &Range<Key> {
    3372            0 :         &self.layer_desc().key_range
    3373            0 :     }
    3374            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3375            0 :         &self.layer_desc().lsn_range
    3376            0 :     }
    3377            0 :     fn file_size(&self) -> u64 {
    3378            0 :         self.layer_desc().file_size
    3379            0 :     }
    3380            0 :     fn short_id(&self) -> std::string::String {
    3381            0 :         self.layer_desc().short_id().to_string()
    3382            0 :     }
    3383            0 :     fn is_delta(&self) -> bool {
    3384            0 :         true
    3385            0 :     }
    3386              : }
    3387              : 
    3388              : use crate::tenant::timeline::DeltaEntry;
    3389              : 
    3390              : impl CompactionLayer<Key> for ResidentDeltaLayer {
    3391            0 :     fn key_range(&self) -> &Range<Key> {
    3392            0 :         &self.0.layer_desc().key_range
    3393            0 :     }
    3394            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3395            0 :         &self.0.layer_desc().lsn_range
    3396            0 :     }
    3397            0 :     fn file_size(&self) -> u64 {
    3398            0 :         self.0.layer_desc().file_size
    3399            0 :     }
    3400            0 :     fn short_id(&self) -> std::string::String {
    3401            0 :         self.0.layer_desc().short_id().to_string()
    3402            0 :     }
    3403            0 :     fn is_delta(&self) -> bool {
    3404            0 :         true
    3405            0 :     }
    3406              : }
    3407              : 
    3408              : impl CompactionDeltaLayer<TimelineAdaptor> for ResidentDeltaLayer {
    3409              :     type DeltaEntry<'a> = DeltaEntry<'a>;
    3410              : 
    3411            0 :     async fn load_keys(&self, ctx: &RequestContext) -> anyhow::Result<Vec<DeltaEntry<'_>>> {
    3412            0 :         self.0.get_as_delta(ctx).await?.index_entries(ctx).await
    3413            0 :     }
    3414              : }
    3415              : 
    3416              : impl CompactionLayer<Key> for ResidentImageLayer {
    3417            0 :     fn key_range(&self) -> &Range<Key> {
    3418            0 :         &self.0.layer_desc().key_range
    3419            0 :     }
    3420            0 :     fn lsn_range(&self) -> &Range<Lsn> {
    3421            0 :         &self.0.layer_desc().lsn_range
    3422            0 :     }
    3423            0 :     fn file_size(&self) -> u64 {
    3424            0 :         self.0.layer_desc().file_size
    3425            0 :     }
    3426            0 :     fn short_id(&self) -> std::string::String {
    3427            0 :         self.0.layer_desc().short_id().to_string()
    3428            0 :     }
    3429            0 :     fn is_delta(&self) -> bool {
    3430            0 :         false
    3431            0 :     }
    3432              : }
    3433              : impl CompactionImageLayer<TimelineAdaptor> for ResidentImageLayer {}
        

Generated by: LCOV version 2.1-beta